WorldWideScience

Sample records for heliospheric learning center

  1. Observational Evidence For The Comet-Like Heliosphere

    Science.gov (United States)

    Bzowski, M.; Czechowski, A.; Funsten, H. O.; Grygorczuk, J.; Heerikhuisen, J.; Kubiak, M. A.; Moebius, E.; McComas, D. J.; Schwadron, N.; Sokol, J. M.; Swaczyna, P.; Zirnstein, E.

    2017-12-01

    The shape of the heliosphere is a subject of ongoing debate. The traditional comet-like image has recently been challenged by ideas of croissant- or bubble-like forms. Here we seek to resolve this debate by confronting available observational evidence with global modeling. Several MHD models of a comet-like heliosphere were used to simulate the radius and center of the IBEX Ribbon to fit the direction and intensity of the interstellar magnetic field (ISMF). These models assumed the secondary ENA emission mechanism, which was recently strengthened due to direct measurement of the distance to the Ribbon source most likely just beyond the heliopause. The same mechanism explains the dependence of the Ribbon center position on energy due to the latitudinal structure of solar wind. The obtained ISMF vector agrees among these models and is consistent with the draped IMF measured by Voyager. Independently, we have shown by modeling that the Warm Breeze discovered by IBEX is naturally created in the outer heliosheath due to charge-exchange between interstellar He+ ions and He atoms. Now we simulate the Warm Breeze for various directions and intensities of the local IMF and we find that the simulation results are in best agreement with IBEX observations for the IMF vector obtained from the above-mentioned Ribbon analyses and Voyager measurements. These arguments, along with the co-planarity of the inflow directions of interstellar neutral H, He, O, and the Warm Breeze, directions of the Ribbon center and ISMF, as well as measurements of the plasma flow directions in the IHS by Voyager 2 indicate the existence of a common plane of approximate mirror symmetry of the heliosphere, defined by the directions of ISMF and the Sun's motion through the local interstellar medium. This suggests that the global structure of the outer heliosphere mostly results from the conditions in the local interstellar medium and the Sun's velocity. This evidence, obtained from very different

  2. The Heliosphere in Space

    Science.gov (United States)

    Frisch, P. C.; Hanson, A. J.; Fu, P. C.

    2008-12-01

    A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.

  3. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  4. Plasmas in the outer heliosphere

    Science.gov (United States)

    Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.

    1995-01-01

    We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.

  5. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  6. SEP modeling based on global heliospheric models at the CCMC

    Science.gov (United States)

    Mays, M. L.; Luhmann, J. G.; Odstrcil, D.; Bain, H. M.; Schwadron, N.; Gorby, M.; Li, Y.; Lee, K.; Zeitlin, C.; Jian, L. K.; Lee, C. O.; Mewaldt, R. A.; Galvin, A. B.

    2017-12-01

    Heliospheric models provide contextual information of conditions in the heliosphere, including the background solar wind conditions and shock structures, and are used as input to SEP models, providing an essential tool for understanding SEP properties. The global 3D MHD WSA-ENLIL+Cone model provides a time-dependent background heliospheric description, into which a spherical shaped hydrodynamic CME can be inserted. ENLIL simulates solar wind parameters and additionally one can extract the magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. An accurate representation of the background solar wind is necessary for simulating transients. ENLIL simulations also drive SEP models such as the Solar Energetic Particle Model (SEPMOD) (Luhmann et al. 2007, 2010) and the Energetic Particle Radiation Environment Module (EPREM) (Schwadron et al. 2010). The Community Coordinated Modeling Center (CCMC) is in the process of making these SEP models available to the community and offering a system to run SEP models driven by a variety of heliospheric models available at CCMC. SEPMOD injects protons onto a sequence of observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EPREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. The coupled SEP models allow us to derive the longitudinal distribution of SEP profiles of different types of events throughout the heliosphere. The coupled ENLIL and SEP models allow us to derive the longitudinal distribution of SEP profiles of different types of events throughout the heliosphere. In this presentation we demonstrate several case studies of SEP event modeling at different observers based on WSA-ENLIL+Cone simulations.

  7. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  8. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    Science.gov (United States)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  9. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    Science.gov (United States)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  10. Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures

    Science.gov (United States)

    Crooker, Nancy

    2001-01-01

    In this final technical report on research funded by a NASA grant, a project overview is given by way of summaries on nine published papers. Research has included: 1) Using suprathermal electron data to study heliospheric magnetic structures; 2) Analysis of magnetic clouds, coronal mass ejections (CME), and the heliospheric current sheet (HCS); 3) Analysis of the corotating interaction region (CIR) which develop from interactions between solar wind streams of different velocities; 4) Use of Ulysses data in the interpretation of heliospheric events and phenomena.

  11. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  12. The Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project

    Science.gov (United States)

    Barnes, D.; Harrison, R. A.; Davies, J. A.; Perry, C. H.; Moestl, C.; Rouillard, A.; Bothmer, V.; Rodriguez, L.; Eastwood, J. P.; Kilpua, E.; Gallagher, P.; Odstrcil, D.

    2017-12-01

    Understanding solar wind evolution is fundamental to advancing our knowledge of energy and mass transport in the solar system, whilst also being crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of solar wind evolution, by enabling direct and continuous observation of both transient and background components of the solar wind as they propagate from the Sun to 1 AU and beyond. The recently completed, EU-funded FP7 Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project (1st May 2014 - 30th April 2017) combined European expertise in heliospheric imaging, built up over the last decade in particular through leadership of the Heliospheric Imager (HI) instruments aboard NASA's STEREO mission, with expertise in solar and coronal imaging as well as the interpretation of in-situ and radio diagnostic measurements of solar wind phenomena. HELCATS involved: (1) the cataloguing of transient (coronal mass ejections) and background (stream/corotating interaction regions) solar wind structures observed by the STEREO/HI instruments, including estimates of their kinematic properties based on a variety of modelling techniques; (2) the verification of these kinematic properties through comparison with solar source observations and in-situ measurements at multiple points throughout the heliosphere; (3) the assessment of the potential for initialising numerical models based on the derived kinematic properties of transient and background solar wind components; and (4) the assessment of the complementarity of radio observations (Type II radio bursts and interplanetary scintillation) in the detection and analysis of heliospheric structure in combination with heliospheric imaging observations. In this presentation, we provide an overview of the HELCATS project emphasising, in particular, the principal achievements and legacy of this unprecedented project.

  13. The Energetic Neutral Atoms of the "Croissant" Heliosphere with Jets

    Science.gov (United States)

    Kornbleuth, M. Z.; Opher, M.; Michael, A.

    2017-12-01

    Opher et al. (2015) suggests the heliosphere may have two jets in the tail-ward direction driven to the north and south. This new model, the "Croissant Heliosphere", is in contrast to the classically accepted view of a comet-like tail. We investigate the effect of the heliosphere with jets model on energetic neutral atom (ENA) maps. Regardless of the existence of a split tail, other models show heliosheath plasma confined by the toroidal magnetic field in a "slinky" structure, similar to astrophysical jets bent by the interstellar medium. Therefore, the confinement of the plasma should appear in the ENA maps. ENA maps from the Interstellar Boundary Explorer (IBEX) have recently shown two high latitude lobes with excess ENA flux at higher energies in the tail of the heliosphere. These lobes could be a signature of the two jet structure of the heliosphere, while some have argued they are cause by the fast/slow solar wind profile. Here we present the ENA maps of the "Croissant Heliosphere" using initially a uniform solar wind. We incorporate pick-up ions (PUIs) into our model based on the kinetic modeling of Malama et al. (2006). We include the extinction of PUIs in the heliosheath and describe a locally created PUI population resulting from this extinction process. Additionally, we include the angular dependence of the PUIs based on the work of Vasyliunas & Siscoe (1976). With our model, we find that, in the presence of a uniform solar wind, the "heliosphere with jets" model is able to qualitatively reproduce the lobe structure of the tail seen in IBEX measurements. Turbulence also manifests itself within the lobes of the simulated ENA maps on the order of years. Finally we will present ENA maps using a time-dependent model of the heliosphere with the inclusion of solar cycle.

  14. NUMERICAL STUDY OF THE LONGITUDINALLY ASYMMETRIC DISTRIBUTION OF SOLAR ENERGETIC PARTICLES IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    He, H.-Q.; Wan, W., E-mail: hqhe@mail.iggcas.ac.cn, E-mail: wanw@mail.iggcas.ac.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2015-06-22

    Solar energetic particles (SEPs) affect the solar–terrestrial space environment and are very important to space weather research. In this work, we numerically investigate the transport processes of SEPs in the three-dimensional interplanetary magnetic field, with an emphasis on the longitudinal distribution of SEPs in the heliosphere. We confirm our previous finding that there exists an east–west longitudinal asymmetry in the SEP intensities, i.e., with the same longitude separations between the solar source centers and the magnetic footpoint of the observer, the fluxes of SEP events originating from solar sources located on the eastern side of the nominal magnetic footpoint of the observer are systematically larger than those of the SEP events originating from sources located on the western side. We discuss the formation mechanism of this phenomenon, and conclude that the longitudinally asymmetric distribution of SEPs results from the east–west azimuthal asymmetry in the topology of the heliospheric magnetic field as well as the effects of perpendicular diffusion on the transport of SEPs in the heliosphere. Our results will be valuable to understanding Sun–Earth relations and useful for space weather forecasting.

  15. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D. [Harvard-Smithsonian Center for Astrophysics, MS 83, 60 Garden Street, Cambridge, MA 02138 (United States); Frisch, Priscilla C. [Department of Astronomy and Astrophysics, University of Chicago, 5460 S. Ellis Avenue, Chicago, IL 60637 (United States); Mueller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Heerikhuisen, Jacob; Pogorelov, Nikolai V. [Department of Physics and Center for Space Physics and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Reach, William T. [Universities Space Research Association, MS 211-3, Moffett Field, CA 94035 (United States); Zank, Gary [Department of Physics and Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35805 (United States)

    2012-11-20

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a {sub gr} {approx}< 0.01 {mu}m are completely excluded from the inner heliosphere. Large grains, a {sub gr} {approx}> 1.0 {mu}m, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  16. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  17. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  18. Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Heerikhuisen, J. [Department of Space Science, The University of Alabama in Huntsville, AL 35805 (United States); Roytershteyn, V. [Space Science Institute, Boulder, CO 80301 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gurnett, D. A.; Kurth, W. S., E-mail: nikolai.pogorelov@uah.edu [Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-08-10

    The heliosphere is formed due to interaction between the solar wind (SW) and local interstellar medium (LISM). The shape and position of the heliospheric boundary, the heliopause, in space depend on the parameters of interacting plasma flows. The interplay between the asymmetrizing effect of the interstellar magnetic field and charge exchange between ions and neutral atoms plays an important role in the SW–LISM interaction. By performing three-dimensional, MHD plasma/kinetic neutral atom simulations, we determine the width of the outer heliosheath—the LISM plasma region affected by the presence of the heliosphere—and analyze quantitatively the distributions in front of the heliopause. It is shown that charge exchange modifies the LISM plasma to such extent that the contribution of a shock transition to the total variation of plasma parameters becomes small even if the LISM velocity exceeds the fast magnetosonic speed in the unperturbed medium. By performing adaptive mesh refinement simulations, we show that a distinct boundary layer of decreased plasma density and enhanced magnetic field should be observed on the interstellar side of the heliopause. We show that this behavior is in agreement with the plasma oscillations of increasing frequency observed by the plasma wave instrument onboard Voyager 1. We also demonstrate that Voyager observations in the inner heliosheath between the heliospheric termination shock and the heliopause are consistent with dissipation of the heliospheric magnetic field. The choice of LISM parameters in this analysis is based on the simulations that fit observations of energetic neutral atoms performed by Interstellar Boundary Explorer .

  19. The Sun and Heliosphere Explorer – The Interhelioprobe Mission

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, V. D.; Zimovets, I.V.; Anufreychik, K.; Bezrukikh, V.; Chulkov, I. V.; Konovalov, A. A.; Kotova, G.A.; Kovrazhkin, R. A.; Moiseenko, D.; Petrukovich, A. A.; Remizov, A.; Shestakov, A.; Skalsky, A.; Vaisberg, O. L.; Verigin, M. I.; Zhuravlev, R. N.; Andreevskyi, S. E.; Dokukin, V. S.; Fomichev, V. V.; Lebedev, N. I.; Obridko, V. N.; Polyanskyi, V. P.; Styazhkin, V. A.; Rudenchik, E. A.; Sinelnikov, V. M.; Zhugzhda, Yu. D.; Ryzhenko, A. P.; Ivanov, A. V.; Simonov, A. V.; Dobrovolskyi, V. S.; Konstantinov, M. S.; Kuzin, S. V.; Bogachev, S. A.; Kholodilov, A. A.; Kirichenko, A. S.; Lavrentiev, E. N.; Reva, A. A.; Shestov, S. V.; Ulyanov, A. S.; Panasyuk, M. I.; Iyudin, A. F.; Svertilov, S. I.; Bogomolov, V. V.; Galkin, V. I.; Marjin, B. V.; Morozov, O. V.; Osedlo, V. I.; Rubinshtein, I. A.; Scherbovsky, B. Ya.; Tulupov, V. I.; Kotov, Yu. D.; Yurov, V. N.; Glyanenko, A. S.; Kochemasov, A. V.; Lupar, E. E.; Rubtsov, I. V.; Trofimov, Yu. A.; Tyshkevich, V. G.; Ulin, S. E.; Novikov, A. S.; Dmitrenko, V. V.; Grachev, V. M.; Stekhanov, V. N.; Vlasik, K. F.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.; Petrenko, D. V.; Aptekar, R. L.; Dergachev, V. A.; Golenetskii, S. V.; Gribovskyi, K. S.; Frederiks, D. D.; Kruglov, E. M.; Lazutkov, V. P.; Levedev, V. V.; Oleinik, F. P.; Palshin, V. D.; Repin, A. I.; Savchenko, M. I.; Skorodumov, D. V.; Svinkin, D. S.; Tsvetkova, A. S.; Ulanov, M. V.; Kozhevatov, I. E.; Sylwester, J.; Siarkowski, M.; Bąkała, J.; Szaforz, Ż.; Kowaliński, M.; Dudnik, O. V.; Lavraud, B.; Hruška, František; Kolmašová, Ivana; Santolík, Ondřej; Šimůnek, Jiří; Truhlík, Vladimír; Auster, H.-U.; Hilchenbach, M.; Venedictov, Yu.; Berghofer, G.

    2016-01-01

    Roč. 56, č. 7 (2016), s. 781-841 ISSN 0016-7932 Institutional support: RVO:68378289 Keywords : Sun * heliosphere * Interhelioprobe space mission * solar physics * heliospheric physics * solar-terrestrial relations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.482, year: 2016 http://link.springer.com/article/10.1134/S0016793216070124

  20. TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Reach, William T.; Zank, Gary

    2012-01-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr ∼ gr ∼> 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

  1. Heliospheric Modulation Strength During The Neutron Monitor Era

    Science.gov (United States)

    Usoskin, I. G.; Alanko, K.; Mursula, K.; Kovaltsov, G. A.

    Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric mod- ulation strength. Convoluting these spectra with the specific yield function of a neu- tron monitor, we obtain the expected neutron monitor count rates for different values of the modulation strength. Finally, inverting this relation, we calculate the modula- tion strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953­2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding esti- mates reported earlier for some years.

  2. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    International Nuclear Information System (INIS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-01-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10 6 times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  3. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  4. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  5. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  6. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  7. Solar Dynamics and Its Effects on the Heliosphere and Earth

    CERN Document Server

    Baker, D. N; Schwartz, S. J; Schwenn, R; Steiger, R

    2007-01-01

    The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth’s magnetosphere on the other. At the same time the Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star (ILWS) program. The volume starts out with an assessment and description of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth’s magnetosphere and ionosphere: The normal solar wind chain, the chain associated with coronal mass ejections, and the solar energetic particl...

  8. FEASIBILITY OF HELIOSPHERIC IMAGING FROM NEAR EARTH

    International Nuclear Information System (INIS)

    DeForest, C. E.; Howard, T. A.

    2015-01-01

    Imaging solar wind structures via Thomson scattered sunlight has proved important to understanding the inner heliosphere. The principal challenge of heliospheric imaging is background subtraction: typical solar wind features are fainter than the zodiacal light and starfield by 2-3 orders of magnitude. Careful post-processing is required to separate the solar wind signal from the static background. Remnant background, and not photon noise, is the dominant noise source in current STEREO data. We demonstrate that 10× shorter exposure times would not strongly affect the noise level in these data. Further, we demonstrate that current processing techniques are sufficient to separate not only the existing background of the STEREO images but also diffuse variable backgrounds such as are expected to be seen from low Earth orbit. We report on a hare-and-hounds style study, demonstrating blind signal extraction from STEREO/HI-2 data that have been degraded by the addition of large-scale, time-dependent artifacts to simulate viewing through airglow or high-altitude aurora. We demonstrate removal of these effects via image processing, with little degradation compared to the original. Even with as few as three highly degraded source images over 48 hr, it is possible to detect and track large coronal mass ejections more than 40° from the Sun. This implies that neither the high altitude aurora discovered by Coriolis/SMEI, nor airglow effects seen from low Earth orbit, are impediments to a hypothetical next-generation heliospheric imager in low Earth orbit; and also that post-processing is as important to heliospheric image qualitiy as are optical contamination effects

  9. Modulation of Galactic Cosmic Rays in the Inner Heliosphere over Solar Cycles

    Science.gov (United States)

    Shen, Z.-N.; Qin, G.

    2018-02-01

    The 11- and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere is studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parker’s transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time-delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of A > 0 decided by the percentage of the solar north polar magnetic field being outward and the solar south polar magnetic field being inward. The computed results are compared at various energies with several GCR observations, e.g., the Interplanetary Monitoring Platform 8 (IMP 8), EPHIN on board the Solar and Heliospheric Observatory (SOHO), Ulysses, and Voyager 1 and 2, and they show good agreement. We show that our model has successfully reproduced the 11- and 22-year modulation cycles.

  10. A Snapshot of the Sun Near Solar Minimum: The Whole Heliosphere Interval

    Science.gov (United States)

    Thompson, Barbara J.; Gibson, Sarah E.; Schroeder, Peter C.; Webb, David F.; Arge, Charles N.; Bisi, Mario M.; de Toma, Giuliana; Emery, Barbara A.; Galvin, Antoinette B.; Haber, Deborah A.; hide

    2011-01-01

    We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar heliospheric planetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March 16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth's mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.

  11. COUPLING OF CORONAL AND HELIOSPHERIC MAGNETOHYDRODYNAMIC MODELS: SOLUTION COMPARISONS AND VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Merkin, V. G. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Lionello, R.; Linker, J.; Török, T.; Downs, C. [Predictive Science, Inc., San Diego, CA 92121 (United States); Lyon, J. G., E-mail: slava.merkin@jhuapl.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2016-11-01

    Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.

  12. From the Outside Looking In - Looking Back at Our Heliosphere in Energetic Neutral Atoms

    Science.gov (United States)

    Demajistre, R.; Brandt, P. C.; Gruntman, M.; McNutt, R. L., Jr.; Opher, M.; Roelof, E. C.; Wood, B. E.

    2017-12-01

    Energetic Neutral Atoms (ENAs) have been used over the past two decades to image space plasmas in planetary magnetospheres as well as the structure of the heliosheath. Any energetic plasma containing singly charged ions embedded in a cold neutral gas will 'glow' in ENAs, and this glow can be analyzed to infer the properties of the source plasma, giving us insight into processes that are difficult to study with the more traditional sensors that use photons/electromagnetic waves as an information carrier. ENA measurements of the heliosphere have (obviously) all been taken from vantage points in the inner heliosphere. ENAs created in the inner heliosphere from the solar wind and Pick Up Ions (PUIs) generally have large outward velocity, and thus do not reach sensors closer to the sun. Thus, the plasma is only 'visible' in ENAs to an inner heliosphere observer after it reaches the termination shock, where its outward motion is slowed and it is heated. This perspective from the inside looking out is convenient to study the outer boundary of the heliophere, but contains no direct information about the plasma and processes occurring in the inner heliosphere. ENA sensors placed outside the heliosphere, conversely would allow us to remotely sense both the inner and outer heliosphere, allowing us full access to the evolution of the solar wind and PUIs as they travel from the sun outward. Further, such a perspective would allow us to more directly measure the boundaries of the heliosphere with the LISM without the obscuration of the inner heliosheath. In this paper, we present modeled views of ENA images from the outside looking in at energies between 0.5 and 100 keV. It is important to note that while measurements of the outer heliosphere have been made by IBEX, Cassini/INCA, SoHO/HSTOF and the Voyagers, there are still important outstanding questions about the global structure and plasma flow patterns in the heliosphere. We will show here how new observations from the

  13. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  14. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  15. Modulation of galactic and anomalous cosmic rays in the inner heliosphere

    Science.gov (United States)

    Heber, B.

    Our knowledge on how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged due to measurements provided by several missions launched in the past ten years. The current paradigma of singly charged anomalous cosmic rays has been confirmed by recent measurements from the SAMPEX and ACE satelite. Ulysses explored the inner heliosphere at polar regions during the last solar minimum period and is heading again to high heliographic latitudes during the time of the conference in July, 2000. The Sun approaches maximum activity when the spacecraft is at high heliographic latitudes giving us for the first time the possibility to explore modulation of cosmic rays in the inner three-dimensional heliosphere during such conditions. Ulysses electron measurements in addition to the 1 AU ICE electron and IMP helium measurements allows us to investigate charge sign dependent modulation over a full 22-year solar magnetic cycle. Implications of these observations for our understanding of different modulation processes in the inner three-dimensional heliosphere are presented.

  16. ADVECTIVE TRANSPORT OF INTERSTELLAR PLASMA INTO THE HELIOSPHERE ACROSS THE RECONNECTING HELIOPAUSE

    International Nuclear Information System (INIS)

    Strumik, M.; Grzedzielski, S.; Czechowski, A.; Macek, W. M.; Ratkiewicz, R.

    2014-01-01

    We discuss results of magnetohydrodynamical model simulations of plasma dynamics in the proximity of the heliopause (HP). The model is shown to fit details of the magnetic field variations observed by the Voyager 1 spacecraft during the transition from the heliosphere to the local interstellar medium (LISM). We propose an interpretation of magnetic field structures observed by Voyager 1 in terms of fine-scale physical processes. Our simulations reveal an effective transport mechanism of relatively dense LISM plasma across the reconnecting HP into the heliosphere. The mechanism is associated with annihilation of magnetic sectors in the heliospheric plasma near the HP

  17. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    Energy Technology Data Exchange (ETDEWEB)

    López-Barquero, V. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Xu, S. [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Desiati, P. [Wisconsin IceCube Particle Astrophysics Center (WIPAC), University of Wisconsin, Madison, WI 53703 (United States); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Pogorelov, N. V. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-06-10

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.

  18. Heliospheric modulation of cosmic rays: model and observation

    Directory of Open Access Journals (Sweden)

    Gerasimova S.K.

    2017-03-01

    Full Text Available This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the turbulent field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the solar equatorial plane can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.

  19. A Culture of Learning: Inside a Living-Learning Center

    Science.gov (United States)

    Kranzow, Jeannine; Hinkle, Sara E.; Muthiah, Richard; Davis, Colin

    2015-01-01

    Exploring the culture of a living-learning center, this study examines the educational practices that aim to link in- and out-of-class experiences. Through a cultural lens, the authors offer a glimpse into a living-learning center located within a state institution in the Midwest that models a way of effectively connecting the curricular and…

  20. CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1

    Science.gov (United States)

    Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrčil, D.

    2018-05-01

    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate

  1. Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates

    Energy Technology Data Exchange (ETDEWEB)

    Opher, M., E-mail: mopher@bu.edu [Astronomy Department, Boston University, Boston, Massachusetts 02215 (United States); Drake, J. F.; Swisdak, M. [University of Maryland, College Park, Maryland 20742 (United States); Zieger, B. [Center for Space Physics, Boston University, Massachusetts 02215 (United States); Toth, G. [Department of Climate and Space, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-05-15

    As the solar system moves through the interstellar medium, the solar wind is deflected forming the heliosphere. The standard picture of the heliosphere is a comet-shape like structure with the tail extending for 1000s of astronomical units. This standard picture stems from a view where magnetic forces are negligible and the solar magnetic field is convected passively down the tail. Recently, we showed that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar wind in the heliosheath into two jet-like structures. The two jets are separated by the interstellar medium that flows between them. The heliosphere then has a “croissant”-like shape where the distance to the heliopause downtail is almost the same as towards the nose. This new view of the heliosphere is in agreement with the energetic neutral atoms maps taken by the Interstellar Boundary Explorer and INCA/CASSINI. We developed as well an analytic model of the heliosheath in the axisymmetric limit that shows how the magnetic tension force is the driver for the north and south jets. We confirmed that the formation of these jets with magnetohydrodynamic (MHD) simulations. The main reason why previous global MHD simulations did not see these jets is due to spurious magnetic dissipation that was present at the heliospheric current sheet. We instead kept the same polarity for the interplanetary (solar) magnetic field in both the northern and southern hemispheres, eliminating spurious magnetic dissipation effects at the heliospheric current sheet. In this paper, we extend these previous results to include additional cases where we used: (a) weaker solar magnetic field; (b) solar magnetic field that reverses polarity at the solar equator in the axisymmetric limit; and (c) slower motion through the interstellar system. We discuss as well future challenges regarding the structure of the heliosphere.

  2. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction.

  3. A Time-dependent Heliospheric Model Driven by Empirical Boundary Conditions

    Science.gov (United States)

    Kim, T. K.; Arge, C. N.; Pogorelov, N. V.

    2017-12-01

    Consisting of charged particles originating from the Sun, the solar wind carries the Sun's energy and magnetic field outward through interplanetary space. The solar wind is the predominant source of space weather events, and modeling the solar wind propagation to Earth is a critical component of space weather research. Solar wind models are typically separated into coronal and heliospheric parts to account for the different physical processes and scales characterizing each region. Coronal models are often coupled with heliospheric models to propagate the solar wind out to Earth's orbit and beyond. The Wang-Sheeley-Arge (WSA) model is a semi-empirical coronal model consisting of a potential field source surface model and a current sheet model that takes synoptic magnetograms as input to estimate the magnetic field and solar wind speed at any distance above the coronal region. The current version of the WSA model takes the Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model as input to provide improved time-varying solutions for the ambient solar wind structure. When heliospheric MHD models are coupled with the WSA model, density and temperature at the inner boundary are treated as free parameters that are tuned to optimal values. For example, the WSA-ENLIL model prescribes density and temperature assuming momentum flux and thermal pressure balance across the inner boundary of the ENLIL heliospheric MHD model. We consider an alternative approach of prescribing density and temperature using empirical correlations derived from Ulysses and OMNI data. We use our own modeling software (Multi-scale Fluid-kinetic Simulation Suite) to drive a heliospheric MHD model with ADAPT-WSA input. The modeling results using the two different approaches of density and temperature prescription suggest that the use of empirical correlations may be a more straightforward, consistent method.

  4. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Background: Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Methods: Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Results: Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. Conclusions: The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction. PMID:29707649

  5. IBEX Discoveries of the Global Heliosphere from Energetic Neutral Atoms and Preparations for IMAP

    Science.gov (United States)

    Schwadron, N.

