WorldWideScience

Sample records for helium argon atoms

  1. Diffraction experiments of argon or helium on polluted surfaces

    International Nuclear Information System (INIS)

    Berthier, J.P.; Constans, A.; Daury, G.; Lostis, P.

    1975-01-01

    Scattering patterns of molecular beams of argon or helium from metal surfaces (bulk metal or thin films) are reported. The pressure in the scattering chamber is about 10 -6 torr. So, the surfaces are polluted. Diffraction peaks are observed which can be interpreted very well by assuming that nitrogen, oxygen or carbon atoms are adsorbed of the surface. On the other hand, diffraction peaks from a silicon crystal have been observed which can be reproduced very well by using silicon crystal lattice. These experiments are not interpreted accurately, but show that molecular reflection can be used for some surface studies [fr

  2. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  3. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    Saada, Serge

    1983-01-01

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established. [fr

  4. Improvement of helium characteristics using argon in cylindrical ion source

    International Nuclear Information System (INIS)

    Abdel salam, F.W.; El-Khabeary, H.; Abdel reheem, A.M.; Kassem, N.E.; Ahmed, M.M.

    2004-01-01

    the discharge characteristics of pure helium gas were measured at different pressures in the range of 10 -4 torr. in order o improve its characteristics, argon gas was added . different percentages of argon gas ,1%,2%,3%,4%,5%,10% and 20% were used at constant values of pressures . Measurements of the efficiency of the cylindrical ion source in case of adding different percentages of argon gas to pure helium gas were made . an optimum value of the output ion beam current was obtained when 2% argon gas was added to pure helium gas . an output ion beam current of 105 μA was obtained at a pressure of 7X10 -4 torr inside the vacuum chamber and discharge current of 0.6 m A

  5. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  6. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  7. Cryosorption of helium on argon frost in Tokamak Fusion Test Reactor neutral beamlines

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Cropper, M.B.; Dylla, H.F.; Garzotto, V.; Dudek, L.E.; Grisham, L.R.; Martin, G.D.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Kim, J.

    1990-01-01

    Helium pumping on argon frost has been investigated on Tokamak Fusion Test Reactor (TFTR) neutral beam injectors and shown to be viable for limited helium beam operation. Maximum pumping speeds are ∼25% less than those measured for pumping of deuterium. Helium pumping efficiency is low, >20 argon atoms are required to pump each helium atom. Adsorption isotherms are exponential and exhibit a twofold increase in adsorption capacity as the cryopanel temperature is reduced from 4.3 K to 3.7 K. Pumping speed was found to be independent of cryopanel temperature over the temperature range studied. After pumping a total of 2000 Torr l of helium, the beamline base pressure rose to 2x10 -5 Torr from an initial value of 10 -8 Torr. Accompanying this three order of magnitude increase in pressure was a modest 40% decrease in pumping speed. The introduction of 168 Torr l of deuterium prior to helium injection reduced the pumping speed by a factor of two with no decrease in adsorption capacity

  8. Cryosorption of helium on argon frost TFTR [Tokamak Fusion Test Reactor] neutral beamlines

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Cropper, M.B.; Dylla, H.F.

    1989-11-01

    Helium pumping on argon frost has been investigated on TFTR neutral beam injectors and shown to be viable for limited helium beam operation. Maximum pumping speeds are ∼ 25% less than those measured for pumping of deuterium. Helium pumping efficiency is low, > 20 argon atoms are required to pump each helium atom. Adsorption isotherms are exponential and exhibit a two-fold increase in adsorption capacity as the cryopanel temperature is reduced from 4.3 K to 3.7 K. Pumping speed was found to be independent of cryopanel temperature over the temperature range studied. After pumping a total of 2000 torr-l of helium, the beamline base pressure rose to 2x10 -5 torr from an initial value of 10 -8 torr. Accompanying this three order of magnitude increase in pressure was a modest 40% decrease in pumping speed. The introduction of 168 torr-l of deuterium prior to helium injection reduced the pumping speed by a factor of two with no decrease in adsorption capacity. 29 refs., 7 figs

  9. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  10. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  11. Experimental investigations of helium cryotrapping by argon frost

    International Nuclear Information System (INIS)

    Mack, A.; Perinic, D.; Murdoch, D.; Boissin, J.C.

    1992-01-01

    At the Karlsruhe Nuclear Research Centre (KfK) cryopumping techniques are being investigated by which the gaseous exhausts from the NET/ITER reactor can be pumped out during the burn-and dwell-times. Cryosorption and cryotrapping are techniques which are suitable for this task. It is the target of the investigations to test the techniques under NET/ITER conditions and to determine optimum design data for a prototype. They involve measurement of the pumping speed as a function of the gas composition, gas flow and loading condition of the pump surfaces. The following parameters are subjected to variations: Ar/He ratio, specific helium volume flow rate, cryosurface temperature, process gas composition, impurities in argon trapping gas, three-stage operation and two-stage operation. This paper is a description of the experiments on argon trapping techniques started in 1990. Eleven tests as well as the results derived from them are described

  12. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  13. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon-helium microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Munoz, J.; Dimitrijevic, M.S.; Yubero, C.; Calzada, M.D.

    2009-01-01

    The applications of plasmas generated with gas mixtures have become increasingly common in different scientific and technological fields. In order to understand the advantages of these discharges, for instance in chemical analysis, it is necessary to know the gas temperature (T g , kinetic energy of the heavy particles) since it has a great influence on the atomization reactions of the molecules located in the discharge, along with the dependence of the reaction rate on this parameter. The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure although under some experimental conditions, these are difficult to detect. In such cases, the gas temperature can be determined from the van der Waals broadening of the emitted atomic spectral lines related to this parameter. The method proposed is based on the van der Waals broadening taking into account two perturbers

  14. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  15. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  16. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  17. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  18. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  19. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  20. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-01-01

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter θ = T e /T h on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter θ.

  1. Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms

    Science.gov (United States)

    Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.

    2018-04-01

    The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.

  2. Scattering of electrons from argon atoms

    International Nuclear Information System (INIS)

    Dasgupta, A.; Bhatia, A.K.

    1985-01-01

    The scattering of electrons from argon atoms is studied by the method of polarized orbitals. The 3p→d perturbed orbital calculated using the Sternheimer approximation gives the polarizability 14.29a 0 3 . The perturbation of the orbitals 1s, 2s, 2p, and 3s is taken into account by renormalizing the 3p→d orbitals to give the experimental value 11.06a 0 3 . Using only the modified orbital in the total wave function, phase shifts for various partial waves have been calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the results of the previous calculations. The calculated total elastic, differential, and momentum-transfer cross sections are compared with the experimental results. The elastic total cross sections obtained in the polarized-orbital approximation agree very closely with the recently measured cross sections by Jost et al. and Nickel et al. The critical point (the value of k 2 and theta at which the differential cross section is minimum) is at 0.306 eV and 80 0 , in good agreement with the measurements of Weyhreter et al

  3. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water.

    Science.gov (United States)

    Bartali, Ruben; Otyepka, Michal; Pykal, Martin; Lazar, Petr; Micheli, Victor; Gottardi, Gloria; Laidani, Nadhira

    2017-05-24

    The interaction of the confined gas with solid surface immersed in water is a common theme of many important fields such as self-cleaning surface, gas storage, and sensing. For that reason, we investigated the gas-graphite interaction in the water medium. The graphite surface was prepared by mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). The surface chemistry and morphology were studied by X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy. The surface energy of HOPG was estimated by contact angle measurements using the Owens-Wendt method. The interaction of gases (Ar, He, H 2 , N 2 , and air) with graphite was studied by a captive bubble method, in which the gas bubble was in contact with the exfoliated graphite surface in water media. The experimental data were corroborated by molecular dynamics simulations and density functional theory calculations. The surface energy of HOPG equaled to 52.8 mJ/m 2 and more of 95% of the surface energy was attributed to dispersion interactions. The results on gas-surface interaction indicated that HOPG surface had gasphilic behavior for helium and hydrogen, while gasphobic behavior for argon and nitrogen. The results showed that the variation of the gas contact angle was related to the balance between the gas-surface and gas-gas interaction potentials. For helium and hydrogen the gas-surface interaction was particularly high compared to gas-gas interaction and this promoted the favorable interaction with graphite surface.

  4. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  5. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology

    Science.gov (United States)

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-01

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  6. The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials

    International Nuclear Information System (INIS)

    Cassidy, R.A.; Elford, M.T.

    1983-01-01

    The analysis of mobility data is a valuable technique for deriving ion-atom interaction potentials or testing at initio potentials particularly at relatively large internuclear separations. In order to obtain the most complete information on the long range part of the potential it is necessary to have mobility data at sufficiently low gas temperatures and small values of E/N that the mobility is determined only by the dipole polarization force. Although this condition can be reasonably well met at room temperature for gases of high polarizability, this is not the case for ions in helium and in particular for the most well studied case, that of Li + in helium. The prime purpose of the present measurements was to obtain low temperature data for Li + in helium in order to determine more accurately the attractive long range tail of the potential. The measurements were also extended to argon to demonstrate the effect of the polarizability on the derivation of potentials. The mobility measurements were made using a drift tube-mass spectrometer system employing the Bradbury-Nielsen time of flight technique. Measurements were performed at 294 K and 80 K. The 'three temperature' theory of Lin, Viehland and Mason was used to fit interaction potentials to the present data. Detailed comparisons are made here only for the case of Li + ions in helium. The new data for 80 K provide additional information on the potential at internuclear separations which cover the range to 5 A. (Authors)

  7. Charge transfer cross-sections of argon ions colliding on argon atoms

    International Nuclear Information System (INIS)

    Aubert, J.; Bliman, S.; Chan-Tung, N.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-04-01

    A device has been built to measure charge changing cross-sections of Argon ions colliding on argon atoms. It consists of an E.C.R. ion source (Micromafios) that delivers argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given separated charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The pressure is varied in the collision cell in order to check that the single collision condition is satisfied. It is shown that the ions do two types of collisions: charge exchange and stripping whose cross-sections are measured. Interpretation of charge exchange is proposed along yet classic theoretical approaches. As to stripping no available theory allows interpretation

  8. Application of argon-helium cryoablation in resection of intracranial tumors

    Directory of Open Access Journals (Sweden)

    Yu-hao ZHOU

    2017-07-01

    Full Text Available Objective To summarize the curative effect of argon-helium cryoablation in resection of intracranial tumors.  Methods and Results A total of 11 patients with primary intracranial tumors, including 7 cases of glioma and 4 cases of meningioma, were enrolled in this study. The tumor was located in left frontal lobe in 4 cases, left fronto-parietal lobe in 2 cases, left temporal lobe in 2 cases and right temporo-parietal lobe in 3 cases. Argon-helium cryoablation was used to assist intracranial tumor resection. Among 7 cases of glioma, 4 cases were totally removed and 3 cases were partially resected. Four cases of meningioma were totally removed. The average intraoperative blood loss was 80 ml, and average operation time was 80 min. Postoperative clinical symptoms were improved, and head CT or MRI showed no rebleeding. Patients were followed up for an average of 4 years, and none of them suffered from operation-related or postoperative complications such as intracranial infection, or tumor recurrence.  Conclusions Argon - helium cryoablation is suitable for intracranial tumors with different diameters and in different locations. It is safe and effective, with few operation-related or postoperative complications, less rebleeding and low risk of recurrence, which is a highly efficient and relatively low?cost assistant surgical method. DOI: 10.3969/j.issn.1672-6731.2017.06.011

  9. A Study of Confined Helium Atom

    International Nuclear Information System (INIS)

    Xie Wenfang

    2007-01-01

    The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.

  10. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  11. Cryotherapy of employing Argon/Helium assisted with TACE in treating unresectable primary liver carcinoma

    International Nuclear Information System (INIS)

    Zhang Zhiliang; Yang Xuedong; Cao Yongwei; Lin Xiangyang; Zhang Yongping; Liu Yayuan

    2004-01-01

    Objective: To investigate the effect of cryotherapy of employing Argon/Helium assisted with TACE for the unresectable primary liver carcinoma. Methods: 124 cases with primary liver carcinoma were randomly divided into two groups: 60 cases were treated by TACE and cryotherapy; the other 64 cases were simply done by TACE as control. In general, TACE was undertaken once a month and altogether three times for a course. Cryotherapy was undergone 1-3 times for a course. Results: The total effective rates (CR + PR) were 45.3% for the control group and 68.3% for the combined therapy group, with an obvious difference between the two groups, 0.5, 1, 1.5 years survival rate were 81.3%, 62.5%, 43.8% respectively in the control group; 93.3%, 83.3%, 63.3% respectively for the combined group. There was an obvious difference between the two groups of 1, 1.5 years of survival rates. Conclusions: Cryotherapy of employing Argon/Helium assisted with TACE for the unresectable primary liver carcinoma is feasible with raising the effective rate and prolonging survival time. (authors)

  12. Positron collisions with helium and alkaline earth-like atoms

    International Nuclear Information System (INIS)

    Campbell, C.P.

    1998-09-01

    This doctoral thesis is subdivided into: 1. Theory of positron collisions with helium and alkaline earth-like atoms, 2. Positron collisions with helium, magnesium, calcium, zinc, 3. Intercomparison of positron scattering by all those elements. The appendix of this work gives details of the numerical calculations and expands on the wavefunctions used

  13. The absolute photoionization cross sections of helium, neon, argon and krypton in the extreme vacuum ultraviolet region of the spectrum

    International Nuclear Information System (INIS)

    West, J.B.; Marr, G.V.

    1976-01-01

    An experiment has been set up at the Daresbury Synchrotron Radiation Facility to make absolute absorption cross section measurements over a wide range of photon energies. New data are reported for helium, neon, argon and krypton over the range 340 to 40 A which are believed to be reliable to +- 5%. A critical evaluation of published cross section data has been carried out to produce best value data from the ionization thresholds throughout the vacuum ultraviolet and x-ray region. Agreement with theoretical calculations on helium is demonstrated to be within +- 2 to 3% from threshold down to the double ionization threshold at 79 eV. Comparison with recent calculations of photoionization cross sections has shown that the effect of electron correlations is significant for the heavier inert gases. Contrary to previous claims, the position of the M shell maximum in krypton is located at 184 +- 10 eV in good agreement with r.p.a.e. calculations. Oscillator strength sum rules have been examined and their moments calculated. Discrepancies developing towards the heavier inert gases suggests a decrease in polarizabilities and other atomic factors from those predicted by Hartree-Fock calculations. (author)

  14. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  15. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  16. Percutaneous targeted argon-helium cryoablation for renal carcinoma under CT guidance

    International Nuclear Information System (INIS)

    Xu Jian; Cao Jianmin; Lu Guangming; Shi Donghong; Kong Weidong; Gao Dazhi

    2008-01-01

    Objective: To establish initially the technique and evaluate the principle, safety and short term efficacy of argon-helium superconductor operation system (or Ar-He knife) targeted cryotherapy for renal carcinoma. Methods: Seven patients with renal carcinoma were treated with CT-guided percutaneous Ar-He knife targeted cryotherapy. Results: After cryotherapy, no serious complications, such as bleeding, skin cold injury, infection, implantation metastasis inside the puncture path occurred, and one month later, CT scans showed low-density local necrosis in all tumors of the 7 cases, but the tumor reduction in size was found only in 2 cases. Conclusion: CT guiding percutaneous Ar-He knife targeted cryoablation for renal carcinoma is a safe, effective and minimally invasive therapeutic method, particularly for inoperable cases. (authors)

  17. Line ratios and wavelengths of helium-like argon n=2 satellite transitions and resonance lines

    International Nuclear Information System (INIS)

    Biedermann, C.; Radtke, R.; Fournier, K.

    2003-01-01

    The characteristic X-ray emission from helium-like argon was investigated as a mean to diagnose hot plasmas. We have measured the radiation from n=2-1 parent lines and from KLn dielectronic recombination satellites with high wavelength resolution as function of the excitation energy using the Berlin Electron Beam Ion Trap. Values of wavelength relative to the resonance and forbidden line are tabulated and compared with references. The line intensity observed over a wide range of excitation energies is weighted with a Maxwellian electron-energy distribution to analyze line ratios as function of plasma temperature. Line ratios (j+z)/w and k/w compare nicely with theoretical predictions and demonstrate their applicability as temperature diagnostic. The ratio z/(x+y) shows not to depend on the electron density

  18. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  19. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    Science.gov (United States)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  20. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  1. Fast resolution change in neutral helium atom microscopy

    Science.gov (United States)

    Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.

    2018-05-01

    In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.

  2. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  3. Resonant excitation of uranium atoms by an argon ion laser

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, H; Morikawa, M; Aihara, Y; Mochizuki, T; Yamanaka, C [Osaka Univ. (Japan)

    1979-03-01

    Photoionization of uranium atoms by UV lines, 3511 A and 3345 A, of an argon ion laser was observed and attributed due to resonant two-photon ionization. The dependence of the photoion currents on laser power was measured in focusing and non-focusing modes of laser beam, which has enabled us to obtain an absorption cross section and an ionization cross section independently. The orders of magnitude of these cross sections averaged over the fine structure were determined to be 10/sup -14/ cm/sup 2/ and 10/sup -17/ cm/sup 2/ respectively from a rate equation model. Resonance between 3511-A laser line and the absorption line of uranium isotopes was also confirmed by the ionization spectra obtained by near-single-frequency operation of the ion laser, which allowed the isotopic selective excitation of the uranium atoms. The maximum value of the enrichment of /sup 235/U was about 14%. The isotope separation of uranium atoms by this resonant excitation has been discussed.

  4. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  5. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  6. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  7. Energy eigenvalues of helium-like atoms in dense plasmas

    International Nuclear Information System (INIS)

    Hashino, Tasuke; Nakazaki, Shinobu; Kato, Takako; Kashiwabara, Hiromichi.

    1987-04-01

    Calculations based on a variational method with wave functions including the correlation of electrons are carried out to obtain energy eigenvalues of Schroedinger's equation for helium-like atoms embedded in dense plasmas, taking the Debye-Hueckel approximation. Energy eigenvalues for the 1 1 S, 2 1 S, and 2 3 S states are obtained as a function of Debye screening length. (author)

  8. Measurement of strong interaction effects in antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Davies, J.D.; Gorringe, T.P.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A.

    1984-01-01

    The strong interaction shift and width for the 2 p level and the width for the 3d level have been measured for antiprotonic helium atoms. The results are compared with optical model calculations. The possible existence of strongly bound antiproton states in nuclei is discussed. (orig.)

  9. Long Range Forces between Atomic Impurities in Liquid Helium

    International Nuclear Information System (INIS)

    Dupont-Roc, J.

    2002-01-01

    Van der Waals or Casimir interaction between neutral quantum objects in their ground state is known to be universally attractive. This is not necessarily so when these objects are embedded in a polarizable medium. We show that atomic impurities in liquid helium may indeed realize repulsive forces, and even Van der Waals and Casimir forces with different signs. (author)

  10. Mass spectrometer diagnostic technique in the study of stationary afterglow plasmas in helium, argon and krypton

    International Nuclear Information System (INIS)

    Langenwalter, M.

    1979-01-01

    Since some years the method of massspectrometric monitoring has become an important tool in the analysis of time resolved (or stationary) afterglow plasmas. The present thesis reports the construction and testing of a new fully bakeable UHV-stationary-afterglow-apparatus using a hollow cathode discharge as plasma source for the first time. The hollow cathode is moveable perpendicular to its axis relative to the sampling orifice (i.e. a very small hole at the centre of the plasma container's boundary), so that the radical distribution of the charged particle density can be studied. Several specific extraction conditions for ions from the plasma especially the sampling probe potential have been systematically investigated. Results are illustrated and discussed. The new apparatus has been tested by determining the ambipolar diffusion coefficient of the molecular ion He 2 + in a pure Helium-plasma in thermal equilibrium. The present result (Dsub(a2) = 603 +- 38 / P 0 cm 2 s -1 ) is in agreement with results reported by other workers. Finally an example for the radial behaviour of the Ar + -sampling current in an Argon-discharge for several different times in the afterglow period is given. The shown behaviour agrees relatively well with the theoretically predicted radial ion density distribution, i.e. the zero-order Ressel'function. (Author)

  11. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  12. Stationary Population Inversion in an Expanding Argon Plasma Jet by Helium Puffing

    International Nuclear Information System (INIS)

    Akatsuka, H.; Kano, K.