    2015-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence -- an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well the history and destiny of our solar system. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. Remarkably, the combination of observations of the ribbon, the belt and the globally distributed flux have provided a picture not only of the global heliosphere, but also the interstellar magnetic field, which has a strength and direction that can be directly compared to Voyager 1 observations. Currently, unraveling the interstellar magnetic field and its influences on the flows and structure of the heliosheath is an area of remarkably rapid discovery. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath.

  6. ENERGETIC NEUTRAL ATOMS: AN ADDITIONAL SOURCE FOR HELIOSPHERIC PICKUP IONS

    International Nuclear Information System (INIS)

    Bochsler, Peter; Moebius, Eberhard

    2010-01-01

    Recently, Schwadron and McComas discussed the possibility of inner source pickup particles originating from the ionization of energetic neutral atoms (ENAs), based on new data from the IBEX mission. This proposition has some interesting features, namely, it might be able to explain why inner source pickup ions (PUIs) have a composition resembling solar abundances and show no indication of overabundance of refractory elements, although this should be expected, if the conventional explanation of solar wind-dust interaction for the origin of this heliospheric component were correct. In this Letter, we explore further consequences for ENA-related PUIs and investigate their velocity distributions. We conclude that this model will not reproduce the observed velocity distributions of inner source PUIs and point out a substantial deviation in their composition. However, it seems likely that the ionization of ENAs as observed with IBEX could contribute a significant amount of heliospheric suprathermal tail ions. Some possible consequences of our investigation for heliospheric particle populations are briefly discussed.

  7. Status of Knowledge after Ulysses and SOHO: Session 2: Investigate the Links between the Solar Surface, Corona, and Inner Heliosphere.

    Science.gov (United States)

    Suess, Steven

    2006-01-01

    As spacecraft observations of the heliosphere have moved from exploration into studies of physical processes, we are learning about the linkages that exist between different parts of the system. The past fifteen years have led to new ideas for how the heliospheric magnetic field connects back to the Sun and to how that connection plays a role in the origin of the solar wind. A growing understanding these connections, in turn, has led to the ability to use composition, ionization state, the microscopic state of the in situ plasma, and energetic particles as tools to further analyze the linkages and the underlying physical processes. Many missions have contributed to these investigations of the heliosphere as an integrated system. Two of the most important are Ulysses and SOHO, because of the types of measurements they make, their specific orbits, and how they have worked to complement each other. I will review and summarize the status of knowledge about these linkages, with emphasis on results from the Ulysses and SOHO missions. Some of the topics will be the global heliosphere at sunspot maximum and minimum, the physics and morphology of coronal holes, the origin(s) of slow wind, SOHO-Ulysses quadrature observations, mysteries in the propagation of energetic particles, and the physics of eruptive events and their associated current sheets. These specific topics are selected because they point towards the investigations that will be carried out with Solar Orbiter (SO) and the opportunity will be used to illustrate how SO will uniquely contribute to our knowledge of the underlying physical processes.

  8. Energetic particles in the heliosphere and GCR modulation: Reviewing of SH-posters

    International Nuclear Information System (INIS)

    Struminsky, Alexei

    2013-01-01

    This rapporteur paper addresses the SH poster session titled 'Energetic particles in the heliosphere (solar and anomalous CRs, GCR modulation)' of the 23rd European Cosmic Ray Symposium (ECRS) and the 32nd Russian Cosmic Ray Conference (RCRC). The 65 posters presented are tentatively divided into five sections: Instruments and Methods; Solar Energetic Particles; Short Term Variations; Long Term Variations; Heliosphere.

  9. Solar wind stream interaction regions throughout the heliosphere

    Science.gov (United States)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  10. How to Create a Learning-Centered ESL Program

    Science.gov (United States)

    Bista, Krishna

    2011-01-01

    This paper reviews the major features of learning-centered community colleges that offer educational programs and experiences for learners, based on individual need. By citing some exemplary learning colleges, the author examines the concepts and ideas of learning-centered colleges in teaching English as a Second Language (ESL) programs. An…

  11. Beyond the Art Lesson: Free-Choice Learning Centers

    Science.gov (United States)

    Werth, Laurie

    2010-01-01

    In this article, the author emphasizes that by providing learning centers in the art studio environment and by providing "free-choice time," art educators can encourage and reinforce the natural learning styles of students. Learning centers give elementary students the freedom to pursue individual artistic expression. They give students an…

  12. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  13. Implementasi Student Centered Learning dalam Praktikum Fisika Dasar

    Directory of Open Access Journals (Sweden)

    Rudy K.

    2011-12-01

    Full Text Available Telah dilakukan penelitian untuk mengimplementasikan student centered learning dalam praktikum fisika dasar. Berdasarkan pengalaman di jurusan fisika Unesa selama ini, kendala yang dijumpai adalah masih banyak mahasiswa yang belum dapat mandiri dalam melaksanakan kegiatan praktikumnya karena lebih banyak menunggu penjelasan dari pembimbing dan kurang berinisiatif dalam menyelesaikan masalah praktikumnya. Student centered learning (SCL merupakan strategi pembelajaran yang menempatkan mahasiswa sebagai subyek aktif dan mandiri yang bertanggung jawab sepenuhnya atas pembelajarannya. Memperhatikan karakteristik praktikum yang lebih mengarah pada pengembangan keterampilan ilmiah (hard skills dan soft skills mahasiswa dalam mengidentifikasi gejala dan menyelesaikan masalah perlu dilakukan pendekatan pembelajaran yang inovatif yang dapat mengembangkan keterampilan ilmiah mahasiswa secara maksimal. Untuk mengatasi keadaan tersebut, telah diujicobakan suatu mekanisme implementasi SCL dalam praktikum fisika dasar yang diharapkan dapat mengoptimalkan keterampilan praktikum mahasiswa. Efektivitas mekanisme kegiatan praktikum dengan pendekatan SCL tersebut dilihat berdasarkan sejauhmana sasaran yang diinginkan tersebut tercapai. Hasil implementasi student centered learning dalam penelitian ini menunjukkan bahwa: 1 Atribut-atribut student centered learning yang dapat diintegrasikan ke dalam praktikum fisika dasar meliputi: kerja kelompok, diskusi, menulis, presentasi, dan pemecahan masalah. 2 Atribut-atribut softs skills mahasiswa yang bersesuaian dengan atribut-atribut student centered learning yang diintegrasikan ke dalam praktikum fisika dasar adalah: kerjasama merupakan penekanan dari kegiatan kerja kelompok, manajemen diri merupakan penekanan dari kegiatan diskusi, komunikasi tulis merupakan penekanan dari kegiatan menulis, komunikasi lisan merupakan penekanan dari kegiatan presentasi, berfikir kritis dan analitis merupakan penekanan dari pemecahan

  14. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input

  15. The sun, the solar wind, and the heliosphere

    CERN Document Server

    Miralles, Mari Paz

    2011-01-01

    This volume presents a concise, up-to-date overview of current research on the observations, theoretical interpretations, and empirical and physical descriptions of the Sun, the Solar Wind, and the Heliosphere, from the solar interior outward to the planets.

  16. Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24

    Science.gov (United States)

    Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.

    2011-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.

  17. The long-term variability of cosmic ray protons in the heliosphere: A modeling approach

    Directory of Open Access Journals (Sweden)

    M.S. Potgieter

    2013-05-01

    Full Text Available Galactic cosmic rays are charged particles created in our galaxy and beyond. They propagate through interstellar space to eventually reach the heliosphere and Earth. Their transport in the heliosphere is subjected to four modulation processes: diffusion, convection, adiabatic energy changes and particle drifts. Time-dependent changes, caused by solar activity which varies from minimum to maximum every ∼11 years, are reflected in cosmic ray observations at and near Earth and along spacecraft trajectories. Using a time-dependent compound numerical model, the time variation of cosmic ray protons in the heliosphere is studied. It is shown that the modeling approach is successful and can be used to study long-term modulation cycles.

  18. Heliosphere Responds to a Large Solar Wind Intensification: Decisive Observations from IBEX

    Science.gov (United States)

    McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Heerikhuisen, J.; Janzen, P. H.; Reisenfeld, D. B.; Schwadron, N. A.; Szalay, J. R.; Zirnstein, E. J.

    2018-03-01

    Our heliosphere—the bubble in the local interstellar medium produced by the Sun’s outflowing solar wind—has finally responded to a large increase in solar wind output and pressure in the second half of 2014. NASA’s Interstellar Boundary Explorer (IBEX) mission remotely monitors the outer heliosphere by observing energetic neutral atoms (ENAs) returning from the heliosheath, the region between the termination shock and heliopause. IBEX observed a significant enhancement in higher energy ENAs starting in late 2016. While IBEX observations over the previous decade reflected a general reduction of ENA intensities, indicative of a deflating heliosphere, new observations show that the large (∼50%), persistent increase in the solar wind dynamic pressure has modified the heliosheath, producing enhanced ENA emissions. The combination of these new observations with simulation results indicate that this pressure is re-expanding our heliosphere, with the termination shock and heliopause already driven outward in the locations closest to the Sun. The timing between the IBEX observations, a large transient pressure enhancement seen by Voyager 2, and the simulations indicates that the pressure increase propagated through the heliosheath, reflected off the heliopause, and the enhanced density of the solar wind filled the heliosheath behind it before generating significantly enhanced ENA emissions. The coming years should see significant changes in anomalous cosmic rays, galactic cosmic radiation, and the filtration of interstellar neutral atoms into the inner heliosphere.

  19. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  20. MULTIFRACTAL STRUCTURES DETECTED BY VOYAGER 1 AT THE HELIOSPHERIC BOUNDARIES

    International Nuclear Information System (INIS)

    Macek, W. M.; Wawrzaszek, A.; Burlaga, L. F.

    2014-01-01

    To better understand the dynamics of turbulent systems, we have proposed a phenomenological model based on a generalized Cantor set with two rescaling and one weight parameters. In this Letter, using recent Voyager 1 magnetic field data, we extend our two-scale multifractal analysis further in the heliosheath beyond the heliospheric termination shock, and even now near the heliopause, when entering the interstellar medium for the first time in human history. We have identified the scaling inertial region for magnetized heliospheric plasma between the termination shock and the heliopause. We also show that the degree of multifractality decreases with the heliocentric distance and is still modulated by the phases of the solar cycle in the entire heliosphere including the heliosheath. Moreover, we observe the change of scaling toward a nonintermittent (nonmultifractal) behavior in the nearby interstellar medium, just beyond the heliopause. We argue that this loss of multifractal behavior could be a signature of the expected crossing of the heliopause by Voyager 2 in the near future. The results obtained demonstrate that our phenomenological multifractal model exhibits some properties of intermittent turbulence in the solar system plasmas, and we hope that it could shed light on universal characteristics of turbulence

  1. MULTIFRACTAL STRUCTURES DETECTED BY VOYAGER 1 AT THE HELIOSPHERIC BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Macek, W. M. [Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw (Poland); Wawrzaszek, A. [Space Research Centre, Polish Academy of Sciences, Bartycka 18 A, 00-716 Warszawa (Poland); Burlaga, L. F., E-mail: macek@cbk.waw.pl, E-mail: anna.wawrzaszek@cbk.waw.pl, E-mail: lburlagahsp@verizon.net [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2014-10-01

    To better understand the dynamics of turbulent systems, we have proposed a phenomenological model based on a generalized Cantor set with two rescaling and one weight parameters. In this Letter, using recent Voyager 1 magnetic field data, we extend our two-scale multifractal analysis further in the heliosheath beyond the heliospheric termination shock, and even now near the heliopause, when entering the interstellar medium for the first time in human history. We have identified the scaling inertial region for magnetized heliospheric plasma between the termination shock and the heliopause. We also show that the degree of multifractality decreases with the heliocentric distance and is still modulated by the phases of the solar cycle in the entire heliosphere including the heliosheath. Moreover, we observe the change of scaling toward a nonintermittent (nonmultifractal) behavior in the nearby interstellar medium, just beyond the heliopause. We argue that this loss of multifractal behavior could be a signature of the expected crossing of the heliopause by Voyager 2 in the near future. The results obtained demonstrate that our phenomenological multifractal model exhibits some properties of intermittent turbulence in the solar system plasmas, and we hope that it could shed light on universal characteristics of turbulence.

  2. Heliospheric Magnetic Fields, Energetic Particles, and the Solar Cycle

    Indian Academy of Sciences (India)

    tribpo

    from interstellar space penetrate deep into the heliosphere before being ionized by .... program was formally terminated in 1997, Pioneer-10 is still tracked. Since the last .... already been uncovered, and how many secrets it still holds.

  3. The Telemachus mission: dynamics of the polar sun and heliosphere

    Science.gov (United States)

    Roelof, E.

    Telemachus in Greek mythology was the faithful son of Ulysses. The Telemachus mission is envisioned as the next logical step in the exploration of the polar regions of the Sun and heliosphere so excitingly initiated by the ESA/NASA Ulysses mission. Telemachus is a polar solar-heliospheric mission described in the current NASA Sun-Earth Connections Roadmap (2003-2028) that has successfully undergone two Team X studies by NASA/JPL. The pioneering observations from Ulysses transformed our perception of the structure and dynamics of these polar regions through which flow the solar wind, magnetic fields and energetic particles that eventually populate most of the volume of the heliosphere. Ulysses carried only fields and particles detectors. Telemachus, in addition to modern versions of such essential in situ instruments, will carry imagers that will give solar astronomers a new viewpoint on coronal mass ejections and solar flares, as well as their first purely polar views of the photospheric magnetic field, thereby providing new helioseismology to probe the interior of the Sun. Unlike the RTG-powered Ulysses, the power for Telemachus will come simply from solar panels. Gravity assist encounters with Venus and Earth (twice) will yield ˜5 years of continuous in-ecliptic cruise science between 0.7 AU and 3.3 AU that will powerfully complement other contemporary solar-heliospheric missions. The Jupiter gravity assist, followed by a perihelion burn ˜8 years after launch, will place Telemachus in a permanent ˜0.2 AU by 2.5 AU heliographic polar orbit (inclination >80 deg) whose period will be 1.5 years. Telemachus will then pass over the solar poles at ˜0.4 AU (compared to 1.4 AU for Ulysses) and spend ˜2 weeks above 60 deg on each polar pass (alternating perihelions between east and west limbs as viewed from Earth). In 14 polar passes during a 10.5 year solar cycle, Telemachus would accumulate over half a year of polar science data. During the remainder of the time, it

  4. Rolex learning center English guide

    CERN Document Server

    Della Casa, Francesco

    2012-01-01

    The novel architectural form of this building, conceived of by the architects of SAANA (winners of the Pritzker Prize in 2010), compelled the building engineers to come up with unprecedented structural, technical and logistical solutions. And yet, once the Rolex Learning Center was complete, the ingenuity required for its construction had become practically invisible in the eyes of the uninitiated. This richly illustrated guide provides, in condensed form, an account of the extraordinary adventure of the realization of the Rolex Learning Center. It explains in detail the context of its construction and brings to light the spatial subtleties of its architecture. In addition, it provides the visitor of the building with all the needed technical information and many novel facts and figures.

  5. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  6. 2- to 3-kHz continuum emissions as possible indications of global heliospheric 'breathing'

    Science.gov (United States)

    Grzedzielski, S.; Lazarus, A. J.

    1993-01-01

    The paper analyzes the main features of 2- to 3-kHz heliospheric emissions in the context of a general heliospheric 'breathing' as inferred from the Voyager 2 solar wind average ram pressure data. Triggers for the three 3-kHz emission events seen to date are suggested, and good agreement is obtained in timing and expected postshock frequency for termination shock distances of about 90 AU. It is suggested that the visibility of the individual 3-kHz events and their observed upward frequency drift are enhanced when the postulated global heliospheric expansion results in the formation of a transient, compressed external plasma barrier around the heliopause that prevents radiation escape for several months. The average termination shock distance is estimated to be in the range 80-90 AU.

  7. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  8. Voyager observations of the interaction of the heliosphere with the interstellar medium

    Directory of Open Access Journals (Sweden)

    John D. Richardson

    2013-05-01

    Full Text Available This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1 a new energetic particle component which is accelerated at the termination shock (TS and leaks into the outer heliosphere forming a foreshock region; (2 a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions; (3 the heliosphere is asymmetric; (4 the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5 the plasma flow in the Voyagers 1 (V1 and 2 (V2 directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP in 2010 in which the plasma flow speeds are near zero.

  9. Voyager observations of the interaction of the heliosphere with the interstellar medium.

    Science.gov (United States)

    Richardson, John D

    2013-05-01

    This paper provides a brief review and update on the Voyager observations of the interaction of the heliosphere with the interstellar medium. Voyager has found many surprises: (1) a new energetic particle component which is accelerated at the termination shock (TS) and leaks into the outer heliosphere forming a foreshock region; (2) a termination shock which is modulated by energetic particles and which transfers most of the solar wind flow energy to the pickup ions (not the thermal ions); (3) the heliosphere is asymmetric; (4) the TS does not accelerate anomalous cosmic rays at the Voyager locations; and (5) the plasma flow in the Voyagers 1 (V1) and 2 (V2) directions are very different. At V1 the flow was small after the TS and has recently slowed to near zero, whereas at V2 the speed has remained constant while the flow direction has turned tailward. V1 may have entered an extended boundary region in front of the heliopause (HP) in 2010 in which the plasma flow speeds are near zero.

  10. Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere

    Science.gov (United States)

    Frisch, P. C.

    2006-06-01

    Data showing that light from nearby stars, Tinbergen (1982) and Piirola (1977), were acquired during the solar minimum of the mid-1970's when the magnetic wall was expected to form at negative ecliptic latitudes because the solar magnetic polarity was north-pole-positive. The polarization is seen primarily at negative ecliptic latitudes, consistent with the expected magnetic wall position. The interstellar magnetic field direction at the Sun is derived from these data. The small dust grains most likely to cause the polarization are also the grains excluded from the heliosphere by small gyroradii, <100 AU. The direction of maximum polarization is offset by ˜ 20 --40 deg. from the inflow direction of the large grains that are gravitationally focused in the heliosphere tail. Interstellar dust grains in and near the heliosphere form a potential contaminant of the cosmic microwave background signal, which should then be identifiable because the spatial behavior of these grains depends on the phase of the 22 year solar magnetic activity cycle. The author would like to thank NASA for supporting her research.

  11. Energetic Particles in the Inner Heliosphere

    Science.gov (United States)

    Malandraki, Olga

    2016-07-01

    Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  12. Modulation of Galactic Cosmic Rays in the Inner Heliosphere, Comparing with PAMELA Measurements

    Science.gov (United States)

    Qin, G.; Shen, Z.-N.

    2017-09-01

    We develop a numerical model to study the time-dependent modulation of galactic cosmic rays in the inner heliosphere. In the model, a time-delayed modified Parker heliospheric magnetic field (HMF) and a new diffusion coefficient model, NLGCE-F, from Qin & Zhang, are adopted. In addition, the latitudinal dependence of magnetic turbulence magnitude is assumed to be ˜ (1+{\\sin }2θ )/2 from the observations of Ulysses, and the radial dependence is assumed to be ˜ {r}S, where we choose an expression of S as a function of the heliospheric current sheet tilt angle. We show that the analytical expression used to describe the spatial variation of HMF turbulence magnitude agrees well with the Ulysses, Voyager 1, and Voyager 2 observations. By numerically calculating the modulation code, we get the proton energy spectra as a function of time during the recent solar minimum, it is shown that the modulation results are consistent with the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics measurements.

  13. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    International Nuclear Information System (INIS)

    Sternal, O.; Heber, B.; Kopp, A.; Engelbrecht, N. E.; Burger, R. A.; Ferreira, S. E. S.; Potgieter, M. S.; Fichtner, H.; Scherer, K.

    2011-01-01

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and could not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.

  14. A MEASUREMENT OF THE ADIABATIC COOLING INDEX FOR INTERSTELLAR HELIUM PICKUP IONS IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Saul, Lukas; Wurz, Peter; Kallenbach, Reinald

    2009-01-01

    Interstellar neutral gas enters the inner heliosphere where it is ionized and becomes the pickup ion population of the solar wind. It is often assumed that this population will subsequently cool adiabatically, like an expanding ideal gas due, to the divergent flow of the solar wind. Here, we report the first independent measure of the effective adiabatic cooling index in the inner heliosphere from SOHO CELIAS measurements of singly charged helium taken during times of perpendicular interplanetary magnetic field. We use a simple adiabatic transport model of interstellar pickup helium ions, valid for the upwind region of the inner heliosphere. The time averaged velocity spectrum of helium pickup ions measured by CELIAS/CTOF is fit to this model with a single free parameter which indicates an effective cooling rate with a power-law index of γ = 1.35 ± 0.2. While this average is consistent with the 'ideal-gas' assumption of γ = 1.5, the analysis indicates that such an assumption will not apply in general, and that due to observational constraints further measurements are necessary to constrain the cooling process. Implications are discussed for understanding the transport processes in the inner heliosphere and improving this measurement technique.

  15. Interstellar Dust in the Heliosheath: Tentative Discovery of the Magnetic Wall of the Heliosphere

    Science.gov (United States)

    Frisch, P. C.

    2005-12-01

    The evident identification of interstellar dust grains entrained in the magnetic wall of the heliosphere is reported. It is shown that the distribution of dust grains causing the weak polarization of light from nearby stars is consistent with polarization by small charged interstellar dust grains captured in the heliosphere magnetic wall (Tinbergen 1982, Frisch 2005). There is an offset between the deflected small charged polarizing dust grains, radius less than 0.2 microns, and the undeflected large grain population, radius larger than 0.2 microns. The region of maximum polarization is towards ecliptic coordinates lambda,beta = 295,0 deg, which is offset along the ecliptic longitude by about 35 deg from the heliosphere nose and extends to low ecliptic latitudes where the heliosphere magnetic wall is expected. An offset is also found between the best aligned dust grains, near lambda=281 deg to 220 deg, and the upwind direction of the undeflected inflow of large grains seen by Ulysses and Galileo. In the aligned-grain region, the polarization strength anti-correlates with ecliptic latitude, indicating that the magnetic wall was predominantly at negative ecliptic latitudes when these data were acquired. These data are consistent with model predictions for an interstellar magnetic field which is tilted by 60 deg with respect to the ecliptic plane, and parallel to the galactic plane. References: Tinbergen, 1982: AA, v105, p53; Frisch, 2005: to appear in ApJL.

  16. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  17. The Sun's Dynamic Influence on the Outer Heliosphere, the Heliosheath, and the Local Interstellar Medium

    International Nuclear Information System (INIS)

    Intriligator, D S; Sun, W; Detman, T; Miller, W D; Intriligator, J; Dryer, M; Deehr, C; Webber, W; Gloeckler, G

    2016-01-01

    The Sun has been observed for many years to be a dynamic influence in the heliosphere, and as the Voyager missions have continued long after achieving their original goals of observing the major planets they have provided the first in situ observations of the effects of solar activity in the heliosheath (HS), and the nearest portions of the local Interstellar Medium (LISM). Comparing these observations with models provides key insights. We employ two three-dimensional (3D) time-dependent models that simulate the propagation of shocks, other specific features, and the background solar wind throughout the heliosphere, starting with the solar background and solar event boundary conditions near the Sun at 2.5 Rs. The Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI) is a 3D time- dependent Magnetohydrodynamic (MHD) simulation. HAFSS (HAF Solar Surface) is a 3D time-dependent kinematic simulation. Comparing our models with the observations indicates that solar effects are seen in the heliosphere, the HS, and the LISM in in-situ spacecraft measurements of plasma, magnetic field, energetic particles, cosmic rays, and plasma waves. There is quantitative agreement (at ACE, Ulysses, VI, V2) with data (e.g., solar wind, IMF, Ulysses SWICS pickup protons (PUPs)). Propagating shocks are slowed due to PUPs. The 3D locations of solar events and of various spacecraft are key to understanding the 3D propagation and timing of shocks, other specific features, and gradients throughout the heliosphere, HS, and LISM. (paper)

  18. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  19. A MODEL OF THE HELIOSPHERE WITH JETS

    International Nuclear Information System (INIS)

    Drake, J. F.; Swisdak, M.; Opher, M.

    2015-01-01

    An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B 2 , in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This same pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models

  20. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  1. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  2. SOLAR PHOTOIONIZATION RATES FOR INTERSTELLAR NEUTRALS IN THE INNER HELIOSPHERE: H, He, O, AND Ne

    Energy Technology Data Exchange (ETDEWEB)

    Bochsler, P.; Kucharek, H.; Möbius, E. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Bzowski, Maciej; Sokół, Justyna M. [Space Research Center of the Polish Academy of Sciences, Ul. Bartycka 18A, 00-716 Warsaw (Poland); Didkovsky, Leonid; Wieman, Seth, E-mail: bochsler@space.unibe.ch [Space Sciences Center, University of Southern California, Los Angeles, CA 90089-1341 (United States)

    2014-01-01

    Extreme UV (EUV) spectra from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Solar EUV Experiment are used to infer photoionization rates in the inner heliosphere. Relating these rates to various proxies describing the solar EUV radiation, we construct a multi-linear model which allows us to extrapolate ionization rates back to periods when no routine measurements of the solar EUV spectral distribution have been available. Such information is important, e.g., for comparing conditions of the interstellar neutral particles in the inner heliosphere at the time of Ulysses/GAS observations with conditions during the more recent observations of the Interstellar Boundary Explorer. From a period of 11 yr when detailed spectra from both TIMED and three proxies—Solar and Heliospheric Observatory/CELIAS/SEM-rates, F10.7 radio flux, and Mg II core-to-wing indices—have been available, we conclude that the simple model is able to reproduce the photoionization rates with an uncertainty of typically 5%.

  3. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  4. Taming the data wilderness with the VHO: Integrating heliospheric data sets

    Science.gov (United States)

    Schroeder, P.; Szabo, A.; Narock, T.

    Currently space physicists are faced with a bewildering array of heliospheric missions experiments and data sets available at archives distributed around the world Daunting even for those most familiar with the field physicists in other concentrations solar physics magnetospheric physics etc find locating the heliospheric data that they need extremely challenging if not impossible The Virtual Heliospheric Observatory VHO will help to solve this problem by creating an Application Programming Interface API and web portal that integrates these data sets to find the highest quality data for a given task The VHO will locate the best available data often found only at PI institutions rather than at national archives like the NSSDC The VHO will therefore facilitate a dynamic data environment where improved data products are made available immediately In order to accomplish this the VHO will enforce a metadata standard on participating data providers with sufficient depth to allow for meaningful scientific evaluation of similar data products The VHO will provide an automated way for secondary sites to keep mirrors of data archives up to date and encouraging the generation of secondary or added-value data products The VHO will interact seamlessly with the Virtual Solar Observatory VSO and other Virtual Observatories VxO s to allow for inter-disciplinary data searching Software tools for these data sets will also be available through the VHO Finally the VHO will provide linkages to the modeling community and will develop metadata standards for the

  5. Is the S-Web the Secret to Observed Heliospheric Particle Distributions?

    Science.gov (United States)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Daldorff, L. K. S.; Wyper, P. F.; Ukhorskiy, A. Y.; Sorathia, K.

    2017-12-01

    Particle transport in the heliosphere remains an unsolved problem across energy regimes. Observations of slow solar wind show that plasma escapes from the closed-field corona, but ends up far away from the heliospheric current sheet, even though the release mechanisms are expected to occur at the HCS. Similarly, some impulsive SEP events have extreme longitudinal extents of 100 degrees or more. Recent theoretical and numerical work has shown that interchange reconnection near a coronal-hole corridor can release plasma from originally closed magnetic field lines into a large swath spread across the heliosphere, forming what is known as an S-Web arc. This is a promising mechanism for explaining both the slow solar wind, with its large latitudinal extent, and impulsive SEP particles, with their large longitudinal extent. Here we compute, for the first time, the dynamics of the S-Web when the photospheric driver is applied over a large portion of the solar surface compared to the scale of the driving. We examine the time scales for the interchange reconnection and compute the angular extent of the plasma released, in the context of understanding both the slow solar wind and flare-accelerated SEPs. We will make predictions for Solar Orbiter and Parker Solar Probe and discuss how these new measurements will help to both pinpoint the source of the slow solar wind and illuminate the transport mechanisms of wide-spread impulsive SEP events.

  6. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  7. Kinky heliospheric current sheet: Cause of CDAW-6 substorms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Russell, C.T.; King, J.H.; Zwickl, R.D.; Lin, R.P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibity that the interplanetary structure is a ''magnetic cloud'' is ruled out

  8. Interface between problem-based learning and a learner-centered paradigm

    Directory of Open Access Journals (Sweden)

    Karimi R

    2011-05-01

    Full Text Available Reza KarimiPacific University School of Pharmacy, Hillsboro, OR, USABackground: Problem-based learning (PBL has made a major shift in support of student learning for many medical school curricula around the world. Since curricular development of PBL in the early 1970s and its growth in the 1980s and 1990s, there have been growing numbers of publications providing positive and negative data in regard to the curricular effectiveness of PBL. The purpose of this study was to explore supportive data for the four core objectives of PBL and to identify an interface between the objectives of PBL and a learner-centered paradigm.Methods: The four core PBL objectives, ie, structuring of knowledge and clinical context, clinical reasoning, self-directed learning, and intrinsic motivation, were used to search MEDLINE, the Education Resources Information Center, the Educator’s Reference Complete, and PsycINFO from January 1969 to January 2011. The literature search was facilitated and narrowed if the published study included the following terms: “problem-based learning”, “medical education”, “traditional curriculum”, and one of the above four PBL objectives.Results: Through a comprehensive search analysis, one can find supportive data for the effectiveness of a PBL curriculum in achieving the four core objectives of PBL. A further analysis of these four objectives suggests that there is an interface between PBL objectives and criteria from a learner-centered paradigm. In addition, this review indicates that promotion of teamwork among students is another interface that exists between PBL and a learner-centered paradigm.Conclusion: The desire of medical schools to enhance student learning and a need to provide an environment where students construct knowledge rather than receive knowledge have encouraged many medical schools to move into a learner-centered paradigm. Implementation of a PBL curriculum can be used as a prevailing starting point to

  9. Number density structures in the inner heliosphere

    Science.gov (United States)

    Stansby, D.; Horbury, T. S.

    2018-06-01

    Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.

  10. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  11. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Swaczyna, P.; Grzedzielski, S. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Alexashov, D. B.; Izmodenov, V. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Möbius, E.; Leonard, T. [Space Research Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Wurz, P. [Physics Institute, University of Bern, Bern (Switzerland)

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ∼7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ∼19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the

  12. Multi-point Shock and Flux Rope Analysis of Multiple Interplanetary Coronal Mass Ejections around 2010 August 1 in the Inner Heliosphere

    Science.gov (United States)

    Möstl, C.; Farrugia, C. J.; Kilpua, E. K. J.; Jian, L. K.; Liu, Y.; Eastwood, J. P.; Harrison, R. A.; Webb, D. F.; Temmer, M.; Odstrcil, D.; Davies, J. A.; Rollett, T.; Luhmann, J. G.; Nitta, N.; Mulligan, T.; Jensen, E. A.; Forsyth, R.; Lavraud, B.; de Koning, C. A.; Veronig, A. M.; Galvin, A. B.; Zhang, T. L.; Anderson, B. J.

    2012-10-01

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120° in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (≈ - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  13. MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Moestl, C.; Liu, Y.; Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Kilpua, E. K. J. [Department of Physics, University of Helsinki, FI-00560 Helsinki (Finland); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD (United States); Eastwood, J. P.; Forsyth, R. [The Blackett Laboratory, Imperial College, London (United Kingdom); Harrison, R. A.; Davies, J. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Webb, D. F. [Institute for Scientific Research, Boston College, Newton, MA (United States); Temmer, M.; Rollett, T.; Veronig, A. M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, A-8010 Graz (Austria); Odstrcil, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Nitta, N. [Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Mulligan, T. [Space Science Applications Laboratory, The Aerospace Corporation, El Segundo, CA (United States); Jensen, E. A. [ACS Consulting, Houston, TX (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse (UPS), F-31400 Toulouse (France); De Koning, C. A., E-mail: christian.moestl@uni-graz.at [NOAA/SWPC, Boulder, Colorado (United States); and others

    2012-10-10

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120 Degree-Sign in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index ( Almost-Equal-To - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  14. Interface between problem-based learning and a learner-centered paradigm.

    Science.gov (United States)

    Karimi, Reza

    2011-01-01

    Problem-based learning (PBL) has made a major shift in support of student learning for many medical school curricula around the world. Since curricular development of PBL in the early 1970s and its growth in the 1980s and 1990s, there have been growing numbers of publications providing positive and negative data in regard to the curricular effectiveness of PBL. The purpose of this study was to explore supportive data for the four core objectives of PBL and to identify an interface between the objectives of PBL and a learner-centered paradigm. The four core PBL objectives, ie, structuring of knowledge and clinical context, clinical reasoning, self-directed learning, and intrinsic motivation, were used to search MEDLINE, the Education Resources Information Center, the Educator's Reference Complete, and PsycINFO from January 1969 to January 2011. The literature search was facilitated and narrowed if the published study included the following terms: "problem-based learning", "medical education", "traditional curriculum", and one of the above four PBL objectives. Through a comprehensive search analysis, one can find supportive data for the effectiveness of a PBL curriculum in achieving the four core objectives of PBL. A further analysis of these four objectives suggests that there is an interface between PBL objectives and criteria from a learner-centered paradigm. In addition, this review indicates that promotion of teamwork among students is another interface that exists between PBL and a learner-centered paradigm. The desire of medical schools to enhance student learning and a need to provide an environment where students construct knowledge rather than receive knowledge have encouraged many medical schools to move into a learner-centered paradigm. Implementation of a PBL curriculum can be used as a prevailing starting point to develop not only a learner-centered paradigm, but also to facilitate a smooth curricular transition from a teacher-centered paradigm to a

  15. 76 FR 50224 - Medicare Program; Accountable Care Organization Accelerated Development Learning Sessions; Center...

    Science.gov (United States)

    2011-08-12

    ...] Medicare Program; Accountable Care Organization Accelerated Development Learning Sessions; Center for... (CMS). This two-day training session is the second Accelerated Development Learning Session (ADLS.... Through Accelerated Development Learning Sessions (ADLS), the Innovation Center will test whether...

  16. MICROSTRUCTURE OF THE HELIOSPHERIC TERMINATION SHOCK: IMPLICATIONS FOR ENERGETIC NEUTRAL ATOM OBSERVATIONS

    International Nuclear Information System (INIS)

    Zank, G. P.; Heerikhuisen, J.; Pogorelov, N. V.; Burrows, R.; McComas, D.

    2010-01-01

    The Voyager 2 plasma observations of the proton distribution function downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism, being essentially transmitted directly through the shock. Instead, the hot supra-thermal pickup ion (PUI) component is most likely responsible for the dissipation at the TS. Consequently, the downstream proton distribution function will be a complicated superposition of relatively cool thermal solar wind protons and hot PUIs that have experienced either direct transmission or reflection at the TS cross-shock potential. We develop a simple model for the TS microstructure that allows us to construct approximate proton distribution functions for the inner heliosheath. The distribution function models are compared to κ-distributions, showing the correspondence between the two. Since the interpretation of energetic neutral atom (ENA) fluxes measured at 1 AU by IBEX will depend sensitively on the form of the underlying proton distribution function, we use a three-dimensional MHD-kinetic global model to model ENA spectra at 1 AU and ENA skymaps across the IBEX energy range. We consider both solar minimum and solar maximum-like global models, showing how ENA skymap structure can be related to global heliospheric structure. We suggest that the ENA spectra may allow us to probe the directly the microphysics of the TS, while the ENA skymaps reveal heliospheric structure and, at certain energies, are distinctly different during solar minimum and maximum.

  17. Space Operations Learning Center

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  18. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  19. Voyager in-situ and Cassini Remote Measurements Suggest a Bubble-like Shape for the Global Heliosphere

    Science.gov (United States)

    Dialynas, K.; Krimigis, S. M.; Mitchell, D. G.; Decker, R. B.; Roelof, E. C.

    2017-12-01

    The Low Energy Charged Particle (LECP) in situ measurements from Voyager 1 and Voyager 2 (V1, V2) have revealed the reservoir of ions and electrons that constitute the heliosheath after crossing the termination shock 35 deg north and 32 deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU=1.5x108 km), respectively. In August 2012, at 121.6 AU, V1 crossed the heliopause to enter the interstellar space, while V2 remains in the heliosheath since 2007. The advent of Energetic Neutral Atom (ENA, produced through charge exchange between ions and neutral particles flowing through the heliosphere) imaging, has revealed the global nature of the heliosheath at both high (5.2-55 keV, Cassini/Ion and Neutral Camera-INCA, from 10 AU) and low (INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions. Here we report 5.2-55 keV ENA global images of the heliosphere from Cassini/INCA and compare them with V1,2/LECP 28-53 keV ions measured within the heliosheath over a 13-year period (2003-2016). The similarity between the time profiles of ENA and ions establish that the heliosheath ions are the source of ENA. These measurements also demonstrate that the heliosphere responds promptly, within 2-3 years, to outward propagating solar wind changes (manifested in solar sunspot numbers and solar wind energy input) in both the upstream (nose) and downstream (tail) hemispheres. These results, taken together with the V1 measurement of a 0.5 nT interstellar magnetic field and the enhanced ratio between particle pressure and magnetic pressure in the heliosheath, constrain the shape of the global heliosphere: by contrast to the magnetosphere-like heliotail (that past modeling broadly assumed for more than 55 years), a more symmetric, diamagnetic bubble-like heliosphere, with few substantial tail-like features is revealed.

  20. Learning-Centered Leadership: A Conceptual Foundation

    Science.gov (United States)

    Murphy, Joseph; Elliott, Stephen N.; Goldring, Ellen; Porter, Andrew C.

    2006-01-01

    The purpose of this analysis is to describe the research base that undergirds the emerging concept of learning-centered leadership. We begin with our definition of leadership. Leadership is "the process of influencing others to achieve mutually agreed upon purposes for the organization" (Patterson, 1993, p. 3). Next, we make a number of…

  1. A kinky heliospheric current sheet - Cause of CDAW-6 substorms

    Science.gov (United States)

    Tsurutani, B. T.; Russell, C. T.; King, J. H.; Zwickl, R. D.; Lin, R. P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibility that the interplanetary structure is a 'magnetic cloud' is ruled out.

  2. The Physics Learning Center at the University of Wisconsin-Madison

    Science.gov (United States)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  3. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Science.gov (United States)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  4. The Structure of the Heliosphere with Solar Cycle and Its Effect on the Conditions in the Local ISM

    Science.gov (United States)

    Opher, M.; Drake, J. F.; Toth, G.; Swisdak, M.; Michael, A.; Kornbleuth, M. Z.; Zieger, B.

    2017-12-01

    We argued (Opher et al. 2015, Drake et al. 2015) that the magnetic tension of the solar magnetic field plays a crucial role in organizing the solar wind in the heliosheath into two jet-like structures. The heliosphere then has a "croissant"-like shape where the distance to the heliopause downtail is almost the same as towards the nose. Regardless of whether the heliospheric tail is split in two or has a long comet shape there is consensus that the magnetic field in the heliosheath behaves differently than previously expected - it has a "slinky" structure and is turbulent. In this presentation, we will discuss several aspects related with this new model. We will show that this structure persists when the solar magnetic field is treated as a dipole. We show how the heliosphere, with its "Croissant" shape, evolves when the solar wind with solar cycle conditions are included and when the neutrals are treated kinetically (with our new MHD-Kinetic code). Due to reconnection (and turbulence of the jets) there is a substantial amount of heliosheath material sitting on open field lines. We will discuss the impact of artificial dissipation of the magnetic field in driving mixing and how it evolves with the solar cycle. We will discuss as well the development of turbulence in the jets and its role in mixing the plasma in the heliosheath and LISM and controlling the global structure of the heliosphere. We will discuss how the conditions upstream of the heliosphere, in the local interstellar medium are affected by reconnection in the tail and how it evolves with solar cycle. Recently we established (Opher et al. 2017) that reconnection in the eastern flank of the heliosphere is responsible for the twist of the interstellar magnetic field (BISM) acquiring a strong east-west component as it approaches the Heliopause. Reconnection drives a rotational discontinuity (RD) that twists the BISM into the -T direction and propagates upstream in the interstellar medium toward the nose

  5. The Managers’ Experiential Learning of Program Planning in Active Ageing Learning Centers

    Directory of Open Access Journals (Sweden)

    Chun-Ting Yeh

    2016-12-01

    Full Text Available Planning older adult learning programs is really a complex work. Program planners go through different learning stages and accumulate experiences to be able to undertake the task alone. This study aimed to explore the experiential learning process of older adult learning program planners who work in the Active Ageing Learning Centers (AALCs. Semi-structure interviews were conducted with seven program planners. The findings of this study were identified as follows. 1 Before being a program planner, the participants’ knowledge results from grasping and transforming experience gained from their family, their daily lives and past learning experiences; 2 after being a program planner, the participants’ experiential learning focused on leadership, training in the institute, professional development, as well as involvement in organizations for elderly people; and 3 the participants’ experiential learning outcomes in the older adult learning program planning include: their ability to reflect on the appropriateness and fulfillment of program planning, to apply theoretical knowledge and professional background in the field, and to make plans for future learning and business strategies.

  6. INTERSTELLAR PICKUP ION PRODUCTION IN THE GLOBAL HELIOSPHERE AND HELIOSHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Florinski, V.; Guo, X., E-mail: yw0009@uah.edu [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2016-11-20

    Interstellar pickup ions (PUIs) play a significant part in mediating the solar wind (SW) interaction with the interstellar medium. In this paper, we examine the details of spatial variation of the PUI velocity distribution function (VDF) in the SW by solving the PUI transport equation. We assume the PUI distribution is isotropic resulting from strong pitch-angle scattering by wave–particle interaction. A three-dimensional model combining the MHD treatment of the background SW and neutrals with a kinetic treatment of PUIs throughout the heliosphere and the surrounding local interstellar medium has been developed. The model generates PUI power-law tails via second-order Fermi process. We analyze how PUIs transform across the heliospheric termination shock and obtain the PUI phase space distribution in the inner heliosheath including continuing velocity diffusion. Our simulated PUI spectra are compared with observations made by New Horizons , Ulysses , Voyager 1, 2 , and Cassini , and a satisfactory agreement is demonstrated. Some specific features in the observations, for example, a cutoff of PUI VDF at v = V {sub SW} and a f ∝ v {sup -5} tail in the reference frame of the SW, are well represented by the model.

  7. Formation of Heliospheric Arcs of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F., E-mail: aleida@umich.edu [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom)

    2017-05-01

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.

  8. Energetic particles beyond the heliospheric shock: Anomalous Cosmic Rays (ACRs), Pick-Up Ions (PUIs) and the associated energetic neutral atoms (ENAs)

    International Nuclear Information System (INIS)

    Fichtner, Horst; Czechowski, Andrzej; Fahr, Hans J.; Lay, Guenter

    2000-01-01

    The Voyager 1 spacecraft is expected to encounter the heliospheric termination shock within the next decade. Besides the ongoing discussion how to possibly predict the time of this encounter, there is a growing interest into a more detailed description of the region beyond the heliospheric shock, i.e., the heliosheath. Refinements of the so far rather crude models will facilitate interpretation of forthcoming data. We report on results obtained with our model of the transport of ACRs in the heliosheath. In improvement of earlier approaches it is based on a solar wind background flow computed with a self-consistent large-scale model of the heliosphere. Besides these downstream ACR spectra, which will become accessible for in situ observation as soon as the Voyager spacecraft will have crossed the heliospheric shock, we study the potential of observations of the flux of ENAs to remotely explore the structure of the heliosheath. In particular, as part of a comparison of the various ENA sources, we will address the significance of the contribution of those ENAs resulting from a de-charging of PUIs

  9. The Application of Carl Rogers' Person-Centered Learning Theory to Web-Based Instruction.

    Science.gov (United States)

    Miller, Christopher T.

    This paper provides a review of literature that relates research on Carl Rogers' person-centered learning theory to Web-based learning. Based on the review of the literature, a set of criteria is described that can be used to determine how closely a Web-based course matches the different components of Rogers' person-centered learning theory. Using…

  10. A control center design revisited: learning from users’ appropriation

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Cordeiro, Cláudia

    2014-01-01

    This paper aims to present the lessons learned during a control center design project by revisiting another control center from the same company designed two and a half years before by the same project team. In light of the experience with the first project and its analysis, the designers and res...

  11. Active-learning versus teacher-centered instruction for learning acids and bases

    Science.gov (United States)

    Acar Sesen, Burcin; Tarhan, Leman

    2011-07-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of 'acids and bases'. Sample The sample of this study was 45 high-school students (average age 17 years) from two different classes, which were randomly assigned to the experimental (n = 21) and control groups (n = 25), in a high school in Turkey. Design and methods A pre-test consisting of 25 items was applied to both experimental and control groups before the treatment in order to identify student prerequisite knowledge about their proficiency for learning 'acids and bases'. A one-way analysis of variance (ANOVA) was conducted to compare the pre-test scores for groups and no significant difference was found between experimental (ME = 40.14) and control groups (MC = 41.92) in terms of mean scores (F 1,43 = 2.66, p > 0.05). The experimental group was taught using an active-learning curriculum developed by the authors and the control group was taught using traditional course content based on teacher-centered instruction. After the implementation, 'Acids and Bases Achievement Test' scores were collected for both groups. Results ANOVA results showed that students' 'Acids and Bases Achievement Test' post-test scores differed significantly in terms of groups (F 1,43 = 102.53; p acid and base theories'; 'metal and non-metal oxides'; 'acid and base strengths'; 'neutralization'; 'pH and pOH'; 'hydrolysis'; 'acid-base equilibrium'; 'buffers'; 'indicators'; and 'titration'. Based on the achievement test and individual interview results, it was found that high-school students in the experimental group had fewer misconceptions and understood the concepts more meaningfully than students in control group. Conclusion The study revealed that active-learning implementation is more effective at

  12. Workforce Optimization for Bank Operation Centers: A Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Sefik Ilkin Serengil

    2017-12-01

    Full Text Available Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. Inherently, workload volume of money transfer transactions changes dramatically in hours. Therefore, work-force should be planned instantly or early to save labor force and increase operational efficiency. This paper introduces a hybrid multi stage approach for workforce planning in bank operation centers by the application of supervised and unsu-pervised learning algorithms. Expected workload would be predicted as supervised learning whereas employees are clus-tered into different skill groups as unsupervised learning to match transactions and proper employees. Finally, workforce optimization is analyzed for proposed approach on production data.

  13. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    Energy Technology Data Exchange (ETDEWEB)

    Reisenfeld, D. B.; Janzen, P. H. [University of Montana, Missoula, MT 59812 (United States); Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-716, Warsaw (Poland); and others

    2016-12-20

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.

  14. The high latitude heliosphere. Proceedings. 28. ESLAB Symposium, Friedrichshafen (Germany), 19 - 21 Apr 1994.

    Science.gov (United States)

    Marsden, R. G.

    1995-04-01

    The following topics were dealt with: high latitude heliosphere, Ulysses mission, corona, spectra, coronal holes, composition, solar wind, He, plasma, streams, interplanetary magnetic field, plasma waves, radio bursts, energetic particles, cosmic rays, and interstellar gas.

  15. Intensity variation of cosmic rays near the heliospheric current sheet

    International Nuclear Information System (INIS)

    Badruddin, K.S.; Yadav, R.S.; Yadav, N.R.

    1985-01-01

    Cosmic ray intensity variations near the heliospheric current sheet-both above and below it-have been studied during 1964-76. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis data from neutron monitors well distributed in latitude over the Earth's surface is used. First, this study has been made during the two solar activity minimum periods 1964-65 and 1975-76, using the data from Thule (cut-off rigidity O GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. The data is analyzed from Deep River, Rome and Huancayo neutron monitors, for which data is available for the full period (1964-76), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested. (author)

  16. Inquiry based learning: a student centered learning to develop mathematical habits of mind

    Science.gov (United States)

    Handayani, A. D.; Herman, T.; Fatimah, S.; Setyowidodo, I.; Katminingsih, Y.

    2018-05-01

    Inquiry based learning is learning that based on understanding constructivist mathematics learning. Learning based on constructivism is the Student centered learning. In constructivism, students are trained and guided to be able to construct their own knowledge on the basis of the initial knowledge that they have before. This paper explained that inquiry based learning can be used to developing student’s Mathematical habits of mind. There are sixteen criteria Mathematical Habits of mind, among which are diligent, able to manage time well, have metacognition ability, meticulous, etc. This research method is qualitative descriptive. The result of this research is that the instruments that have been developed to measure mathematical habits of mind are validated by the expert. The conclusion is the instrument of mathematical habits of mind are valid and it can be used to measure student’s mathematical habits of mind.

  17. Learning Centers: A Report of the 1977 NEH Institute at Ohio State University.

    Science.gov (United States)

    Allen, Edward D.

    1978-01-01

    A description of the twenty learning center units for advanced classes developed by the French and Spanish teacher-participants. Learning centers permit students to work independently at well-defined tasks. The units deal with housing, shopping, cooking, transportation, sports, fiestas, literature, history, architecture, painting, and music.…

  18. A Learning Center on the Lever for Young Children.

    Science.gov (United States)

    Keislar, Evan R.; Luckenbill, Maryann

    This document describes a project designed to explore the possibilities of children's learning in mechanics. The principle of the lever, one example of a simple machine, was used in the form of a balance toy. The apparatus was set up as a game in a specially devised learning center. The children made non-verbal predictions as to which way the bar…

  19. Seven Years of Imaging the Global Heliosphere with IBEX

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D. J.; Zirnstein, E. J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bzowski, M.; Kubiak, M. A.; Sokół, J. M. [Space Research Centre of the Polish Academy of Sciences, Bartycka 18A, 00-716, Warsaw (Poland); Dayeh, M. A.; Fuselier, S. A.; Szalay, J. R. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Funsten, H. O. [Los Alamos National Laboratory, Intelligence and Space Research Division, P.O. Box 1663, Los Alamos, NM 87545 (United States); Janzen, P. H.; Reisenfeld, D. B. [University of Montana, 32 Campus Drive, Missoula, MT 59812 (United States); Kucharek, H.; Möbius, E.; Schwadron, N. A. [University of New Hampshire, Space Science Center, Morse Hall Rm 407, Durham, NH 03824 (United States); Tokumaru, M., E-mail: dmccomas@princeton.edu [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601 (Japan)

    2017-04-01

    The Interstellar Boundary Explorer ( IBEX ) has now operated in space for 7 years and returned nearly continuous observations that have led to scientific discoveries and reshaped our entire understanding of the outer heliosphere and its interaction with the local interstellar medium. Here we extend prior work, adding the 2014–2015 data for the first time, and examine, validate, initially analyze, and provide a complete 7-year set of Energetic Neutral Atom (ENA) observations from ∼0.1 to 6 keV. The data, maps, and documentation provided here represent the 10th major release of IBEX data and include improvements to various prior corrections to provide the citable reference for the current version of IBEX data. We are now able to study time variations in the outer heliosphere and interstellar interaction over more than half a solar cycle. We find that the Ribbon has evolved differently than the globally distributed flux (GDF), with a leveling off and partial recovery of ENAs from the GDF, owing to solar wind output flattening and recovery. The Ribbon has now also lost its latitudinal ordering, which reflects the breakdown of solar minimum solar wind conditions and exhibits a greater time delay than for the surrounding GDF. Together, the IBEX observations strongly support a secondary ENA source for the Ribbon, and we suggest that this be adopted as the nominal explanation of the Ribbon going forward.

  20. PREFACE: 14th Annual International Astrophysics Conference: Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond

    Science.gov (United States)

    Zank, G. P.

    2015-09-01

    The 14th Annual International Astrophysics Conference was held at the Sheraton Tampa Riverwalk Hotel, Tampa, Florida, USA, during the week of 19-24 April 2015. The meeting drew some 75 participants from all over the world, representing a wide range of interests and expertise in the energization of particles from the perspectives of theory, modelling and simulations, and observations. The theme of the meeting was "Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond." Energetic particles are ubiquitous to plasma environments, whether collisionless such as the supersonic solar wind, the magnetospheres of planets, the exospheres of nonmagnetized planets and comets, the heliospheric-local interstellar boundary regions, interstellar space and supernova remnant shocks, and stellar wind boundaries. Energetic particles are found too in more collisional regions such as in the solar corona, dense regions of the interstellar medium, accretion flows around stellar objects, to name a few. Particle acceleration occurs wherever plasma boundaries, magnetic and electric fields, and turbulence are present. The meeting addressed the linear and nonlinear physical processes underlying the variety of particle acceleration mechanisms, the role of particle acceleration in shaping different environments, and acceleration processes common to different regions. Both theory and observations were addressed with a view to encouraging crossdisciplinary fertilization of ideas, concepts, and techniques. The meeting addressed all aspects of particle acceleration in regions ranging from the Sun to the interplanetary medium to magnetospheres, exospheres, and comets, the boundaries of the heliosphere, and beyond to supernova remnant shocks, galactic jets, stellar winds, accretion flows, and more. The format of the meeting included 25-minute presentations punctuated by two 40-minute talks, one by Len Fisk that provided an historical overview of particle acceleration in the

  1. VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J. D. [Kavli Center for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, 02139 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Drake, J. F. [Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Hill, M. E. [Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723 (United States); Opher, M., E-mail: jdr@space.mit.edu, E-mail: lburlagahsp@verizon.net, E-mail: drake@umd.edu, E-mail: Matthew.Hill@jhuapl.edu, E-mail: mopher@bu.edu [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-11-10

    Voyager 1 ( V1 ) has passed through the heliosheath and is in the local interstellar medium. Voyager 2 ( V2 ) has been in the heliosheath since 2007. The role of reconnection in the heliosheath is under debate; compression of the heliospheric current sheets (HCS) in the heliosheath could lead to rapid reconnection and a reconfiguration of the magnetic field topology. This paper compares the expected and actual amounts of time the Voyager spacecraft observe each magnetic sector and the number of HCS crossings. The predicted and observed values generally agree well. One exception is at Voyager 1 in 2008 and 2009, where the distribution of sectors is more equal than expected and the number of HCS crossings is small. Two other exceptions are at V1 in 2011–2012 and at V2 in 2012, when the spacecraft are in the opposite magnetic sector less than expected and see fewer HCS crossings than expected. These features are consistent with those predicted for reconnection, and consequently searches for other reconnection signatures should focus on these times.