    2005-01-01

    An experiment of He gas-contact for generating population inversion in a recombining Ar plasma jet is carried out. Population inversion between Ar I excited states 5s' → 4p'[1/2]1 and 5s' → 4p[3/2]1,2, [5/2]2,3 is created by helium gas-contact cooling of electrons, whereas it is not created without gas-contact. Ar I lines 1.14 μm, 1.34 μm, and 1.09 μm are strongly enhanced due to the He gas cooling. It is experimentally found that helium gas contact effectively lowers electron temperature of the Ar plasma jet. The mechanisms giving rise to population inversion are discussed in terms of atomic collisional processes of the recombining plasma. The experimental results of electron temperature and population densities are discussed by simple numerical analysis which we previously developed. It is shown that the experimental results are well explained by our modeling quantitatively for the case without gas contact, except that the agreement of number densities of lower lying non-LTE levels is qualitative for the case with the gas contact

  13. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases.

    Science.gov (United States)

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-09-18

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  14. Helium atom in a box: a fully quantal solution

    Energy Technology Data Exchange (ETDEWEB)

    Mitnik, D.M. [Departmento de Fisica, FCEyN, Universidad de Buenos Aires, and Instituto de Astronomia y Fisica del Espacio (IAFE), Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)

    2007-06-15

    A complete non-perturbative solution of the Helium atom in a box problem is presented by developing two numerical techniques. The first technique is the direct solution by diagonalization of the Hamiltonian, and the second is based on a constrained relaxation of the wave functions. Time-dependent propagation of doubly-excited wave-functions is analyzed, allowing the calculation and the visualization of the autoionization process.

  15. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s 5 and 1s 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s 5 level is metastable and the 1s 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s 5 and 1s 4 argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl 2 or BCl 3 increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl 2 or BCl 3 was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the

  16. Clinical application of argon-helium cryotherapy system in the treatment of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Guo Zhi Xin Wenge; Liu Fang; Yu Haipeng; Li Baoguo; Guo Xiuying; Zhang Sheng; Fu Li; Xing Jizhong; Zhang Junyi; Wang Youju; Gong Bing

    2005-01-01

    Objective: To explore the efficacy of Argon-Helium cryotherapy system (AHCS) after transarterial chemoembolization (TACE) in treating the large hepatocellular carcinoma (HCC) with diameter over 10 cm. Methods: Forty-eight HCC patients were randomly divided into therapy group (n=26) and control group (n=22), and patients in the therapy group were treated with AHCS [(Cryocare) TM Surgical System] 4 weeks after TACE. Tumor size ranged from 10 to 13 cm. All tumors were hypervascular with Child A in 38 cases and Child B in 10 cases. AFP was positive in 40 cases and negative in 8. Reexamination included pathology, tumor marker, T-lymphocyte subgroup, ultrasound, CT, or MRI. Necrosis rate was calculated with Cavalieri theory. Numerical rating scale (NRS) for pain evaluation and EORTC QLQ-C30 for life quality evaluation were performed. Results: Technical success rate was 100%. Follow-up time varied from 6 to 14 months, and follow-up rate was 100%. Average neoplasm necrosis rate was 8.07% after TACE, and 28.65% after AHCS. Tumor marker significantly deceased after AHCS. The necrosis after AHCS was more significant than that after TACE alone. AST and ALT deteriorated for 2 weeks after TACE and for 1 week after AHCS. Local pain 48 hours after AHCS was the only more serious side effect than after TACE. Immunological function was significantly suppressed after TACE. CD 3 + , CD 4 + , and NK increased after AHCS, and abnormal distribution was corrected. Coagulative necrosis was founded in the tumor target area pathologically. Quality of life increased according EORTC QLQ-C30 results after AHCS. No severe complication occurred. Conclusion: AHCS after TACE can reduce tumor load in short term, and it can improve cellular immunity, ameliorate the liver function, increase the quality of life, and make satisfactory effect in the near future. The key point to increase therapeutic efficacy is the embolization of blood vessel and control of heat sink effect by TACE. Interventional

  17. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  18. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  19. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  20. Helium Exhaust Studies in H-Mode Discharges in the DIII-D Tokamak Using an Argon-Frosted Divertor Cryopump

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Brooks, N.H.; Burrell, K.H.; Groebner, R.J.; Jackson, G.L.; Klepper, C.C.; Laughon, G.; Menon, M.M.; Mioduszewski, P.K.

    1995-01-01

    The first experiments demonstrating exhaust of thermal helium in a diverted, H-mode deuterium plasma have been performed on the DIII-D tokamak. The helium, introduced via gas puffing, is observed to reach the plasma core, and then is readily removed from the plasma with a time constant of ∼10--20 energy-confinement times by an in-vessel cryopump conditioned with argon frosting. Detailed analysis of the helium profile evolution suggests that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium-transport properties of the plasma

  1. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  2. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  3. ENERGY RELAXATION OF HELIUM ATOMS IN ASTROPHYSICAL GASES

    International Nuclear Information System (INIS)

    Lewkow, N. R.; Kharchenko, V.; Zhang, P.

    2012-01-01

    We report accurate parameters describing energy relaxation of He atoms in atomic gases, important for astrophysics and atmospheric science. Collisional energy exchange between helium atoms and atomic constituents of the interstellar gas, heliosphere, and upper planetary atmosphere has been investigated. Energy transfer rates, number of collisions required for thermalization, energy distributions of recoil atoms, and other major parameters of energy relaxation for fast He atoms in thermal H, He, and O gases have been computed in a broad interval of energies from 10 meV to 10 keV. This energy interval is important for astrophysical applications involving the energy deposition of energetic atoms and ions into atmospheres of planets and exoplanets, atmospheric evolution, and analysis of non-equilibrium processes in the interstellar gas and heliosphere. Angular- and energy-dependent cross sections, required for an accurate description of the momentum-energy transfer, are obtained using ab initio interaction potentials and quantum mechanical calculations for scattering processes. Calculation methods used include partial wave analysis for collisional energies below 2 keV and the eikonal approximation at energies higher than 100 eV, keeping a significant energy region of overlap, 0.1-2 keV, between these two methods for their mutual verification. The partial wave method and the eikonal approximation excellently match results obtained with each other as well as experimental data, providing reliable cross sections in the astrophysically important interval of energies from 10 meV to 10 keV. Analytical formulae, interpolating obtained energy- and angular-dependent cross sections, are presented to simplify potential applications of the reported database. Thermalization of fast He atoms in the interstellar gas and energy relaxation of hot He and O atoms in the upper atmosphere of Mars are considered as illustrative examples of potential applications of the new database.

  4. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    Science.gov (United States)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  5. Behaviour of tunnelling transition rate of argon atom exposed to ...

    Indian Academy of Sciences (India)

    in the strong laser field ionization of atoms and molecules. ... state in the discrete spectrum and the final state in the continuum of a quantum system in ... In this paper we used the ADK model to describe the tunnel ionization of atoms and.

  6. Microwave multiphoton excitation of helium Rydberg atoms: The analogy with atomic collisions

    International Nuclear Information System (INIS)

    van de Water, W.; van Leeuwen, K.A.H.; Yoakum, S.; Galvez, E.J.; Moorman, L.; Bergeman, T.; Sauer, B.E.; Koch, P.M.

    1989-01-01

    We study multiphoton transitions in helium Rydberg atoms subjected to a microwave electric field of fixed frequency but varying intensity. For each principal quantum number in the range n=25--32, the n 3 S to n 3 (L>2), n=25--32, transition probability exhibits very sharp structures as a function of the field amplitude. Their positions could be reproduced precisely using a Floquet Hamiltonian for the interaction between atom and field. Their shapes are determined by the transients of field turn-on and turn-off in a way that makes a close analogy with the theory of slow atomic collisions

  7. Laser spectroscopy of Ag atoms in liquid helium and gaseous helium at low temperatures

    International Nuclear Information System (INIS)

    Hui, Q.; Persson, J. L.; Jakubek, Z. J.; Takami, M.

    1998-01-01

    Neutral Ag atoms are dispersed in liquid and gaseous helium by laser ablation and dissociation. Following the excitation of the D2 line, a broad emission band is observed to the red side of the D1 emission line. This band is assigned to the A 2 Π 3/2 → X 2 Σ + bound-free transition of the AgHe 2 exciplex. The assignment has been confirmed by an ab initio calculation on the AgHe 2 complex. The temperature and the pressure dependences of the D1 emission and the broad emission in the gas phase indicate that the 4d 9 5s 2 2 D 5/2 level may play an important role in the 5p 2 P 3/2 → 5p 2 1/2 non-radiative relaxation and the exciplex formation processes

  8. The measurement of argon metastable atoms in the barrier discharge plasma

    Science.gov (United States)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  9. Stationary Population Inversion in an Expanding Argon Plasma Jet by Helium Puffing

    National Research Council Canada - National Science Library

    Akatsuka, H; Kano, K

    2005-01-01

    ... out. Population inversion between Ar I excited states 5s'->4p'[1/2]1 and 5s'->4p[3/2]1,2, [5/2]2,3 is created by helium gas-contact cooling of electrons, whereas it is not created without gas-contact. Ar I lines 1.14 m, 1.34 m...

  10. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  11. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  12. A novel spacetime concept for describing electronic motion within a helium atom

    OpenAIRE

    Xu, Kunming

    2007-01-01

    Euclidean space and linear algebra do not characterize dynamic electronic orbitals satisfactorily for even the motion of both electrons in an inert helium atom cannot be defined in reasonable details. Here the author puts forward a novel two-dimensional spacetime model from scratch in the context of defining both electrons in a helium atom. Space and time are treated as two orthogonal, symmetric and complementary quantities under the atomic spacetime. Electronic motion observed the rule of di...

  13. Surface Treatment of PEOT/PBT (55/45 with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure

    Directory of Open Access Journals (Sweden)

    Pieter Cools

    2018-03-01

    Full Text Available This work describes the surface modification of 300PEO-PEOT/PBT 55/45 thin films using a medium pressure dielectric barrier discharge system operated in argon, helium, nitrogen or dry air to improve cell-surface interactions of this established biomaterial. The first part of the paper describes the optimization of the plasma processing parameters using water contact angle goniometry. The optimized samples are then characterized for changes in surface topography and surface chemical composition using atomic force microscopy (AFM and X-ray fluorescence spectroscopy (XPS respectively. For all plasma treatments, a pronounced increase in surface wettability was observed, of which the extent is dependent on the used plasma discharge gas. Except for dry air, only minor changes in surface topography were noted, while XPS confirmed that the changes in wettability were mainly chemical in nature with the incorporation of 5–10% of extra oxygen as a variety of polar groups. Similarly, for the nitrogen plasma, 3.8% of nitrogen polar groups were additionally incorporated. Human foreskin fibroblast (HFF in vitro analysis showed that within the first 24 h after cell seeding, the effects on cell-surface interactivity were highly dependent on the used discharge gas, nitrogen plasma treatment being the most efficient. Differences between untreated and plasma-treated samples were less pronounced compared to other biodegradable materials, but a positive influence on cell adhesion and proliferation was still observed.

  14. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    Science.gov (United States)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  15. Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets

    Science.gov (United States)

    Lehmann, Kevin K.

    2003-03-01

    Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.

  16. Associative ionization of neon and helium atoms by collisions of excited helium (31p) atoms of thermal energies

    International Nuclear Information System (INIS)

    Runge, Serge.

    1980-12-01

    The relative cross-sections of ionizing collisions between He + He and He + Ne atoms, have been studied, the helium being excited in a state (3 1 p) by a laser beam. The results obtained made it possible (a) to reveal in a direct manner the production of molecular ions He 2 + and He Ne + and (b) to determine the relative change in the associative ionizing cross-section in the area (0.035 - 0.17 eV) in the He (3 1 P) + Ne collision, despite the very short life of the He (3 1 P) excited state (1.7 ns). The production of He 2 + ions from an He (3 1 P) + He collision sets an upper limit to the appearance potential of these ions. The experimental study of the associative ionization in the He (3 1 P) + Ne system made it possible to extend the utilization of the GAMMA(R) self ionization model, already tested for the metastable states, to the radiative states. The GAMMA(R) model seems well suited for the description of collisions of the A excited + B type, where the excitation energy of A is greater than the ionization potential of B [fr

  17. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    Science.gov (United States)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  18. Interference of laser-induced resonances in the continuous structures of a helium atom

    International Nuclear Information System (INIS)

    Magunov, A I; Strakhova, S I

    2003-01-01

    Coherent effects in the interference of overlapping laser-induced resonances in helium atoms are considered. The simultaneous action of single-mode radiation of the 294-nm second harmonic of a cw dye laser and a 1064-nm Nd:YAG laser on helium atoms provides the overlap of two resonances induced by transitions from the 1s2s 1 S and 1s4s 1 S helium levels. The shape of the overlapping laser-induced resonances in the rotating-wave approximation is described by analytic expressions, which depend on the laser radiation intensities and the ratio of laser frequencies. (nonlinear optical phenomena)

  19. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  20. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures

    International Nuclear Information System (INIS)

    Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T

    2003-01-01

    Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model

  1. Prognostic factors and recurrence of hepatitis B-related hepatocellular carcinoma after argon-helium cryoablation: a prospective study.

    Science.gov (United States)

    Wang, Chunping; Lu, Yinying; Chen, Yan; Feng, Yongyi; An, Linjing; Wang, Xinzhen; Su, Shuhui; Bai, Wenlin; Zhou, Lin; Yang, Yongping; Xu, Dongping

    2009-01-01

    To determine the long-term prognosis of hepatocellular carcinoma (HCC) after argon-helium cryoablation and identify the risk factors that predict metastasis and recurrence. A total of 156 patients with hepatitis B-related HCC less than 5 cm in diameter who underwent curative cryoablation were followed up prospectively for tumor metastasis and recurrence. Immunohistochemistry was used to analyze the expression of vascular endothelial growth factor (VEGF). HBV basal core promoter (BCP) and precore mutations were detected by DNA sequence analysis. Post-treatment prognostic factors influencing survival, tumor metastasis and recurrence were assessed by univariate and multivariate analyses. The variables included the expression of VEGF in HCC tissues, clinical and pathologic characteristics of patients, and HBV features (HBV DNA level, HBV genotype, BCP mutation). The median follow-up period of the 156 patients was 37 months (range 8-48 months). The 1-, 2-, and 3-year overall survival rates were 92, 82 and 64%, respectively. The 1-, 2-, and 3-year recurrence-free survival rates were 72, 56 and 43%, respectively. Eighty-five patients (54.5%) had tumor recurrence or metastasis. The multivariate analysis showed that Child-Pugh class and the expression of VEGF in HCC tissues could be used as independent prognostic factors for overall survival. Meanwhile, the expression of VEGF in HCC tissues and HBV BCP mutations were found to be independent prognostic factors for recurrence-free survival. Strong expression of VEGF in HCC tissues and HBV BCP mutations are important risk predictors for recurrence or metastasis of HCC smaller than 5 cm in diameter.

  2. Atomic and ionic spectrum lines below 2000A: hydrogen through argon

    International Nuclear Information System (INIS)

    Kelly, R.L.

    1982-10-01

    A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. A list of the pertinent references is appended at the end

  3. Experimental study of the electron-atom Bremsstrahlung emission in an argon plasma jet

    International Nuclear Information System (INIS)

    Ranson, P.; Vallee, O.; Chapelle, J.

    1977-01-01

    Electron-neutral atom bremsstrahlung is studied between 0.4 μm and 5 μm in a decaying argon plasma jet; in visible and infra-red range, some discrepancies appear between experimental results and theoretical calculations of different authors (Geltman, Stallcop). In the infra-red, the discrepancy can be partly explained because theoretical elastic cross sections are higher than experimental values in the vicinity of the Ramsauer minimum. In the visible range, a very small amount of fast electrons due to superelastic and recombination collisions explain the observed discrepancy [fr

  4. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    Science.gov (United States)

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  5. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    International Nuclear Information System (INIS)

    Awali, Slim

    2014-01-01

    This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a

  6. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    CERN Document Server

    Hayano, R S

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants.

  7. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    Science.gov (United States)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  8. Functional Changes of Dendritic Cells in C6 Glioma-Bearing Rats That Underwent Combined Argon-Helium Cryotherapy and IL-12 Treatment.

    Science.gov (United States)

    Li, Ming; Cui, Yao; Li, Xiqing; Guo, Yanwu; Wang, Bin; Zhang, Jiadong; Xu, Jian; Han, Shuangyin; Shi, Xiwen

    2016-08-01

    The aim of this study was to explore changes in tumor tissues of glioma-bearing rats that underwent argon-helium cryoablation as well as changes in antitumor immunity before and after combined interleukin 12 treatment. Two hundred sixty Wistar rats were randomly divided into a blank control group, intravenous injection interleukin-12 group, cryotherapy group, and cryotherapy + intravenous injection group. C6 glioma cells proliferated in vitro were implanted subcutaneously on the backs of rats to establish C6 glioma-bearing animal models. Each group underwent the corresponding treatments, and morphological changes in tumor tissues were examined using hematoxylin-eosin staining. CD11c staining was examined using immunohistochemistry, and differences in dendritic cells and T-cell subsets before and after treatment were analyzed using flow cytometry. The control group showed no statistical changes in terms of tumor tissue morphology and cellular immunity, cryotherapy group, and cryotherapy + intravenous injection group, among which the count for the cryotherapy + intravenous injection group was significantly higher than those of all other groups. In the argon-helium cryotherapy group, tumor cells were damaged and dendritic cell markers were positive. The number of CD11c+ and CD86+ cells increased significantly after the operation as did the cytokine interferon-γ level (P < .01), suggesting a shift toward Th1-type immunity. Combined treatment of argon-helium cryoablation and interleukin 12 for gliomas not only effectively injured tumor tissues but also boosted immune function and increased antitumor ability. Therefore, this approach is a promising treatment measure for brain gliomas. © The Author(s) 2015.

  9. First observation of laser-induced resonant annihilation in metastable antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Morita, N.; Kumakura, M.; Yamazaki, T.

    1993-11-01

    We have observed the first laser-induced resonant transitions in antiprotonic helium atoms. These occur between metastable states and Auger dominated short lived states, and show that the anomalous longevity of antiprotons previously observed in helium media results from the formation of high-n high-l atomic states of p-barHe + . The observed transition with vacuum wavelength 597.259 ± 0.002 nm and lower-state lifetime 15 ± 1 ns is tentatively assigned to (n,l) = (39,35) → (38,34). (author)

  10. Argon line broadening by neutral atoms and application to the measurement of oscillator strengths of AI resonance lines

    International Nuclear Information System (INIS)

    Vallee, O.; Ranson, P.; Chapelle, J.

    1977-01-01

    AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr

  11. Double ionization of atomic helium under heavy ion impact

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1995-01-01

    Cross sections for double ionization of helium by multiply-charged ion impact and the corresponding ratios of double-to-single ionization are presented as a sum of the contributions given by the one-step (shake-off) and two-step (TS) processes. An analytic form is found for the continuum wavefunction which is valid in both limiting cases of low and high velocities of the relative motion. Using this wavefunction, the TS cross sections are calculated within the independent-event model. The results for the ratios of double-to-single ionization show satisfactory agreement with the experimental data available. (author)

  12. Theoretical Study of Triatomic Systems Involving Helium Atoms

    International Nuclear Information System (INIS)

    Suno, H.; Hiyama, E.; Kamimura, M.

    2013-01-01

    The triatomic 4 He system and its isotopic species 4 He 2 3 He are theoretically investigated. By adopting the best empirical helium interaction potentials, we calculate the bound state energy levels as well as the rates for the three-body recombination processes: 4 He + 4 He + 4 He → 4 He 2 + 4 He and 4 He + 4 He + 3 He → 4 He 2 + 3 He. We consider not only zero total angular momentum J = 0 states, but also J > 0 states. We also extend our study to mixed helium-alkali triatomic systems, that is 4 He 2 X with X = 7 Li, 23 Na, 39 K, 85 Rb, and 133 Cs. The energy levels of all the J ≥ 0 bound states for these species are calculated as well as the rates for three-body recombination processes such as 4 He + 4 He + 7 Li → 4 He 2 + 7 Li and 4 He + 4 He + 7 Li → 4 He 7 Li + 4 He. In our calculations, the adiabatic hyperspherical representation is employed but we also obtain preliminary results using the Gaussian expansion method. (author)

  13. Line intensity ratios of helium atom in an ionizing plasma

    International Nuclear Information System (INIS)

    Sasaki, Satoshi; Goto, Motoshi; Kato, Takako; Takamura, Shuichi

    1998-10-01

    Effective emission rate coefficients C em eff (λ), line intensity ratios, C em eff (λ 1 )/C em eff (λ 2 ), and S eff /C em eff (λ), with S eff the ionization rate coefficient, are obtained by the collisional radiative model for an ionizing plasma using new excitation and ionization rate coefficients. In the plasma with electron density n e > 10 4 cm -3 , C em eff (λ) for various lines are enlarged, since the normalized population densities for the metastable states, n(2 1,3 S)/n He , becomes large, and the excitation rate coefficients from 2 1,3 S, C 21,3S→i , are large compared to that from the ground state C 11S→i . In high n e plasma (n e > 10 12 cm -3 ), with frequent electron impacts on the excited heliums, n(i)/n He become constant to n e , which results in the decrease of C em eff (λ). Hot electrons and resonance scattering, which are often important for the experimental applications, are included in this model. A small amount of hot electrons (several percents) can enhance the line emission and ionization rates for low electron temperature plasma with T e (T e 1 S - n 1 P) and enlarges n 1 P and 2 1 S populations when the column density of helium gas n He x L exceeds 2x10 13 [cm -2 ]. (author)

  14. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    International Nuclear Information System (INIS)

    Matsushige, I.

    1990-01-01

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  15. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  16. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches

    Energy Technology Data Exchange (ETDEWEB)

    Young, Toby D., E-mail: tyoung@ippt.pan.pl [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: jgo@xanum.uam.mx [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)

    2016-02-15

    Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.

  17. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    Science.gov (United States)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  18. Low-energy scattering of excited helium atoms by rare gases

    International Nuclear Information System (INIS)

    Peach, G.

    1978-01-01

    The construction of semi-empirical model potentials for systems composed of helium in an excited state (Hestar) and a rare-gas atom (He or Ne) is described. The model of the atom-atom pair which has been adopted is one in which the excited electron is included explicitly, but the residual He + ion and the rare-gas atom are treated simply as cores which may be polarised. The results obtained are in satisfactory agreement with other calculations where they are available. (author)

  19. Metastable states in antiprotonic helium atoms an island stability in a sea of continuum

    CERN Document Server

    Korobov, V I

    2002-01-01

    In this contribution we consider a phenomenon of metastable states in antiprotonic helium atoms, precise spectroscopy of these states and a present-day study of the electromagnetic properties of antiprotons. Calculation of nonrelativistic energies, relativistic and QED corrections as well as the fine and hyperfine structure and the magnetic moment of an antiproton are the main parts of this study. Refs. 22 (nevyjel)

  20. Compression effects in helium-like atoms (Z=1,...,5) constrained by hard spherical walls

    International Nuclear Information System (INIS)

    Flores-Riveros, A.; Rodriguez-Contreras, A.

    2008-01-01

    Ground and lowest triplet S state energies and other properties are obtained for confined helium-like atoms {Z=1,...} spherically enclosed by impenetrable boxes of varying size. Wave functions are variationally optimized within generalized Hylleraas bases fulfilling appropriate boundary conditions. For all systems, enhanced confinement leads to increased total energies and singlet-triplet energy splittings

  1. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  2. Helium in chirped laser fields as a time-asymmetric atomic switch

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Moiseyev, N.

    2014-01-01

    Roč. 141, č. 1 (2014), 014307 ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571 Institutional support: RVO:61388955 Keywords : Atom lasers * Laser pulses * Helium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  3. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  4. Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing

    2005-01-01

    Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths....... The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering....

  5. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    Science.gov (United States)

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  6. Negative atomic halogens incident on argon and molecular nitrogen: electron detachment studies

    International Nuclear Information System (INIS)

    Jalbert, G; Medina, A; Magalhaes, S D; Wolff, W; Barros, A L F de; Carrilho, P; Rocha, A B; Faria, N V de Castro

    2007-01-01

    During the last years we have measured total detachment cross sections of atomic and cluster anions colliding with gases in the velocity range of 0.2 to 1.8 a.u. In particular, we measured negative atomic halogens incident on argon and molecular nitrogen. These last data are for the first time analyzed using the simple semi-classical model that we have developed. For that purpose, the values of elastic plus inelastic cross sections for impact of free electrons on Ar and N 2 , the latter showing a shape resonance, convoluted with the anion's outermost electron momentum distribution yielded the overall shape of the anion cross sections. Inclusion of a velocity independent additive term, interpreted as an effective area of the collision region, led to accurate absolute cross section values. The high affinity of the halogens and the existence of a not well described resonance in the e-N 2 collision, are characteristics that may be used to delimit the scope and validity of the model

  7. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  8. Coulomb holes and correlation potentials in the helium atom

    International Nuclear Information System (INIS)

    Slamet, M.; Sahni, V.

    1995-01-01

    Thus, the asymptotic structure of the exchange-correlation potential W xc (r) of the work formalism is that of W x (r) which is (-1/r). We also detemine via the Kinoshita wave function the correlation potential μ c (r) of Kohn-Sham theory, which differs from W c (r) in that it also incorporates the effects of the correlation contribution to the kinetic energy. Consequently, it is less attractive than W c (r), but also has zero slope at the nucleus. However, as is known, the potential μ c (r) is nonmonotonic, since it goes positive within the atom, then becomes negative in the classically forbidden region, finally vanishing asymptotically as a negative function. Since the exchange potentials of the work formalism and Kohn-Sham theory are the same for this atom, and because W c (r) is strictly representative of Coulomb correlations, we attribute the nonmonotonicity and positiveness of the Kohn-Sham potential μ c (r) to the correlation kinetic energy. This conclusion is consistent with the result that the difference between the correlation energies determined within the work formalism from the dynamic Coulomb hole and Kohn-Sham theory is equal to the correlation contribution to the kinetic energy

  9. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  10. The growth of sodium rough films on mica (0001) as determined by Helium Atom Scattering

    DEFF Research Database (Denmark)

    Gerlach, Rolf; Balzer, Frank; Rubahn, Horst-Günter

    2001-01-01

    , which is addressed to Na atoms that fill cleavage-induced holes in the mica surface. It provides a convenient means of calibrating the coverage of the surface. With increasing surface coverage Na clusters are formed on the mica surface. A broad angular distribution of the scattered Helium intensity......Elastic helium atom scattering (HAS) and linear optical extinction measurements are used to investigate the growth of sodium (Na) films on mica substrates in the surface temperature range between 90 and 300 K. At half a monolayer (ML) surface coverage we observe a maximum of scattered He intensity...... is observed with a coverage-independent angular width above eight monolayers coverage. From simultaneous optical extinction measurements we deduce that the clusters are oblate with a ratio of semiaxes perpendicular and parallel to the surface plane between 0.23 and 0.165....

  11. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  12. Calculation of the differential cross sections of excitation and ionization of a helium atom by electrons

    International Nuclear Information System (INIS)

    Demkin, V.P.; Pecheritsyn, A.A.

    1995-01-01

    Equations for the amplitudes and differential cross sections of electronic excitation and ionization of a helium atom are derived in the approximation of a open-quotes frozenclose quotes ion core. The wave functions of the discrete states are chosen in the form of generalized hydrogenlike orbitals. The radial wave functions of the continuous spectrum are determined by solving the equation of motion numerically. The differential excitation cross sections of excitation of the 2p, 3p, and 4p levels and ionization of a helium atom by electrons are calculated in the energy range up to 50 eV. Estimates are obtained for the nonorthogonal wave functions in the amplitudes of the excitation and ionization processes. It is shown that the given method is more compatible with experiment than the Born method

  13. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  14. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Science.gov (United States)

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  15. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2015-10-15

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  16. Classical calculation of the total ionization energy of helium-like atoms

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    Quantum mechanics rejects the classical modelling of microworld. One of the reasons is that the Bohr's rules can not be applied for many-electron atoms and molecules. But the many-body problem in classical mechanics has no analytical solution even for 3 particles. Numerical solutions should be used. The quantum Bohr's rule expressing the moment of momentum conservation for two particles is invalid in more complicated cases. Yet Bohr reached some success for helium-like atoms. The Bohr's formula concerning helim-like atoms is deduced again in this paper and its practical reliability is analyzed with contemporary data. The binding energy of the system is obtained in the simple form E=(Z-1/4) 2 α 2 mc 2 , where Z is the atomic number, α - the fine structure constant, M - the electron mass and c - the light speed in vacuum. The calculated values are compared with experimental data on the total ionization energy of the helium-like atoms from 2 He 4 to 29 Cu 64 . The error decreases quickly with the increasing of atomic mass, reaching zero for Cu. This indicated that the main source of error is the nucleus motion. The role of other possible causes is analyzed and proves negligible. (author). 1 tab, 4 refs

  17. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    International Nuclear Information System (INIS)

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-01-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T vib ∼2500 K and T rot ∼450 K and is much higher than that of the cluster itself. copyright 1997 The American Physical Society

  18. Photoabsorption for helium, lithium, and beryllium atoms in the random-phase approximation with exchange

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Cherepkov, N.A.; Zivanovic, D.; Radojevic, V.

    1976-01-01

    The photoionization cross sections and the oscillator strengths for helium, lithium, and beryllium atoms are calculated in the framework of the random-phase approximation with exchange. The energy-level shift for discrete transitions is taken into account consistently in this approximation. The results are compared with other many-body calculations and with experimental data. The comparison shows that the random-phase approximation with exchange can even be used for systems with a small number of particles

  19. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  20. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  1. Role of metastable atoms in argon-diluted silane Rf plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J.L.; Kroll, U.

    1994-01-01

    The evolution of the argon metastable density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastables in excitation to the argon 2P 2 state has been determined in comparison with production from the ground state. In silane plasmas, emission from SiH* is due essentially to electron impact dissociation of silane, whereas in 4% silane-in-argon plasmas, emission from SiH* seems to be due to electron impact excitation of the SiH ground state. These studies demonstrate that argon is not simply a buffer gas but has an influence on the dissociation rate in the plasma-assisted deposition of amorphous silicon using argon-diluted silane plasmas. (author) 7 figs., 30 refs

  2. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  3. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  4. Survey of atomic data base needs and accuracies for helium beam stopping and alpha particle diagnostics for ITER

    International Nuclear Information System (INIS)

    Summers, H.P.; Hellermann, M. von.

    1992-01-01

    This report is concerned with establishing a recommended collection of atomic collision data for the modelling, experimental investigation and exploitation of helium beams. The motivation stems from proposals for diagnostic beams for the ITER tokamak, targeted at alpha particle measurement via double charge transfer, neutralized alpha particle analysis and spectroscopic analysis of recombination radiation. The report discusses the beam energies, species involved in collisions with the helium atom beam (fuel, helium ash and plasma impurities) and plasma conditions prevailing in large tokamak devices. It also lists the required cross-section data

  5. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Argon

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Makoto [Gaseous Electronics Institute, Nagoya, Aichi (Japan)

    2003-01-01

    A bibliography of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for argon (Ar). About 1,960 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1921 through 2000 for Ar. Finally, author's recommended Ar electron collision cross section set is given in numerical tables. (author)

  6. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Argon

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2003-01-01

    A bibliography of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for argon (Ar). About 1,960 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1921 through 2000 for Ar. Finally, author's recommended Ar electron collision cross section set is given in numerical tables. (author)

  7. Efficient atomization of cesium metal in solid helium by low energy (10 μJ) femtosecond pulses

    Science.gov (United States)

    Melich, M.; Dupont-Roc, J.; Jacquier, Ph.

    2009-10-01

    Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 μJ. As an unexpected benefit, the atomic density produced is much higher.

  8. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  9. Distribution of electrons in double photoionization of helium and heavier atoms in the asymptotic region

    International Nuclear Information System (INIS)

    Drukarev, E.G.

    1995-01-01

    This paper presents an analysis of the energy distribution of the outgoing electrons in the double ionization of helium by photons with energies much larger than the ionization potential. The analysis improves on the one carried out by Amusia et al. [J. Phys. B 8, 1248 (1975)] in the framework of the special model for the wave function of helium. Now the energy distribution is expressed through certain expectation values averaged over the initial state described by the wave function of the general form Ψ(r 1 ,r 2 ). A larger interval of values of photon energies is considered. The limit equations for the angular distribution are obtained. The general features of the process with heavier atoms are also analyzed

  10. Neutral-helium-atom diffraction from a micron-scale periodic structure: Photonic-crystal-membrane characterization

    Science.gov (United States)

    Nesse, Torstein; Eder, Sabrina D.; Kaltenbacher, Thomas; Grepstad, Jon Olav; Simonsen, Ingve; Holst, Bodil

    2017-06-01

    Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example, for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane structure with a two-dimensional square lattice of 100 ×100 circular holes. The nominal period and the hole radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.

  11. Magnetic Dichroism of Potassium Atoms on the Surface of Helium Nanodroplets

    International Nuclear Information System (INIS)

    Nagl, Johann; Auboeck, Gerald; Callegari, Carlo; Ernst, Wolfgang E.

    2007-01-01

    The population ratio of Zeeman sublevels of atoms on the surface of superfluid helium droplets (T=0.37 K) has been measured. Laser induced fluorescence spectra of K atoms are measured in the presence of a moderately strong magnetic field (2.9 kG). The relative difference between the two states of circular polarization of the exciting laser is used to determine the electron spin polarization of the ensemble. Equal fluorescence levels indicate that the two spin sublevels of the ground-state K atom are equipopulated, within 1%. Thermalization to 0.37 K would give a population ratio of 0.35. We deduce that the rate of spin relaxation induced by the droplet must be 2 triplet dimer we find instead full thermalization of the spin

  12. (e,2e) investigation of atomic hydrogen and helium close to threshold

    International Nuclear Information System (INIS)

    Schlemmer, P.; Rosel, T.; Jung, K.; Ehrhardt, H.

    1989-01-01

    For the first time triple differential cross sections of the electron impact ionization of atomic hydrogen close to threshold have been measured. The angular correlation of the outgoing electrons have been determined at 4 eV excess energy and are compared with results obtained with helium. A method is proposed allowing to measure the range of the threshold law. The data are analyzed using a partial-wave method. Although the asymptotic states of the two processes are the same---the charge of the ion is Z=1 in both cases---the triple differential cross sections are drastically different

  13. Laser spectroscopy of exotic RI atoms in superfluid helium-OROCHI experiment

    International Nuclear Information System (INIS)

    Furukawa, T.; Matsuo, Y.; Hatakeyama, A.; Fujikake, K.; Matsuura, Y.; Kobayashi, T.; Shimoda, T.

    2010-01-01

    We have been developing a new laser spectroscopic technique 'OROCHI,' which is based on the combination of superfluid helium as a stopper of radioactive isotope (RI) beam and in-situ laser spectroscopy of RI atoms, for determining spins and moments of exotic RIs. By using this unique technique, it is feasible to measure nuclear spins and electromagnetic moments of extremely low yield RI (estimated as less than 1 pps). Recently, we have demonstrated that nuclear spins and moments are obtained from Zeeman and hyperfine splittings of stable Rb isotopes measured using this OROCHI technique. Details of this laser spectroscopy method in He II 'OROCHI' and the summary of our development are presented.

  14. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  15. Procedures of grasp92 code to calculate accurate Dirac-Coulomb energy for the ground sate of helium atom

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Sasaki, Akira

    2000-02-01

    The procedures of grasp92 code to calculate accurate (relative error nearly equal 10 -7 ) eigenvalue for the ground sate of helium atom of the Dirac-Coulomb Hamiltonian are presented. The grasp92 code, based on the multi-configuration Dirac-Fock method, is widely used to calculate the atomic properties. However, the main part of the accurate calculations, extended optimal level calculation (EOL), suffer frequently numerical instabilities due to the lack of the confident procedures. The purpose of this report is to illustrate the guideline for stable EOL calculations by calculating the most fundamental atomic system, i.e. the ground sate of helium atom ls 2 1 S 2 . This procedure could be extended for the high-precise eigenfunction calculation of more complex atomic systems, for example highly ionized atoms and high-Z atoms. (author)

  16. Efficient atomization of cesium metal in solid helium by low energy (10 $\\mu$J) femtosecond pulses

    OpenAIRE

    Melich, Mathieu; Dupont-Roc, Jacques; Jacquier, Philippe

    2009-01-01

    International audience; Metal atoms in solid and liquid helium-4 have attracted some interest either as a way to keep the atoms in a weakly perturbing matrix, or using them as a probe for the helium host medium. Laser sputtering with nanosecond pulsed lasers is the most often used method for atom production, resulting however in a substantial perturbation of the matrix. We show that a much weaker perturbation can be obtained by using femtosecond laser pulses with energy as low as 10 µJ. As an...

  17. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    Science.gov (United States)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  18. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  19. Wave functions and two-electron probability distributions of the Hooke's-law atom and helium

    International Nuclear Information System (INIS)

    O'Neill, Darragh P.; Gill, Peter M. W.

    2003-01-01

    The Hooke's-law atom (hookium) provides an exactly soluble model for a two-electron atom in which the nuclear-electron Coulombic attraction has been replaced by a harmonic one. Starting from the known exact position-space wave function for the ground state of hookium, we present the momentum-space wave function. We also look at the intracules, two-electron probability distributions, for hookium in position, momentum, and phase space. These are compared with the Hartree-Fock results and the Coulomb holes (the difference between the exact and Hartree-Fock intracules) in position, momentum, and phase space are examined. We then compare these results with analogous results for the ground state of helium using a simple, explicitly correlated wave function

  20. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  1. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  2. Spectral Analysis and Metastable Absorption Measurements of High Pressure Capacitively and Inductively Coupled Radio-Frequency Argon-Helium Discharges

    Science.gov (United States)

    2013-06-01

    absorbance. 8 Flow Rates The flow rate of the gas through the cell can be calculated using the incompressible Bernoulli equation as it relates to...Kinetics Racah and Paschen Notation Angular momentum coupling schemes are used to describe and organize the energy level spacings of an atom. For most...momenta of the electron, ~l and their spins ~s are combined sepa- rately. The two are then summed to give a total angular momentum , ~L+ ~S = ~J . For

  3. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    International Nuclear Information System (INIS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-01-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ε T , were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O 2 , N 2 ) discharge. The value of ε T was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ε T ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ε T was observed at relatively high pressures. For different gases, the measured ε T was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ε T and their calculations showed reasonable agreement.

  4. Importance of polarization effects in electron impact single ionization of argon atom

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: g_vpurohit@yahoo.co [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Patidar, Vinod; Sud, K.K. [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)

    2009-12-15

    We report the results of our calculations of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) from the 3s shell of argon using a modified distorted wave Born approximation formalism by including correlation-polarization potential, which accounts for both correlation and polarization effects. We observe that DWBA formalism including polarization potential is able to reproduce most of the trends of experimental data and hence provide a future direction for further investigation of ionization process from the 3s shell of argon. We also compare our results with the available theoretical and experimental results. The present calculations significantly improve the agreement with the experimental results but still there are certain discrepancies, which is a matter of further investigation.

  5. Learning Approach on the Ground State Energy Calculation of Helium Atom

    International Nuclear Information System (INIS)

    Shah, Syed Naseem Hussain

    2010-01-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  6. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-01-01

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections σ n and asymmetry parameters β n are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n -3 dependence of the partial ionization cross sections. However, the β ∞ =-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold

  7. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    Science.gov (United States)

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  8. The ASACUSA experiment at CERN's AD antiproton decelerator catches antiprotons in helium, where the antiprotons replace electrons, giving exotics atoms.

    CERN Multimedia

    Loïez, P

    2000-01-01

    Photo 03: Laser beams are prepared for shooting at antiprotonic helium atoms. Left to right: Masaki Hori (Tokyo University) and John Eades (CERN). Photo 01: Dye laser triggered by "YAG" laser. Photo 02: Masaki Hori adjusting optical system of laser beams.

  9. Convergence patterns of the configuration-interaction expansion for excited 21S and 31S states of the helium atom

    International Nuclear Information System (INIS)

    Jankowski, K.; Malinowski, P.; Polasik, M.

    1977-01-01

    The convergence patterns of the l expansion of the wavefunction for the excited 2 1 S and 3 1 S states of the helium atom are studied by means of the variational method. Particular attention is devoted to the radial energy limits. (author)

  10. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  11. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.

    Science.gov (United States)

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  12. Atomic approaches in metastable antiprotonic helium atoms. REPLY to 'analysis of the lifetimes and fractions of antiprotons trapped in metastable antiprotonic-helium states' by I. Shimamura and M. Kimura

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu; Ohtsuki, Kazumasa.