  2. Work in Progress : Learner-Centered Online Learning Facility

    NARCIS (Netherlands)

    Pantic, M.; Zwitserloot, R.; De Weerdt, M.M.

    2006-01-01

    This paper describes a novel, learner-centered technology for authoring web lectures. Besides seamless integration of video and audio feeds, Microsoft PowerPoint slides, and web-pages, the proposed Online Learning Facility (OLF) also facilitates online interactive testing and review of covered

  3. 21st Century Community Learning Centers: Providing Afterschool and Summer Learning Support to Communities Nationwide

    Science.gov (United States)

    Afterschool Alliance, 2014

    2014-01-01

    The 21st Century Community Learning Centers (21st CCLC) initiative is the only federal funding source dedicated exclusively to before-school, afterschool, and summer learning programs. Each state education agency receives funds based on its share of Title I funding for low-income students at high-poverty, low performing schools. Funds are also…

  4. PREFERENCES ON INTERNET BASED LEARNING ENVIRONMENTS IN STUDENT-CENTERED EDUCATION

    Directory of Open Access Journals (Sweden)

    Zuhal CUBUKCU

    2008-10-01

    Full Text Available Nowadays, educational systems are being questionned to find effective solutions to problems that are being encountered, and discussions are centered around the ways of restructuring systems so as to overcome difficulties. As the consequences of the traditional teaching approach, we can indicate that the taught material is not long-lasting but easily forgotten, that students do not sufficiently acquire the knowledge and skills that are aimed at developing, and that students lack transferring their knowledge to real life. In our current situation, individuals prefer to use educational resources where and when they want, based on their individual skills and abilities. Throughout the world, because the internet infrastructure has developed quite rapidly, it has been offered as an alternative way for a rich learning and teaching environment. This study aims at determining teacher candidates’ preferences regarding internet-based learning environments in student-centered education by involving the teacher candidates enrolled at Osmangazi University, Faculty of Education, Primary School Teaching, Mathematics Teaching and Computer and Educational Technologies Education programmes. This study is a descriptive study. The data collection scale consists of the “Constructivist Internet-based Education of Science Scale (CILES-S”. The sample group of teacher candidates in the study showed differences with respect to their preferences regarding internet-based learning in student-centered education. The candidates scored higher in the internet-based learning environments of Cognitive Development and Critical Judgement. The lowest average scores of the sample group were observed in the internet-based learning environment of Episthemologic awareness.

  5. Assessing the Academic Medical Center as a Supportive Learning Community

    Science.gov (United States)

    Gannon, Sam C.

    2011-01-01

    Academic medical centers are well-known for their emphasis on teaching, research and public service; however, like most large, bureaucratic organizations, they oftentimes suffer from an inability to learn as an organization. The role of the research administrator in the academic medical center has grown over time as the profession itself has…

  6. Allocation of Tutors and Study Centers in Distance Learning Using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    Shahid Nawaz Khan

    2018-05-01

    Full Text Available Allama Iqbal Open University (AIOU is Pakistan’s largest distance learning institute, providing education to 1.4 million students. This is a fairly large setup across a country where students are highly geographically distributed. Currently, the system works using a manual approach, which is not efficient. Allocation of tutors and study centers to students plays a key role in creating a better learning environment for distance learning. Assigning tutors and study centers to distance learning students is a challenging task when there is a huge geographic spread. Using geospatial technologies in open and distance learning can fix allocation problems. This research analyzes real data from the twin cities Islamabad and Rawalpindi. The results show that geospatial technologies can be used for efficient and proper resource utilization and allocation, which in turn can save time and money. The overall idea fits into an improved distance learning framework and related analytics.

  7. Relative location of a powerful flare, the heliospheric current sheet and the Earth favourable for the onset of a strong geomagnetic storm

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.

    1992-01-01

    Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples

  8. Solar wind velocity and temperature in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  9. Study Circles in Online Learning Environment in the Spirit of Learning-Centered Approach

    Directory of Open Access Journals (Sweden)

    Simándi Szilvia

    2017-08-01

    Full Text Available Introduction: In the era of information society and knowledge economy, learning in non-formal environments gets a highlighted role: it can supplement, replace or raise the knowledge and skills gained in the school system to a higher level (Forray & Juhász, 2008, as the so-called “valid” knowledge significantly changes due to the acceleration of development. With the appearance of information technology means and their booming development, the possibilities of gaining information have widened and, according to the forecasts, the role of learning communities will grow. Purpose: Our starting point is that today, with the involvement of community sites (e.g. Google+, Facebook etc. there is a new possibility for inspiring learning communities: by utilizing the power of community and the possibilities of network-based learning (Ollé & Lévai, 2013. Methods: We intend to make a synthesis based on former research and literature focusing on the learning-centered approach, online learning environment, learning communities and study circles (Noesgaard & Ørngreen, 2015; Biggs & Tang, 2007; Kindström, 2010 Conclusions: The online learning environment can be well utilized for community learning. In the online learning environment, the process of learning is built on activity-oriented work for which active participation, and an intensive, initiative communication are necessary and cooperative and collaborative learning get an important role.

  10. Developing user-centered concepts for language learning video games

    OpenAIRE

    Poels, Yorick; Annema, Jan Henk; Zaman, Bieke; Cornillie, Frederik

    2012-01-01

    This paper will report on an ongoing project which aims to develop video games for language learning through a user-centered and evidence-based approach. Therefore, codesign sessions were held with adolescents between 14 and 16 years old, in order to gain insight into their preferences for educational games for language learning. During these sessions, 11 concepts for video games were developed. We noticed a divide between the concepts for games that were oriented towa...

  11. The Development of a Learning Dashboard for Lecturers: A Case Study on a Student-Centered E-Learning Environment

    Science.gov (United States)

    Santoso, Harry B.; Batuparan, Alivia Khaira; Isal, R. Yugo K.; Goodridge, Wade H.

    2018-01-01

    Student Centered e-Learning Environment (SCELE) is a Moodle-based learning management system (LMS) that has been modified to enhance learning within a computer science department curriculum offered by the Faculty of Computer Science of large public university in Indonesia. This Moodle provided a mechanism to record students' activities when…

  12. Modelling injection rates of PUIs from photoionization using kinetic simulations of interstellar neutrals traversing the heliosphere

    Science.gov (United States)

    Keilbach, D.; Drews, C.; Taut, A.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Recent studies of the inflow direction of the local insterstellar medium from PUI density distributions have shown that the extrema of the longitudinal distribution of PUI velocities (with respect to the solar wind speed) can be attributed to the radial velocity of the interstellar neutral seed population and is symmetric around the inflow direction of the local interstellar medium. This work is aimed to model pickup ion injection rates from photoionization (which is the main process of interstellar PUI production) throughout the heliosphere. To that end a seed population of interstellar neutrals is injected into a model heliosphere at 60 AU distance from the sun, whereas each particle's initial speed is given by a maxwellian distribution at a temperature of 1 eV and an inflow speed of 22 km/s. Then the density of the interstellar neutrals is integrated over the model heliosphere, while the movement of the neutrals is simulated using timestep methods. To model the focusing of the interstellar neutral trajectories from the sun's gravitational potential the model heliosphere contains a central gravitational potential.Each neutral test particle can be ionized via photoionization with a per-timestep probability antiproportional to the neutral's distance to the sun squared. By tracking the ionization rate location-dependently, PUI injection rates have been determined. Therefore using these simulations the density distributions of different species of interstellar neutrals have been calculated. In addition location-dependent injection rates of different species of PUIs have been calculated, which show an increased rate of PUI production in the focusing cone region (e.g. for He+ PUIs), but also in the crescent region (e.g. for O+ PUIs).Furthermore the longitudinal distribution of the neutrals' velocity at 1 AU is calculated from the simulation's results in order to estimate the PUI cut-off as a function of ecliptic longitude. Figure: Simulated He neutral density (left

  13. 76 FR 66931 - Medicare Program; Accountable Care Organization Accelerated Development Learning Sessions; Center...

    Science.gov (United States)

    2011-10-28

    ...] Medicare Program; Accountable Care Organization Accelerated Development Learning Sessions; Center for... Services (CMS). This two-day training session is the third and final Accelerated Development Learning... the quality of care for beneficiaries. Through Accelerated Development Learning Sessions (ADLS), the...

  14. When Enrollments Bulge but Budgets Don't, Consider "Satellite Learning Centers."

    Science.gov (United States)

    Reecer, Marcia

    1988-01-01

    Describes Dade County (Florida) schools' answer to crowded classrooms and burgeoning primary enrollments: satellite learning centers built and maintained by local companies as employee childcare benefits. Each center is attached to a nearby "host" school that disburses funds, keeps student records, and supplies support services. (MLH)

  15. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  16. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  17. Learning curve for intracranial angioplasty and stenting in single center.

    Science.gov (United States)

    Cai, Qiankun; Li, Yongkun; Xu, Gelin; Sun, Wen; Xiong, Yunyun; Sun, Wenshan; Bao, Yuanfei; Huang, Xianjun; Zhang, Yao; Zhou, Lulu; Zhu, Wusheng; Liu, Xinfeng

    2014-01-01

    To identify the specific caseload to overcome learning curve effect based on data from consecutive patients treated with Intracranial Angioplasty and Stenting (IAS) in our center. The Stenting and Aggressive Medical Management for Preventing Recurrent Stroke and Intracranial Stenosis trial was prematurely terminated owing to the high rate of periprocedural complications in the endovascular arm. To date, there are no data available for determining the essential caseload sufficient to overcome the learning effect and perform IAS with an acceptable level of complications. Between March 2004 and May 2012, 188 consecutive patients with 194 lesions who underwent IAS were analyzed retrospectively. The outcome variables used to assess the learning curve were periprocedural complications (included transient ischemic attack, ischemic stroke, vessel rupture, cerebral hyperperfusion syndrome, and vessel perforation). Multivariable logistic regression analysis was employed to illustrate the existence of learning curve effect on IAS. A risk-adjusted cumulative sum chart was performed to identify the specific caseload to overcome learning curve effect. The overall rate of 30-days periprocedural complications was 12.4% (24/194). After adjusting for case-mix, multivariate logistic regression analysis showed that operator experience was an independent predictor for periprocedural complications. The learning curve of IAS to overcome complications in a risk-adjusted manner was 21 cases. Operator's level of experience significantly affected the outcome of IAS. Moreover, we observed that the amount of experience sufficient for performing IAS in our center was 21 cases. Copyright © 2013 Wiley Periodicals, Inc.

  18. Characteristics of solar and heliospheric ion populations observed near earth

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles. 33 references

  19. The Downwind Hemisphere of the Heliosphere as Observed with IBEX-Lo from 2009 to 2015

    Science.gov (United States)

    Wurz, P.; Galli, A.; Schwadron, N.; Kucharek, H.; Moebius, E.; Bzowski, M.; Sokol, J. M.; Kubiak, M. A.; Funsten, H. O.; Fuselier, S. A.; McComas, D. J.

    2017-12-01

    The topic of this study is the vast region towards the tail of the heliosphere. To this end, we comprehensively analyzed energetic neutral hydrogen atoms (ENAs) of energies 10 eV to 2.5 keV from the downwind hemisphere of the heliosheath measured during the first 7 years of the IBEX (Interstellar Boundary Explorer) mission. Neutralized ions from the heliosheath (the region of slow solar wind plasma between termination shock and heliopause) can be remotely observed as ENAs down to 10 eV with the IBEX-Lo sensor onboard IBEX. This sensor covers those energies of the ion spectrum that dominate the total plasma pressure in the downwind region. So far, this region of the heliosphere has never been explored in-situ. Converting observations obtained near Earth orbit at these low energies to the original ion distributions in the heliocentric rest frame at 100 AU is very challenging, making the assessment of uncertainties and implicit assumptions crucial. From the maps of observed ENAs from the heliosheath and their uncertainties we derive observational constraints on heliospheric models for the downwind hemisphere. These constraints limit the possible range of 1) the distance of the termination shock, 2) the total plasma pressure across the termination shock, 3) the radial flow velocity of the heliosheath plasma, 4) the extinction length of said plasma, and finally 5) the dimension of the heliosheath in downwind directions. Because these parameters are coupled and because of observational limitations, we also need to characterize the degeneracy, i.e., the fact that different sets of parameters may reproduce the observations.

  20. A Design Framework for Enhancing Engagement in Student-Centered Learning: Own It, Learn It, and Share It

    Science.gov (United States)

    Lee, Eunbae; Hannafin, Michael J.

    2016-01-01

    Student-centered learning (SCL) identifies students as the owners of their learning. While SCL is increasingly discussed in K-12 and higher education, researchers and practitioners lack current and comprehensive framework to design, develop, and implement SCL. We examine the implications of theory and research-based evidence to inform those who…

  1. Interplanetary magnetic field according to measurements on the Fobos-1,-2 space vehicles. 3. Heliospheric substorm of August 5-7, 1988

    International Nuclear Information System (INIS)

    Ivanov, K.G.

    1995-01-01

    Three-phase disturbance of the interplanetary magnetic field was observed by FOBOS-1 and Fobos-2 space vehicles being at 10 million km distance from the Earth and by IMP-8 near-the-Earth satellite. Disturbance configuration and structure demonstrate that passing of nonstandard bend of heliospheric current layer is the reason of it. Structure, intensity and origination of disturbance enable to classify it as belonging to a category of heliospheric substorms. All three phases of interplanetary disturbance were represented in special near-the-Earth geomagnetic variations of polar cap. 9 refs

  2. Energetic neutral atom and interstellar flow observations with IBEX: Implications for the global heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A., E-mail: nschwadron@unh.edu [University of New Hampshire, Durham NH, 03824 (United States); Southwest Research Institute, San Antonio, TX, 78238 (United States); McComas, D. J.; Desai, M. I.; Fuselier, S. A. [Southwest Research Institute, San Antonio, TX, 78238 (United States); University of Texas, San Antonio, TX, 78249 (United States); Christian, E. R. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moebius, E. [University of New Hampshire, Durham NH, 03824 (United States); Reno, M.; Scherrer, J.; Zirnstein, E. [Southwest Research Institute, San Antonio, TX, 78238 (United States)

    2016-03-25

    Since launch in Oct. 2008, IBEX, with its two energetic neutral atom (ENA) cameras, has provided humankind with the first-ever global images of the complex boundary separating the heliosphere from the local interstellar medium (LISM). IBEX’s energy-resolved all-sky maps, collected every six months, are yielding remarkable new insights into the heliospheres structure as it is shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field (LISMF), and the evolving solar wind. IBEX has also acquired the first images of ENAs backscattered from the surface of the moon as well as global images of the magnetospheric response to solar wind disturbances. IBEX thus addresses all three Heliophysics science objectives set forth in the 2014 Science Plan for NASAs Science Mission Directorate (SMD) as well as the goals in the recent Solar and Space Physics Decadal Survey (NRC 2012). In addition, with the information it provides on the properties of the LISM and the LISMF, IBEX represents a unique bridge between heliophysics and astrophysics, and fills in critical knowledge for understanding the habitability of exoplanetary systems and the future habitability of Earth and the solar system. Because of the few-year time lag due to solar wind and ENA transport, IBEX observed the solar wind/ LISM interaction characteristic of declining phase/solar minimum conditions. In the continuing mission, IBEX captures the response of the interstellar boundaries to the changing structure of the solar wind in its transition toward the “mini” solar maximum and possibly the decline into the next solar minimum. The continuing IBEX mission affords never-to-be-repeated opportunities to coordinate global imaging of the heliospheric boundary with in-situ measurements by the Voyagers as they pass beyond the heliopause and start to directly sample the LISM.

  3. Learning Resources Centers and Their Effectiveness on Students’ Learning Outcomes: A Case-Study of an Omani Higher Education Institute

    Directory of Open Access Journals (Sweden)

    Peyman Nouraey

    2017-06-01

    Full Text Available The study aimed at investigating the use and effectiveness of a learning resources center, which is generally known as a library. In doing so, eight elements were investigated through an author-designed questionnaire. Each of these elements tended to delve into certain aspects of the afore-mentioned center. These elements included a students’ visits frequency, b availability of books related to modules, c center facilities, d use of discussion rooms, e use of online resources, f staff cooperation, g impact on knowledge enhancement, and, h recommendation to peers. Eighty undergraduate students participated in the study. Participants were then asked to read the statements carefully and choose one of the five responses provided, ranging from strongly agree to strongly disagree. Data were analyzed based on 5-point Likert Scale. Findings of the study revealed that participants were mostly in agreement with all eight statements provided in the questionnaire, which were interpreted as positive feedbacks from the students. Then, the frequencies of responses by the participants were reported. Finally, the results were compared and contrasted and related discussions on the effectiveness of libraries and learning resources centers on students’ learning performances and outcomes were made.

  4. Fostering the development of effective person-centered healthcare communication skills: an interprofessional shared learning model.

    Science.gov (United States)

    Cavanaugh, James T; Konrad, Shelley Cohen

    2012-01-01

    To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.

  5. Preparedness and Emergency Response Learning Centers: supporting the workforce for national health security.

    Science.gov (United States)

    Richmond, Alyson L; Sobelson, Robyn K; Cioffi, Joan P

    2014-01-01

    The importance of a competent and prepared national public health workforce, ready to respond to threats to the public's health, has been acknowledged in numerous publications since the 1980s. The Preparedness and Emergency Response Learning Centers (PERLCs) were funded by the Centers for Disease Control and Prevention in 2010 to continue to build upon a decade of focused activities in public health workforce preparedness development initiated under the Centers for Public Health Preparedness program (http://www.cdc.gov/phpr/cphp/). All 14 PERLCs were located within Council on Education for Public Health (CEPH) accredited schools of public health. These centers aimed to improve workforce readiness and competence through the development, delivery, and evaluation of targeted learning programs designed to meet specific requirements of state, local, and tribal partners. The PERLCs supported organizational and community readiness locally, regionally, or nationally through the provision of technical consultation and dissemination of specific, practical tools aligned with national preparedness competency frameworks and public health preparedness capabilities. Public health agencies strive to address growing public needs and a continuous stream of current and emerging public health threats. The PERLC network represented a flexible, scalable, and experienced national learning system linking academia with practice. This system improved national health security by enhancing individual, organizational, and community performance through the application of public health science and learning technologies to frontline practice.

  6. Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-01-01

    Full Text Available Neutral interstellar H-atoms penetrate into the inner heliosphere and upon the event of ionization are converted into pick-up ions (PUIs. The magnetized solar wind flow incorporates these ions into the plasma bulk and enforces their co-motion. By nonlinear interactions with wind-entrained Alfvén waves, these ions are then processed in the comoving velocity space. The complete pick-up process is connected with forces acting back to the original solar wind ion flow, thereby decelerating and heating the solar wind plasma. As we show here, the resulting deceleration cannot be treated as a pure loading effect, but requires adequate consideration of the action of the pressure of PUI-scattered waves operating by the PUI pressure gradient. Hereby, it is important to take into proper account the stochastic acceleration which PUIs suffer from at their convection out of the inner heliosphere by quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in view of the most likely values of interstellar gas parameters, such as an H-atom density of 0.12 cm-3 . Solar wind protons (SWPs appear to be globally heated in their motion to larger solar distances. Ascribing the needed heat transfer to the action of suprathermal PUIs, which drive MHD waves that are partly absorbed by SWPs, in order to establish the observed SWP polytropy, we can obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic SWP behaviour with a decreasing polytropic index at increasing distances. This also allows one to calculate the average percentage of initial pick-up energy fed into the thermal proton energy. In a first order evaluation of this expression, we can estimate that about 10% of the initial PUI injection energy is eventually

  7. Opening a Window on ICME Evolution and GCR Modulation During Propagation in the Innermost Heliosphere

    Science.gov (United States)

    Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.

    2017-12-01

    We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger

  8. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  9. Photoemission of Single Dust Grains for Heliospheric Conditions

    Science.gov (United States)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  10. The Development of a Robot-Based Learning Companion: A User-Centered Design Approach

    Science.gov (United States)

    Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong

    2015-01-01

    A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…

  11. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  12. Integrating Adaptive Games in Student-Centered Virtual Learning Environments

    Science.gov (United States)

    del Blanco, Angel; Torrente, Javier; Moreno-Ger, Pablo; Fernandez-Manjon, Baltasar

    2010-01-01

    The increasing adoption of e-Learning technology is facing new challenges, such as how to produce student-centered systems that can be adapted to each student's needs. In this context, educational video games are proposed as an ideal medium to facilitate adaptation and tracking of students' performance for assessment purposes, but integrating the…

  13. Observations and Analyses of Heliospheric Faraday Rotation of a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques

    Science.gov (United States)

    Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian

    2017-04-01

    Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic

  14. The radial distribution of cosmic rays in the heliosphere at solar maximum

    Science.gov (United States)

    McDonald, F. B.; Fujii, Z.; Heikkila, B.; Lal, N.

    2003-08-01

    To obtain a more detailed profile of the radial distribution of galactic (GCRs) and anomalous (ACRs) cosmic rays, a unique time in the 11-year solar activity cycle has been selected - that of solar maximum. At this time of minimum cosmic ray intensity a simple, straight-forward normalization technique has been found that allows the cosmic ray data from IMP 8, Pioneer 10 (P-10) and Voyagers 1 and 2 (V1, V2) to be combined for the solar maxima of cycles 21, 22 and 23. This combined distribution reveals a functional form of the radial gradient that varies as G 0/r with G 0 being constant and relatively small in the inner heliosphere. After a transition region between ˜10 and 20 AU, G 0 increases to a much larger value that remains constant between ˜25 and 82 AU. This implies that at solar maximum the changes that produce the 11-year modulation cycle are mainly occurring in the outer heliosphere between ˜15 AU and the termination shock. These observations are not inconsistent with the concept that Global Merged Interaction. regions (GMIRs) are the principal agent of modulation between solar minimum and solar maximum. There does not appear to be a significant change in the amount of heliosheath modulation occurring between the 1997 solar minimum and the cycle 23 solar maximum.

  15. Effect of learner-centered teaching on motivation and learning strategies in a third-year pharmacotherapy course.

    Science.gov (United States)

    Cheang, Kai I

    2009-05-27

    To develop, implement, and assess a learner-centered approach to teaching a third-year pharmacotherapy course in a doctor of pharmacy (PharmD) program. The pharmacotherapy course was restructured according to the learner-centered approach. The Motivated Strategies for Learning Questionnaire (MSLQ) was administered to students before and after taking the course, and changes in MSLQ subscales from baseline were evaluated. Students' response to the learner-centered approach and characteristics associated with MSLQ scores were also evaluated. Compared to baseline, students' intrinsic goal orientation control of learning beliefs, self-efficacy, critical thinking, and metacognitive self-regulation improved after taking the course. Students responded positively to the learner-centered approach. Additionally, students with a clinical practice career orientation or who prepared frequently for classes scored higher on several MSLQ domains. The learner-centered approach was effective in promoting several domains of motivation and learning strategies in a third-year pharmacotherapy course.

  16. A cone-like enhancement of polar solar corona plasma and its influence on heliospheric particles

    Science.gov (United States)

    Grzedzielski, Stan; Sokół, Justyna M.

    2017-04-01

    We will present results of the study of the properties of the solar wind plasma due to rotation of the polar solar corona. We focus in our study on the solar minimum conditions, when the polar coronal holes are well formed and the magnetic field in the solar polar corona exhibit almost regular "ray-like" structure. The solar rotation twists the magnetic field lines of the expanding fast polar solar wind and the resulting toroidal component of the field induces a force directed towards the rotation axis. This phenomenon is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. like in AGN jets). The pinch compresses the polar solar corona plasma and forms a cone-like enhancement of the solar wind density aligned with the rotation axis in the spherically symmetric case. The effect is likely very dynamic due to fast changing conditions in the solar corona, however in the study presented here, we assume a time independent description to get an order-of-magnitude estimate. The weak pinch is treated as a first-order perturbation to the zeroth-order radial flow. Following the assumptions based on the available knowledge about the plasma properties in the polar solar corona we estimated the most typical density enhancements. The cone like structure may extend as far from the Sun as tens of AU and thus will influence the heliospheric particles inside the heliosphere. An increase of the solar wind density in the polar region may be related with a decrease of the solar wind speed. Such changes of the solar wind plasma at high latitudes may modify the charge-exchange and electron impact ionization rates of heliospheric particles in interplanetary space. We will present their influence on the interstellar neutral gas and energetic neutral atoms observed by IBEX.

  17. Particle propagation and acceleration in the heliosphere

    International Nuclear Information System (INIS)

    Valdes-Galicia, J.F.; Quenby, J.J.; Mousas, X.

    1988-01-01

    A realistic model of interplanetary magnetic field perturbations has been constructed based on data taken on board spacecraft. The model has been used to study numerically pitch angle scattering suffered by energetic particles (1-100 MeV) as they propagate in the Heliosphere. These numerical experiments allow the determination of the pitch angle diffusion coefficient Dμ and the associated mean free path λ. Dμ is found to be always smaller than implied by quasi linear theory, leading to radial mean free paths (λ r ≅ 0.015 AU) that are at least 3 times larger. Inclusion of solar wind velocity measurements in the model producing V x B random electric fields permits the study of stochastic acceleration caused by these fields. Initial results show that these processes might be able to overcome the effects of adiabatic cooling caused by the expansion of the solar wind and thus be of some influence in cosmic ray acceleration when extrapolated to other astrophysical environments

  18. Professionals calling in lifelong learning centers

    Directory of Open Access Journals (Sweden)

    Victor Manuel Monteiro Seco

    2013-06-01

    Full Text Available Purpose: This study aims to understand how the way people see their work and the authentizotic character of their organizational climate contribute to the building of a Great Place to Work. Design/methodology/approach: This paper presents the results of a quantitative investigation that correlate the perceptions of organizational climate and the work orientations of professionals with different occupations on Portuguese lifelong education centers. Findings: The study indicates that all the core elements of an authentizotic organization contribute to explain what people potentially expect from their companies:  adequate  material  conditions  plus  a  meaningful contribution. Practical implications: The study has implications in the future for National Qualification Agency directors, education politicians and human resource managers who are responsible for providing good expectations within a healthy context of talent retention. Originality/value: The novel contribution of this paper is the finding that employee’s work orientations and authentizotic climate are related to each other in a Lifelong learning Center in the public education sector.

  19. Criteria and foundations for the implementation of the Learning Resource Centers

    OpenAIRE

    Raquel Zamora Fonseca

    2013-01-01

    Review the criteria and rationale basis for the implementation of research - library and learning resource centers. The analysis focused on the implementation of CRAIs in university libraries and organizational models that can take.

  20. Large-scale density structures in the outer heliosphere

    Science.gov (United States)

    Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.

  1. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Kleimann, J.; Fichtner, H. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Kühl, P.; Kopp, A.; Heber, B. [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel (Germany); Kissmann, R. [Institut für Astro- und Teilchenphysik, Universität Innsbruck (Austria)

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  2. Organizational Transformation from the Inside Out: Reinventing the MIT Center for Organizational Learning.