    1994-08-01

    In the present note the authors clarify the purpose of YO and complement its essential points, thus showing that the criticisms of SK are inappropriate. The paper YO [1] was aimed at discussing some new aspects related to the metastability of hadronic helium atoms which had been discovered when negative kaons [2], negative pions [3] and antiprotons [4] were stopped in liquid helium. The delayed fraction, time spectrum shape and lifetimes were the observables. Further experimental studies are in progress [5], and as of today there is no successful explanation for these interesting phenomena. So, YO tried to give brief and rather qualitative estimates for the observations in an intuitive way, considering only the leading terms. The following problems are discussed in as simple a manner as possible, starting from the exotic-atom viewpoints of Condo [6] and Russell [7]: i)the atomic core polarization effect, ii)the structure and radiative lifetimes, iii)the non-statistical distribution of the angular momentum and an estimate of the delayed fraction, and iv)the isotope effect, though the title represents only i). To respond to the comments of SK, it is important to consider the correspondence between the atomic approach and the molecular approach for the metastable antiprotonic helium atom of Condo-Russell. We therefore begin this note with a discussion of this aspect. (author)

  13. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  14. Two-photon double ionization of the helium atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Palacios, Alicia; Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2010-01-01

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  15. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  16. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    Science.gov (United States)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-09-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.

  17. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-01-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement. ((orig.))

  18. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  19. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings.

    Science.gov (United States)

    Zinelis, S

    2000-11-01

    Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and

  20. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  1. Scattering of hyperthermal argon atoms from clean and D-covered Ru surfaces

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M.A.; Kleyn, A.W.

    2011-01-01

    Hyperthermal Ar atoms were scattered from a Ru(0001) surface held at temperatures of 180, 400 and 600 K, and from a Ru(0001)-(1×1)D surface held at 114 and 180 K. The resultant angular intensity and energy distributions are complex. The in-plane angular distributions have narrow (FWHM ≤ 10°)

  2. Time evolution of cascade processes of muonic atoms in hydrogen-helium mixtures

    International Nuclear Information System (INIS)

    Bystritskij, V.; Czaplinski, W.; Filipowicz, M.; Gula, E.; Popov, N.

    1999-01-01

    Time dependence of population of muonic hydrogen states in hydrogen-helium mixtures is calculated for principal quantum number n. Number of muons transferred to helium nuclei is also determined. Dependence of population of the ground state of muonic hydrogen q ls He on time and target density and helium concentration is also considered. The results are in agreement with recent experimental data. The comparison of the calculated yield of K lines of x-ray in pure hydrogen and deuterium with experimental data indicates on essential role of Coulomb de-excitation process. Possible Stark mixing is also analyzed

  3. Density of atoms in Ar*(3p5 4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    NARCIS (Netherlands)

    Hübner, S.; Sadeghi, N.; Carbone, E.A.D.; Mullen, van der J.J.A.M.

    2013-01-01

    This study presents the absolute argon 1 s (in Paschens’s notation) densities and the gas temperature, Tg, obtained in a surfatron plasma in the pressure range 0:65

    atoms in 1s3, 1s4,and 1s5 states, were

  4. Towards Precision Measurement of the 21S0-31D2 Two-Photon Transition in Atomic Helium

    Science.gov (United States)

    Huang, Yi-Jan; Guan, Yu-Chan; Suen, Te-Hwei; Wang, Li-Bang; Shy, Jow-Tsong

    2017-04-01

    We intend to accurately measure the frequency for 2S-3D two-photon transition and to deduce the 2S ionization energy to an accuracy below 100 kHz from the theoretical calculation of the 3D state. In this talk, we present a precision measurement of the 21S0 -31D2 two-photon transition in atomic helium at 1009 nm. A master oscillator power amplifier (MOPA) is seeded by an external cavity diode laser (ECDL) is constructed to generate more than 700 mW laser power with TEM00 beam profile at 1009 nm. To observe the two-photon transition, a helium cell is placed inside a power enhancement optical cavity and the helium atoms at 21S metastable level are prepared by a pulsed RF discharge and monitor the 668 nm 31D2 to 21P1 fluorescence after RF discharge is turned off . The absolute frequency metrology of the ECDL is carried out by an Er-fiber optical frequency comb (OFC). The two-photon spectrum is obtained by tuning the repetition frequency of the OFC. The 21S0-31D2 frequency is determined to be 594414291.967 (80) MHz in He-4. More results will be presented at the annual meeting.

  5. Room-temperature atomic layer deposition of ZrO{sub 2} using tetrakis(ethylmethylamino)zirconium and plasma-excited humidified argon

    Energy Technology Data Exchange (ETDEWEB)

    Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Tokoro, K.; Imai, T.; Pansila, P.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirahara, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-11-30

    Highlights: • RT-ALD of ZrO{sub 2} is developed using TEMAZ and plasma-excited humidified argon. • The plasma-excited humidified argon is effective in oxidizing the TEMAZ saturated ZrO{sub 2}. • We discuss the reaction mechanism of the RT-ZrO{sub 2} ALD. - Abstract: Room-temperature atomic layer deposition (ALD) of ZrO{sub 2} is developed with tetrakis(ethylmethylamino)zirconium (TEMAZ) and a plasma-excited humidified argon. A growth per cycle of 0.17 nm/cycle at room temperature is confirmed, and the TEMAZ adsorption and its oxidization on ZrO{sub 2} are characterized by IR absorption spectroscopy with a multiple internal reflection mode. TEMAZ is saturated on a ZrO{sub 2} surface with exposures exceeding ∼2.0 × 10{sup 5} Langmuir (1 Langmuir = 1.0 × 10{sup −6} Torr s) at room temperature, and the plasma-excited humidified argon is effective in oxidizing the TEMAZ-adsorbed ZrO{sub 2} surface. The IR absorption spectroscopy suggests that Zr-OH works as an adsorption site for TEMAZ. The reaction mechanism of room-temperature ZrO{sub 2} ALD is discussed in this paper.

  6. Polarization transfer between oriented metastable helium atoms and neon atoms. A comparison of even and odd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D M; Wang, H T.M.

    1983-11-01

    Collision-induced polarization transfer from optically pumped helium to excited states of neon is studied using various combinations of even and odd isotopes. It is found that, within our experimental accuracy of 10%, the resultant polarization is independent of the isotopic composition of the binary mixture. Possible applications using this mechanism are discussed.

  7. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    International Nuclear Information System (INIS)

    Yang, Zhijun; Gu, Quanli; Trindle, Carl O.; Knee, J. L.

    2015-01-01

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S 1 , using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D 0 , using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar 1 and aniline-Ar 2 , which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm −1 and 89 cm −1 from the S 1 origin bands and 83 cm −1 and 148 cm −1 from the ionization potential assigned to the Ar 1 and Ar 2 complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm −1 and 109 cm −1 for the S 1 origin bands, and 61 cm −1 and 125 cm −1 for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm −1 in the D 0 state, 496 ± 5 cm −1 in the S 1 state, and 467 ± 5 cm −1 in the neutral ground state, S 0

  8. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    International Nuclear Information System (INIS)

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  9. The diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    International Nuclear Information System (INIS)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N.

    1984-01-01

    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K

  10. Trapping of negative kaons by metastable states during the atomic cascade in liquid helium

    International Nuclear Information System (INIS)

    Yamazaki, T.; Aoki, M.; Iwasaki, M.; Hayano, R.S.; Ishikawa, T.; Outa, H.; Takada, E.; Tamura, H.; Sakaguchi, A.

    1989-06-01

    We observed two distinct peaks, 205 MeV/cπ - and 235 MeV/cμ - , associated with K π2 - and K μ2 - decays at rest, respectively, from negative kaons stopped in liquid helium. These peaks were found to be delayed with respect to the stopping K - , showing that stopped K - mesons of about 2% fraction are trapped in metastable states with an overall lifetime of about 40 nsec. This observation provides a direct evidence for Condo's trapping hypothesis for the at-rest decay components of K - and π - in liquid helium. (author)

  11. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    Science.gov (United States)

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  12. Influence of ion-to-atom ratio on the microstructure of evaporated molybdenum thin films grown using low energy argon ions

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar; Lodha, Gyanendra Singh [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sant, Tushar; Sharma, Surinder Mohan [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Chandrachur [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-03-15

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase in crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.

  13. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: ghanshyam.purohit@spsu.ac.in [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Singh, P. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Dorn, A.; Ren, X. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Patidar, V. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)

    2016-05-15

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  14. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    International Nuclear Information System (INIS)

    Purohit, G.; Singh, P.; Dorn, A.; Ren, X.; Patidar, V.

    2016-01-01

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  15. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  16. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Yubero, C.; Dimitrijevic, M.S.; Garcia, M.C.; Calzada, M.D.

    2007-01-01

    The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure. However, under some experimental conditions, it is difficult to detect them. In order to overcome this difficulty and obtain the temperature, there are methods based on the relation between the gas temperature and the van der Waals broadening of argon atomic spectral lines with a Stark contribution negligible. In this work, we propose a method based on this relation but for lines with a Stark broadening comparable with the van der Waals one

  17. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  18. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhijun [School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003 (China); Gu, Quanli [School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003 (China); Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73019 (United States); Trindle, Carl O., E-mail: cot@virginia.edu [Chemistry Department, University of Virginia, Charlottesville, Virginia 22904 (United States); Knee, J. L., E-mail: jknee@wesleyan.edu [Chemistry Department, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2015-07-21

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S{sub 1}, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D{sub 0}, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar{sub 1} and aniline-Ar{sub 2}, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm{sup −1} and 89 cm{sup −1} from the S{sub 1} origin bands and 83 cm{sup −1} and 148 cm{sup −1} from the ionization potential assigned to the Ar{sub 1} and Ar{sub 2} complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm{sup −1} and 109 cm{sup −1} for the S{sub 1} origin bands, and 61 cm{sup −1} and 125 cm{sup −1} for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm{sup −1} in the D{sub 0} state, 496 ± 5 cm{sup −1} in the S{sub 1} state, and 467 ± 5 cm{sup −1} in the neutral ground state, S{sub 0}.

  19. Electron-impact excitation of atomic-argon 3p54s-3p55p spectral transitions

    International Nuclear Information System (INIS)

    Bogdanova, I.P.; Yurgenson, S.V.

    1990-01-01

    Cross sections of excitation of some spectral lines of argon corresponding to transitions from 3p 5 5p-levels are measured using a pulsed electron beam. Cross sections of level excitation are estimated. It is shown that in transition from 3p 5 4p-levels to 3p 5 5p-levels, the cross section of levels by means of the electron impact decreases 20 times

  20. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    Guichard, R.

    2007-12-01

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  1. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  2. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  3. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin–Poet Model

    International Nuclear Information System (INIS)

    Yarevsky, E.; Yakovlev, S. L.; Volkov, M. V.; Elander, N.

    2014-01-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin–Poet model. (author)

  4. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin-Poet Model

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.; Volkov, M. V.

    2014-08-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin-Poet model.

  5. Detection of helium atoms in irradiated metals using positron annihilation radiation

    International Nuclear Information System (INIS)

    Xu, Q.; Sato, K.; Yoshiie, T.; Ishizaki, T.; Nagata, S.

    2007-01-01

    Iron alloys are used widely in the nuclear industry. The production of He atoms induced by nuclear reaction increases with increasing neutron energy, and the interaction between He and defects becomes important in the fusion reactor. A new composition analysis method, coincidence Doppler broadening (CDB) of positron annihilation radiation, was employed to detect He atoms in ion irradiated Fe. The results of positron lifetime showed that the microvoids and voids were formed in ion irradiated Fe. The results of CDB measurement indicated that He atoms exited in the microvoids, and they exited in the microvoids even after annealing at 1223 K in ion irradiated Fe. CDB measurement, which is a nondestructive technique for testing materials, is an available method to detect He atoms. (authors)

  6. Void nucleation by the helium atoms during lifetime of reactor pressure vessel

    International Nuclear Information System (INIS)

    Rahman, F.A.

    1984-01-01

    Void formation and growth has a great influence on the reactor pressure vessel steels during its lifetime and during post-irradiation annealing to increase its life. The present investigation aimed at the fact that if one can prevent void nucleation, accordingly one would not wary about void formation and growth. From that concept a model for helium production by transmutation reaction and corresponding swelling under irradiation conditions for several number of steels have been developed. This was done for recommending a steel type that can oppose such a phenomena. In the same time the present investigation gives a procedure utilizing such phenomena for checking the validity of pressure vessel steel used in the NPP

  7. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  8. Higher-order Stark effect on magnetic fine structure of the helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Magunov, A.; Pal' chikov, V.; Pivovarov, V. [National Research Inst. for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow Region (Russian Federation); Ovsiannikov, V. [Dept. of Physics, Voronezh State Univ. (Russian Federation); Oppen, G. von [Inst. fuer Analytische und Atomare Physik at Technische Univ. Berlin (Germany)

    2001-07-01

    We have calculated the scalar and tensor dipole polarizabilities ({beta}) and hyperpolarizabilities ({gamma}) of excited 1s2p {sup 3}P{sub 0}, 1s2p {sup 3}P{sub 2}- states of helium. Our theory includes fine structure of triplet sublevels. Semiempirical and accurate electron-correlated wave functions have been used to determine the static values of {beta} and {gamma}. Numerical calculations are carried out using sums of oscillator strengths and, alternatively, with the Green function for the excited valence electron. Specifically, we present results for the integral over the continuum, for second- and fourth-order matrix elements. The corresponding estimations indicate that these corrections are of the order of 23% for the scalar part of polarizability and only of the order of 3% for the tensor part.

  9. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.; Schwingenschlö gl, Udo; Shi, T.-Y.; Tang, L.-Y.; Yan, Z.-C.

    2012-01-01

    –5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first

  10. Quasi-free scattering in the ionization and destruction of hydrogen and helium Rydberg atoms in collision with neutral targets

    International Nuclear Information System (INIS)

    Renwick, S.P.

    1992-01-01

    Hydrogen and helium Rydberg atoms (H** and He**), with principal quantum number n ranging from 10 to 20, have been used in collision experiments from 1 to 40 keV/amu. These were produced by electron capture in a charge-exchange cell and analyzed by ionization in a modulated electric field combined with phase-sensitive detection. Three experiments have been conducted. In the first, spectra of the band of H and He Rydberg states from electron capture were produced by the modulated field technique and compared. Considerable differences were found between the two. Both types of spectra were analyzed with calculations of Stark energies and field ionization rates. Attempts were made to simulate the spectra using this information and some assumptions about the state distribution produced in the electron capture. In the second experiment, destruction cross sections for H** incident on N 2 , Ar, and SF 6 were measured. This was a further test of the independent-particle model for Rydberg atom scattering; in this model, the atom is destroyed by quasi-free scattering of either the ionic core or the outer electron. Already proven valid for n = 20-35, this has been extended to n as low as 10, as measurements with n = 10 showed full compliance with the model. In the third experiment, not only destruction cross sections but also ionization cross sections for H** and He** incident on Xe, AR, and N 2 were measured. The ionization measurement is a more sensitive test of the quasi-free scattering of the Rydberg electron. This was especially important for the Xe and Ar targets, which exhibits a Ramsauer-Townsend minimum in their free-electron scattering cross sections. The quasi-free Rydberg electron should reproduce these data. Unmistakable deviations from the quasi-free prediction were seen in Xe and N 2 but not in Ar. This represents the first measurement of a breakdown of the Independent Particle Model for fast Rydberg atom scattering

  11. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  12. Van der Waals potentials between metal clusters and helium atoms obtained with density functional theory and linear response methods

    International Nuclear Information System (INIS)

    Liebrecht, M.

    2014-01-01

    The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de

  13. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  14. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  15. Interaction of helium atoms with edge dislocations in α-Fe

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Gao, F.; Kurtz, R.J.; Le, E.A.

    2006-01-01

    Formation energies, binding energies, and migration energies of interstitial He atoms in and near the core of an a/2 {1 1 0} edge dislocation in α-Fe are determined in atomistic simulations using conjugate gradient relaxation and the Dimer method for determining saddle point energies. Results are compared as a function of the proximity of the He to the dislocation core and the excess interstitial volume in regions around the dislocation. Interstitial He atoms have negative binding energy on the compression side of the dislocation and strong positive binding energy on the tension side. Even at low temperatures, interstitial He atoms in the vicinity of the dislocation easily migrate to the dislocation core, where they form crowdion interstitials oriented along the close-packed slip direction, with binding energies in excess of 2 eV. Crowdion interstitial He atoms diffuse along the dislocation core, transverse to the crowdion direction, with a migration energy of 0.4-0.5 eV

  16. Helium in chirped laser fields as a time-asymmetric atomic switch

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Moiseyev, N.

    2014-01-01

    Roč. 141, č. 1 (2014), "014307-1"-"014307-14" ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser excitation * chirped pulses * non-hermitian quantum mechanics * time-asymmetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.952, year: 2014

  17. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  18. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  19. Investigations of the dynamics and growth of insulator films by high resolution helium atom scattering. Final report, May 1, 1985--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Safron, S.A.; Skofronick, J.G.

    1997-07-01

    Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.

  20. The properties of helium atoms and positrons as impurities in metals

    International Nuclear Information System (INIS)

    Pendry, J.B.

    1980-01-01

    Topics covered include: (A) atoms in simple metals: (1) the highly repulsive e - /He interaction and its consequences for binding energies in simple metals; (2) binding energy calculations for jellium and their implications for validity of pair-potential He/M interactions; and (3) the need for experimental data on high negative binding energy systems: (B) low energy positrons in simple metals: (1) behaviour of the positron especially its range (< 100A); (2) consequences for experiments on voids; and (3) possibility for non-destructive depth profiling of defect concentration. (author)

  1. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  2. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  3. The Decay of Optically Thick Helium Plasmas, Taking into Account Ionizing Collisions between Metastable Atoms or Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Stevefelt, J

    1970-11-15

    The effective recombination rate of a helium afterglow plasma, which is optically thick towards the resonance lines, is calculated from the coupled rate equations for the number densities of free electrons and of metastable atoms or molecules. The model employed is a neutral plasma, consisting of one kind of ions and one kind of metastables. The ions are lost by electron-ion recombination only, with subsequent formation of metastables, which are then deactivated in collisions with free electrons or with other metastables: in the latter case one electron is regained to the free state. When the rate constants for these various processes are time-independent, it is found that after a certain transition time a transient equilibrium between the number densities of electrons and metastables is attained. In a dense afterglow plasma, where the recombination coefficient may be large, the transient equilibrium density of metastables may become significantly higher than the qua si-equilibrium value obtained by equating the time derivative of the metastable density to zero, and the effective recombination coefficient may be reduced by much more than a factor of two

  4. The Decay of Optically Thick Helium Plasmas, Taking into Account Ionizing Collisions between Metastable Atoms or Molecules

    International Nuclear Information System (INIS)

    Stevefelt, J.

    1970-11-01

    The effective recombination rate of a helium afterglow plasma, which is optically thick towards the resonance lines, is calculated from the coupled rate equations for the number densities of free electrons and of metastable atoms or molecules. The model employed is a neutral plasma, consisting of one kind of ions and one kind of metastables. The ions are lost by electron-ion recombination only, with subsequent formation of metastables, which are then deactivated in collisions with free electrons or with other metastables: in the latter case one electron is regained to the free state. When the rate constants for these various processes are time-independent, it is found that after a certain transition time a transient equilibrium between the number densities of electrons and metastables is attained. In a dense afterglow plasma, where the recombination coefficient may be large, the transient equilibrium density of metastables may become significantly higher than the qua si-equilibrium value obtained by equating the time derivative of the metastable density to zero, and the effective recombination coefficient may be reduced by much more than a factor of two

  5. Characterization of near-infrared nonmetal atomic emission from an atmospheric helium microwave-induced plasma using a Fourier transform spectrophotometer

    International Nuclear Information System (INIS)

    Hubert, J.; Van Tra, H.; Chi Tran, K.; Baudais, F.L.

    1986-01-01

    A new approach for using Fourier transform spectroscopy (FTS) for the detection of atomic emission from an atmospheric helium plasma has been developed and the results obtained are described. Among the different types of plasma source available, the atmospheric pressure microwave helium plasma appears to be an efficient excitation source for the determination of nonmetal species. The more complete microwave plasma emission spectra of Cl, Br, I, S, O, P, C, N, and He in the near-infrared region were obtained and their corrected relative emission intensities are reported. This makes qualitative identification simple, and aids in the quantitative analysis of atomic species. The accuracy of the emission wavelengths obtained with the Fourier transform spectrophotometer was excellent and the resolution provided by the FTS allowed certain adjacent emission lines to be adequate for analytical applications

  6. On the atomic state densities of plasmas produced by the "torch a injection axiale"

    NARCIS (Netherlands)

    Jonkers, J.; Vos, H.P.C.; Mullen, van der J.J.A.M.; Timmermans, E.A.H.

    1996-01-01

    The atomic state densities of helium and argon plasmas produced by the microwave driven plasma torch called the "torche à injection axiale" are presented. They are obtained by absolute line intensity measurements of the excited states and by applying the ideal gas law to the ground state. It will be

  7. Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    Science.gov (United States)

    Hammer, Markus; Seidel, Wolfhart

    1997-10-01

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  8. Multiphoton effects in laser-assisted ionization of a helium atom by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh Deb, S.; Sinha, C. [Department of Theoretical Physics, Indian association for the Cultivation of Science, Jadavpur, Kokata (India)

    2010-11-15

    The dynamics of the electron impact multiphoton ionization of a He atom in the presence of an intense laser field (n{gamma}{sub e}, 2e) is studied theoretically for laser polarization (||{sup l}) and perpendicular to the incident momentum. The triple differential (TDCS) as well as the double differential (DDCS) cross sections are studied for the coplanar asymmetric geometry. The results are compared with the only available kinematically complete experiment at high incident energy (1000 eV). Significant laser modification (enhancement) is noted due to multiphoton effects in the present binary and recoil peak intensities of the TDCS for both the geometries, in qualitative agreement with the experiment. In the single photon case, the net effect of the laser field is to suppress the field free (FF) TDCS as well as the DDCS in the zeroth order approximation of the ejected electron wave function (CV), while in the first order (MCV), the cross sections are found to be enhanced. The CV multiphoton cross sections obey the famous Kroll Watson (KW) sum rule while the latter does not hold good in the corresponding MCV approximation. (authors)

  9. Atomic hydrogen and argon ground state density determination in a recombining plasma using visible light absorption spectroscopy

    NARCIS (Netherlands)

    Otorbaev, D.K.; Buuron, A.J.M.; Sanden, van de M.C.M.; Meulenbroeks, R.F.G.; Schram, D.C.

    1995-01-01

    The atomic radical density in the first excited state, obtained by the technique of optical absorption spectroscopy, and a simple kinetic model are used to determine the radical ground state density in a recombining expanding plasma. The kinetic model used does not require knowledge of the shape of

  10. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  11. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    International Nuclear Information System (INIS)

    Brics, Martins

    2016-01-01

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  12. A comparative study on total reflection X-ray fluorescence determination of low atomic number elements in air, helium and vacuum atmospheres using different excitation sources

    Science.gov (United States)

    Misra, N. L.; Kanrar, Buddhadev; Aggarwal, S. K.; Wobrauschek, Peter; Rauwolf, M.; Streli, Christina

    2014-09-01

    A comparison of trace element determinations of low atomic number (Z) elements Na, Mg, Al, P, K and Ca in air, helium and vacuum atmospheres using W Lβ1, Mo Kα and Cr Kα excitations has been made. For Mo Kα and W Lβ1 excitations a Si (Li) detector with beryllium window was used and measurements were performed in air and helium atmospheres. For Cr Kα excitation, a Si (Li) detector with an ultra thin polymer window (UTW) was used and measurements were made in vacuum and air atmospheres. The sensitivities of the elemental X-ray lines were determined using TXRF spectra of standard solutions and processing them by IAEA QXAS program. The elemental concentrations of the elements in other solutions were determined using their TXRF spectra and pre-determined sensitivity values. The study suggests that, using the above experimental set up, Mo Kα excitation is not suited for trace determination of low atomic number element. Excitation by WLβ1 and helium atmosphere, the spectrometer can be used for the determination of elements with Z = 15 (P) and above with fairly good detection limits whereas Cr Kα excitation with ultra thin polymer window and vacuum atmosphere is good for the elements having Z = 11 (Na) and above. The detection limits using this set up vary from 7048 pg for Na to 83 pg for Ti.

  13. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  14. Study of diffusion mechanisms of helium atoms in face-centered cubic metals after α - implantation in a cyclotron

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    Helium has been homogeneously introduced into gold foils at room temperature by alpha implantation in a CV-28 cyclotron. After implantation the helium release was observed in isothermal and linear heating experiments. The diffusion coefficient follows an Arrhenius behaviour with D sub(o) = 0.1 cm 2 /s and ΔH = 1.7 eV. Possible diffusion mechanisms are discussed. (Author) [pt

  15. Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes.

    Science.gov (United States)

    Ho, Sut Kam; Garcia, Dario Machado

    2017-04-01

    A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm 2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

  16. Preferential site occupancy observed in coexpanded argon-krypton clusters

    International Nuclear Information System (INIS)

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-01-01

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts

  17. Alternatives to argon for gas stopping volumes in the B194 neutron imager

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ratkiewicz, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rusnak, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-17

    In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.

  18. Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma. Summary Report of the First Research Coordination Meeting

    International Nuclear Information System (INIS)

    Braams, B. J.

    2013-12-01

    The First Research Coordination Meeting of the IAEA Coordinated Research Project (CRP) on 'Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma' was held 10-12 August 2011 at IAEA Headquarters in Vienna. Participants reviewed the status of the database on molecular processes of H and He, identified data needs and made plans for development of new data in connection with the CRP. The proceedings of the meeting are summarized here. Participants' summaries and work plans are also provided. (author)

  19. Series solutions to partial differential equations. A study of the singularities, expansions, and solutions of Schroedinger's equation for the helium atom

    International Nuclear Information System (INIS)

    Mahlab, M.S.

    1975-01-01

    All the presently available techniques for solving Schroedinger's differential equation for helium-like atoms display poor convergence of the wave function in the neighborhood of the singularities of the Hamiltonian operator. In general most of the methods of solving this equation will converge in the appropriate limit to the exact wave function; however, convergence is slow, especially near the singularities of this differential equation. These difficulties become readily apparent from local energy studies. A technique is presented that avoids these difficulties. The wave function it produces is specifically most accurate at the singularities of the Hamiltonian. The novel aspect of this treatment is the subdivision of the space spanned by the wave function. Different expansions are picked such that they converge rapidly in each of the different subdivisions. These expansions may be constructed in such a way that they obey the boundary conditions in their respective subdivision. Most importantly, all the information available from the recursion relations associated with the differential equation may be incorporated into these expansions. A systematic procedure is presented such that these expansions may be brought together to form a wave function that satisfies all the continuity requirements. An S-state helium wave function was constructed to demonstrate that this method of treatment is feasible, and capable of indefinite systematic improvement. A discussion of several new asymptotic expansions that were constructed for the helium wave function, as well as an improved functional form for the small electron-nucleus wave function, is included in this presentation

  20. Fission-fusion correlations for swelling and microstructure in stainless steels: effect of the helium-to-displacement-per-atom ratio

    International Nuclear Information System (INIS)

    Odette, G.R.; Maziaz, P.J.; Spitznagel, J.A.

    1981-01-01

    The initial irradiated structural materials data base for fusion applications will be developed in fission reactors. Hence, this data may need to be adjusted using physically-based procedures to represent behavior in fusion environments, viz. - fission-fusion correlations. Such correlation should reflect a sound mechanistic understanding, and be verified in facilities which most closely simulate fusion conditions. In this paper we review the effects of only one of a number of potentially significant damage variables, the helium to displacement per atom ratio, on microstructural evolution in austenitic stainless steels. Dual-ion and helium preinjection data are analyzed to provide mechanistic guidance; these results appear to be qualitatively consistent with a more detailed comparison made between fast (EBR-II) and mixed (HFIR) spectrum neutron data for a single heat of 20% cold-worked 316 stainless steel. These two fission environments bound fusion (He/dpa ratios. A model calibrated to the fission reactor data is used to extrapolate to fusion conditions. Both the theory and broad empirical observation suggest that helium to dpa ratios have both a qualitative and quantitative influence on microstructural evolution; and that the very high and low ratios found in HFIR and EBR-II may not result in behavior which brackets intermediate fusion conditions

  1. The argon excimer laser

    International Nuclear Information System (INIS)

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  2. Cover gases in nuclear reactors with special reference to argon

    International Nuclear Information System (INIS)

    Jose, C.J.; Shah, G.C.; Prabhu, L.H.; Vartak, D.G.

    1975-01-01

    The report describes the specifications of an ideal cover gas for the smooth operation of a nuclear reactor. The advantages of using helium as cover gas, the sources of impurities in helium cover gas and the methods of purification of helium are given in detail. Various problems associated with the use of argon as cover gas and methods to purify and decontaminate argon cover gas are discussed on the basis of experimental data collected. A laboratory model of the system which can be used to evaluate the performance of the gas purification adsorbents is also described. (author)

  3. Non-resonant two and three-photon ionization of the singlet and triplet metastable helium atoms of an atomic jet

    International Nuclear Information System (INIS)

    Mathieu, Bernard.

    1978-01-01

    The three-photon ionization cross-section of the helium metastables He(2 1 S) and He(2 3 S) is determined by means of the linearly polarized radiation of a pulsed ruby laser with an emission wavelength equal to 6946.4 A at 19 0 C. Two-photon ionization, obtained by doubling the laser beam frequency, is also studied [fr

  4. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections

    Science.gov (United States)

    Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.

    2018-05-01

    A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.

  5. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  6. The influence of (n-n')-mixing processes in He*(n)+He(1s2) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    International Nuclear Information System (INIS)

    Mihajlov, A.A.; Ignjatovic, Lj.M.; Sreckovic, V.A.; Djuric, Z.

    2008-01-01

    The results of semi-classical calculations of rate coefficients of (n-n ' )-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s 2 ) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n ' )-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n ' in ranges 4≤n ' ≤10, and the atom and electron temperatures, T a ,T e , in domains 5000K≤T a ≤T e ≤20000K. It is shown that the (n-n ' )-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree ∼10 -4 . Therefore, these processes have to be included in the appropriate models of such plasmas

  7. A high resolution helium atom scattering and far infrared study of the dynamics and the lateral potential energy surface of CO molecules chemisorbed on Cu(001)

    International Nuclear Information System (INIS)

    Graham, A.P.; Hofmann, F.; Toennies, J.P.; Williams, G.P.; Hirschmugl, C.J.; Ellis, J.

    1998-01-01

    Inelastic helium scattering (HAS) and infrared reflection adsorption spectroscopy (IRAS) have been used to measure the isotope shifts of the frequencies of both the parallel and perpendicular frustrated translation modes, as well as the frustrated rotation mode of CO molecules at on top sites on Cu(001). The measured isotope shifts for four different isotopomers indicates a significant rotational contribution to the parallel frustrated translation (T-mode), where the vibrational amplitude of the oxygen atom is significantly larger than for the carbon atom. Conversely, for the frustrated rotation the vibrational amplitude of the carbon atom was observed to be larger than for the oxygen atom. At surface temperatures above T s =100 K a careful analysis of the peak shape of the HAS quasielastic peak shows a small broadening, which is attributed to a rapid diffusion of the CO molecules. The measured dynamic diffusion barrier of 31±10 meV is compatible with the shape of the potential at the on-top site and makes it possible to extend the potential energy surface to the region between the on-top sites. copyright 1998 American Institute of Physics

  8. Steady-state exhaust of helium ash in the W-shaped divertor of JT-60U

    International Nuclear Information System (INIS)

    Sakasai, A.; Takenaga, H.; Hosogane, N.

    2001-01-01

    By injecting a neutral beam of 60 keV helium (He) atoms as central fueling of helium into the ELMy H-mode plasmas, helium exhaust has been studied in the W-shaped pumped divertor on JT-60U. Efficient He exhaust was realized by He pumping using argon frosted cryopumps in the JT-60U new divertor. In steady state, good He exhaust capability (τ He */τ E =4 and high enrichment factor, where τ He * is a global particle confinement time of helium and τ E is the energy confinement time) was successfully demonstrated in attached ELMy H-mode plasmas. Good He exhaust capability was also obtained in detached ELMy H-mode plasmas, which was comparable to one in attached plasmas. This result of the helium exhaust is sufficient to support a detached divertor operation on ITER. After the divertor modification, helium exhaust in reversed shear plasmas has been investigated using He gas puff. Helium removal inside the internal transport barrier (ITB) is about two times as difficult as that outside the ITB in reversed shear discharges. (author)

  9. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  10. Potential-splitting approach applied to the Temkin-Poet model for electron scattering off the hydrogen atom and the helium ion

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.

    2015-06-01

    The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.

  11. Experimental study of cross-section ratios in the collisions of Cq+ and Oq+ (q = 1–4) on atomic helium in strong-interaction region

    International Nuclear Information System (INIS)

    Chen Xi-Meng; Jiang Li-Juan; Zhou Peng; Zhou Chun-Lin; Gao Zhi-Min; Qiu Xi-Yu; Cui Ying; Wang Xing-An; Lou Feng-Jun; Lü Xue-Yang; Jia Juan-Juan; Chen Lin; Shao Jian-Xiong; Lü Ying; Wang Fan

    2011-01-01

    We have measured the cross-section ratios of helium induced by C q+ and O q+ (q = 1–4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly. (atomic and molecular physics)

  12. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    Science.gov (United States)

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

  13. Argon defect complexes in low energy Ar irradiated molybdenum

    International Nuclear Information System (INIS)

    Veen, A. van; Buters, W.T.M.; Kolk, G.J. van der; Caspers, L.M.; Armstrong, T.R.

    1982-01-01

    Thermal desorption spectrometry has been used to study the defects created in Mo irradiated along the direction with Ar ions ranging in energy from 0.1 to 2 keV. In addition to monitoring the release of the implanted Ar, additional information has been obtained by decoration of the defects with low energy helium and subsequent monitoring of the helium release. The studies show evidence that the Ar can be trapped in both substitutional sites and in a configuration in which the Ar is associated with vacancies (ArVsub(n), n >= 2). Most of the Ar implanted at high energy is released at approx. equal to 1500 K by thermal vacancy assisted diffusion. Argon trapped closer to the surface is released at lower temperatures via at least three different surface related release mechanisms. Additional results are presented on the interaction of self interstitial atoms (introduced by 100 eV Xe bombardment) with the Ar defects. Substitutional Ar is found to convert to interstitial Ar which seems to be mobile at room temperature. The Ar-vacancy complexes are found to be reduced to substitutional Ar. The results of atomistic calculations of the release mechanisms will also be presented. (orig.)

  14. Mechanism of selenium hydride atomization, fate of free atoms and temperature distribution in an argon shielded, highly fuel-rich, hydrogen-oxygen diffusion micro-flame studied by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Lampugnani, L.; Matoušek, Tomáš

    2002-01-01

    Roč. 17, č. 3 (2002), s. 253-257 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453; GA ČR GA203/98/0754 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.250, year: 2002

  15. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  16. Partial and total electronic stopping cross sections of atoms for a singly charged helium ion, Part 2

    International Nuclear Information System (INIS)

    Kaneko, T.; Nishikori, M.; Yamato, N.

    1991-08-01

    Partial and total electronic stopping cross sections of atoms with Z (55 ≤ Z ≤ 92) for a He + ion are tabulated as the second part of NIFS-DATA-11 (1991) on the basis of the wave-packet theory. (author)

  17. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    Aramyan, A.R.

    2003-01-01

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  18. Current mapping of low-energy (120 eV) helium and hydrogen irradiated tungsten by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Endo, Takashi [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Bi, Zhenghua; Yan, Weibin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Ohnuki, Somei [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Yang, Qi; Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China)

    2017-04-01

    Both conductive atomic force microscopy (CAFM) and transmission electron microscopy have been used to characterize the defects or He bubbles in low-energy (120 eV) H and He irradiated tungsten (W). By a comparative study, we find that the current mapping from CAFM is very sensitive in the detection of nanometer-sized defects in low-energy H and He irradiated W. Our calculation confirms that the resistance change in H and He irradiated W is strongly affected by the distance between atomic force microscopy tip and defects/He bubbles. CAFM can accurately detect defects/He bubbles in the W surface layer, however, it is infeasible to measure them in the deep layer (>20 nm), especially due to the existence of defects in the surface layer.

  19. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    International Nuclear Information System (INIS)

    Weatherford, Brandon R.; Barnat, E. V.; Xiong, Zhongmin; Kushner, Mark J.

    2014-01-01

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3 × 10 9  cm s −1 , depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  20. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  1. Measurement of OH, NO, O and N atoms in helium plasma jet for ROS/RNS controlled biomedical processes

    Science.gov (United States)

    Yonemori, Seiya; Kamakura, Taku; Ono, Ryo

    2014-10-01

    Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  2. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    Science.gov (United States)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  3. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  4. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  5. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  6. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  7. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  8. International bulletin on atomic and molecular data for fusion. No.2

    International Nuclear Information System (INIS)

    Beaty, E.C.; Katsonis, K.

    1977-10-01

    This bulletin deals with atomic and molecular data for fusion (spectroscopic data, atomic and molecular collisions, surface effects, ...). Particular emphasis is given to data applicable to Tokamak devices. A bibliography for the most recent data presented in the document is provided. A description of work in progress and ''Data Requests'' in the fusion field are also mentioned. Numerical data on light ion sputtering yields of first wall materials, electron capture and impact ionization for iron ions colliding with molecular hydrogen and charge exchange between multicharged ions and helium, argon, and, atomic or molecular hydrogen are given

  9. Separation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, Erik Huusfeldt; Pritzl, G.

    1992-01-01

    -to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3 injections...... of mixtures of arsenic standards into the HPLC system were: arsenite, As(III) 1.1; arsenate, As(V) 1.4; MMA 1.4; DMA 0.7; AsB 0.3; AsC 0.5; and the TMAs 0.4. The HPLC-AAS system was used for the analysis of arsenic species in aqueous extracts of soil samples from a polluted land site. Only arsenate was found...

  10. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  11. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  12. New Benchmarks from Tokamak Experiments for Theoretical Calculations of the Dielectronic Satellite Spectra of Helium-like Ions

    International Nuclear Information System (INIS)

    Bitter, M.; Gu, M.F.; Vainshtein, L.A.; Beiersdorfer, P.; Bertschinger, G.; Marchuk, O.; Bell, R.; LeBlanc, B.; Hill, K.W.; Johnson, D.; Roquemore, L.

    2003-01-01

    Dielectronic satellite spectra of helium-like argon, recorded with a high-resolution X-ray crystal spectrometer at the National Spherical Torus Experiment, were found to be inconsistent with existing predictions resulting in unacceptable values for the power balance and suggesting the unlikely existence of non-Maxwellian electron energy distributions. These problems were resolved with calculations from a new atomic code. It is now possible to perform reliable electron temperature measurements and to eliminate the uncertainties associated with determinations of non-Maxwellian distributions

  13. Quenching of the resonance 5s({sup 3}P{sub 1}) state of krypton atoms in collisions with krypton and helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zayarnyi, D A; L' dov, A Yu; Kholin, I V [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-11-30

    The processes of collision quenching of the resonance 5s[3/2]{sub 1}{sup o}({sup 3}P{sub 1}) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*{sub 2} + He [(4.21 ± 0.42) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(2.21 ± 0.22) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]{sub 2}{sup o} ({sup 3}P{sub 2}) state. (laser applications and other topics in quantum electronics)

  14. The problem of helium in structural materials for fusion reactor

    International Nuclear Information System (INIS)

    Nikiforov, A.S.; Zakharov, A.P.; Chuev, V.I.

    1982-01-01

    The processes of helium buildup in some metals and alloys at different energy neutron flux irradiation under thermonuclear reactor conditions are considered. The data on high temperature helium embrittlement of a number of stainless steels, titanium and aluminium alloys etc. are given A review of experiments concerning the implanted helium behaviour is presented. Possible reactions between helium atoms and point defects or their clusters are discussed. Analysed are material structure variations upon buildup in them up to 1 at % of helium

  15. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  16. Noble gas atoms as chemical impurities in silicon

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Mudryi, A.V.; Minaev, N.S.

    1984-01-01

    The behaviour of noble gas atoms implanted in silicon is studied by the luminescence method. The energy position of Moessbauer-type luminescence bands with zero-phonon lines 1.0148, 1.0120, 1.0097, 1.0048 eV and others connected with implanted atoms of neon, helium, argon, krypton, respectively, indicates the formation of deep energy levels in the forbidden gap of silicon. Implantation of the noble gas isotopes confirms their participation in formation processes of the luminescence centers in silicon. The temperature range of existence and the symmetry of defects incorporating the noble gas atoms are found. It is noted that noble gas atoms form impurity complexes with deep energy levels and their behaviour in crystals does not differ from that of main doped or residual technological impurity atoms. (author)

  17. Pressure effects on some argon spectral lines belonging to the 3p54p-3p5nd (n=5-7) transitions

    International Nuclear Information System (INIS)

    Wolnikowski, J.; Wawrzynski, J.; Bielski, A.; Szudy, J.