    Science.gov (United States)

    Clanon, Jeff

    1999-01-01

    The 2-year process by which the Massachusetts Institute of Technology's Center for Organizational Learning transformed into the self-governed Society for Organizational Learning illustrates new ways of conceiving organizations, the capabilities required for change, and critical elements of the process: diverse representation, grounding in business…

  3. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  4. Student-Centered Transformative Learning in Leadership Education: An Examination of the Teaching and Learning Process

    Science.gov (United States)

    Haber-Curran, Paige; Tillapaugh, Daniel W.

    2015-01-01

    Innovative and learner-centered approaches to teaching and learning are vital for the applied field of leadership education, yet little research exists on such pedagogical approaches within the field. Using a phenomenological approach in analyzing 26 students' reflective narratives, the authors explore students' experiences of and process of…

  5. STUDENT-CENTERED LEARNING AND CROSS CULTURAL UNDERSTANDING IN LEARNING INTODUCTION TO LITERATURE TO IMPROVE THE STUDENTS MORALITY AND MULTICULTURAL VALUES

    Directory of Open Access Journals (Sweden)

    Siminto Siminto

    2017-04-01

    Full Text Available Previously the paradigm change was done from the teacher centered to the student centered in teaching learning process. It was expected to be able to encourage the students to be involved in building their knowledge, attitude, and character. Besides that, English learners did not understand about the native culture and morality values to the language that they are learning. Cross cultural understanding knowledge is very useful to improve the students‘ ability in recognizing the dissimilarity culture and live together in the middle of the dissimilarity culture. This research was based on the qualitative research principle. The research type used was qualitative study by using action research design. Subject of this research was the fourth semester students who have programmed Introduction to Literature in English Study Program at Palangkaraya State Islamic Institute in academic year 2014/2015, consisted of two learning group. Based on the research findings, by implementing of student-centered learning and cross cultural understanding, it showed that they can increase: (1 the students‘ readiness, being active, seriousness in analyzing English literature text; (2 the students‘ performance in doing of tasks given to each students to be able to share their understanding about English literature text to the other students; (3 the students‘ learning quality, academic achievement, interest, response in learning of Introduction to Literature related to literature text analysis concept mastering; (4 the students‘ morality and multicultural values. It could be seen from the students‘ study result, literature text analysis result, and the students‘ character.

  6. Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet

    Science.gov (United States)

    Isavnin, A.; Vourlidas, A.; Kilpua, E. K. J.

    2014-06-01

    Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua ( Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈ 2 to 30 R⊙ with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈ 30 R⊙ to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes' deflection occurs predominantly below 30 R⊙, a significant amount of deflection and rotation happens between 30 R⊙ and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates

  7. Criteria and foundations for the implementation of the Learning Resource Centers

    Directory of Open Access Journals (Sweden)

    Raquel Zamora Fonseca

    2013-03-01

    Full Text Available Review the criteria and rationale basis for the implementation of research - library and learning resource centers. The analysis focused on the implementation of CRAIs in university libraries and organizational models that can take.

  8. Solar Heliospheric and INterplanetary Environment (SHINE) Students - Student Representatives' Perspectives

    Science.gov (United States)

    Pahud, D. M.; Niembro, T.

    2014-12-01

    The SHINE workshop is an annual meeting of solar and heliospheric scientists which, in addition to aiming to improve understanding of solar disturbances and their propagation to, and effect, on the Earth (shinecon.org), is dedicated to actively supporting students. This dedication is substantiated in part through the National Science Foundation (NSF) providing funding for student attendance to the workshop, which enables student participation. Another example of SHINE's commitment to its student members is the incorporation of a Student Day prior to the workshop since 2003, entirely organized and run by two student representatives. While there are variations in format from year to year, Student Day consists of tutorials and research talks exclusively by student volunteers to an audience of only students. The day is intended to provide a low-stress environment for students to learn about the various topics addressed during the workshop, to ask questions freely, and to engage in scientific discussion with other students which hopefully is a catalyst for collaboration. As a result of positive experiences, over the past decade student attendance and participation in the workshop have increased. At the SHINE 2014 workshop, nearly a third of attendees were students. SHINE student visibility has increased over the years, with student posters being advertised at breakfast, inclusion of a student day summary by the student representatives during a plenary session, and continued support from the steering committee. Students are also promoting a broader impact of SHINE sciences via increased social media presence. From a student representative's perspective, SHINE has built and fostered a healthy student community and encourages students to engage in shaping the future of the field.

  9. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY. II. TRANSIENT FEATURES AND RIGIDITY DEPENDENCE

    International Nuclear Information System (INIS)

    Florinski, V.; Roux, J. A. le; Stone, E. C.; Cummings, A. C.

    2015-01-01

    In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle’s Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion’s rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout

  10. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY. II. TRANSIENT FEATURES AND RIGIDITY DEPENDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Florinski, V.; Roux, J. A. le [Department of Space Sciences, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Stone, E. C.; Cummings, A. C. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle’s Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion’s rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout.

  11. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    International Nuclear Information System (INIS)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K.

    2014-01-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ε N ≡ ΔN/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ε N in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ΔN have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ≲ ε N ≲ 0.02 and does not vary appreciably with heliocentric distance. We also find that ε N declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  12. 3D Embedded Reconfigurable Riometer for Heliospheric Space Missions

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a new three-dimensional embedded reconfigurable Riometer for performing remote sensing of planetary magnetospheres. The system couples the in situ measurements of probe or orbiter magnetospheric space missions. The new prototype features a multi-frequency mode that allows measurements at frequencies, where heliospheric physics events' signatures are distinct on the ionized planetary plasma. For our planet similar measurements are meaningful for frequencies below 55 MHz. Observation frequencies above 55 MHz yield to direct measurements of the Cosmic Microwave Background intensity. The system acts as a prototyping platform for subsequent space exploration phased-array imaging experiments, due to its high-intensity scientific processing capabilities. The performance improvement over existing systems in operation is in the range of 80%, due to the state-of-the-art hardware and scientific processing used.

  13. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS): Steps Towards Investigating Bz Propagation Between the Sun and the Earth

    Science.gov (United States)

    Bisi, Mario M.; Fallows, Richard A.; Sobey, Charlotte; Eftekhari, Tarraneh; Jensen, Elizabeth A.; Jackson, Bernard V.; Yu, Hsiu-Shan; Hick, P. Paul; Odstrcil, Dusan; Tokumaru, Munetoshi; Oyuki Chang, M. T.

    2016-04-01

    Space weather - analogous to terrestrial weather (describing the changing pressure, temperature, wind, and humidity conditions on Earth) - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such on the Earth. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects including forecasting. Understanding and forecasting space weather near the Earth is of critical importance to protecting our modern-day reliance on satellites, global-communications and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. This includes both military and commercial considerations. Two ground-based radio-observing techniques that can add to and lead our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modelling and reconstruction techniques using other, additional data as input to support and better-interpret individual case-study results.

  14. Modeling of coronal mass ejections with the STEREO heliospheric imagers verified with in situ observations by the Heliophysics System Observatory

    Science.gov (United States)

    Möstl, Christian; Isavnin, Alexey; Kilpua, Emilia; Bothmer, Volker; Mrotzek, Nicolas; Boakes, Peter; Rodriguez, Luciano; Krupar, Vratislav; Eastwood, Jonathan; Davies, Jackie; Harrison, Richard; Barnes, David; Winslow, Reka; Helcats Team

    2017-04-01

    We present the first study to verify modeling of CMEs as observed by the heliospheric imagers on the two STEREO spacecraft with a large scale dataset of in situ plasma and magnetic field observations from the Heliophysics System Observatory, including MESSENGER, VEX, Wind, and the in situ measurements on the two STEREO spacecraft. To this end, we have established a new interplanetary CME catalog (ICMECAT) for these spacecraft by gathering and updating individual ICME lists. In addition, we have re-calculated the in situ parameters in a consistent way, resulting in 668 events observed between 2007-2015. We then calculated the efficacy of the STEREO/HI instruments for predicting (in hindsight) with the SSEF30 model the arrival time and speed of CMEs as well as hit/miss ratios. We also show how ICMECAT gives decent statistics concerning CME impacts on all of the terrestrial planets, including Mars. The results show some major implications for future heliospheric imagers which may be used for space weather forecasting. Our effort should also serve as a baseline for the upcoming new era in heliospheric science with Solar Orbiter, Solar Probe Plus, BepiColombo returning partly comparable observations in the next decade. The presented work has received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement No. 606692 [HELCATS].

  15. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  16. The Comparison between Teacher Centered and Student Centered Educational Methods

    Directory of Open Access Journals (Sweden)

    M Anvar

    2009-02-01

    Full Text Available Background and Purpose: Various approaches to learning are suggested & practiced. The traditional medical education were more teacher centered oriented . In this method the students’ involvement in the process of learning is not remarkable, but the new approach to medical education supports the students involvement. This study evaluated the various method of lecturing considering students involvements.Methods: One hundred two first year medical and nursing students involved in this study and their opinion about these two methods of learning were obtained by filling of a questionnaire. The subject of the lectures was “general psychology” which was carried out 50% by the students and 50% by the teacher. The statistical analysis was carried out by SPSS program.Results: Considering students opinion in student-centered method the various aspect of learning such as mutual understanding, use of textbooks and references were significantly increased , whereasother aspects of learning such as self esteem, study time, innovation, and study attitude though were improved, but were not significant as compared with teacher centered method. In teacher-centeredmethod the understanding of the subjects was significantly increased .Other aspects of learning such as motivation and concentration were improved but not significantly as compared with studentcentered method.Conclusion: As the result showed student centered method was favored in several aspects of learning while in teacher centered method only understanding of the subject was better . Careful choice of teaching method to provide a comprehensive learning experience should take into account these differences.Key words: TEACHER CENTERED, STUDENT CENTERED, LEARNING

  17. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  18. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Science.gov (United States)

    2010-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT... managing work-based learning? (a) The center operator must emphasize and implement work-based learning...

  19. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  20. Automated Library Networking in American Public Community College Learning Resources Centers.

    Science.gov (United States)

    Miah, Adbul J.

    1994-01-01

    Discusses the need for community colleges to assess their participation in automated library networking systems (ALNs). Presents results of questionnaires sent to 253 community college learning resource center directors to determine their use of ALNs. Reviews benefits of automation and ALN activities, planning and communications, institution size,…

  1. Solar activity and heliosphere-wide cosmic ray modulation in mid-1982

    International Nuclear Information System (INIS)

    Cliver, E.W.; Mihalov, J.D.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Schwenn, R.

    1987-01-01

    A major episode of flare activity in June and July 1982 was accompaniedby a pair of heliosphere-wide cosmic ray modulation events. In each case, a large Forbush decrease (FD) at earth was followed in turn by apparently related decreases at Pioneer 11 (P11) and Pioneer 10 (P10). The Pioneer spacecraft were separated by --155 0 in ecliptic longitude. We reviewed white light coronagraph and near-sun (≤1 AU) satellite data to identify plausible solar origins of these modulation events. The first widespread intensity decrease (FD 1) can be attributed to the combined effects of a backside flare on June 3 from solar active region 18382/18383, located 23 0 in ecliptic longitude from Pioneer 10, and a visible disk flare from 18405 on June 6, when this region was 9 0 from Pioneer 11. The second widespread modulation event during this period (FD 2) may be linked to flares from active region 18474 on July 12 and 22. The July 12 flare was located 34 0 in azimuth from Pioneer 11, and the July 22 flare was 24 0 from Pioneer 10. Since even fast shocks would take --1 month to propagate to Pioneer 11 (12 AU) and --2 months to reach Pioneer 10 (28 AU) in mid-1982, these ''one-to-one'' associations must be regarded with caution. The processes of entrainment and coalescence can cause a given traveling interplanetary disturbance to lose its identify enroute to the outer heliosphere. The fact that we were able to identify plausible solar flare candidates for each of the four Forbushlike decreases observed at the Pioneer satellites (two each at P10 and P11), however, removes the need to invoke a chock from a single flare as the sole cause of either FD 1 (at both P10 and P11) or FD 2

  2. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  3. Meaningful Learning Moments on a Family Medicine Clerkship: When Students Are Patient Centered.

    Science.gov (United States)

    Huang, William Y; Rogers, John C; Nelson, Elizabeth A; Wright, Crystal C; Teal, Cayla R

    2016-04-01

    Reflection after patient encounters is an important aspect of clinical learning. After our medical school instituted a reflection paper assignment for all clerkships, we wanted to learn about the types of encounters that students found meaningful on a family medicine clerkship and how they impacted students' learning. Family and Community Medicine Clerkship students completed a reflection paper after the clerkship, based on guidelines that were used for all clerkship reflection papers at our medical school. Two reviewers independently organized student responses into themes and then jointly prioritized common themes and negotiated any initial differences into other themes. A total of 272 reflection papers describing an actual learning moment in patient care were submitted during the study period of January 2011--December 2012. In describing actions performed, students most frequently wrote about aspects of patient-centered care such as listening to the patient, carefully assessing the patient's condition, or giving a detailed explanation to the patient. In describing effects of those actions, students wrote about what they learned about the patient-physician interaction, the trust that patients demonstrated in them, the approval they gained from their preceptors, and the benefits they saw from their actions. An important contribution of a family medicine clerkship is the opportunity for students to further their skills in patient-centered care and realize the outcomes of providing that type of care.

  4. Progress of the Architectural Competition: Learning Center, the Lausanne Example

    Directory of Open Access Journals (Sweden)

    Mirjana Rittmeyer

    2006-07-01

    Full Text Available Point of entry to the Ecole Polytechnique Fédérale de Lausanne (EPFL, the Learning Center will be a place to learn, to obtain information, and to live. Replacing and improving the old main library, this new building will gradually assimilate all EPFL department libraries collections and services, as they are integrated into a global information system. Conceived as the place for those who are learning, mainly students, who have no personal working area on the campus, it is designed to adapt itself to the ‘seasons’ of academic life throughout the year (flexibility and modularity of rooms, extended opening hours during exam periods. It will take into account group working habits (silence vs. noise, changes in the rhythm of student life (meals, working alone, discussions, etc., and other environmental factors. Of course the needs of EPFL staff and alumni, local industry and citizens have also been carefully considered in the design. By offering a multitude of community functions, such as a bookshop, cafeteria and restaurant services, and rooms for relaxation and discussion, the Learning Center will link the campus to the city. Areas devoted to exhibition and debate will also be included, enforcing its role as an interactive science showcase, in particular for those technologies related to the research and teaching of the EPFL. The presentation described the process and steps towards the actual realisation of such a vital public space: from the programme definition to the collaboration with the bureau of architects (SAANA, Tokyo who won the project competition, the speakers showed what are the challenges and lessons already taken when working on this major piece of architecture, indeed the heart of the transformation of the technical school build in the 1970s into a real 2000s campus.

  5. Short- and long-term efficacy of intragastric air-filled balloon (Heliosphere® BAG) among obese patients.

    Science.gov (United States)

    Giuricin, M; Nagliati, C; Palmisano, S; Simeth, C; Urban, F; Buri, L; Balani, A; de Manzini, N

    2012-11-01

    Obesity is an increasing health problem worldwide. The intragastric balloon as a temporary endoscopic treatment of obesity can play an important role among the aforementioned group of obese individuals. It can also be used as a preoperative test before subjecting patients to restrictive bariatric surgery. Furthermore, the intragastric device may be applied to patients affected by severe obesity as a "bridge treatment" before they undergo major surgery in order to reduce chances of operation-related risks. To date, there are insufficient data in the literature on the long-term results of the intragastric balloon. Our study includes an analysis of our experience with Heliosphere® BAG from 2006 through to 2010, concerning early weight loss and weight loss maintenance over at least 18 months since the device's removal. The 32 patients who completed the 6-month treatment had recorded a mean weight loss of 12.66 kg and a mean overweight loss of 24.37 % (SD, 12.74). A total of 16 patients are subjected to an 18-month follow-up. Their pretreatment and long-term body mass index (BMI) were calculated: 6 months later, when devices were removed, they showed a mean weight of 99.75 kg (SD, 17.90; p < 0.001) and a mean weight loss of 13.62 kg and 26.14 % (SD, 12.79). 18 months after removing Heliosphere® BAG, the 16 patients' mean BMI was 37.28 kg/m² (SD, 5.41; p = 0.004), with a mean weight of 103.56 kg (SD 17.25; p = 0.0125), and a mean weight loss of 9.8 kg or 18.2 % (SD, 12.07). Heliosphere® BAG enables modest short-term weight loss with little side effects, although mid/long-term follow-up may entail partial weight gain. We believe it can be considered a useful bridge treatment in bariatric surgery in order to reduce chances of preoperative risks.

  6. Challenges to the Global Concept of Student-Centered Learning with Special Reference to the United Arab Emirates: "Never Fail a Nahayan"

    Science.gov (United States)

    Jackson, Liz

    2015-01-01

    Student-centered learning has been conceived as a Western export to the East and the developing world in the last few decades. Philosophers of education often associate student-centered learning with frameworks related to meeting the needs of individual pupils: from Deweyan experiential learning, to the "pedagogy of the oppressed" and…

  7. Integrating Student-Centered Learning in Finance Courses: The Case of a Malaysian Research University

    Science.gov (United States)

    Janor, Hawati; Rahim, Ruzita Abdul; Rahman, Aisyah Abdul; Auzairy, Noor Azryani; Hashim, Noor Azuan; Yusof, Muhamad Zain

    2013-01-01

    The student-centered learning (SCL) approach is an approach to education that focuses on learners and their needs, rather than relying upon the input of the teacher's. The present paper examines how the SCL approach is integrated as a learner-centered paradigm into finance courses offered at a business school in a research university in Malaysia.…

  8. Learning Center and Study Carrels: A Comparative Study. Technical Report #18.

    Science.gov (United States)

    Chun, Sherlyn; And Others

    This Kamehameha Early Education Program (KEEP) report presents a comparative study of the work rates of kindergarten and first grade children in two classroom environments: a learning-center and a study-carrel environment. The subjects, seven matched pairs of kindergarten and first grade students, were chosen on the basis of the results of a…

  9. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  10. Outer heliospheric radio emissions. II - Foreshock source models

    Science.gov (United States)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  11. Perspectives on learning through research on critical issues-based science center exhibitions

    Science.gov (United States)

    Pedretti, Erminia G.

    2004-07-01

    Recently, science centers have created issues-based exhibitions as a way of communicating socioscientific subject matter to the public. Research in the last decade has investigated how critical issues-based installations promote more robust views of science, while creating effective learning environments for teaching and learning about science. The focus of this paper is to explore research conducted over a 10-year period that informs our understanding of the nature of learning through these experiences. Two specific exhibitions - Mine Games and A Question of Truth - provide the context for discussing this research. Findings suggest that critical issues-based installations challenge visitors in different ways - intellectually and emotionally. They provide experiences beyond usual phenomenon-based exhibitions and carry the potential to enhance learning by personalizing subject matter, evoking emotion, stimulating dialogue and debate, and promoting reflexivity. Critical issues-based exhibitions serve as excellent environments in which to explore the nature of learning in these nonschool settings.

  12. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  13. [A Predictive Model for the Magnetic Field in the Heliosphere and Acceleration of Suprathermal Particles in the Solar Wind

    Science.gov (United States)

    Fisk, L. A.

    2005-01-01

    The purpose of this grant was to develop a theoretical understanding of the processes by which open magnetic flux undergoes large-scale transport in the solar corona, and to use this understanding to develop a predictive model for the heliospheric magnetic field, the configuration for which is determined by such motions.

  14. Service-Learning. National Dropout Prevention Center/Network Newsletter. Volume 22, Number 4

    Science.gov (United States)

    Duckenfield, Marty, Ed.

    2011-01-01

    The "National Dropout Prevention Newsletter" is published quarterly by the National Dropout Prevention Center/Network. This issue contains the following articles: (1) Dropouts and Democracy (Robert Shumer); (2) 2011 NDPN Crystal Star Winners; (3) Service-Learning as Dropout Intervention and More (Michael VanKeulen); and (4) Teacher…

  15. SUNWARD-PROPAGATING ALFVÉNIC FLUCTUATIONS OBSERVED IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); Belcher, John W.; Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Jiansen, E-mail: hli@spaceweather.ac.cn [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China)

    2016-06-10

    The mixture/interaction of anti-sunward-propagating Alfvénic fluctuations (AFs) and sunward-propagating Alfvénic fluctuations (SAFs) is believed to result in the decrease of the Alfvénicity of solar wind fluctuations with increasing heliocentric distance. However, SAFs are rarely observed at 1 au and solar wind AFs are found to be generally outward. Using the measurements from Voyager 2 and Wind , we perform a statistical survey of SAFs in the heliosphere inside 6 au. We first report two SAF events observed by Voyager 2 . One is in the anti-sunward magnetic sector with a strong positive correlation between the fluctuations of magnetic field and solar wind velocity. The other one is in the sunward magnetic sector with a strong negative magnetic field—velocity correlation. Statistically, the percentage of SAFs increases gradually with heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These results provide new clues for understanding the generation mechanism of SAFs.

  16. Forbush decreases and particle acceleration in the outer heliosphere

    International Nuclear Information System (INIS)

    Van Allen, J.A.; Mihalov, J.D.

    1990-01-01

    Major solar flare activity in 1989 has provided examples of the local acceleration of protons at 28 AU (Pioneer 11) and of the propagation of Forbush decreases in galactic cosmic ray intensity to a heliocentric radial distance of 47 AU (Pioneer 10). The combination of these and previous data at lesser distances shows (a) that Forbush decreases propagate with essentially constant magnitude to (at least) 47 AU and with similar magnitude at widely different ecliptic longitudes and (b) that the times for recovery from such decreases become progressively greater as the radial distance increases, being of the order of months in the outer heliosphere. A phenomenological scheme for (b) is proposed and fresh support is given to the hypothesis that the solar cycle modulation of the galactic cosmic ray intensity is attributable primarily to overlapping Forbush decreases which are more frequent and of greater magnitude near times of maximum solar activity than at times of lesser activity

  17. Solar and Heliospheric Data Requirements: Going Further Than L1

    Science.gov (United States)

    Szabo, A.

    2011-01-01

    Current operational space weather forecasting relies on solar wind observations made by the ACE spacecraft located at the L1 point providing 30-40 minutes warning time. Some use is also made of SOHO and STEREO solar imaging that potentially can give multiple days of warning time. However, our understanding of the propagation and evolution of solar wind transients is still limited resulting in a typical timing uncertainty of approximately 10 hours. In order to improve this critical understanding, a number of NASA missions are being planned. Specifically the Solar Probe Plus and Solar Orbiter missions will investigate the inner Heliospheric evolution of coronal mass ejections and the acceleration and propagation of solar energetic particles. In addition, a number of multi-spacecraft concepts have been studied that have the potential to significantly improve the accuracy of long-term space weather forecasts.

  18. Profile of New Mexico Military Institute's Toles Learning Center: Marketing the LRC into the Twenty-First Century.

    Science.gov (United States)

    McLaren, M. Bruce

    1987-01-01

    Describes New Mexico Military Institute (NMMI), a state-supported combined military high school/junior college. Discusses its new learning resources center, the impact of the center on the community, and efforts to promote a greater demand for center services and raise funds for the facility. Recommends 14 marketing strategies. (DMM)

  19. Neuromorphic cognitive systems a learning and memory centered approach

    CERN Document Server

    Yu, Qiang; Hu, Jun; Tan Chen, Kay

    2017-01-01

    This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromo...

  20. Kennedy Space Center's NASA/Contractor Team-Centered Total Quality Management Seminar: Results, methods, and lessons learned

    Science.gov (United States)

    Kinlaw, Dennis C.; Eads, Jeannette

    1992-01-01

    It is apparent to everyone associated with the Nation's aeronautics and space programs that the challenge of continuous improvement can be reasonably addressed only if NASA and its contractors act together in a fully integrated and cooperative manner that transcends the traditional boundaries of proprietary interest. It is, however, one thing to assent to the need for such integration and cooperation; it is quite another thing to undertake the hard tasks of turning such a need into action. Whatever else total quality management is, it is fundamentally a team-centered and team-driven process of continuous improvement. The introduction of total quality management at KSC, therefore, has given the Center a special opportunity to translate the need for closer integration and cooperation among all its organizations into specific initiatives. One such initiative that NASA and its contractors have undertaken at KSC is a NASA/Contractor team-centered Total Quality Management Seminar. It is this seminar which is the subject of this paper. The specific purposes of this paper are to describe the following: Background, development, and evolution of Kennedy Space Center's Total Quality Management Seminar; Special characteristics of the seminar; Content of the seminar; Meaning and utility of a team-centered design for TQM training; Results of the seminar; Use that one KSC contractor, EG&G Florida, Inc. has made of the seminar in its Total Quality Management initiative; and Lessons learned.

  1. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered

    Science.gov (United States)

    Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. PMID:27252298

  2. A Study of Time Spent Working at Learning Centers. Technical Report #17.

    Science.gov (United States)

    Omori, Sharon; And Others

    This study examined the proportion of time children in the Kamehameha Early Education Program schools spend at actual school work in learning centers. Systematic time-sampled observations using multiple observers were conducted in December-January and again in March-April. The subjects, 12 children (6 kindergarteners and 6 first graders) were…

  3. Family Literacy Project. Learning Centers for Parents and Children. A Resource Guide.

    Science.gov (United States)

    Crocker, M. Judith, Ed.; And Others

    This guide is intended to help adult education programs establish family literacy programs and create Family Learning Centers in Cleveland Public Schools. The information should assist program coordinators in developing educational components that offer activities to raise the self-esteem of the parents and provide them with the knowledge and…

  4. State of the Art Student Support Services in an IEP Learning Center

    Science.gov (United States)

    Hanson, Jessica; Maxwell, Jeffrey; Mulder, Monika

    2015-01-01

    Intensive English language programs (IEPs) at American universities have the task of recruiting, retaining, and preparing international students for mainstream classes. In order to achieve these tasks, many programs have explored using supplemental instruction (SI) in the form of learning centers (LCs) to support their students. In this study, we…

  5. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    Energy Technology Data Exchange (ETDEWEB)

    Stenborg, Guillermo; Howard, Russell A. [Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-04-10

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.

  6. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    International Nuclear Information System (INIS)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard; Leamon, Robert J.; Gurman, Joseph B.; Olive, Jean-Philippe; Cirtain, Jonathan W.; Hathaway, David H.

    2013-01-01

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior—hemispheric asymmetry is the normal state—the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to

  7. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Gurman, Joseph B. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Olive, Jean-Philippe [Astrium SAS, 6 rue Laurent Pichat, F-75016 Paris (France); Cirtain, Jonathan W.; Hathaway, David H. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the

  8. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    Science.gov (United States)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  9. Intergenerational Learning at a Nature Center: Families Using Prior Experiences and Participation Frameworks to Understand Raptors

    Science.gov (United States)

    Zimmerman, Heather Toomey; McClain, Lucy Richardson

    2014-01-01

    Using a sociocultural framework to approach intergenerational learning, this inquiry examines learning processes used by families during visits to one nature center. Data were collected from videotaped observations of families participating in an environmental education program and a follow-up task to draw the habitat of raptors. Based on a…

  10. Solar wind temperature observations in the outer heliosphere

    Science.gov (United States)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.

  11. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  12. Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, Elvis

    2015-01-01

    The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…

  13. Spatial gradients of GCR protons in the inner heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements

    Science.gov (United States)

    Gieseler, J.; Heber, B.

    2016-05-01

    Context. During the transition from solar cycle 23 to 24 from 2006 to 2009, the Sun was in an unusual solar minimum with very low activity over a long period. These exceptional conditions included a very low interplanetary magnetic field (IMF) strength and a high tilt angle, which both play an important role in the modulation of galactic cosmic rays (GCR) in the heliosphere. Thus, the radial and latitudinal gradients of GCRs are very much expected to depend not only on the solar magnetic epoch, but also on the overall modulation level. Aims: We determine the non-local radial and the latitudinal gradients of protons in the rigidity range from ~0.45 to 2 GV. Methods: This was accomplished by using data from the satellite-borne experiment Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) at Earth and the Kiel Electron Telescope (KET) onboard Ulysses on its highly inclined Keplerian orbit around the Sun with the aphelion at Jupiter's orbit. Results: In comparison to the previous A> 0 solar magnetic epoch, we find that the absolute value of the latitudinal gradient is lower at higher and higher at lower rigidities. This energy dependence is therefore a crucial test for models that describe the cosmic ray transport in the inner heliosphere.

  14. Recurrent Cosmic-ray Variations as a Probe of the Heliospheric Magnetic Field

    Science.gov (United States)

    Burger, R. A.; Engelbrecht, E. E.

    2006-12-01

    A linear relationship between the observed 26-day recurrent cosmic-ray intensity variations and the global latitudinal gradient was first reported by Zhang (1997, ApJ, 488), who made extensive use of Ulysses data. This relationship is seen for all species considered and at all latitudes covered by the spacecraft. Burger and Hitge (2004, ApJL, 617) used a three-dimensional steady-state numerical modulation model and showed that a Fisk-type (Fisk 1996, JGR, 101) heliospheric magnetic field (HMF) can in principle explain these observations, at least at high latitudes. In this progress report we use a refinement of the Fisk-Parker hybrid HMF model of Burger and Hitge (2004) by Kruger (2006, MSc dissertation, NWU University) (see also Kruger, Burger and Hitge 2005, AGU Fall meeting abstracts SH23B-0341) to study these 26-day recurrent variations in more detail with the same modulation code. In Kruger's model the HMF is Parker-like at the highest latitudes, becomes Fisk- like at intermediate latitudes, and becomes Parker-like again in the region swept out by the wavy current sheet. By using an almost continuous range of latitudinal gradients for both solar magnetic polarity cycles and for both protons and electrons - in contrast to the limited number of values used by Burger and Hitge (2004) - the structure of the graphs of amplitude of the recurrent cosmic-ray intensity variations as function of global latitudinal gradient can be studied in detail. This was performed in a 100 AU model heliosphere for solar minimum conditions with the tilt angle of the heliospheric current sheet at 10 degrees. In all cases drift effects are included. We find that these curves for amplitude vs. latitudinal gradient are similar for protons and for electrons. By switching the sign of the modeled amplitudes when the latitudinal gradient becomes negative, the existence of a single relationship between the two quantities can be studied for the whole range of modeled latitudinal gradients. This

  15. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    Science.gov (United States)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  16. From the Outer Heliosphere to the Local Bubble Comparisons of New Observations with Theory

    CERN Document Server

    Linsky, J. L; Möbius, E; Steiger, R

    2009-01-01

    The present volume provides a state-of-the-art synopsis of our current understanding of the dynamic heliosphere, the interstellar clouds surrounding it, the wider neighborhood of the local bubble, and their complex interactions. It is written by many of the researchers who have made key discoveries, observations, and modeling efforts that have led to dramatic progress in the field over the past 25 years. Thus the book is an essential research tool for space scientists and astronomers alike, including graduate students for whom it presents a single-point entrance into this complex yet fascinating field.

  17. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. II. THE WARSAW TEST PARTICLE MODEL (WTPM)

    Energy Technology Data Exchange (ETDEWEB)

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P., E-mail: jsokol@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, 00-716 Warsaw (Poland)

    2015-10-15

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  18. Inner heliosphere spatial gradients of GCR protons and alpha particles in the low GeV range

    Science.gov (United States)

    Gieseler, J.; Boezio, M.; Casolino, M.; De Simone, N.; Di Felice, V.; Heber, B.; Martucci, M.; Picozza, P.

    2013-12-01

    The spacecraft Ulysses was launched in October 1990 in the maximum phase of solar cycle 22, reached its final, highly inclined (80.2°) Keplerian orbit around the Sun in February 1992, and was finally switched off in June 2009. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. In order to investigate the radial and latitudinal gradients of galactic cosmic rays (GCR), it is essential to know their intensity variations for a stationary observer in the heliosphere because the Ulysses measurements reflect not only the spatial but also the temporal variation of the energetic particle intensities. This was accomplished in the past with the Interplanetary Monitoring Platform-J (IMP 8) until it was lost in 2006. Fortunately, the satellite-borne experiment PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) was launched in June 2006 and can be used as a reliable 1 AU baseline for measurements of the KET aboard Ulysses. With these tools at hand, we have the opportunity to determine the spatial gradients of GCR protons and alpha particles at about 0.1 to 1 GeV/n in the inner heliosphere during the extended minimum of solar cycle 23. We then compare these A0 cycle.

  19. Implementation of Cooperative Learning in the Center for Community Service and Continuing Education at Kuwait University

    Science.gov (United States)

    Alansari, Eissa M.

    2006-01-01

    The purpose of this study is to review the success of implementation of cooperative learning in various courses delivered at the Center for Community Service and Continuing Education at Kuwait University. According to recent research in the field of social cognition, learning situations which make use of the social context often achieve superior…

  20. Transformation of an academic medical center: lessons learned from restructuring and downsizing.

    Science.gov (United States)

    Woodard, B; Fottler, M D; Kilpatrick, A O

    1999-01-01

    This article reviews management literature on health care transformation and describes the processes, including restructuring, job redesign, and downsizing, involved in one academic medical center's experience. The article concludes with lessons learned at each of the stages of the transformation process: planning, implementation, and process continuation. Managerial implications for similar transformation efforts in other health care organizations are suggested.

  1. A Case Study of Key Stakeholders' Perceptions of the Learning Center's Effectiveness for English Learners at a District in Central California

    Science.gov (United States)

    Nava, Norma Leticia

    2016-01-01

    This qualitative study explored stakeholders' (administrators, teachers, and parents) perspectives of English learners in the learning center, a response to intervention model, at a school district in Central California. Research existed concerning the yearly academic growth of students in a learning center, but there was a lack of knowledge about…

  2. Enhancements of energetic particles near the heliospheric termination shock.

    Science.gov (United States)

    McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R

    2003-11-06

    The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.

  3. Increasing the Use of Student-Centered Pedagogies from Moderate to High Improves Student Learning and Attitudes about Biology

    Science.gov (United States)

    Connell, Georgianne L.; Donovan, Deborah A.; Chambers, Timothy G.

    2016-01-01

    Student-centered strategies are being incorporated into undergraduate classrooms in response to a call for reform. We tested whether teaching in an extensively student-centered manner (many active-learning pedagogies, consistent formative assessment, cooperative groups; the Extensive section) was more effective than teaching in a moderately student-centered manner (fewer active-learning pedagogies, less formative assessment, without groups; the Moderate section) in a large-enrollment course. One instructor taught both sections of Biology 101 during the same quarter, covering the same material. Students in the Extensive section had significantly higher mean scores on course exams. They also scored significantly higher on a content postassessment when accounting for preassessment score and student demographics. Item response theory analysis supported these results. Students in the Extensive section had greater changes in postinstruction abilities compared with students in the Moderate section. Finally, students in the Extensive section exhibited a statistically greater expert shift in their views about biology and learning biology. We suggest our results are explained by the greater number of active-learning pedagogies experienced by students in cooperative groups, the consistent use of formative assessment, and the frequent use of explicit metacognition in the Extensive section. PMID:26865643

  4. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  5. The CAREL Center for Education Diagnosis and Learning: A Self-Correcting Innovative Model.

    Science.gov (United States)

    Jenny, Albert

    1968-01-01

    The Central Atlantic Regional Educational Laboratory (CAREL) Center for Educational Diagnosis and Learning is a model based on a cybernetic approach for the development of educational programs designed to personalize the student's instructional experiences and humanize his daily living. The CAREL Project has set three major objectives and 12…

  6. Tornadoes: A Center Approach.

    Science.gov (United States)

    Christman-Rothlein, Liz; Meinbach, Anita M.

    1981-01-01

    Information is given on how to put together a learning center. Discusses information and activity packets for a complete learning center on tornadoes including objectives, directions, materials, photographs of physical arrangements, and posttest. (DC)

  7. Scaffolding the design of accessible eLearning content: a user-centered approach and cognitive perspective.

    Science.gov (United States)

    Catarci, Tiziana; De Giovanni, Loredana; Gabrielli, Silvia; Kimani, Stephen; Mirabella, Valeria

    2008-08-01

    There exist various guidelines for facilitating the design, preparation, and deployment of accessible eLearning applications and contents. However, such guidelines prevalently address accessibility in a rather technical sense, without giving sufficient consideration to the cognitive aspects and issues related to the use of eLearning materials by learners with disabilities. In this paper we describe how a user-centered design process was applied to develop a method and set of guidelines for didactical experts to scaffold their creation of accessible eLearning content, based on a more sound approach to accessibility. The paper also discusses possible design solutions for tools supporting eLearning content authors in the adoption and application of the proposed approach.

  8. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  9. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    Science.gov (United States)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  10. LINKING CLASSROOM AND COMMUNITY: A THEORETICAL ALIGNMENT OF SERVICE LEARNING AND A HUMAN-CENTERED DESIGN METHODOLOGY IN CONTEMPORARY COMMUNICATION DESIGN EDUCATION

    Directory of Open Access Journals (Sweden)

    Anneli Bowie

    2016-04-01

    Full Text Available The current emphasis on social responsibility and community collaboration within higher education has led to an increased drive to include service learning in the curriculum. With its emphasis on mutually beneficial collaborations, service learning can be meaningful for both students and the community, but is challenging to manage successfully. From a design education perspective, it is interesting to note that contemporary design practice emphasises a similar approach known as a human-centered design, where users are considered and included throughout the design process. In considering both service learning and human-centred design as foundations for design pedagogy, various philosophical and methodological similarities are evident. The paper explores the relationship between a service learning community engagement approach and a human-centered design approach in contemporary communication design education. To this end, each approach is considered individually after which a joint frame of reference is presented. Butin’s service learning typology, namely the four Rs – respect, reciprocity, relevance and reflection – serves as a point of departure for the joint frame of reference. Lastly, the potential value and relevance of a combined understanding of service learning and human-centered design is considered.

  11. A Tractable Estimate for the Dissipation Range Onset Wavenumber Throughout the Heliosphere

    Science.gov (United States)

    Engelbrecht, N. Eugene; Strauss, R. Du Toit

    2018-04-01

    The modulation of low-energy electrons in the heliosphere is extremely sensitive to the behavior of the dissipation range slab turbulence. The present study derives approximate expressions for the wavenumber at which the dissipation range on the slab turbulence power spectrum commences, by assuming that this onset occurs when dispersive waves propagating parallel to the background magnetic field gyroresonate with thermal plasma particles. This assumption yields results in reasonable agreement with existing spacecraft observations. These expressions are functions of the solar wind proton and electron temperatures, which are here modeled throughout the region where the solar wind is supersonic using a two-component turbulence transport model. The results so acquired are compared with extrapolations of existing models for the dissipation range onset wavenumber, and conclusions are drawn therefrom.

  12. A model for heliospheric flux-ropes

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  13. ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y. [University of Toyama, Faculty of Human Development, 3190, Gofuku, Toyama, 930-8555 (Japan)

    2015-10-20

    The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.

  14. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2004-12-01

    Full Text Available An understanding of how the heliosphere modulates galactic cosmic ray (GCR fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  15. Stephenson Cancer Center

    Science.gov (United States)

    Stephenson Cancer Center at the University of Oklahoma in Oklahoma City is an NCI-designated cancer center at the forefront of NCI-supported cancer research. Learn more about the Stephenson Cancer Center's mission.

  16. Investigating student communities with network analysis of interactions in a physics learning center

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2012-01-01

    Full Text Available Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.

  17. Investigating student communities with network analysis of interactions in a physics learning center

    Science.gov (United States)

    Brewe, Eric; Kramer, Laird; Sawtelle, Vashti

    2012-06-01

    Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC) that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.

  18. Team learning center design principles

    Energy Technology Data Exchange (ETDEWEB)

    Daily, B.; Loveland, J.; Whatley, A. [New Mexico State Univ., Las Cruces, NM (United States)] [and others

    1995-06-01

    This is a preliminary report of a multi-year collaboration of the authors addressing the subject: Can a facility be designed for team learning and would it improve the efficiency and effectiveness of team interactions? Team learning in this context is a broad definition that covers all activities where small to large groups of people come together to work, to learn, and to share through team activities. Multimedia, networking, such as World Wide Web and other tools, are greatly enhancing the capability of individual learning. This paper addresses the application of technology and design to facilitate group or team learning. Many organizational meetings need tens of people to come together to do work as a large group and then divide into smaller subgroups of five to ten to work and then to return and report and interact with the larger group. Current facilities were not, in general, designed for this type of meeting. Problems with current facilities are defined and a preliminary design solution to many of the identified problems is presented.

  19. Elementary School Principals' Learning-Centered Leadership and Educational Outcomes: Implications for Principals' Professional Development

    Science.gov (United States)

    Reardon, R. Martin

    2011-01-01

    This article arises from research in one school district (utilizing the Vanderbilt Assessment of Leadership in Education, VAL-ED) into the relationships among the perceptions of elementary school leaders of their learning-centered leadership, and student achievement on state-mandated tests of reading in Virginia. Beyond the percentage of students…

  20. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory.

    Science.gov (United States)

    Möstl, C; Isavnin, A; Boakes, P D; Kilpua, E K J; Davies, J A; Harrison, R A; Barnes, D; Krupar, V; Eastwood, J P; Good, S W; Forsyth, R J; Bothmer, V; Reiss, M A; Amerstorfer, T; Winslow, R M; Anderson, B J; Philpott, L C; Rodriguez, L; Rouillard, A P; Gallagher, P; Nieves-Chinchilla, T; Zhang, T L

    2017-07-01

    We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.

  1. Teaching torque with 5E learning strategy: an off-center disk case

    Science.gov (United States)

    Balta, Nuri

    2018-01-01

    In this paper, five simple demonstrations with an off-center disk that can be easily constructed and demonstrated in science class are described along with the 5E learning strategy. These demonstrations can be used to help students develop an understanding of the relationship between the centre of mass and torque. These STEM activities are appropriate for high school or first-year college physics, and are expected to engage students during physics courses.

  2. The Case of the Unhappy Sports Fan: Embracing Student-Centered Learning and Promoting Upper-Level Cognitive Skills through an Online Dispute Resolution Simulation

    Science.gov (United States)

    Ponte, Lucille M.

    2006-01-01

    Pedagogical experts contend that students learn best when they are actively involved in and responsible for their own learning. In a student-centered learning environment, the instructor ideally serves primarily as a learning resource or facilitator. With the guidance of the instructor, students in active learning environments strive for…

  3. Lessons Learned from Creating the Public Earthquake Resource Center at CERI

    Science.gov (United States)

    Patterson, G. L.; Michelle, D.; Johnston, A.

    2004-12-01

    The Center for Earthquake Research and Information (CERI) at the University of Memphis opened the Public Earthquake Resource Center (PERC) in May 2004. The PERC is an interactive display area that was designed to increase awareness of seismology, Earth Science, earthquake hazards, and earthquake engineering among the general public and K-12 teachers and students. Funding for the PERC is provided by the US Geological Survey, The NSF-funded Mid America Earthquake Center, and the University of Memphis, with input from the Incorporated Research Institutions for Seismology. Additional space at the facility houses local offices of the US Geological Survey. PERC exhibits are housed in a remodeled residential structure at CERI that was donated by the University of Memphis and the State of Tennessee. Exhibits were designed and built by CERI and US Geological Survey staff and faculty with the help of experienced museum display subcontractors. The 600 square foot display area interactively introduces the basic concepts of seismology, real-time seismic information, seismic network operations, paleoseismology, building response, and historical earthquakes. Display components include three 22" flat screen monitors, a touch sensitive monitor, 3 helicorder elements, oscilloscope, AS-1 seismometer, life-sized liquefaction trench, liquefaction shake table, and building response shake table. All displays include custom graphics, text, and handouts. The PERC website at www.ceri.memphis.edu/perc also provides useful information such as tour scheduling, ask a geologist, links to other institutions, and will soon include a virtual tour of the facility. Special consideration was given to address State science standards for teaching and learning in the design of the displays and handouts. We feel this consideration is pivotal to the success of any grass roots Earth Science education and outreach program and represents a valuable lesson that has been learned at CERI over the last several

  4. Commission for the Accreditation of Birth Centers

    Science.gov (United States)

    ... Learning Login: Commissioners Birth Centers CABC Learning Place Home Accredited Birth Centers Find CABC Accredited Birth Centers What does ... In the Pursuit of Excellence You are here: Home In the ... for the Accreditation of Birth Centers (CABC) provides support, education, and accreditation to ...

  5. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  6. Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning

    DEFF Research Database (Denmark)

    van Engelen, Arna; van Dijk, Anouk C; Truijman, Martine T.B.

    2015-01-01

    implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multicenter MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results...... not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.......Automated segmentation of plaque components in carotid artery MRI is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples...

  7. Exploring student learning profiles in algebra-based studio physics: A person-centered approach

    Science.gov (United States)

    Pond, Jarrad W. T.; Chini, Jacquelyn J.

    2017-06-01

    In this study, we explore the strategic self-regulatory and motivational characteristics of students in studio-mode physics courses at three universities with varying student populations and varying levels of success in their studio-mode courses. We survey students using questions compiled from several existing questionnaires designed to measure students' study strategies, attitudes toward and motivations for learning physics, organization of scientific knowledge, experiences outside the classroom, and demographics. Using a person-centered approach, we utilize cluster analysis methods to group students into learning profiles based on their individual responses to better understand the strategies and motives of algebra-based studio physics students. Previous studies have identified five distinct learning profiles across several student populations using similar methods. We present results from first-semester and second-semester studio-mode introductory physics courses across three universities. We identify these five distinct learning profiles found in previous studies to be present within our population of introductory physics students. In addition, we investigate interactions between these learning profiles and student demographics. We find significant interactions between a student's learning profile and their experience with high school physics, major, gender, grade expectation, and institution. Ultimately, we aim to use this method of analysis to take the characteristics of students into account in the investigation of successful strategies for using studio methods of physics instruction within and across institutions.

  8. Learning from Primary Health Care Centers in Nepal: reflective writings on experiential learning of third year Nepalese medical students

    OpenAIRE

    Dhital, Rolina; Subedi, Madhusudan; Prasai, Neeti; Shrestha, Karun; Malla, Milan; Upadhyay, Shambhu

    2015-01-01

    Background Medical education can play important role in cultivating the willingness among the medical students to work in underprivileged areas after their graduation. Experiential learning through early exposure to primary health care centers could help students better understand the opportunities and challenges of such settings. However, the information on the real experiences and reflections of medical students on the rural primary health care settings from low-income countries like Nepal ...

  9. Person-Centered Learning using Peer Review Method – An Evaluation and a Concept for Student-Centered Classrooms

    Directory of Open Access Journals (Sweden)

    Dominik Dolezal

    2018-02-01

    Full Text Available Using peer assessment in the classroom to increase student engagement by actively involving the pupils in the assessment process has been practiced and researched for decades. In general, the literature suggests using peer review for project-based exercises. This paper analyzes the applicability of peer assessment to smaller exercises at secondary school level and makes recommendations for its use in computer science courses. Furthermore, a school pilot project introducing student-centered classrooms, called “learning office”, is described. Additionally, a concept for the implementation of peer assessment in such student-centered classrooms is outlined. We introduced two traditional secondary school classes consisting of a total of 57 students to the peer assessment method within the scope of the same software engineering course. The peer students assessed two of 13 exercises using the Moodle workshop activity. The students evaluated these two exercises using an anonymous online questionnaire. At the end of the course, they rated each of the 13 exercises regarding their learning motivation. Overall, the anonymous feedback on the peer review exercises was very positive. The students not only obtained more feedback, but also received it in a timelier manner compared to regular teacher assessment. The results of the overall rating of all 13 exercises revealed that the two peer reviewed exercises have been rated significantly better than the other eleven exercises assessed by the teacher. Evidence therefore suggests that peer review is a viable option for small- and medium-sized exercises in the context of computer science education at secondary school level under certain conditions, which we discuss in this paper.

  10. The University of Nebraska at Omaha Center for Space Data Use in Teaching and Learning

    Science.gov (United States)

    Grandgenett, Neal

    2000-01-01

    Within the context of innovative coursework and other educational activities, we are proposing the establishment of a University of Nebraska at Omaha (UNO) Center for the Use of Space Data in Teaching and Learning. This Center will provide an exciting and motivating process for educators at all levels to become involved in professional development and training which engages real life applications of mathematics, science, and technology. The Center will facilitate innovative courses (including online and distance education formats), systematic degree programs, classroom research initiatives, new instructional methods and tools, engaging curriculum materials, and various symposiums. It will involve the active participation of several Departments and Colleges on the UNO campus and be well integrated into the campus environment. It will have a direct impact on pre-service and in-service educators, the K12 (kindergarten through 12th grade) students that they teach, and other college students of various science, mathematics, and technology related disciplines, in which they share coursework. It is our belief that there are many exciting opportunities represented by space data and imagery, as a context for engaging mathematics, science, and technology education. The UNO Center for Space Data Use in Teaching and Learning being proposed in this document will encompass a comprehensive training and dissemination strategy that targets the improvement of K-12 education, through changes in the undergraduate and graduate preparation of teachers in science, mathematics and technology education.

  11. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  12. On the shape and properties of the global heliosphere over the Solar Cycle with Voyager/LECP ions and Cassini/INCA ENAs

    Science.gov (United States)

    Dialynas, Konstantinos; Krimigis, Stamatios; Mitchell, Donald; Decker, Robert; Roelof, Edmond

    2017-04-01

    Voyager 1 (V1) and Voyager 2 (V2) have crossed the termination shock in 2004 (V1) and 2007(V2) and traversing the Heliosheath (HS) in the upstream (nose) hemisphere, while the Ion and Neutral Camera (INCA) on Cassini enables Energetic Neutral Atom (ENA) images of the celestial sphere that place the local ion measurements by each Voyager in a global context. We present an analysis of 5.2-55 keV ENA global images of the HS and 28-53 keV in-situ ions over an 11-year period (2003-2014) that corresponds to the declining phase of solar cycle 23 (SC23) and onset of SC24. The measurements reveal a coherent decrease and recovery between ENA in the global heliosphere and in-situ ions at V1/V2 during this time period, in overlapping energy bands, establishing that the HS ions are the source of >28 keV ENA. The similarity in the overall appearance of the images throughout the INCA energy range (5.2-55 keV), reveals that the source of ENAs at 5.2 keV ENA and ion variations with the Solar Sunspot Numbers (SSN) and solar wind parameters indicates that the Heliosphere responds promptly, within 2-3 years, to outward propagating solar wind changes in both the nose and anti-nose (tail) directions following the Solar Cycle (SC) phases. A detailed latitudinal examination of the global ENA emissions, verifies that the peak intensities between the nose and anti-nose directions are nearly similar, the power law ENA spectral index (γ) is largely the same near the equator in both the nose and anti-nose directions and displays similar spatial dependence with latitude. The totality of the ENA and in situ ion observations, together with the V1 measurement of a 0.5 nT interstellar magnetic field (ISMF) and recent modeling, suggest a "bubble-shape" heliosphere, i.e with little substantial tail-like feature. These observations are essential in determining the context for the measurements anticipated by the forthcoming IMAP mission.

  13. Community Opinion and Satisfaction with the Leadership at an Urban Community Educational Learning Center during an Organizational Transformation Process: A Frontline Perspective from Community Stakeholders

    Science.gov (United States)

    Lewis, Joseph Lee

    2013-01-01

    This study examined selected community stakeholders' perception of the current leadership at their local community educational learning center during an organizational transformation and cultural change process. The transition from a community college to an educational learning center, mandated in 2006 by the Accredition Commission and agreed on…

  14. THE PRODUCTION OF LOW-ENERGY NEUTRONS IN SOLAR FLARES AND THE IMPORTANCE OF THEIR DETECTION IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2012-01-01

    Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy ( ion –1 ) most important for producing low-energy neutrons from these reactions. We calculate escaping-neutron spectra and neutron-capture line yields from ions propagating in a magnetic loop with various kinetic-energy spectra. This study provides the basis for planning inner-heliospheric missions having a low-energy neutron detector. The MESSENGER spacecraft orbiting Mercury has such a detector. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observation of both neutrons and gamma rays with detectors of comparable sensitivity. We find that the neutron-capture line fluence at 1 AU is comparable to the 1-10 MeV neutron fluence at 0.5 AU, and therefore as effective for revealing low-energy ion acceleration. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux allows exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

  15. Blending Formal and Informal Learning Networks for Online Learning

    Science.gov (United States)

    Czerkawski, Betül C.

    2016-01-01

    With the emergence of social software and the advance of web-based technologies, online learning networks provide invaluable opportunities for learning, whether formal or informal. Unlike top-down, instructor-centered, and carefully planned formal learning settings, informal learning networks offer more bottom-up, student-centered participatory…

  16. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  17. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  18. [Technology: training centers--a new method for learning surgery in visceral surgery].

    Science.gov (United States)

    Troidl, H

    1996-01-01

    The importance of training centers can be best described after first answering a few questions like: 1. What kind of surgery will we deal with in the future? 2. What kind of surgeon do we need for this surgery, if it is basically different? 3. How will this surgeon have to be educated/trained for this different surgery? Although I am aware of the fact, that statements about future prospects are usually doomed to fail, I maintain that endoscopic surgery will be an essential part of general surgery. If this is so, surgery will be dominated by extremely complicated technology, new techniques and new instruments. It will be a "different" surgery. It will offer more comfort at the same safety. The surgeon of the future will still need a certain personality; he will still need intuition and creativity. To survive in our society, he will have to be an organiser and even a businessman. Additionally, something new has to be added: he will have to understand modern, complicated technology and will have to use totally different instruments for curing surgical illness. This makes it clear that we will need a different education/training and may be even a different selection of surgeons. We should learn from other professions sharing common interests with surgery, for example, sports where the common interest is achieving most complicated motions and necessarily highly differentiated coordination. Common interest with airline pilots is the target of achieving absolute security. They have a highly differentiated selection and training concept. Training centers may be-under certain prerequisites-a true alternative for this necessary form of training. They must have a concept, i.e. contents and aims have to be defined, structured and oriented on the requirements of surgery for the patient. Responsibility for the concept, performance and control can only be in the hands of Surgical Societies and Universities. These prerequisites correspond most likely to training centers being

  19. wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials

    Science.gov (United States)

    Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P.