    1987-01-01

    Low pressure broadening and shift of four spectral lines of argon: 518.7 nm (3p 5 4p-3p 5 5d'), 522.1 nm (3p 5 4p-3p 5 7d), 549.6 nm (3p 5 4p-3p 5 6d) and 603.2 nm (3p 5 4p-3p 5 5d) have been investigated by means of a Fabry-Perot interferometer. The values of the pressure broadening and shift coefficients for argon-argon, argon-neon and argon-helium interactions in the low-current glow discharge conditions are determined. For all lines in the pure argon a red shift and in the argon-neon and argon-helium mixtures a blue shift has been found. The results cannot be interpreted on the basis of the existing simple interaction potential models within the framework of the adiabatic impact broadening theory. (orig.)

  18. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  19. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques.

    Science.gov (United States)

    Danışman, M Fatih; Özkan, Berrin

    2011-11-01

    We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed. © 2011 American Institute of Physics

  20. Argon analytical procedures for potassium-argon dating

    International Nuclear Information System (INIS)

    Gabites, J.E.; Adams, C.J.

    1981-01-01

    A manual for the argon analytical methods involved in potassium-argon geochronology, including: i) operating procedures for the ultra-high vacuum argon extraction/purification equipment for the analysis of nanolitre quantities of radiogenic argon in rocks, minerals and gases; ii) operating procedures for the AEI-MS10 gas source mass spectrometer

  1. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  2. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  3. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  4. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  5. Dielectric constant of atomic fluids with variable polarizability.

    Science.gov (United States)

    Alder, B J; Beers, J C; Strauss, H L; Weis, J J

    1980-06-01

    The Clausius-Mossotti function for the dielectric constant is expanded in terms of single atom and pair polarizabilities, leading to contributions that depend on both the trace and the anisotropy of the pair-polarizability tensor. The short-range contribution of the anisotropic part to the pair polarizabilities has previously been obtained empirically from light scattering experiments, whereas the trace contribution is now empirically determined by comparison to dielectric experiments. For helium, the short-range trace part agrees well with electronic structure calculations, whereas for argon qualitative agreement is achieved.

  6. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  7. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  8. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders

    International Nuclear Information System (INIS)

    Zambon, A.

    2004-01-01

    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe 50 Ni 30 Si 10 B 10 and Fe 32 Ni 36 Ta 7 Si 8 B 17 , were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe 32 Ni 36 Ta 7 Si 8 B 17 alloy exhibits a higher proneness to the development of amorphous phase than the Fe 50 Ni 30 Si 10 B 10 alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions

  9. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  10. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  11. Hydrogen–argon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel

    International Nuclear Information System (INIS)

    Härkönen, Emma; Potts, Stephen E.; Kessels, Wilhelmus M.M.; Díaz, Belén; Seyeux, Antoine; Światowska, Jolanta; Maurice, Vincent; Marcus, Philippe; Radnóczi, György; Tóth, Lajos; Kariniemi, Maarit; Niinistö, Jaakko; Ritala, Mikko

    2013-01-01

    The effect of H 2 –Ar plasma pre-treatment prior to thermal atomic layer deposition (ALD) and plasma-enhanced atomic layer deposition (PEALD) of Al 2 O 3 films on steel for corrosion protection was investigated. Time-of-flight secondary ion mass spectrometry and transmission electron microscopy were used to observe the changes in the interface. The electrochemical properties of the samples were studied with polarization measurements, and the coating porosities were calculated from the polarization results for easier comparison of the coatings. Prior to thermal ALD the plasma pre-treatment was observed to reduce the amount of impurities at the interface and coating porosity by 1–3 orders of magnitude. The anti-corrosion properties of the PEALD coatings could also be improved by the pre-treatment. However, exposure of the pre-treatment plasma activated steel surface to oxygen plasma species in PEALD led to facile oxide layer formation in the interface. The oxide layer formed this way was thicker than the native oxide layer and appeared to be detrimental to the protective properties of the coating. The best performance for PEALD Al 2 O 3 coatings was achieved when, after the plasma pre-treatment, the surface was given time to regrow a thin protective interfacial oxide prior to exposure to the oxygen plasma. The different effects that thermal and plasma-enhanced ALD have on the substrate-coating interface were compared. The reactivity of the oxygen precursor was shown to have a significant influence on substrate surface in the early stages of film growth and thereafter also on the overall quality of the protective film. - Highlights: • Influence of H 2 –Ar plasma pre-treatment to ALD coatings on steel was studied. • The pre-treatment modified the coating–substrate interface composition and thickness. • The pre-treatment improved the barrier properties of the coatings

  12. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms

    International Nuclear Information System (INIS)

    Grucker, J.

    2007-12-01

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable 3 P 2 state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ( 3 P 2 ). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms

  13. Displacements and intensities of the components of hydrogenic lines of the helium atom in the presence of exterior uniform electrical and magnetic fields

    International Nuclear Information System (INIS)

    Deutsch, C.; Herman, L.; Nguyen, H.; Drawin, H.W.

    1967-01-01

    The Waller-Foster method for hydrogenic lines of neutral helium is extended in order to take into account an external magnetic field (vector K) having an arbitrary angle with an external constant electric field (vector F). The diagonal correction has been evaluated numerically taking into account recent experimental data. A Fortran IV program written for the CDC 3600 computer allows to calculate the displacements and the intensities for any hydrogenic transition. Special attention is given to the {2-4} transitions in neutral helium. (authors) [fr

  14. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  15. Muonium and neutral muonic helium

    International Nuclear Information System (INIS)

    Orth, H.

    1981-01-01

    In this brief article the current status on muonium spectroscopy with emphasis on recent developments will be summarized. The experimental and theoretical progress of the muonic helium atom will be reviewed. Future directions in this field of research will be discussed. (orig./HSI)

  16. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  17. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  18. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  19. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  20. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  1. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  2. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  3. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  4. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  5. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  6. Kinetics of Ar+*(2G9/2) metastable ions and transport of argon ions in ICP reactor

    NARCIS (Netherlands)

    Sadeghi, N.; Derouard, J.; Grift, van de M.; Kroesen, G.M.W.; Hoog, de F.J.; Tachibana, K.; Watanabe, Y.

    1997-01-01

    The decay time of the argon Ar~~(2G912) metastable ions was measured in the afterglow of a low pressure pulsed helicon reactor. From the argon pressure and electron density dependence of this decay time, rate coefficients for quenching of these ions by argon atoms and by plasma electrons have been

  7. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail: ljuba@phy.bg.ac.yu; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2008-03-15

    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}natom and electron temperatures, T{sub a},T{sub e}, in domains 5000K{<=}T{sub a}{<=}T{sub e}{<=}20000K. It is shown that the (n-n{sup '})-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  8. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  9. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  10. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  11. Relaxation of helium levels excited by heavy ion impact: III.- Orientation by anisotropic relaxation of excited atoms in previously aligned states

    International Nuclear Information System (INIS)

    Chamoun, E.; Lombardi, M.; Carre, M.; Gaillard, M.L.

    1977-01-01

    In the last paper of this series devoted to relaxation phenomena in a low pressure cell of helium excited by an accelerated ion beam, experimental evidence is given for a new mechanism of transfer between alignment and orientation through anisotropic relaxation of initially aligned excited states. The theory predicting this effect is briefly outlined and then description is given of the exact experimental conditions to detect the circularly polarized component of the light emitted by the target excited in the 4 1 D level of He I by Na + impact [fr

  12. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  13. Cross section measurements of the processes occurring in the fragmentation of Hn+ (3 ≤ n ≤ 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms

    International Nuclear Information System (INIS)

    Louc, Sandrine

    1997-01-01

    Different processes involved in the fragmentation of ionised hydrogen clusters H 3 + (H 2 ) (n-3)/2 (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity (≅ c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H 3 + ion. In the same way, the dissociation cross section of the H 3 + core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H 3 + core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H 9 + , H 15 + , H 19 + and H 29 + clusters could be the 'core' of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author)

  14. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  15. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  16. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  17. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  18. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  19. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  20. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  1. Liquid-argon calorimetry

    International Nuclear Information System (INIS)

    Fabjan, C.W.

    1989-01-01

    In this paper the viability of liquid-argon calorimetric techniques in the experimental environment of the Superconducting Super Collider (SSC) is briefly analyzed. The authors compare the required and achievable energy resolution with benchmark figures obtained using practical instruments. Comments on the desirable (i.e. required) temporal performance are made and compared with the state of the art. Some of the major engineering challenges are listed, for which solutions will have to be developed if such instruments are to find a place in an SSC experimental area

  2. Ionization relaxation in shock-heated krypton-argon mixtures

    International Nuclear Information System (INIS)

    Ezumi, Hiromichi; Kawamura, Masahiko; Yokota, Toshiaki.

    1977-01-01

    The ionization relaxation processes behind shock waves in pure krypton and krypton-argon mixtures have been investigated using a Mach-Zehnder interferometer technique. The incident shock velocity was fixed in the neighborhood of Us=2800 m/sec, and the initial pressure was fixed at 0.95 Torr. The experimental results were compared with theoretical values based on the two-step collisional ionization model taking into account of the wall boundary-layer effect. The slope constants of excitation cross section against relative kinetic energy between krypton atom-atom collisions, krypton atom-electron collisions, and krypton-argon atom-atom collisions were determined to be 4.2 x 10 -19 cm 2 /eV, 1.2 x 10 -17 cm 2 /eV, and 4.2 x 10 -19 cm 2 /eV, respectively. (auth.)

  3. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Science.gov (United States)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-10-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  4. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Enze [State Nuclear Power Research Institute, Beijing, 100029 (China); Du, Shiyu, E-mail: dushiyu@nimte.ac.cn [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Li, Mian [Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); Liu, Chen [Beijing Research Institute of Chemical Engineering and Metallurgy (China); He, Shihong [State Nuclear Power Research Institute, Beijing, 100029 (China); Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 (China); He, Jian [Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023 (China); He, Heming, E-mail: heheming@snptc.com.cn [State Nuclear Power Research Institute, Beijing, 100029 (China)

    2016-10-15

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  5. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    International Nuclear Information System (INIS)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-01-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  6. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: sfxiao@yahoo.com.cn; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2009-09-15

    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  7. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  8. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  9. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  10. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  11. Displacements and intensities of the components of hydrogenic lines of the helium atom in the presence of exterior uniform electrical and magnetic fields; Deplacements et intensites des composantes des raies hydrogenoides de l'atome d'helium en presence de champs exterieurs electrique et magnetique uniformes

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, C; Herman, L; Nguyen, H [Laboratoire de Recherches Physiques, 75 - Paris (France); Drawin, H W [Commissariat a l' Energie Atomique, Association Euratom-CEA, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The Waller-Foster method for hydrogenic lines of neutral helium is extended in order to take into account an external magnetic field (vector K) having an arbitrary angle with an external constant electric field (vector F). The diagonal correction has been evaluated numerically taking into account recent experimental data. A Fortran IV program written for the CDC 3600 computer allows to calculate the displacements and the intensities for any hydrogenic transition. Special attention is given to the {l_brace}2-4{r_brace} transitions in neutral helium. (authors) [French] La methode de perturbation de Waller et Foster est generalisee afin de tenir compte d'un champ magnetique exterieur (vecteurK) faisant un angle quelconque avec un champ electrique exterieur (vecteurF). La correction diagonale des matrices de perturbation est evaluee numeriquement a l'aide des donnees atomiques les plus recentes. Un programme ecrit pour l'ordinateur CDC 3600 permet le calcul des deplacements et des intensites pour des transitions hydrogenoides quelconques. Les transitions [2-4]d'helium neutre ont ete etudiees plus particulierement. (auteurs)

  12. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  13. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  14. Adsorption of helium gas near Tλ at low pressures

    International Nuclear Information System (INIS)

    Kachalin, G.V.; Kryukov, A.P.; Nesterov, S.B.

    1998-01-01

    Cryosorption of helium isotopes ( 4 He and 3 He) on thin argon cryo layers is studied experimentally in the temperature range 4.2-2 K at low pressures. It is shown that the sorption iso stere 4 He is anomalous at temperatures close to be temperature of the phase transition in the bulk of 4 He, T λ . An abrupt pressure change is observed for a 4 He film thickness approximately equal to two monolayers. The experiments on cryosorption of 3 He gas on an argon layer with a 3 He film thickness of approximately one monolayer display monotonous changes in the pressure within the whole temperature range

  15. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  16. First experimental results on the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Calzada, M.D.; Gamero, A.; Sola, A.

    1995-01-01

    This communication presents an advance of the results of an experimental study of the kinetic processes in a surface-wave-sustained argon discharge at atmospheric pressure. We utilize the study developed by Fujimoto on the population and depopulation processes of the excited levels of atoms and ions. This theory has been applied by S. Daviaud and A. Hirabayashi to explain the kinetic processes in helium plasma at low pressure. Fujimoto has studied the ionization and recombination mechanisms of the plasma under various conditions and its relation to the population density distributions. This study establishes, for an hydrogenic ion with a core charge z, different zones in the atomic system (level map). Each zone is characterized by the dominant mechanisms of the population and depopulation of their excited levels, A level is characterized for the effective principal quantum number p, where p = z (E H /|E p |) 1/2 , E H is the hydrogen ionization energy and |E p | is the energy required to ionize the atom from the level considered. The population of each level p can be expressed in terms of the parameter b(p) defined as n(p)/n SB (p), n(p) and n SB (p) being the actual population and the Saha-Boltzmann equilibrium population of the level, respectively. Figure I shows the population and depopulation processes of a level p, which are both collisional and radiative that are characterized by their respective coefficients

  17. Electron and positron atomic elastic scattering cross sections

    International Nuclear Information System (INIS)

    Stepanek, Jiri

    2003-01-01

    A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10 -8

  18. On the helium gas leak test

    International Nuclear Information System (INIS)

    Nishikawa, Akira; Ozaki, Susumu

    1975-01-01

    The helium gas leak test (Helium mass spectrometer testing) has a leak detection capacity of the highest level in practical leak tests and is going to be widely applied to high pressure vessels, atomic and vacuum equipments that require high tightness. To establish a standard test procedure several series of experiments were conducted and the results were investigated. The conclusions are summarized as follows: (1) The hood method is quantitatively the most reliable method. The leak rate obtained by tests using 100% helium concentration should be the basis of the other method of test. (2) The integrating method, bell jar method, and vacuum spray method can be considered quantitative when particular conditions are satisfied. (3) The sniffer method is not to be considered quantitive. (4) The leak rate of the hood, integrating, and bell jar methods is approximately proportional to the square of the helium partial pressure. (auth.)

  19. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  20. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  1. Study of argon-oxygen flowing afterglow

    Science.gov (United States)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  2. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  3. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  4. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  5. The Argon Dark Matter Experiment

    CERN Document Server

    AUTHOR|(CDS)2071720

    2009-01-01

    The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils. These events will be discerned by their light to charge ratio, as well as the time structure of the scintillation light. The experiment is presently under construction and commissioning on surface at CERN. Cryogenic operation and light detection performance was recently confirmed in a test run of the full 1 ton liquid argon target under purely calorimetric operation and with a prototype light readout system. This note describes the experimental concept, the main detector components and presents some first results.

  6. Cross section measurements of the processes occurring in the fragmentation of H{sub n}{sup +} (3 {<=} n {<=} 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms; Mesure des sections efficaces des differents processus intervenant dans la fragmentation d`agregats d`hydrogene H{sub n}{sup +} (3 {<=} n {<=} 35) induite par collision a haute vitesse (60 keV/u) sur un atome d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Louc, Sandrine [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-09-15

    Different processes involved in the fragmentation of ionised hydrogen clusters H{sub 3} + (H{sub 2}){sub (n-3)/2} (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity ({approx_equal} c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H{sub 3}{sup +} ion. In the same way, the dissociation cross section of the H{sub 3}{sup +} core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H{sub 3}{sup +} core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H{sub 9}{sup +}, H{sub 15}{sup +}, H{sub 19}{sup +} and H{sub 29}{sup +} clusters could be the `core` of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author) 114 refs., 74 figs., 9 tabs.

  7. Optical spectroscopy of high-L Rydberg states of argon

    International Nuclear Information System (INIS)

    Wright, L. E.; Snow, E. L.; Lundeen, S. R.; Sturrus, W. G.

    2007-01-01

    High-L fine structure patterns in n=9 and n=17 Rydberg levels of argon have been studied using a Doppler-tuned CO 2 laser and a fast beam of argon atoms. Analysis of the measured pattern using the polarization model yields the scalar dipole polarizability and quadrupole moment of the 2 P 3 at ∼sol∼ at 2 Ar + ion. The results are α S =6.83(8)a 0 3 and Q=-0.5177(15)ea 0 2 . Within the precision of this study, no vector component of the structure was observed

  8. Data relative to (e, argon) and (e, ethane) interactions necessary for strong field transport calculations

    International Nuclear Information System (INIS)

    Florent, J.J.

    1988-01-01

    Collisions between electrons and argon atoms and ethane molecules are studied in order to better understand phenomena occurring at each stage of detection in gas detectors used in nuclear and high energy physics. Elastic collisions between an electron and argon, those producing an electronic excitation of the atom, and those leading to its ionisation are reviewed. For the ethane collisions, vibrational excitation is considered. Photoionisation of argon and ethane is also examined. Total or partial cross sections, and differential cross sections are presented [fr

  9. Helium discovered in the tail of an exoplanet

    Science.gov (United States)

    Deming, Drake

    2018-05-01

    As the exoplanet WASP-107b orbits its host star, its atmosphere escapes to form a comet-like tail. Helium atoms detected in the escaping gases give astronomers a powerful tool for investigating exoplanetary atmospheres.

  10. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  11. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  12. Self-selection in size and structure in argon clusters formed on amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krainyukova, Nina V.; Waal, Benjamin W. van de

    2004-07-01

    Argon clusters formed on an amorphous carbon substrate as deposited from the vapor phase were studied by means of transmission high energy electron diffraction using the liquid helium cryostat. Electron diffractograms were analysed on the basis of assumption that there exist a cluster size distribution in samples formed on substrate and multi-shell structures such as icosahedra, decahedra, fcc and hcp were probed for different sizes up to {approx}15 000 atoms. The experimental data were considered as a result of a superposition of diffracted intensities from clusters of different sizes and structures. The comparative analysis was based on the R-factor minimization that was found to be equal to 0.014 for the best fit between experiment and modelling. The total size and structure distribution function shows the presence of 'non-crystallographic' structures such as icosahedra and decahedra with five-fold symmetry that was found to prevail and a smaller amount of fcc and hcp structures. Possible growth mechanisms as well as observed general tendency to self-selection in sizes and structures are presumably governed by confined pore-like geometry in an amorphous carbon substrate.

  13. Ultraviolet spectra of Mg in liquid helium

    International Nuclear Information System (INIS)

    Moriwaki, Y.; Morita, N.

    1999-01-01

    Emission and absorption spectra of Mg atoms implanted in liquid helium have been observed in the ultraviolet region. We have presented a model of exciplex formation of Mg-He 10 and found that this model is more suitable for understanding the dynamics in the 3s3p 1 P→3s 21 S transition than the bubble model. (orig.)

  14. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  15. Investigation of the electronic structure of Be2+He and Be+He, and static dipole polarisabilities of the helium atom

    Science.gov (United States)

    Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.

    2018-05-01

    The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.

  16. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  17. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  18. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  19. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  20. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  1. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  2. Decay of long-lived autoionization atomic states in atom collisions

    International Nuclear Information System (INIS)

    Krakov, B.G.

    1994-01-01

    Radiationless decay of long-lived autoionization states of helium atoms in atom collisions is investigated. It is shown that the states may decay in atom collisions due to softening of the selection rules

  3. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  4. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  5. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  6. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  7. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  8. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  9. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  10. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  11. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  12. Modelling electroluminescence in liquid argon

    International Nuclear Information System (INIS)

    Stewart, D Y; Barker, G J; Bennieston, A J; Harrison, P F; McConkey, N; Morgan, B; Ramachers, Y A; Lightfoot, P K; Robinson, M; Spooner, N J C; Thompson, L

    2010-01-01

    We present Monte-Carlo simulations of electron transport through liquid argon motivated by our recent observation of electroluminescence light emanating from a thick gaseous electron multiplier (THGEM) in a liquid argon volume. All known elastic and inelastic reaction cross-sections have been accounted for, providing electroluminescence light yield predictions for arbitrary electrostatic fields. This study concludes that the large field gradients needed to produce electroluminescence cannot be accounted for by straightforward electrostatic field calculations based on ideal THGEM holes, suggesting that further experimental investigations are required.