    2018-06-01

    We introduce weighted atom-centered symmetry functions (wACSFs) as descriptors of a chemical system's geometry for use in the prediction of chemical properties such as enthalpies or potential energies via machine learning. The wACSFs are based on conventional atom-centered symmetry functions (ACSFs) but overcome the undesirable scaling of the latter with an increasing number of different elements in a chemical system. The performance of these two descriptors is compared using them as inputs in high-dimensional neural network potentials (HDNNPs), employing the molecular structures and associated enthalpies of the 133 855 molecules containing up to five different elements reported in the QM9 database as reference data. A substantially smaller number of wACSFs than ACSFs is needed to obtain a comparable spatial resolution of the molecular structures. At the same time, this smaller set of wACSFs leads to a significantly better generalization performance in the machine learning potential than the large set of conventional ACSFs. Furthermore, we show that the intrinsic parameters of the descriptors can in principle be optimized with a genetic algorithm in a highly automated manner. For the wACSFs employed here, we find however that using a simple empirical parametrization scheme is sufficient in order to obtain HDNNPs with high accuracy.

  20. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  1. Increasing the Use of Student-Centered Pedagogies from Moderate to High Improves Student Learning and Attitudes about Biology.

    Science.gov (United States)

    Connell, Georgianne L; Donovan, Deborah A; Chambers, Timothy G

    2016-01-01

    Student-centered strategies are being incorporated into undergraduate classrooms in response to a call for reform. We tested whether teaching in an extensively student-centered manner (many active-learning pedagogies, consistent formative assessment, cooperative groups; the Extensive section) was more effective than teaching in a moderately student-centered manner (fewer active-learning pedagogies, less formative assessment, without groups; the Moderate section) in a large-enrollment course. One instructor taught both sections of Biology 101 during the same quarter, covering the same material. Students in the Extensive section had significantly higher mean scores on course exams. They also scored significantly higher on a content postassessment when accounting for preassessment score and student demographics. Item response theory analysis supported these results. Students in the Extensive section had greater changes in postinstruction abilities compared with students in the Moderate section. Finally, students in the Extensive section exhibited a statistically greater expert shift in their views about biology and learning biology. We suggest our results are explained by the greater number of active-learning pedagogies experienced by students in cooperative groups, the consistent use of formative assessment, and the frequent use of explicit metacognition in the Extensive section. © 2016 G. L. Connell, D. A. Donovan, and T. G. Chambers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Patterns of Tight and Loose Coupling in a Competitive Marketplace: The Case of Learning Center Franchises

    Science.gov (United States)

    Aurini, Janice Danielle

    2012-01-01

    The concept of coupling--the relationship between the environment, administrative goals, and instructional practices of education organizations--is a staple in New Institutional research. Yet processes of coupling have remained elusive. Drawing on ethnographic research of the "Ontario Learning Center" (OLC) franchise, along with…

  3. Mailman Segal Center for Human Development | NSU

    Science.gov (United States)

    rendition of the National Anthem sung by Jonathan Richard, a young man with an autism spectrum disorder (ASD Dean Jim & Jan Moran Family Center Village Collaborations Early Learning Programs About Early Learning Programs Family Center Preschool About Our Preschool Enrollment Family Center Infant & Toddler

  4. Visualizing the Heliosphere

    Science.gov (United States)

    Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  5. Magnetic clouds seen at different locations in the heliosphere

    Directory of Open Access Journals (Sweden)

    L. Rodriguez

    2008-02-01

    Full Text Available We analyze two magnetic clouds (MCs observed in different points of the heliosphere. The main aim of the present study is to provide a link between the different aspects of this phenomenon, starting with information on the origins of the MCs at the Sun and following by the analysis of in-situ observations at 1 AU and at Ulysses. The candidate source regions were identified in SOHO/EIT and SOHO/MDI observations. They were correlated with H-α images that were obtained from ground-based observatories. Hints on the internal magnetic field configuration of the associated coronal mass ejections are obtained from LASCO C2 images. In interplanetary space, magnetic and plasma moments of the distribution function of plasma species (ACE/Ulysses were analyzed together with information on the plasma composition, and the results were compared between both spacecraft in order to understand how these structures interact and evolve in their cruise from the Sun to 5 AU. Additionally, estimates of global magnitudes of magnetic fluxes and helicity were obtained from magnetic field models applied to the data in interplanetary space. We have found that these magnetic characteristics were well kept from their solar source, up to 5 AU where Ulysses provided valuable information which, together with that obtained from ACE, can help to reinforce the correct matching of solar events and their interplanetary counterparts.

  6. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  7. Lessons Learned (3 Years of H2O2 Propulsion System Testing Efforts at NASA's John C. Stennis Space Center)

    Science.gov (United States)

    Taylor, Gary O.

    2001-01-01

    John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.

  8. DCDM1: Lessons Learned from the World's Most Energy Efficient Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Sickinger, David E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Geet, Otto D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carter, Thomas [Johnson Controls

    2018-05-03

    This presentation discusses the holistic approach to design the world's most energy-efficient data center, which is located at the U.S. Department of Energy National Renewable Energy Laboratory (NREL). This high-performance computing (HPC) data center has achieved a trailing twelve-month average power usage effectiveness (PUE) of 1.04 and features a chiller-less design, component-level warm-water liquid cooling, and waste heat capture and reuse. We provide details of the demonstrated PUE and energy reuse effectiveness (ERE) and lessons learned during four years of production operation. Recent efforts to dramatically reduce the water footprint will also be discussed. Johnson Controls partnered with NREL and Sandia National Laboratories to deploy a thermosyphon cooler (TSC) as a test bed at NREL's HPC data center that resulted in a 50% reduction in water usage during the first year of operation. The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device with an open cooling tower.

  9. Creating a Community of Practice: Lessons Learned from the Center for Astronomy Education (Invited)

    Science.gov (United States)

    Brissenden, G.

    2009-12-01

    The Center for Astronomy Education (CAE) is devoted to improving teaching and learning in Astro 101. To accomplish this, a vital part of CAE is our broader community of practice which includes over 1000 instructors, graduate and undergraduate students, and postdocs. It is this greater community of practice that supports each other, helps, and learns from each other beyond what would be possible without it. As our community of practice has grown, we at CAE have learned many lessons about how different facets of CAE can best be used to promote and support our community both as a whole and for individual members. We will discuss the various facets of CAE, such as our online discussion group Astrolrner@CAE (http://astronomy101.jpl.nasa.gov/discussion) and its Guest Moderator program, our CAE Regional Teaching Exchange Coordinator program, our CAE Workshop Presenter Apprenticeship Training program, our online This Month’s Teaching Strategy, monthly newsletters, and various types of socializing and networking sessions we hold at national meetings. But more importantly, we will discuss the lessons we’ve learned about what does and does not work in building community within each of these facets.

  10. The Jovian and galactic electrons in the heliosphere as seen by the KET experiment on board the spacecraft named ULYSSE

    International Nuclear Information System (INIS)

    Rastoin, Cecile

    1995-01-01

    The KET electron telescope onboard the Ulysse spacecraft flawlessly provides measurements of electrons, protons and alphas of energies above some MeV. This present work focuses on the electron data analysis and interpretation from the Ulysse's launch in 90 to the beginning of 95. The first stage of the odyssey was the Jovian encounter in February 92. The MeV electrons are here used as markers of the magnetic field global structure. We specially study the complex and highly dynamic outer magnetosphere. With reference of previous fly-by, the KET observations permit to characterize the 10-hour modulation of the Jovian electron flux and spectrum and suggest a mechanism involving the rotation of the north low-latitude polar cap. The boundary layers are seen as thick regions with transitions from magnetosheath to magnetospheric particle populations and field properties. The electron anisotropy and flux discontinuities are investigated with support of field data and provide the first evidence of magnetic reconnection occurring around the Jovian magnetopause. Taking advantage of the gravity assistance of the giant planet, Ulysse dipped towards the south heliospheric regions. Along its trajectory KET has detected Jovian electrons in interplanetary space. The first type of events is non-diffusive, with rapid increases discovered by KET at less than 1 AU from the magnetosphere: Jovian electrons have probably escaped through reconnection process which preserves their spectrum modulation and anisotropy characteristics. The events of second category are diffusive, observed since launch up to 30 degrees south. This work highlights the roles of interplanetary shocks and of the heliospheric current sheet in the propagation. A 3D transport model including adiabatic deceleration is presented here and accounts for the Jovian electron flux detected along the Ulysse's trajectory. New estimates of the 3D diffusion coefficients are performed for MeV electrons: K(perpendicular) = 8 * 10

  11. THE ROLL-OVER OF HELIOSPHERIC NEUTRAL HYDROGEN BELOW 100 eV: OBSERVATIONS AND IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Galli, A.; Wurz, P. [Physics Institute, University of Bern, Bern, 3012 (Switzerland); Schwadron, N. A.; Kucharek, H.; Möbius, E. [University of New Hampshire, Durham, NH 03824 (United States); Bzowski, M.; Sokół, J. M.; Kubiak, M. A. [Space Research Centre, Polish Academy of Sciences, Warsaw, 00-716 (Poland); Funsten, H. O. [Los Alamos National Laboratory, Intelligence and Space Research Division, Los Alamos, NM 87545 (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)

    2016-04-20

    We present an improved analysis of the energy spectrum of energetic neutral hydrogen from the heliosheath observed with the IBEX -Lo sensor on the Interstellar Boundary EXplorer from the years 2009 to 2012. This analysis allows us to study the lowest energies between 10 and 100 eV although various background sources are more intense than the targeted signal over broad areas of the sky. The results improve our knowledge of the interaction region between our heliosphere and the interstellar plasma because these neutral atoms are direct messengers from the low-energy plasma in the heliosheath. We find a roll-over of the energy spectrum below 100 eV, which has major implications for the pressure balance of the plasma in the inner heliosheath. The results can also be compared directly with in situ observations of the Voyager 1 and 2 spacecraft.

  12. Mobilizing Learning Resources in a Transnational Classroom: Translocal and Digital Resources in a Community Technology Center

    Science.gov (United States)

    Noguerón-Liu, Silvia

    2014-01-01

    Drawing from transnational and activity theory frameworks, this study analyzes the ways translocal flows shape learning in a community technology center serving adult immigrants in the US Southwest. It also explores students' constructions of the transnational nature of the courses they took, where they had access to both online and face-to-face…

  13. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  14. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    Science.gov (United States)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  15. Getting down to Dollars and Cents: What Do School Districts Spend to Deliver Student-Centered Learning?

    Science.gov (United States)

    Miller, Lawrence J.; Gross, Betheny; Ouijdani, Monica

    2012-01-01

    In the era of No Child Left Behind and Race to the Top, school districts are under increasing pressure from policymakers to hold all students to high performance standards. In response, a growing number of schools are embracing the principles of student-centered learning (SCL). SCL is a contemporary approach that combines progressive and…

  16. Instructional Leadership: A Learning-Centered Guide.

    Science.gov (United States)

    Hoy, Anita Woolfolk; Hoy, Wayne Kolter

    This book was written with the assumption that teachers and administrators must work as colleagues to improve instruction and learning in schools. It was written to be consistent with the Interstate School Leaders Licensure Consortium (ISLLC) standards for school administrators, especially Standards 1 and 2, which emphasize a learning-centered…

  17. Learning to Design Backwards: Examining a Means to Introduce Human-Centered Design Processes to Teachers and Students

    Science.gov (United States)

    Gibson, Michael R.

    2016-01-01

    "Designing backwards" is presented here as a means to utilize human-centered processes in diverse educational settings to help teachers and students learn to formulate and operate design processes to achieve three sequential and interrelated goals. The first entails teaching them to effectively and empathetically identify, frame and…

  18. MODULATION OF GALACTIC ELECTRONS IN THE HELIOSPHERE DURING THE UNUSUAL SOLAR MINIMUM OF 2006–2009: A MODELING APPROACH

    International Nuclear Information System (INIS)

    Potgieter, M. S.; Vos, E. E.; Munini, R.; Boezio, M.; Felice, V. Di

    2015-01-01

    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of Galactic protons were recorded at Earth in late 2009 in contrast to expectations. A comprehensive model was used to study the proton modulation for the period from 2006 to 2009 in order to determine what basic processes were responsible for solar modulation during this period and why it differs from proton modulation during previous solar minimum modulation periods. This established model is now applied to studying the solar modulation of electron spectra as observed for 80 MeV–30 GeV by the PAMELA space detector from mid-2006 to the end of 2009. Over this period the heliospheric magnetic field had decreased significantly until the end of 2009 while the waviness of the heliospheric current sheet decreased moderately and the observed electron spectra increased by a factor of ∼1.5 at 1.0 GeV to ∼3.5 at 100 MeV. In order to reproduce the modulation evident from seven consecutive semesters, the diffusion coefficients had to increase moderately while maintaining the basic rigidity dependence. It is confirmed that the main diffusion coefficients are independent of rigidity below ∼0.5 GV, while the drift coefficient had to be reduced below this value. The 2006–2009 solar minimum epoch indeed was different than previously observed minima, at least since the beginning of the space exploration era. This period could be called “diffusion-dominated” as was also found for the modulation of protons

  19. English for Specific Purposes (ESP Modules in the Self-Access Learning Center (SALC for Success in the Global Workplace

    Directory of Open Access Journals (Sweden)

    Kevin Knight

    2010-09-01

    Full Text Available University students must prepare themselves to be successful members of the global workforce, and this paper introduces one way for a self-access center to support such preparation by students outside of the formal classroom environment. In this paper, it is proposed that the Self-Access Learning Center (SALC at Kanda University of International Studies (KUIS provide ESP (English for specific purposes modules intended to prepare students for their future careers. Within these self-study modules, the following should be recognized and incorporated: 1. The principles of ESP 2. Elements of outcome-based education 3. The relationship between leadership, learning, and teachingIn describing such ESP modules, this paper also proposes the development of self-access materials that could be made available to facilitate the independent study.

  20. A Heliospheric Weather Expert Service Centre for ESA's Space Situational Awareness Space Weather Activities

    Science.gov (United States)

    Barnes, D.; Perry, C. H.

    2017-12-01

    The Heliospheric Weather Expert Service Centre (H-ESC) is one of five thematic virtual centres that are currently being developed as part of ESA's Space Situational Awareness pre-operational Space Weather service. In this presentation we introduce the current products and service that the H-ESC is providing. The immediate and downstream user groups that the centre is aiming to support are discussed. A description is provided on how the H-ESC is largely built on adoption and tailoring of federated products from expert groups around Europe and how these can be used to add value to the overall system. Having only recently been established the H-ESC is continuing to address gaps in its capabilities. Some of the priorities for products, their assessment, validation and integration into the system are discussed together with plans for bespoke development activities tailored to specific end-user group needs.

  1. Teaching and Learning in the Era of the Common Core: An Introduction to the Project and the Nine Research Papers in the "Students at the Center" Series

    Science.gov (United States)

    Jobs for the Future, 2012

    2012-01-01

    Despite the wide interest in and need for student-centered approaches to learning, educators have scant access to a comprehensive accounting of the key components of it. To build the knowledge base for the emerging field of student-centered learning, Jobs for the Future, a national nonprofit based in Boston, commissioned papers from nine teams of…

  2. Plasma surrounding the global heliosphere at large distances controlled by the solar cycle

    Science.gov (United States)

    Dialynas, Konstantinos; Krimigis, Stamatios; Mitchell, Donald; Decker, Robert; Roelof, Edmond

    2016-04-01

    The past decade can be characterized by a series of key, groundbreaking remote energetic neutral atom (ENA) images (INCA, IBEX) and in-situ ion (Voyager 1 & 2) observations concerning the characteristics and interactions of the heliosphere with the Local Interstellar Medium (LISM). Voyagers 1 and 2 (V1, V2) discovered the reservoir of ions and electrons that constitute the heliosheath (HS) after crossing the termination shock (TS) 35deg north and 32deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU= 1.5 x108 km), respectively. The in situ measurements by each Voyager were placed in a global context by remote sensing images using ENA obtained with the Ion and Neutral Camera (INCA) onboard Cassini orbiting Saturn. The ENA images contain a 5.2-55 keV hydrogen (H) ENA region (Belt) that loops through the celestial sphere and contributes to balancing the pressure of the interstellar magnetic field (ISMF). The success of any future mission with dedicated ENA detectors (e.g. the IMAP mission), highly depends on the antecedent understanding of the details of the plasma processes in the Heliosphere as revealed by remote sensing of the plasma environment characteristics. Therefore, we address here one of the remaining and most important questions: "Where do the 5-55 keV ENAs that INCA measures come from?". We analyzed INCA all-sky maps from 2003 to 2015 and compare the solar cycle (SC) variation of the ENAs in both the nose (upstream) and anti-nose (downstream) directions with the intensities of > 30 keV ions (source of ENA through charge exchange-CE with H) measured in-situ by V1 and V2, in overlapping energy bands ~30-55 keV. ENA intensities decrease during the declining phase of SC23 by ~x3 from 2003 to 2011 but recover through 2014 (SC24); similarly, V1 and V2 ion intensities also decrease and then recover through 2014. The similarity of time profiles of remotely sensed ENA and locally measured ions are consistent with (a) ENA originating in the HS

  3. IHY Modeling Support at the Community Coordinated Modeling Center

    Science.gov (United States)

    Chulaki, A.; Hesse, Michael; Kuznetsova, Masha; MacNeice, P.; Rastaetter, L.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-onrequest" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities during the International Heliospheric Year. In order to tailor CCMC activities to IHY needs, we will also invite community input into our IHY planning activities.

  4. Revisiting the student centered

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise

    2018-01-01

    Has the orthodoxy of progressive pedagogy, or what praise as the student centered, become means of an overall managerial turn that erodes students’ freedom do learn? This is the main question in Bruce Macfarlane’s book Freedom to learn - The Threat to Student Academic Freedom and Why it Needs...... to be Reclaimed (2017). In eighth well-written chapters, Macfarlane explores an often-overlooked paradox in higher education teaching and learning: The idea of the student centered learning, deriving from humanist psychology and progressive pedagogy, has been hijacked by increased and continuous demands of bodily......, cognitive and emotional performance that restricts students’ freedom to develop as autonomous adults. Macfarlane’s catch 22 is, however, that his heritage from humanist psychology, i.e. the idea that we as humans are born with an inner potential that we should be free to realise though education...

  5. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  6. Students' Ways of Experiencing Human-Centered Design

    Science.gov (United States)

    Zoltowski, Carla B.

    2010-01-01

    This study investigated the qualitatively different ways which students experienced human-centered design. The findings of this research are important in developing effective design learning experiences and have potential impact across design education. This study provides the basis for being able to assess learning of human-centered design which…

  7. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  8. A Paradigm Shift in Law Enforcement Training in the Bahamas: Teacher-Centered to Learner-Centered

    Directory of Open Access Journals (Sweden)

    Hunter-Johnson, Yvonne

    2012-10-01

    Full Text Available This study focused on determining whether the learning preference of law enforcement officers in the Bahamas was either pedagogical (teacher-centered or andragogical (student-centered. Law enforcement personnel in a Bahamian police department were administered the Student Orientation Questionnaire (SOQ developed by Christian (1982. One hundred and sixty-eight individuals completed the SOQ. Chi square statistics were calculated on the variables of educational level and gender. The preferred learning orientation was primarily andragogical; those with higher education levels tended to have a higher andragogical orientation. There were no differences by gender. As a result of the findings, a three-step approach is proposed to transition the training environment from one that is teacher-centered to one that is learner-centered

  9. The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project

    Science.gov (United States)

    Beichner, Robert J.

    2011-04-01

    How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more

  10. Technologies for learner-centered feedback

    Directory of Open Access Journals (Sweden)

    Jane Costello

    2013-09-01

    Full Text Available As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes. Feedback, types of feedback, guidelines for effective learner-centered feedback, and feedback’s relationship to assessment are presented. Methods of providing feedback, for example, automated, audio scribe pens, digital audio, etc., and the related technologies are described. Technologies that allow instructors to make informed decisions about the use of various methods for feedback are discussed.

  11. Lucinda Huffaker and the Hospitality of the Wabash Center

    Science.gov (United States)

    Placher, William C.

    2007-01-01

    As associate director and then director of the Wabash Center for Teaching and Learning in Theology and Religion, Lucinda Huffaker has been a key factor in the Center's reputation for hospitality. The Center's work presupposes that reflection on teaching improves teaching and learning, and good reflection on one's teaching requires taking risks and…

  12. Technologies for Learner-Centered Feedback

    Science.gov (United States)

    Costello, Jane; Crane, Daph

    2013-01-01

    As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes.…

  13. Integrating knowledge exchange and the assessment of dryland management alternatives - A learning-centered participatory approach.

    Science.gov (United States)

    Bautista, Susana; Llovet, Joan; Ocampo-Melgar, Anahí; Vilagrosa, Alberto; Mayor, Ángeles G; Murias, Cristina; Vallejo, V Ramón; Orr, Barron J

    2017-06-15

    The adoption of sustainable land management strategies and practices that respond to current climate and human pressures requires both assessment tools that can lead to better informed decision-making and effective knowledge-exchange mechanisms that facilitate new learning and behavior change. We propose a learning-centered participatory approach that links land management assessment and knowledge exchange and integrates science-based data and stakeholder perspectives on both biophysical and socio-economic attributes. We outline a structured procedure for a transparent assessment of land management alternatives, tailored to dryland management, that is based on (1) principles of constructivism and social learning, (2) the participation of stakeholders throughout the whole assessment process, from design to implementation, and (3) the combination of site-specific indicators, identified by local stakeholders as relevant to their particular objectives and context conditions, and science-based indicators that represent ecosystem services of drylands worldwide. The proposed procedure follows a pattern of eliciting, challenging, and self-reviewing stakeholder perspectives that aims to facilitate learning. The difference between the initial baseline perspectives and the final self-reviewed stakeholder perspectives is used as a proxy of learning. We illustrate the potential of this methodology by its application to the assessment of land uses in a Mediterranean fire-prone area in East Spain. The approach may be applied to a variety of socio-ecological systems and decision-making and governance scales. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Prospective Out-of-ecliptic White-light Imaging of Coronal Mass Ejections Traveling through the Corona and Heliosphere

    Science.gov (United States)

    Xiong, Ming; Davies, Jackie A.; Harrison, Richard A.; Zhou, Yufen; Feng, Xueshang; Xia, Lidong; Li, Bo; Liu, Ying D.; Hayashi, Keiji; Li, Huichao; Yang, Liping

    2018-01-01

    The in-flight performance of the Coriolis/SMEI and STEREO/HI instruments substantiates the high-technology readiness level of white-light (WL) imaging of coronal mass ejections (CMEs) in the inner heliosphere. The WL intensity of a propagating CME is jointly determined by its evolving mass distribution and the fixed Thomson-scattering geometry. From their in-ecliptic viewpoints, SMEI and HI, the only heliospheric imagers that have been flown to date, integrate the longitudinal dimension of CMEs. In this paper, using forward magnetohydrodynamic modeling, we synthesize the WL radiance pattern of a typical halo CME viewed from an out-of-ecliptic (OOE) vantage point. The major anatomical elements of the CME identified in WL imagery are a leading sheath and a trailing ejecta; the ejecta-driven sheath is the brightest feature of the CME. The sheath, a three-dimensional (3D) dome-like density structure, occupies a wide angular extent ahead of the ejecta itself. The 2D radiance pattern of the sheath depends critically on viewpoint. For a CME modeled under solar minimum conditions, the WL radiance pattern of the sheath is generally a quasi-straight band when viewed from an in-ecliptic viewpoint and a semicircular arc from an OOE viewpoint. The dependence of the radiance pattern of the ejecta-driven sheath on viewpoint is attributed to the bimodal nature of the 3D background solar wind flow. Our forward-modeling results suggest that OOE imaging in WL radiance can enable (1) a near-ecliptic CME to be continuously tracked from its coronal initiation, (2) the longitudinal span of the CME to be readily charted, and (3) the transporting speed of the CME to be reliably determined. Additional WL polarization measurements can significantly limit the ambiguity of localizing CMEs. We assert that a panoramic OOE view in WL would be highly beneficial in revealing CME morphology and kinematics in the hitherto-unresolved longitudinal dimension and hence for monitoring the propagation and

  15. A global learning-centered approach to higher education: workplace development in the 21st century

    Directory of Open Access Journals (Sweden)

    Carlos Tasso Eira de Aquino

    2017-01-01

    Full Text Available Competition in the 21st century economy requires corporations, organizations, and professionals to face a common challenge: diverse individuals need consistent motivation towards building competences that increase personal marketability using a combination of higher education and professional development. This article represents an evolving report summary and non-traditional learning-centered approach focusing on adult competences necessary for succeeding in the competitive global marketplace of the 21st century. The purpose of this article is to understand the needs of constantly changing employer demands in the work environment. Exploring contemporary approaches related to skill development, adult education, and learning processes, will be the path towards higher levels of professional success. This article will provide readers with an enlightening discussion focusing on the necessary adult skills and competencies professionals need to succeed in the global marketplace.

  16. Conversion of Provider EMR Training from Instructor-Led Training to eLearning at an Academic Medical Center.

    Science.gov (United States)

    Sharp, Karen; Williams, Michele; Aldrich, Alison; Bogacz, Adrienne; Denier, Sighle; McAlearney, Ann S

    2017-07-26

    This case study overviews the conversion of provider training of the electronic medical record (EMR) from an instructor-led training (ILT) program to eLearning at an Academic Medical Center (AMC). This conversion provided us with both a useful training tool and the opportunity to maximize efficiency within both our training and optimization team and organization. eLearning Development Principles were created and served as a guide to assist us with designing an eLearning curriculum using a five step process. The result was a new training approach that allowed learners to complete training at their own pace, and even test out of sections based on demonstrated competency. The information we have leads us to believe that a substantial return on our investment can be obtained from the conversion with positive impacts that have served as the foundation for the future of end user EMR training at our AMC.

  17. Quality indicators for learner-centered postgraduate medical e-learning.

    Science.gov (United States)

    de Leeuw, Robert A; Westerman, Michiel; Scheele, Fedde

    2017-04-27

    The objectives of this study were to identify the needs and expectations of learners and educational experts in postgraduate medical e-learning, and to contribute to the current literature. We performed four focus-group discussions with e-learning end-users (learners) and didactic experts. The participants were postgraduate learners with varying levels of experience, educational experts from a Dutch e-learning task group, and commercial experts from a Dutch e-learning company. Verbatim transcribed interview recordings were analyzed using King's template analysis. The initial template was created with reference to recent literature on postgraduate medical e-learning quality indicators. The transcripts were coded, after which the emerging differences in template interpretation were discussed until a consensus was reached within the team. The final template consisted of three domains of positive e-learning influencers (motivators, learning enhancers, and real-world translation) and three domains of negatively influential parameters (barriers, learning discouragers, and poor preparation). The interpretation of the final template showed three subjects which form the basis of e-learning, namely, Motivate, Learn and Apply. This study forms a basis for learning in general and could be applied to many educational instruments. Individual characteristics should be adapted to the target audience. Three subjects form the basis of, and six themes cover all items needed for, good (enough) postgraduate e-learning. Further research should be carried out with learners and real-world e-learning to validate this template.