  13. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

    DEFF Research Database (Denmark)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias

    2012-01-01

    the attoclock technique4 to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the inclusion of Stark shifts5, 6 and report on multi-electron effects......In the research area of strong-laser-field interactions and attosecond science1, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics1, 2, 3. Here we use...... clearly identified by comparing results in argon and helium atoms. Our combined theory and experiment allows us to single out the geometry of the inherently one-dimensional tunnelling problem, through an asymptotic separation of the full three-dimensional problem. Our findings have implications for laser...

  14. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  15. Geminate recombination in liquid argon

    International Nuclear Information System (INIS)

    Freeman, G.R.

    1984-01-01

    The extended Onsager model for geminate neutralization is supported by the field dependence of the ionization yield in liquid argon irradiated by high energy electrons or x rays. Attempts to employ the model fail unless the distribution of initial separation distances between the thermalized electrons and their sibling ions (secondary electron thermalization ranges) is included. Data of Scalettar and co-workers are reanalyzed

  16. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  17. Atom-diatom processes in helium

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1981-09-01

    Elastic and dissociative scattering of He on He 2 are studied for an incident laboratory energy of 1 0 K. We apply Faddeev-AGS multiple-scattering theory in momentum space to the analysis. We show that this leads to a simple justification for the importance of the 'complex-formation mechanism' in termolecular recombination, the time reverse of collision-induced dissociation. Our work, in which separable expansions of two phenomenological He-He potentials are used, predicts significant magnitude differences in the cross sections derived from the interactions and also verifies the validity of the 'peaking approximation' for hyperthermal-energy elastic collisions. (orig.)

  18. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    Science.gov (United States)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  19. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  20. Magneto-optical trap for metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-01-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 S-3(1)-->3 P-3(2) line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta=-41 MHz) typically contains few times 10(7) atoms at a relatively high (similar

  1. Studies of helium distribution in metal tritides

    International Nuclear Information System (INIS)

    Bowman, R.C. Jr.; Attalla, A.

    1976-01-01

    The distribution of helium ( 3 He) in LiT, TiT 2 , and UT 3 , which are regarded as representative metal tritides, was investigated using pulse nuclear magnetic resonance (NMR) techniques. Analyses of the NMR lineshapes and nuclear relaxation times indicate the 3 He atoms are trapped in microscopic gas bubbles for each tritide. The effects of concentration and temperature on the 3 He distributions were investigated as well

  2. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl; Graef, W.A.A.D.; Hübner, S.; Mullen, J.J.A.M. van der, E-mail: jjamvandermullen@gmail.com

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas. - Highlights: • Time resolved laser induced fluorescence at high repetition rate • Decay times as function of pressure, electron density and temperature • Measurement of total electron atom depopulation rates • Reasonable agreement of electron total rates with hard sphere approximations.

  3. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  4. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  5. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-01-01

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi 5 -type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range

  6. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  7. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Science.gov (United States)

    Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.

  8. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    Directory of Open Access Journals (Sweden)

    Patrick Philipp

    2016-11-01

    Full Text Available The analysis of polymers by secondary ion mass spectrometry (SIMS has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM, which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  9. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  10. Quantum dissipative dynamics and decoherence of dimers on helium droplets

    International Nuclear Information System (INIS)

    Schlesinger, Martin

    2011-01-01

    In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4 He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold ''refrigerator'' for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb 2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K 2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the

  11. Formation of the lunar helium corona and atmosphere

    Science.gov (United States)

    Hodges, R. R., Jr.

    1977-01-01

    Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.

  12. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  13. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    Science.gov (United States)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  14. Prospects for photosensitive dopants in liquid argon

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/π ratio. Previous results indicating high voltage problems and no change in the e/π ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs

  15. Principles and characteristics of surface radon and helium techniques used in uranium exploration

    International Nuclear Information System (INIS)

    Pacer, J.C.; Czarnecki, R.F.

    1980-09-01

    Studies were carried out to determine the nature of some of the surface radon and helium techniques used for uranium exploration. By performing radon and helium measurements at three sites with differing geology and accessibility, we were able to examine the constraints on the features determined. The sites are the Red Desert in south central Wyoming, Copper Mountain in central Wyoming, and Spokane Mountain in eastern Washington. The radon techniques employed were: zinc sulfide detectors, an ionization chamber, alpha track detectors, thermoluminescence detectors, charcoal canisters, and the partial extraction of lead-210 from soil samples. Helium was measured in soil-gas samples, soil gas from collectors, and soil samples. The ratio helium-4/argon-36 was measured in soil gas

  16. Dynamics of imploding argon plasmas

    International Nuclear Information System (INIS)

    Clark, W.; Richardson, R.; Brannon, J.; Wilkinson, M.; Katzenstein, J.

    1982-01-01

    The BLACKJACK 5 pulse generator has been used to implode annular argon plasmas to form dense Z pinches. Visible streak photography, framing photography, and laser shadowgraphy were used to observe the radial position and velocity of the plasmas as they imploded. The measured position and velocity of the imploding plasmas have been compared with the results of calculations based on a one-dimensional snowplow model. Good agreement is obtained between the snowplow calculations and the optical measurements. Empirically determined optimum implosion parameters are also found to agree with those predicted by the model

  17. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  18. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  19. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  20. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    Kafrouni, Hanna.

    1979-01-01

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values [fr

  1. Suicidal asphyxiation by using helium – two case reports

    Directory of Open Access Journals (Sweden)

    Anna Smędra

    2015-05-01

    Full Text Available Helium is one of inert gases causing physical asphyxiation, whose excess content in the breathing atmosphere reduces the partial pressure of oxygen and may be fatal after short-term exposure. When breathing a mixture of an inert gas (helium, nitrogen, argon with a small amount of oxygen, with the possibility of exhaling carbon dioxide, no warning signs characteristic of suffocation are perceived by the subject. Freedom from discomfort and pain, effectiveness, rapid effect and relatively easy availability of required accessories have resulted in the use of inert gases for suicidal purposes. The paper reports two cases of suicide committed by using a special kit consisting of the so-called “suicide bag” (or “exit bag” filled with helium supplied through a plastic tube. In both cases, examination of the sites where the corpses were found and analysis of collected material allowed to establish that before their death the subjects had searched the Internet for instructions on how to commit suicide using helium. Due to the advanced putrefaction process, the autopsies failed to determine the causes of their death unequivocally. However, the circumstances surrounding the deaths suggested rapid asphyxiation as a result of oxygen deficiency in the breathing mixture. Since in cases of the type discussed here the cause of death cannot generally be established by autopsy, knowledge of the circumstances of disclosure of the corpse, as well as examination of the cadaver and the death scene is of utmost importance.

  2. Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet

    Directory of Open Access Journals (Sweden)

    M. Mori

    2009-08-01

    Full Text Available The pointing stability and divergence of a quasimonoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime using 4 TW laser is studied. A pointing stability of 2.4 mrad root-mean-square (rms and a beam divergence of 10.6 mrad (rms were obtained using an argon gas-jet target for 50 sequential shots, while these values were degraded by a factor of 3 at the optimum condition using helium. The peak electron energies were 8.5±0.7 and 24.8±3.6  MeV using argon and helium, respectively. The experimental results indicate that the different propagation condition could be generated with the different material, although it is performed with the same irradiation condition.

  3. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    Science.gov (United States)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  4. Neutral transport and helium pumping of ITER

    International Nuclear Information System (INIS)

    Ruzic, D.N.

    1990-08-01

    A 2-D Monte-Carlo simulation of the neutral atom densities in the divertor, divertor throat and pump duct of ITER was made using the DEGAS code. Plasma conditions in the scrape-off layer and region near the separatrix were modeled using the B2 plasma transport code. Wall reflection coefficients including the effect of realistic surface roughness were determined by using the fractal TRIM code. The DEGAS and B2 coupling was iterated until a consistent recycling was predicted. Results were obtained for a helium and a deuterium/tritium mixture on 7 different ITER divertor throat geometries for both the physics phase reference base case and a technology phase case. The geometry with a larger structure on the midplane-side of the throat opening closing the divertor throat and a divertor plate which maintains a steep slope well into the throat removed helium 1.5 times better than the reference geometry for the physics phase case and 2.2 times better for the technology phase case. At the same time the helium to hydrogen pumping ratio shows a factor of 2.34 ± .41 enhancement over the ratio of helium to hydrogen incident on the divertor plate in the physics phase and an improvement of 1.61 ± .31 in the technology phase. If the helium flux profile on the divertor plate is moved outward by 20 cm with respect to the D/T flux profile for this particular geometry, the enhancement increases to 4.36 ± .90 in the physics phase and 5.10 ± .92 in the technology phase

  5. Kinetics of the excited muonic hydrogen in the mixtures of hydrogen isotopes in helium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Kravtsov, A.V.; Popov, N.P.

    1989-01-01

    De-excitation of the excited muonic hydrogen in the mixture of hydrogen isotopes and helium is considered. The method is proposed which allows one to determine the rates of the muon transfer from the excited muonic hydrogen to helium nuclei, as well as the probability of the direct muon atomic capture by nuclei of hydrogen isotopes. 20 refs.; 4 figs

  6. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  7. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro

    1997-03-01

    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  8. Liquid argon calorimetry for the SSC

    International Nuclear Information System (INIS)

    Gordon, H.A.

    1990-01-01

    Liquid argon calorimetry is a mature technique. However, adapting it to the challenging environment of the SSC requires a large amount of R ampersand D. The advantages of the liquid argon approach are summarized and the issues being addressed by the R ampersand D program are described. 18 refs

  9. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    Martino, Trassinelli

    2005-12-01

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  10. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  11. Vascular anastomosis by Argon Laser

    International Nuclear Information System (INIS)

    Gomes, O.M.; Macruz, R.; Armelin, E.; Brum, J.M.G.; Ribeiro, M.P.; Mnitentog, J.; Verginelli, G.; Pileggi, F.; Zerbini, E.J.

    1982-01-01

    Twenty four mongrel dogs, wheighing 13 to 24 kilograms were studied. After anesthesia, intubation and controlled ventilation, they were submitted to three types of vascular anastomosis: Group I - eight dogs with saphenous vein inter-carotid arteries by-pass: Group II - eight dogs with left mammary artery - left anterior descending coronary artery by-pass; Group III - eight dogs with venovenous anastomosis. In all groups 0.8 to 15 watts of Argon Laser power was applied to a total time of 90 to 300 seconds. The lower power for venovenous anastomosis and the greater for the arterial ones. The mean valves of resistence of the Laser anastomosis to pressure induced rupture was 730 mmHg in the immediate post operative study, and superior to 2.500 mmHg 30 days after. No signs of occlusion was demonstrated at the anastomosis sites by the angiographic and anathomo-patological study performed. (Author) [pt

  12. Generalized oscillator strength and its first derivative for helium in the optical limit

    International Nuclear Information System (INIS)

    Amusia, M.U.; Cherepkov, N.A.; Radojevic, V.; Zivanovic, D.

    1976-01-01

    Generalized oscillator strengths and their first derivatives for zero momentum transfer (i.e. in the optical limit) are calculated for the helium atom in the framework of the random phase approximation with exchange. (author)

  13. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    International Nuclear Information System (INIS)

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-01-01

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  14. Peculiarities of spectroscopic determination of the isotopic hydrogen composition in a mixture with neon and argon

    International Nuclear Information System (INIS)

    Nemets, V.M.; Petrov, A.A.; Solov'ev, A.A.

    1987-01-01

    The dependence of the relative intensity of atomic lines of hydrogen isotopes in the mixture with neon and argon during excitation in a high-frequency discharge under medium and high pressures is investigated. A physical model is suggested for processes determining the isotopic effects in the atomic hydrogen spectrum due to isotopic differences in velocity constants of dissociation-association, transfer and ionic-molecular reactions in a gas discharge plasma

  15. On the ground state of a model for compressed helium

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    1952-01-01

    In the problem of the “compressed helium atom”, the boundary condition that the wave function ψ must vanish at infinity (r = ∞), is replaced by: ψ = 0 at a finite r = r0. This problem is solved by a variational method, which for the limiting case of the free atom (r0 → ∞) coincides with one of

  16. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  17. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  18. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  19. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  20. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  1. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  2. Argon cover gas purity control on LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Kobayashi, Takayoshi [PNC (Japan); Ishiyama, Satoshi [Toshiba (Japan); Motonaga, Tetsuji [Hitachi (Japan)

    1987-07-01

    Various control methods on chemical impurities and radioactive materials (fission products) in the primary argon gas of LMFBRs' have been studied based on experiences in Joyo and results of research and development. These results are reflected on MONJU design. On-line gas chromatographs are installed both in the Primary and in the Secondary Argon Gas Systems in JOYO. Also, chemical analysis has been done by batch sampling in JOYO. Though the rise of impurity concentration had been measured after periodical fuel exchange operation, impurity concentration has been controlled sufficiently under target control limits. In MONJU detailed design, the Rare Gas Removal and Recovery System which consisted of cryogenic distillation equipment had been eliminated and the capacity of Charcoal Beds in the Primary Argon Gas System has been improved to keep the concentration of radioactive materials sufficient low levels. The necessity to control the impurities in fresh argon gas which is supplied to the Primary Argon Gas System is now considered to keep the concentration of Kr and Xe isotopes in specified level, because their isotopes may make background rise for the Tagging Gas Failed Fuel Detection and Location System. Based on various investigations performed on sodium vapor trapping to obtain its detailed characteristics, design specifications and operating conditions of MONJU's Vapor Traps have been decided. To keep the level of radioactivity in gaseous effluents to the environment as low as reasonably achievable, the following means are now adopted in MONJU: the Primary Argon Gas System is composed of a closed recirculating path, but the exhaust gas discharged has different path after the Charcoal Beds; fresh argon gas is blown down to prevent Primary Argon Gas from releasing to the circumference during opening of the primary argon gas boundary, such as fuel exchange operations. (author)

  3. Low temperature calorimetry and transmission electron microscopy of helium bubbles in Cu

    International Nuclear Information System (INIS)

    Syskakis, E.

    1985-08-01

    Helium has been introduced into 100 μm thick pure Cu specimens by implantation of α-particles at T = 300 K. Post-implantation annealing of the specimens at high temperatures caused helium to precipitate into bubbles. We have measured the low-temperature heat capacity of helium confined in bubbles of average radius of less than 100 A. The size of the bubbles was obtained by transmission electron microscope investigations. We have observed that helium liquifies at low temperatures and undergoes the transition to the superfluid state in bubbles of average radius larger than 35 A. The confining geometry of bubbles is new and possesses unique features for investigations of confined helium. It provides the possibility to study properties of extremely small, spherical, completely isolated Bose ''particles'' consisting of 10 4 helium atoms each. Furthermore, as we show, it can be known with better accuracy than formerly investigated confining geometries. (orig./BHO)

  4. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  5. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  6. Virial Coefficients for the Liquid Argon

    Science.gov (United States)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  7. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  8. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  9. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  10. Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Cristina Yubero

    2017-10-01

    Full Text Available The spectroscopic method for gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure proposed recently by Spectrochimica Acta Part B 129 14 (2017—based on collisional broadening measurements of selected pairs of argon atomic lines, has been applied to other pairs of argon atomic lines, and the discrepancies found in some of these results have been analyzed. For validation purposes, the values of the gas temperature obtained using the different pairs of lines have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using the Boltzmann-plot technique.

  11. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  12. Simulation of liquid helium

    International Nuclear Information System (INIS)

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs

  13. Low energy atomic field bremsstrahlung from thin rare gas targets

    International Nuclear Information System (INIS)

    Semaan, M.E.

    1982-01-01

    A relative measurement of the doubly-differential cross-section for electron atomic field bremsstrahling, differential in photon energy and angle is reported. Data for (d 2 sigma)/(dk dO/sub k/) have been taken for incident electron energies T ranging from 4 to 10 keV on target atoms of helium, neon, argon, krypton and xenon at a photon emission angle of 90 0 . The X-rays, produced at 90 0 to the intersection of the crossed electron and gas beams, are detected by a Si(Li) detector, having a resolution of about 200 eV at 6 keV and 0.3 mil Be window. The theoretical angular distribution (d 2 sigma)/(dk dO/sub k/) has been deduced from the photon energy spectrum by the use of the shape function S(Z,T,k,T) defined by Tseng and Pratt as S(Z,T,k,T) = [(d 2 sigma)/(dk dO/sub k/)] / [(dsigma)/(dk)]. The values of S used were obtained by an interpolation of the benchmark data provided by Pratt et al. Agreement between our experiment and the theory is measured by how well the theoretical curve fits the data. The agreement appeared to be good

  14. Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes

    Science.gov (United States)

    Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.

  15. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Zahoranova, A.; Zahoran, M.; Bucek, A.; Cernak, M.; Bosko, J.

    2004-01-01

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF 6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF 6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF 6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  16. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  17. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Das, Tomi Nath; Dey, G.R.

    2013-01-01

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  18. A helium regenerative compressor

    International Nuclear Information System (INIS)

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-01-01

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors

  19. Positron annihilation in low-temperature rare gases. II. Argon and neon

    International Nuclear Information System (INIS)

    Canter, K.F.; Roellig, L.O.

    1975-01-01

    Lifetime measurements of slow-positron and ortho-positronium (o-Ps) annihilation were made in argon and neon gases at room temperature and below. The argon experiments cover the temperature range 115 to 300 0 K and the density range 0.0356 to 0.0726 g/cm 3 (approximately equal to 20 to 40 amagat). The slow-positron spectra in argon exhibit a departure from free-positron annihilation below 200 0 K. The departure becomes more marked as the temperature is lowered. No deviation from free o-Ps pickoff annihilation is observed in argon at low temperatures. The neon measurements cover the temperature range 30 to 300 0 K and the density range 0.032 to 0.89 g/cm 3 (approximately equal to 35 to 980 amagat). No effect of temperature on the slow-positron spectra throughout the temperature and density ranges investigated in neon is observed. The spectra are very exponential with a corresponding decay rate which is temperature as well as time independent and is directly proportional to density over the ranges investigated. The o-Ps data are more eventful in that the o-Ps lifetime at near-liquid densities is approximately 20 nsec, a factor of nearly 4 greater than the value obtained using the pickoff-annihilation coefficient obtained at lower densities. This is evidence for positronium-induced cavities in low-temperature neon. A brief discussion of the argon and neon results is given in the context of the explanations offered for the low-temperature effects observed in helium gas

  20. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics

    1996-12-01

    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  1. Radioactive core ions of microclusters, ''snowballs'' in superfluid helium

    International Nuclear Information System (INIS)

    Takahashi, N.; Mitsuoka, S.; Matsukawa, T.; Ikeda, N.; Morinobu, S.; Hinde, D.J.; Asahi, K.; Ueno, H.; Izumi, H.

    1996-01-01

    Short-lived beta-ray emitters, 12 B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of 12 B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of 12 B (20.3 ms). This suggests that the ''snowball'', an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.)