  18. Addressing Information Literacy through Student-Centered Learning

    Science.gov (United States)

    Bond, Paul

    2016-01-01

    This case study describes several courses that resulted from a teaching partnership between an instructional technologist/professor and a librarian that evolved over several semesters, and the information literacy implications of the course formats. In order to increase student engagement, active learning and inquiry-based learning techniques were…

  19. Spectral evolution of energetic neutral atom emissions at the heliospheric poles as measured by IBEX during its first three years

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, M. A.; Allegrini, F.; Desai, M. I.; Ebert, R. W.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Schwadron, N. A. [Southwest Research Institute, San Antonio, TX 78228 (United States); DeMajistre, R. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Janzen, P.; Reisenfeld, D. [University of Montana, Missoula, MT 59812 (United States); Siewert, M., E-mail: maldayeh@swri.edu [Institut für Astronomie der Universität Bonn, Abteilung f. Astrophysik und Extraterrestrische Forschung, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-12-10

    The Interstellar Boundary Explorer (IBEX) mission continues to measure energetic neutral atom (ENA) emissions produced by charge exchange between solar wind (SW) protons and interstellar neutrals at the edge of our heliosphere. Using the first 3 yr of IBEX-Hi ENA measurements (2009-2011), we examined the spectral evolution of ∼0.5-6 keV ENAs at the polar regions (above 60°). We found the following: (1) pixels with a characteristic 'ankle' spectra (lower spectral index at higher energies) increase by ∼5% in 2010 and ∼10% in 2011 compared to 2009. (2) The averaged spectral index in 2011 is smaller than that of 2009. (3) The slope of the ENA spectrum above ∼1.7 keV is more variable than the slope below ∼1.7 keV. The lower spectral index at higher energies of the spectrum does not appear to be caused by an increase of the ENA production at these energies, but rather from a consistent decrease at lower energies. (4) The decrease in polar ENA fluxes does not correlate significantly with the averaged SW dynamic pressure, back-traced in time to 1 AU along the flow streamlines (originating between 10° and 30° for slow SW, and 60° and 80° for fast SW), assuming these are the respective conditions of ENA progenitors back in time. These results provide insights into the complexity of relating the slow and fast SW contributions to polar ENAs and shed light on how the solar output and the resulting change in the global heliospheric structure possibly affect the heliosheath (HS) populations.

  20. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  1. Heart Information Center

    Science.gov (United States)

    ... Rounds Seminar Series & Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Register for the Cardiac Society ...

  2. Cluster and SOHO - a joint endeavor by ESA and NASA to address problems in solar, heliospheric, and space plasma physics

    International Nuclear Information System (INIS)

    Schmidt, R.; Domingo, V.; Shawhan, S.D.; Bohlin, D.

    1988-01-01

    The NASA/ESA Solar-Terrestrial Science Program, which consists of the four-spacecraft cluster mission and the Solar and Heliospheric Observatory (SOHO), is examined. It is expected that the SOHO spacecraft will be launched in 1995 to study solar interior structure and the physical processes associated with the solar corona. The SOHO design, operation, data, and ground segment are discussed. The Cluster mission is designed to study small-scale structures in the earth's plasma environment. The Soviet Union is expected to contribute two additional spacecraft, which will be similar to Cluster in instrumentation and design. The capabilities, mission strategy, spacecraft design, payload, and ground segment of Cluster are discussed. 19 references

  3. Low-energy solar electrons and ions observed at Ulysses February-April, 1991 - The inner heliosphere as a particle reservoir

    Science.gov (United States)

    Roelof, E. C.; Gold, R. E.; Simnett, G. M.; Tappin, S. J.; Armstrong, T. P.; Lanzerotti, L. J.

    1992-01-01

    Ulysses observations at 2.5 AU of 38-315 keV electrons and 61-4752 keV ions during February-April 1991 suggest in several ways that, during periods of sustained high solar activity, the inner heliosphere serves as a 'reservoir' for low-energy solar particles. Particle increases were not associated one-to-one with large X-ray flares because of their poor magnetic connection, yet intensities in March-April remained well above their February levels. The rise phase of the particle event associated with the great flare of 2245UT March 22 lasted most of two days, while throughout the one-week decay phase, the lowest-energy ion fluxes were nearly equal at Ulysses and earth (IMP-8).

  4. 26-Day Variations of 7 MeV Electrons at high Latitudes and their Implications on the Heliospheric Magnetic Field

    Science.gov (United States)

    Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus

    The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.

  5. An Approach for Calculating Student-Centered Value in Education - A Link between Quality, Efficiency, and the Learning Experience in the Health Professions.

    Science.gov (United States)

    Nicklen, Peter; Rivers, George; Ooi, Caryn; Ilic, Dragan; Reeves, Scott; Walsh, Kieran; Maloney, Stephen

    2016-01-01

    Health professional education is experiencing a cultural shift towards student-centered education. Although we are now challenging our traditional training methods, our methods for evaluating the impact of the training on the learner remains largely unchanged. What is not typically measured is student-centered value; whether it was 'worth' what the learner paid. The primary aim of this study was to apply a method of calculating student-centered value, applied to the context of a change in teaching methods within a health professional program. This study took place over the first semester of the third year of the Bachelor of Physiotherapy at Monash University, Victoria, Australia, in 2014. The entire third year cohort (n = 78) was invited to participate. Survey based design was used to collect the appropriate data. A blended learning model was implemented; subsequently students were only required to attend campus three days per week, with the remaining two days comprising online learning. This was compared to the previous year's format, a campus-based face-to-face approach where students attended campus five days per week, with the primary outcome-Value to student. Value to student incorporates, user costs associated with transportation and equipment, the amount of time saved, the price paid and perceived gross benefit. Of the 78 students invited to participate, 76 completed the post-unit survey (non-participation rate 2.6%). Based on Value to student the blended learning approach provided a $1,314.93 net benefit to students. Another significant finding was that the perceived gross benefit for the blended learning approach was $4014.84 compared to the campus-based face-to-face approach of $3651.72, indicating that students would pay more for the blended learning approach. This paper successfully applied a novel method of calculating student-centered value. This is the first step in validating the value to student outcome. Measuring economic value to the student may

  6. An Approach for Calculating Student-Centered Value in Education - A Link between Quality, Efficiency, and the Learning Experience in the Health Professions.

    Directory of Open Access Journals (Sweden)

    Peter Nicklen

    Full Text Available Health professional education is experiencing a cultural shift towards student-centered education. Although we are now challenging our traditional training methods, our methods for evaluating the impact of the training on the learner remains largely unchanged. What is not typically measured is student-centered value; whether it was 'worth' what the learner paid. The primary aim of this study was to apply a method of calculating student-centered value, applied to the context of a change in teaching methods within a health professional program. This study took place over the first semester of the third year of the Bachelor of Physiotherapy at Monash University, Victoria, Australia, in 2014. The entire third year cohort (n = 78 was invited to participate. Survey based design was used to collect the appropriate data. A blended learning model was implemented; subsequently students were only required to attend campus three days per week, with the remaining two days comprising online learning. This was compared to the previous year's format, a campus-based face-to-face approach where students attended campus five days per week, with the primary outcome-Value to student. Value to student incorporates, user costs associated with transportation and equipment, the amount of time saved, the price paid and perceived gross benefit. Of the 78 students invited to participate, 76 completed the post-unit survey (non-participation rate 2.6%. Based on Value to student the blended learning approach provided a $1,314.93 net benefit to students. Another significant finding was that the perceived gross benefit for the blended learning approach was $4014.84 compared to the campus-based face-to-face approach of $3651.72, indicating that students would pay more for the blended learning approach. This paper successfully applied a novel method of calculating student-centered value. This is the first step in validating the value to student outcome. Measuring economic value

  7. Inquiry and Digital Learning Centers

    Science.gov (United States)

    Pappas, Marjorie L.

    2005-01-01

    "Inquiry is an investigative process that engages students in answering questions, solving real world problems, confronting issues, or exploring personal interests" (Pappas and Tepe 2002, 27). Students who engage in inquiry learning need tools and resources that enable them to independently gather and use information. Scaffolding is important for…

  8. Colorado Learning Disabilities Research Center.

    Science.gov (United States)

    DeFries, J. C.; And Others

    1997-01-01

    Results obtained from the center's six research projects are reviewed, including research on psychometric assessment of twins with reading disabilities, reading and language processes, attention deficit-hyperactivity disorder and executive functions, linkage analysis and physical mapping, computer-based remediation of reading disabilities, and…

  9. Solar Energetic Particle Event Risks for Future Human Missions within the Inner Heliosphere

    Science.gov (United States)

    Over, S.; Ford, J.

    2017-12-01

    As astronauts travel beyond low-Earth orbit (LEO), space weather research will play a key role in determining risks from space radiation. Of interest are the rare, large solar energetic particle (SEP) events that can cause significant medical effects during flight. Historical SEP data were analyzed from the Geostationary Operational Environmental Satellites (GOES) program covering the time period of 1986 to 2016 for SEP events. The SEP event data were combined with a Monte Carlo approach to develop a risk model to determine maximum expected doses for missions within the inner heliosphere. Presented here are results from risk assessments for proposed Mars transits as compared to a geostationary Earth-bound mission. Overall, the greatest risk was for the return from Mars with a Venus swing-by, due to the additional transit length and decreased distance from the Sun as compared to traditional Hohmann transfers. The overall results do not indicate that the effects of SEP events alone would prohibit these missions based on current radiation limits alone, but the combination of doses from SEP events and galactic cosmic radiation may be significant, and should be considered in all phases of mission design.

  10. MORE EVIDENCE THAT VOYAGER 1 IS STILL IN THE HELIOSPHERE

    International Nuclear Information System (INIS)

    Gloeckler, G.; Fisk, L. A.

    2015-01-01

    The investigators of the Voyager mission currently exploring the heliosheath have concluded and announced that Voyager 1 (V1) has crossed the heliopause and is now in the interstellar medium. This conclusion is based primarily on the plasma wave observations of Gurnett et al., which reveal a plasma electron density that resembles the density expected in the local interstellar medium. Fisk and Gloeckler have disputed the conclusion that V1 has crossed the heliopause, pointing out that to account for all the V1 observations, particularly the magnetic field direction together with the density, it is necessary to conclude that the higher densities observed by Gurnett et al. are due to compressed solar wind. In this Letter it is shown that the model of Fisk and Gloeckler for the nose region of the heliosheath can account in detail for the intensity and spectral shape of Energetic Neutral Hydrogen observed by the Interstellar Boundary Explorer (IBEX) in the directions of V1 and Voyager 2 (V2). A key feature of the Fisk and Gloeckler model is the existence of a region in the heliosheath where the solar wind is compressed and heated, followed by a region where the solar wind is compressed but cold. The region of cold compressed solar wind provides a unique explanation for the low-energy IBEX observations, and since this is the region where V1 must now reside, the low-energy IBEX observations provide strong evidence that V1 is still in the heliosphere

  11. Keeping It Alive: Centers Contribute to Cultural Renaissance on College Campuses.

    Science.gov (United States)

    Simonelli, Richard

    2003-01-01

    Describes how AIHEC's Cultural Learning Centers share the people's stories through photos, artwork, Native languages, exhibits, and gardens. Give examples of a variety of learning centers including Where The Water Stops, Omaeqnomenewak Pematesenewak, Haskell Center For Healing, and the Spirit of the Plains. Concludes the future of Cultural…

  12. Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University

    OpenAIRE

    Pirada Techaratpong

    2014-01-01

    This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall bu...

  13. Exercise, character strengths, well-being, and learning climate in the prediction of performance over a 6-month period at a call center.

    Science.gov (United States)

    Moradi, Saleh; Nima, Ali A; Rapp Ricciardi, Max; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Performance monitoring might have an adverse influence on call center agents' well-being. We investigate how performance, over a 6-month period, is related to agents' perceptions of their learning climate, character strengths, well-being (subjective and psychological), and physical activity. Agents (N = 135) self-reported perception of the learning climate (Learning Climate Questionnaire), character strengths (Values In Action Inventory Short Version), well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version), and how often/intensively they engaged in physical activity. Performance, "time on the phone," was monitored for 6 consecutive months by the same system handling the calls. Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective) and Temperance (e.g., having self-control, being prudent, humble, and modest), and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation) and Justice (e.g., affiliation, fairness, leadership), positive affect, life satisfaction and exercise Intensity. Call centers may need to create opportunities to develop to increase agents' performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes.

  14. Exercise, Character Strengths, Well-Being and Learning Climate in the Prediction of Performance over a Six-Month Period at a Call Center

    Directory of Open Access Journals (Sweden)

    Saleh eMoradi

    2014-06-01

    Full Text Available Background: Performance monitoring might have an adverse influence on call center agents’ well-being. We investigate how performance, over a six-month period, is related to agents’ perceptions of their learning climate, character strengths, well-being (subjective and psychological, and physical activity.Method: Agents (N = 135 self-reported perception of the learning climate (Learning Climate Questionnaire, character strengths (Values In Action Inventory Short Version, well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version, and how often/intensively they engaged in physical activity. Performance, time on the phone, was monitored for six consecutive months by the same system handling the calls. Results: Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective and Temperance (e.g., having self-control, being prudent, humble, and modest, and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation and Justice (e.g., affiliation, fairness, leadership, positive affect, life satisfaction and exercise Intensity.Conclusion: Call centers may need to create opportunities to develop to increase agents’ performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes.

  15. Marine Corps Center for Lessons Learned. Volume 8, Issue 11, November 2012

    Science.gov (United States)

    2012-11-01

    MARINE CORPS CENTER FOR LESSONS LEARNED M C C L L R E P O R T: F E AT U R E D A R T I C L E S A N D L E S S O N S : R E G U L A R F E AT U R E S...L O A D S F R O M T H E M C C L L W E B S I T E , OCTOBER 2012 R E G U L A R F E AT U R E S : Photo credit: Sgt Rachael Moore A Joint Terminal...Follower by Ira Chaleff, and ▪ Fahim Speaks by Fahim Fazli and Michael Moffett . 19 MCCLL Products "in the Pipeline" Several recent, ongoing and

  16. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi, RPh, PhD

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven “closing the loop” feedback discussion. For teambuilding, a set of clue sheets or manufacturer‘s drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams’ impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators’ interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.

  17. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven "closing the loop" feedback discussion. For teambuilding, a set of clue sheets or manufacturer's drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams' impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators' interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.   Type: Case Study

  18. Implementing the competences-based students-centered learning approach in Architectural Design Education. The case of the T MEDA Pilot Architectural Program at the Hashemite University (Jordan

    Directory of Open Access Journals (Sweden)

    Ahmad A. S. Al Husban

    2016-11-01

    Full Text Available Higher educational systems become increasingly oriented towards the competences-based student-centered learning and outcome approach. Worldwide, these systems are focusing on the students as a whole: focusing on their dimensional, intellectual, professional, psychological, moral, and spiritual. This research was conducted in an attempt to answer the main research question: how can the architectural design courses be designed based on the required competences and how can the teaching, learning activities and assessment methods be structured and aligned in order to allow students to achieve and reach the intended learning outcomes? This research used a case study driven best practice research method to answer the research questions based on the T MEDA pilot architectural program that was implemented at the Hashemite University, Jordan. This research found that it is important for architectural education to adapt the students-centered learning method. Such approach increases the effectiveness of teaching and learning methods, enhances the design studio environment, and focuses on students’ engagement to develop their design process and product. Moreover, this research found that using different assessment methods in architectural design courses help students to develop their learning outcomes; and inform teachers about the effectiveness of their teaching process. Furthermore, the involvement of students in assessment produces effective learning and enhances their design motivation. However, applying competences-based students-centered learning and outcome approach needs more time and staff to apply. Another problem is that some instructors resist changing to the new methods or approaches because they prefer to use their old and traditional systems. The application for this method at the first time needs intensive recourses, more time, and good cooperation between different instructors and course coordinator. However, within the time this method

  19. Do “trainee-centered ward rounds” help overcome barriers to learning and improve the learning satisfaction of junior doctors in the workplace?

    Directory of Open Access Journals (Sweden)

    Acharya V

    2015-10-01

    Full Text Available Vikas Acharya,1Amir Reyahi,2 Samuel M Amis,3 Sami Mansour2 1Department of Neurosurgery, University Hospitals Coventry and Warwickshire, Coventry, 2Luton and Dunstable University Hospital, Luton, 3Warwick Medical School, University of Warwick, Coventry, UK Abstract: Ward rounds are widely considered an underutilized resource with regard to medical education, and therefore, a project was undertaken to assess if the initiation of “trainee-centered ward rounds” would help improve the confidence, knowledge acquisition, and workplace satisfaction of junior doctors in the clinical environment. Data were collated from junior doctors, registrar grade doctors, and consultants working in the delivery suite at Luton and Dunstable University Hospital in Luton over a 4-week period in March–April 2013. A review of the relevant literature was also undertaken. This pilot study found that despite the reservations around time constraints held by both junior and senior clinicians alike, feedback following the intervention was largely positive. The junior doctors enjoyed having a defined role and responsibility during the ward round and felt they benefited from their senior colleagues’ feedback. Both seniors and junior colleagues agreed that discussing learning objectives prior to commencing the round was beneficial and made the round more learner-orientated; this enabled maximal learner-focused outcomes to be addressed and met. The juniors were generally encouraged to participate more during the round and the consultants endeavored to narrate their decision-making, both were measures that led to greater satisfaction of both parties. This was in keeping with the concept of “Legitimate peripheral participation” as described by Lave and Wenger. Overall, trainee-centered ward rounds did appear to be effective in overcoming some of the traditional barriers to teaching in the ward environment, although further work to formalize and quantify these findings

  20. An interprofessional service-learning course: uniting students across educational levels and promoting patient-centered care.

    Science.gov (United States)

    Dacey, Marie; Murphy, Judy I; Anderson, Delia Castro; McCloskey, William W

    2010-12-01

    Recognizing the importance of interprofessional education, we developed a pilot interprofessional education course at our institution that included a total of 10 nursing, BS health psychology, premedical, and pharmacy students. Course goals were for students to: 1) learn about, practice, and enhance their skills as members of an interprofessional team, and 2) create and deliver a community-based service-learning program to help prevent or slow the progression of cardiovascular disease in older adults. Teaching methods included lecture, role-play, case studies, peer editing, oral and poster presentation, and discussion. Interprofessional student teams created and delivered two different health promotion programs at an older adult care facility. Despite barriers such as scheduling conflicts and various educational experiences, this course enabled students to gain greater respect for the contributions of other professions and made them more patient centered. In addition, inter-professional student teams positively influenced the health attitudes and behaviors of the older adults whom they encountered. Copyright 2010, SLACK Incorporated.

  1. Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics

    Science.gov (United States)

    Guo, Fan

    2012-11-01

    Turbulent magnetic fields are ubiquitous in space physics and astrophysics. The influence of magnetic turbulence on the motions of charged particles contains the essential physics of the transport and acceleration of energetic charged particles in the heliosphere, which is to be explored in this thesis. After a brief introduction on the energetic charged particles and magnetic fields in the heliosphere, the rest of this dissertation focuses on three specific topics: 1. the transport of energetic charged particles in the inner heliosphere, 2. the acceleration of ions at collisionless shocks, and 3. the acceleration of electrons at collisionless shocks. We utilize various numerical techniques to study these topics. In Chapter 2 we study the propagation of charged particles in turbulent magnetic fields similar to the propagation of solar energetic particles in the inner heliosphere. The trajectories of energetic charged particles in the turbulent magnetic field are numerically integrated. The turbulence model includes a Kolmogorov-like magnetic field power spectrum containing a broad range of scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We show that small-scale variations in particle intensities (the so-called "dropouts") and velocity dispersions observed by spacecraft can be reproduced using this method. Our study gives a new constraint on the error of "onset analysis", which is a technique commonly used to infer information about the initial release of energetic particles. We also find that the dropouts are rarely produced in the simulations using the so-called "two-component" magnetic turbulence model (Matthaeus et al., 1990). The result questions the validity of this model in studying particle transport. In the first part of Chapter 3 we study the acceleration of ions in the existence of turbulent magnetic fields. We use 3-D self-consistent hybrid simulations

  2. Student-Centered Teaching Meets New Media: Concept and Case Study

    Directory of Open Access Journals (Sweden)

    Andreas Holzinger

    2002-10-01

    Full Text Available There exists empirical evidence proving that students who are given the freedom to explore areas based on their personal interests, and who are accompanied in their learning by a supportive, understanding facilitator, not only achieve superior academic results but also develop socially and grow personally. However, pure Student-Centered Teaching is more demanding in terms of communication, organization, as well as the provision of learning material. Thus, the basic idea underlying our paradigm is to combine Student-Centered Teaching with eLearning in order to exploit the advantages of the two approaches. We refer to this combined style as Student-Centered eLearning (SCeL. Strongly simplified, the computer takes over the task of providing information, while presence phases can be used for giving the content more meaning by means of transparent, open, respectful and empathic interactions within the group. Our case study indicates that Student-Centered eLearning has the potential of reducing the increased demands of Student-Centered Teaching in the long run, while fully retaining all its benefits, such as deeper learning processes, personal growth, social skills, and a higher degree of flexibility. Furthermore, the maturity for life-long learning is cultivated. In this paper we introduce our concept and derive first hypotheses on the conditions under which our paradigm appears most effective. While potential continuations of our studies are manifold, we intend to employ SCeL in the course of the new curriculum of the medical faculty of GrazUniversity where a Virtual Medical Campus (http://vmc.uni-graz.at is currently being developed.

  3. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Robbrecht, E.

    2011-01-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  4. Interplanetary Magnetic Field Power Spectrum Variations in the Inner Heliosphere: A Wind and MESSENGER Study

    Science.gov (United States)

    Szabo, Adam; Koval, A.

    2011-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.

  5. Long-term Longitudinal Recurrences of the Open Magnetic Flux Density in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dósa, M.; Erdős, G., E-mail: dosa.melinda@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós st 29-33 (Hungary)

    2017-04-01

    Open magnetic flux in the heliosphere is determined from the radial component of the magnetic field vector measured onboard interplanetary space probes. Previous Ulysses research has shown remarkable independence of the flux density from heliographic latitude, explained by super-radial expansion of plasma. Here we are investigating whether any longitudinal variation exists in the 50 year long OMNI magnetic data set. The heliographic longitude of origin of the plasma package was determined by applying a correction according to the solar wind travel time. Significant recurrent enhancements of the magnetic flux density were observed throughout solar cycle 23, lasting for several years. Similar, long-lasting recurring features were observed in the solar wind velocity, temperature and the deviation angle of the solar wind velocity vector from the radial direction. Each of the recurrent features has a recurrence period slightly differing from the Carrington rotation rate, although they show a common trend in time. Examining the coronal temperature data of ACE leads to the possible explanation that these long-term structures are caused by slow–fast solar wind interaction regions. A comparison with MESSENGER data measured at 0.5 au shows that these longitudinal magnetic modulations do not exist closer to the Sun, but are the result of propagation.

  6. Teaching and learning methods in IVET

    DEFF Research Database (Denmark)

    Aarkrog, Vibe

    The cases deals about learner centered learning in a commercial program and a technical program.......The cases deals about learner centered learning in a commercial program and a technical program....

  7. Problem-Based Educational Game Becomes Student-Centered Learning Environment

    Science.gov (United States)

    Rodkroh, Pornpimon; Suwannatthachote, Praweenya; Kaemkate, Wannee

    2013-01-01

    Problem-based educational games are able to provide a fun and motivating environment for teaching and learning of certain subjects. However, most educational game models do not address the learning elements of problem-based educational games. This study aims to synthesize and to propose the important elements to facilitate the learning process and…

  8. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  9. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction

    Directory of Open Access Journals (Sweden)

    I. I. Roussev

    2009-09-01

    Full Text Available We present general considerations regarding the derivation of the radial distances of coronal mass ejections (CMEs from elongation angle measurements such as those provided by SECCHI and SMEI, focusing on measurements in the Heliospheric Imager 2 (HI-2 field of view (i.e. past 0.3 AU. This study is based on a three-dimensional (3-D magneto-hydrodynamics (MHD simulation of two CMEs observed by SECCHI on 24–27 January 2007. Having a 3-D simulation with synthetic HI images, we are able to compare the two basic methods used to derive CME positions from elongation angles, the so-called "Point-P" and "Fixed-φ" approximations. We confirm, following similar works, that both methods, while valid in the most inner heliosphere, yield increasingly large errors in HI-2 field of view for fast and wide CMEs. Using a simple model of a CME as an expanding self-similar sphere, we derive an analytical relationship between elongation angles and radial distances for wide CMEs. This relationship is simply the harmonic mean of the "Point-P" and "Fixed-φ" approximations and it is aimed at complementing 3-D fitting of CMEs by cone models or flux rope shapes. It proves better at getting the kinematics of the simulated CME right when we compare the results of our line-of-sights to the MHD simulation. Based on this approximation, we re-analyze the J-maps (time-elongation maps in 26–27 January 2007 and present the first observational evidence that the merging of CMEs is associated with a momentum exchange from the faster ejection to the slower one due to the propagation of the shock wave associated with the fast eruption through the slow eruption.

  10. Analysis of the learning curve for peroral endoscopic myotomy for esophageal achalasia: Single-center, two-operator experience.

    Science.gov (United States)

    Lv, Houning; Zhao, Ningning; Zheng, Zhongqing; Wang, Tao; Yang, Fang; Jiang, Xihui; Lin, Lin; Sun, Chao; Wang, Bangmao

    2017-05-01

    Peroral endoscopic myotomy (POEM) has emerged as an advanced technique for the treatment of achalasia, and defining the learning curve is mandatory. From August 2011 to June 2014, two operators in our institution (A&B) carried out POEM on 35 and 33 consecutive patients, respectively. Moving average and cumulative sum (CUSUM) methods were used to analyze the POEM learning curve for corrected operative time (cOT), referring to duration of per centimeter myotomy. Additionally, perioperative outcomes were compared among distinct learning curve phases. Using the moving average method, cOT reached a plateau at the 29th case and at the 24th case for operators A and B, respectively. CUSUM analysis identified three phases: initial learning period (Phase 1), efficiency period (Phase 2) and mastery period (Phase 3). The relatively smooth state in the CUSUM graph occurred at the 26th case and at the 24th case for operators A and B, respectively. Mean cOT of distinct phases for operator A were 8.32, 5.20 and 3.97 min, whereas they were 5.99, 3.06 and 3.75 min for operator B, respectively. Eckardt score and lower esophageal sphincter pressure significantly decreased during the 1-year follow-up period. Data were comparable regarding patient characteristics and perioperative outcomes. This single-center study demonstrated that expert endoscopists with experience in esophageal endoscopic submucosal dissection reached a plateau in learning of POEM after approximately 25 cases. © 2016 Japan Gastroenterological Endoscopy Society.

  11. Learning System Center App Controller

    CERN Document Server

    Naeem, Nasir

    2015-01-01

    This book is intended for IT professionals working with Hyper-V, Azure cloud, VMM, and private cloud technologies who are looking for a quick way to get up and running with System Center 2012 R2 App Controller. To get the most out of this book, you should be familiar with Microsoft Hyper-V technology. Knowledge of Virtual Machine Manager is helpful but not mandatory.

  12. Measuring the Usability of Augmented Reality e-Learning Systems: A User