  2. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  3. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  4. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    International Nuclear Information System (INIS)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-01

    The melting of argon clusters Ar N is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes

  5. Retrospective analysis for detecting seismic precursors in groundwater argon content

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2004-01-01

    Full Text Available We examined the groundwater Argon content data sampled from 1988 to 2001 at two wells in Kamchatka (Russia and anomalous increases appeared clearly during June-July 1996. On 21 June, a shallow (1km earthquake with M=7.1 occurred at a distance less than 250km from the wells and so the previous increases could be related to this earthquake and, in particular, could be considered premonitory anomalies. In order to support this raw interpretation, we analysed the data collected in details. At first we smoothed out the high frequency fluctuations arising from the errors in a single measurement. Next we considered the known external effects on the water of a well that are the slow tectonic re-adjustment processes, the meteorology and the gravity tides and we separated these effects applying band-pass filters to the Argon content raw trends. Then we identified the largest fluctuations in these trends applying the 3 σ criterion and we found three anomalies in a case and two anomalies in other case. Comparing the time occurrence of the anomalies at the two wells we found out that a coincidence exists only in the case of the premonitory anomalies we are studying. The simultaneous appearance of well definite anomalies in the residual trends of the same parameter at two different sites supports their meaning and the possibility that they are related to some large scale effect, as the occurrence of a strong earthquake. But, other earthquakes similar to the June 1996 event took place during the Argon content measurements time and no anomaly appeared in this content. In the past, some of the authors of this paper studied the Helium content data collected in three natural springs of the Caucasus during seven years. A very similar result, that is the simultaneous appearance of clear premonitory anomalies only on the occasion of a strong (M=7.0 but shallow (2–4km earthquake, was obtained. The correspondence with the case of the Caucasus validates the

  6. Effective interactions, elementary excitations, and transport in the helium liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Polarization potentials, the self-consistent fields which describe the primary consequences of the strong atom-atom interaction in the helium liquids, are developed for liquid 4 He and 3 He. Emphasis is placed on the common physical origin of the effective interactions in all helium liquids, and the hierarchy of physical effects (very short-range atomic correlations, zero point motion, and the Pauli principle) which determine their strength is reviewed. An overview is then given of the application of polarization potential theory to experiment, including the phonon-maxon-roton spectra of 4 He and 3 He- 4 He mixtures, the phonon-maxon spectrum of normal and spin-polarized 3 He, and the transport properties of superfluid 4 He and of normal and spin-polarized 3 He

  7. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  8. Helium production cross section Measurement of Pb and Sn for 14.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Fujimoto, Toshihiro; Ozaki, Shuji; Muramasu, Masatomo; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori; Ikeda, Yujiro

    1998-03-01

    Helium production cross sections of lead and tin for 14.9 MeV neutrons were measured by helium accumulation method. Lead and tin samples were irradiated with FNS, an intense d-T neutron source of JAERI. The amount of helium produced in the samples by the neutron irradiation was measured with the Helium Atoms Measurement System (HAMS) at Kyushu University. As the samples contained a small amount of helium because of their small helium production cross sections at 14.9 MeV, the samples were evaporated by radiation from a tungsten filament to decrease background gases at helium measurement. Uncertainties of the present results were less than {+-}4.4%. The results were compared with other experimental data in the literature and also compared with the evaluated values in JENDL-3.2. (author)

  9. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  10. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  11. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  12. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  13. Computer simulation of cooling properties of UF5 hot-clusters in argon

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Ohno, Fubito

    1999-01-01

    Brownian collision-coalescence models have been proposed by many researchers to describe a cluster or a particle growth process. In these mathematical models, the effect of a cluster temperature on a sticking probability is not included, although the cluster temperature is one of the most important factors which determines the particle growth rate at the incipient stage of coagulation. A hot-cluster consisting of 30 UF 5 molecules is formed in a computer and is bombarded with argon atoms. Measuring a kinetic energy of argon atom scattered from the hot-cluster, the cluster temperature can be estimated by molecular dynamics simulations. It is concluded that the hot-cluster is rapidly cooled under the conditions of molecular laser isotope separation (MLIS) process, so that the cluster-argon system can reach its thermal equilibrium state. Therefore, in the analysis of the dynamics of clustering process, the temperature of UF 5 molecular cluster may be set equal to that of argon gas. (author)

  14. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Science.gov (United States)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  15. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  16. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  17. Generation of the line radiation of argon added to DT gas in Iskra-5 experiments

    International Nuclear Information System (INIS)

    Bel'kov, S.A.; Bessarab, A.V.; Veselov, A.V.; Gaidash, V.A.; Dolgoleva, G.V.; Zhidkov, N.V.; Izgorodin, V.M.; Kirillov, G.A.; Kochemasov, G.G.; Litvin, D.N.; Martynenko, S.P.; Mitrofanov, E.I.; Murugov, V.M.; Mkhitar'yan, L.S.; Petrov, S.I.; Pinegin, A.V.; Punin, V.T.; Suslov, N.A.

    1998-01-01

    The first experiments measuring the density of a compressed deuterium and tritium mixture in microtargets of indirect irradiation (x-ray targets) were performed at the Iskra-5 facility. The density was determined according to the broadening of the lines of hydrogen- and helium-like argon added to the DT gas as a diagnostics material. A series of three experiments was performed with x-ray targets in which the central capsule filled with a DT+Ar mixture over a range of shell thicknesses. In two of the experiments, argon emission spectra were recorded and the density of the compressed gas was determined. For a microtarget approximately 280 μm in diameter with a wall approximately 7 μm thick, an analysis of the experimental results yielded an estimated density in the compressed gas of ∼1 g/cm 3 . Gas-dynamic calculations using the SNDA (spectral nonequilibrium diffusion with absorption) program show that argon emission takes place just after reaching maximum temperature, but much sooner than maximum compression. The results of a calculation for an experiment with low relative Ar concentration are in overall agreement with the experimental data. Additional investigations are needed to interpret experiments at a relatively high concentration

  18. Design and performance of a high intensity copper atom beam source nozzle for use in inelastic atom--atom collision experiments

    International Nuclear Information System (INIS)

    Santavicca, D.A.

    1975-01-01

    The research was aimed at developing a neutral copper atom beam source which could be used to study the collision cross sections for electronic excitation of neutral copper atoms in collision with neutral argon atoms. Of particular interest is the excitation from the ground state to the two upper laser levels at 3.80 and 3.82 electron volts

  19. Compilation of electron collision excitation cross sections for neutral argon

    International Nuclear Information System (INIS)

    Blanco, F.

    1993-01-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs

  20. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    Blanco Ramos, F.

    1993-01-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  1. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  2. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zemła, M.R., E-mail: marcin.zemla@wimpw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wróbel, J.S.; Wejrzanowski, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  3. Sodium evaporation into a forced argon flow

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1975-01-01

    Evaporation from a rectangular sodium free surface into an argon flow was measured. Tests were carried out with varying sodium temperature, argon velocity and argon temperature respectively under conditions of fog formation being possible. In order to clarify the enhancement of evaporation by fog formation, convection heat transfer from a plate of the same geometry into an air flow was also measured. The evaporation rate and Sherwood number were compared with those predicted by both the heat transfer experiment and the theory proposed by Hill and Szekely, and also a comparison was run with the previously reported experimental results of sodium evaporation. As a result it was shown that the sodium evaporation rate in this experiment is at least four times as large as that predicted by the heat transfer experiment and varies almost linearly with the heat transfer rate and the sodium vapour pressure. (auth.)

  4. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  5. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  6. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S

    2007-12-15

    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  7. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  8. Radiation damage in gallium-stabilized δ-plutonium with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, FengChao [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang, Pei [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Liu, XiaoYi [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wu, HengAn, E-mail: wuha@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2017-02-15

    To understand the role of helium on self-irradiation effects in δ-plutonium, microstructure evolutions due to α-decay events near pre-existing helium bubbles in gallium-stabilized δ-plutonium are investigated using molecular dynamics simulations. Bubble promoting effect plays a dominating role in point defects production, resulting in increasing number of point defects. When lightweight helium atoms act as media, energy transfer discrepancy and altered spatial morphology of point defects induced by mass effect are revealed. The evolution of stacking faults surrounding the disordered core is studied and their binding effect on the propagation of point defects are presented. The cascade-induced bubble coalescence, resolution and re-nucleation driven by internal pressure are obtained in the investigation on helium behaviors. The intrinsic tendency in our simulated self-irradiation with helium bubbles is significant for understanding the underlying mechanism of aging in plutonium and its alloys.

  9. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  10. High Accuracy Vector Helium Magnetometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  11. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology ' Stankin,' (Russian Federation)

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  12. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    International Nuclear Information System (INIS)

    Montaser, A.

    1993-01-01

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors' investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report

  13. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  14. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  15. Argon isotopes as recorders of magmatic processes

    Science.gov (United States)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.

    2003-12-01

    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  16. Experimental study of interactions of highly charged ions with atoms at keV energies: Progress report, February 16, 1987-January 15, 1988

    International Nuclear Information System (INIS)

    Kostroun, V.O.

    1988-01-01

    This report describes the progress made during the past year towards the understanding of the behavior of electron beam ion sources and using the sources constructed in this laboratory to investigate interactions of highly charged ions with atoms at keV energies. The operational status of the two sources in use, CEBIS I and CEBIS II is described. At present, the sources are producing beams of bare, hydrogen and helium like ions of C, N, and O, and argon ions up to Ar 13+ with peak current pulses in the electric nanoampere range. Some of the problems encountered in the development of the sources and their resolution are discussed, and a brief description of experimental apparatus and ion beam transport line is presented. Experiments in progress are described

  17. Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

    International Nuclear Information System (INIS)

    Jansen, R.H.J.; De Heer, F.J.; Luyken, H.J.; Van Wingerden, B.

    1976-01-01

    An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by He, Ne, Ar and N 2 . Direct absolute cross section measurements were performed on N 2 at 500 eV impact energy and at scattering angles between 5 0 and 9 0 . Relative cross section measurements were done on He, Ne, Ar and N 2 at impact energies between 100 and 3000 eV and scattering angles between 5 0 and 55 0 . The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N 2 . The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target. (author)

  18. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  19. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  20. Exotic aspects of hadronic atoms-anomalous quasi-stabilities

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1993-07-01

    Recently revealed, but hitherto unknown, new aspects of hadronic atoms, namely, anomalous quasi-stabilities of negative hadrons, are discussed. One is on long-lived antiprotonic helium atoms, characterized as 'atomic exotic halo' and the other is on deeply bound pionic atoms, characterized as 'nuclear exotic halo'. (author)

  1. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias

    2016-02-19

    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  2. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    Lahaije, C.T.W.

    1989-01-01

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  3. Fast production of Bose-Einstein condensates of metastable helium

    Science.gov (United States)

    Bouton, Q.; Chang, R.; Hoendervanger, A. L.; Nogrette, F.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2015-06-01

    We report on the Bose-Einstein condensation of metastable 4He atoms using a hybrid approach, consisting of a magnetic quadrupole and an optical dipole trap. In our setup we cross the phase transition with 2 ×106 atoms, and we obtain pure condensates of 5 ×105 atoms in the optical trap. This approach to cooling 4He provides enhanced cycle stability, large optical access to the atoms and results in the production of a condensate every 6 s—a factor 2 faster than the state of the art. This speed-up will significantly reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable helium atoms to be detected individually.

  4. Free-piston driver performance characterisation using experimental shock speeds through helium

    Science.gov (United States)

    Gildfind, D. E.; James, C. M.; Morgan, R. G.

    2015-03-01

    Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.

  5. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Guenther, K.; Lang, S.; Radtke, R.

    1983-01-01

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements. (author)

  6. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Lang, S; Radtke, R [Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Elektronenphysik

    1983-07-14

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements.

  7. Rayleigh light scattering in fullerene covered by a spherical argon film - a molecular dynamics study

    CERN Document Server

    Dawid, A

    2003-01-01

    We have calculated (by a molecular dynamics method) the interaction-induced polarizability correlation functions and spectra of the depolarized light scattering from fullerene C sub 6 sub 0 molecules surrounded by an argon 'atmosphere' (layer). The calculated correlation functions and spectra of (C sub 6 sub 0)Ar sub n (n = 32, 40, 46) clusters show a substantial dependence on the number n of atoms in the layer.

  8. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  9. Fragmentation of atomic systems

    International Nuclear Information System (INIS)

    Bohn, J.L.; Fano, U.

    1996-01-01

    We report recent progress toward a nonperturbative formulation of many-body quantum dynamics that treats all constituent particles on an equal footing. This formulation is capable of detailing the evolution of a system toward the diverse fragments into which it can break up. We illustrate the general concept with the simple example of the simultaneous excitation of both electrons in a helium atom. copyright 1996 The American Physical Society

  10. Neutrons on a surface of liquid helium

    Science.gov (United States)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  11. The primordial helium abundance from updated emissivities

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L.

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y p . The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y p . In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y p = 0.2465 ± 0.0097, in good agreement with the BBN result, Y p = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  12. Contraction ionization waves in the argon contracted discharge

    International Nuclear Information System (INIS)

    Golubovskij, Yu.B.; Kulikov, V.V.; Nekutchaev, V.O.

    1985-01-01

    An investigation of ionization waves in the argon contracted discharge and a definition of their arising propagation mechanism accounting for the specificity of elementary pocesses characteristic of argon are presented. (author)

  13. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  14. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  15. Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.L. [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Department of Physics, Guangxi University, Nanning 530004 (China); Wang, J. [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Hou, Q., E-mail: qhou@scu.edu.cn [Key Lab for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Deng, A.H. [Department of Physics, Sichuan University, Chengdu 610064 (China)

    2014-03-15

    Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He–He{sub n}, n = 1–3) decreases with increasing temperature, except for He–He{sub 2} at T < 400 K. The traditional view that the ECR is approximately equal to the lattice constant, which has been widely used in kinetic Monte Carlo (KMC) and rate theory (RT) models, is only valid in some cases. However, the ECR between an interstitial helium atom and a substitutional helium atom (denoted as He–HeV) always approximates the third nearest-neighbor tetrahedral positions of the HeV. The diffusion coefficients D{sub n} for helium clusters are also investigated. He{sub 2} migrates more quickly than a single He atom does at T < 400 K, whereas the diffusion path of He{sub 2} changes at higher temperatures. Another counterintuitive observation is that D{sub 5} > D{sub 3} > D{sub 4} at T < 500 K, which can be attributed to the disordered structure of He{sub 5}. The Arrhenius relation describes the diffusion of He{sub n} well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models.

  16. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  17. Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel

    Science.gov (United States)

    Torres, E.; Pencer, J.

    2018-04-01

    Helium impurities, from either direct implantation or transmutation reactions, have been associated with embrittlement in nickel-based alloys. Helium has very low solubility in nickel, and has been found to aggregate at lattice defects such as vacancies, dislocations, and grain boundaries. The retention and precipitation of helium in nickel-based alloys have deleterious effects on the material mechanical properties. However, the underlying mechanisms that lead to helium effects in the host metal are not fully understood. In the present work, we investigate the role of symmetric tilt grain boundary (STGB) structures on the distribution of helium in nickel using molecular dynamics simulations. We investigate the family of STGBs specific to the 〈 110 〉 tilt axis. The present results indicate that accumulation of helium at the grain boundary may be modulated by details of grain boundary geometry. A plausible correlation between the grain boundary energy and misorientation with the accumulation and mobility of helium is proposed. Small clusters with up to 6 helium atoms show significant interstitial mobility in the nickel bulk, but also become sites for nucleation and grow of more stable helium clusters. High-energy GBs are found mainly populated with small helium clusters. The high mobility of small clusters along the GBs indicates the role of these GBs as fast two-dimensional channels for diffusion. In contrast, the accumulation of helium in large helium clusters at low-energy STGB creates a favorable environment for the formation of large helium bubbles, indicating a potential role for low-energy STGB in promoting helium-induced GB embrittlement.

  18. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1993-05-01

    Superfluid helium possesses unique properties that enable it to be used as the major component of a very sensitive calorimetric detector: it is extremely pure, and the energy deposited in it is carried out by elementary excitations of the liquid which can produce quantum evaporation of He atoms at a free surface. It has a major advantage of being able to achieve very low background levels. Experimental results presented on the development of helium-4 detector include sensitivity, heat capacity of wafer-calorimeters, coincidence measurements, spectrum of alpha particles in helium, and quantum evaporation: angular dependence and efficiency. 29 refs., 16 figs., 1 tab

  19. Triply differential cross sections for ionization of helium by electrons

    International Nuclear Information System (INIS)

    Brauner, M.; Briggs, J.S.; Broad, J.T.

    1991-01-01

    A correlated three-body continuum wavefunction, already successfully employed to describe hydrogen atom impact ionization, is used to calculate the triply-differential cross section for electron impact ionization of helium. A good description is obtained of all the major structure in the differential cross sections in both symmetric and asymmetric geometries. It is demonstrated how interference between the various projectile-target interactions is necessary to reproduce the experimentally observed structure. (author)

  20. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valerie

    2012-01-01

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found. (authors)

  1. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe.

    Science.gov (United States)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valérie

    2012-01-14

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found.

  2. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Cornwall, J.M.; Luhmann, J.G.; Schulz, M.

    1979-01-01

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  3. Silicon compounds of neon and argon

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    -, č. 46 (2009), s. 8788-8790 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/1223 Grant - others: ERC (XE) Adg HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : argon * bond formation * dications * neon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.829, year: 2009

  4. Performance of a uranium liquid argon calorimeter

    International Nuclear Information System (INIS)

    Tuts, P.M.

    1987-01-01

    The author presents results on the performance of a uranium and liquid argon colorimeter in the NW test beam at Fermilab. This study describes the calorimeter, and discusses its performance with electrons, pions and muons from 10 GeV to 150 GeV. The performance parameters measure response, linearity, resolution, compensation, and e/π separation

  5. SLD liquid argon calorimeter prototype test results

    International Nuclear Information System (INIS)

    Dubois, R.; Eigen, G.; Au, Y.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses

  6. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, Mark S

    2009-01-01

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies are presented. These include a coherent noise study, a measurement of the quality of the physics pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  7. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  8. Excitation mechanism for nickel and argon lines emitted by radio-frequency glow discharge plasma associated with bias current introduction

    International Nuclear Information System (INIS)

    Kodama, Kenji; Wagatsuma, Kazuaki

    2004-01-01

    The introduction of d.c. bias current to an r.f. glow discharge plasma led to enhancement in the intensity of particular emission lines. In order to investigate the excitation mechanism, a large number of nickel emission lines was measured with and without the bias-current introduction. Emission intensities of nickel atomic lines were predominantly elevated by conducting bias current, especially when the emission lines have an excitation energy of approximately 5 eV. This phenomenon could be explained from the additional excitation through collisions with the introduced electrons having kinetic energies favorable for the excitation of such nickel atomic lines. However, this additional excitation mechanism was less effective for excited states of nickel ion, argon atom and argon ion, because their excitation energies were fairly high compared with the excitation energies of Ni atomic lines

  9. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  10. Observation of a barium xenon exciplex within a large argon cluster.

    Science.gov (United States)

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  11. Effect of low-temperature argon matrices on IR spectra and structure of flexible N-acetylglycine molecules

    International Nuclear Information System (INIS)

    Stepan'yan, S.G.; Ivanov, A.Yu.; Adamowicz, L.

    2016-01-01

    The influence of the matrix environment on structure and IR spectra of the N-acetylglycine conformers was studied. Based on the FTIR spectra of N-acetyl-glycine isolated in low temperature argon matrices we determined its conformational composition. The spectra bands of main and two minor conformers of N-acetylglycine were identified in the FTIR spectra. The structure of the observed conformers was stabilized by different intramolecular hydrogen bonds. The Gibbs free energies of the conformers (CCSD(T)/CBS method) were performed and population of the con-formers at 360 K were determined. They were 85.3% for the main conformer and 9.6 and 5.1% for the mi-nor N-acetylglycine conformers. We also determined size and shape of the cavities which were formed by embedding of the N-acetylglycine conformers in argon matrices during deposition. It was found that for the planar main conformer the most energetically preferred cavity was formed by substituting of 7 argon atoms. At the same time, bulky minor conformers were embedded in a cavity formed by substituting of 8 argon atoms. Complexation energies as well as the deformation energies of the argon crystal and conformers of N-acetylglycine were calculated. Also we determined values of the matrix shifts of vibrational frequencies of N-acetylglycine conformers.

  12. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  13. 46 CFR 151.50-36 - Argon or nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  14. Excitation of simple atoms by slow magnetic monopoles

    International Nuclear Information System (INIS)

    Kroll, N.M.; Parke, S.J.; Ganapathi, V.; Drell, S.D.

    1984-01-01

    We present a theory of excitation of simple atoms by slow moving massive monopoles. Previously presented results for a monopole of Dirac strength on hydrogen and helium are reviewed. The hydrogen theory is extended to include arbitrary integral multiples of the Dirac pole strength. The excitation of helium by double strength poles and by dyons is also discussed. It is concluded that a helium proportional counter is a reliable and effective detector for monopoles of arbitrary strength, and for negatively charged dyons

  15. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  16. Super-Maxwellian helium evaporation from pure and salty water

    International Nuclear Information System (INIS)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L.; Nathanson, Gilbert M.

    2016-01-01

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient

  17. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  18. Photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed

  19. Using Quantum Defect Theory in the (e,2e) ionization of argon

    International Nuclear Information System (INIS)

    Mazevet, S.; Fakhreddine, K.; Vien, G. Nguyen; Tweed, R.J.; Langlois, J.

    2002-01-01

    Quantum Defect theory is a well established theoretical concept in modern spectroscopy that was found particularly powerful in the study of Rydberg states and photoionization of various atomic and molecular species. We show that this approach can also be useful in electron impact ionization problems where state of the art theoretical methods are presently restricted mostly to simple atomic targets. We found that this approach leads to significant improvements over previous calculations for the well documented case of the ionization of argon in equal energy sharing geometry

  20. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes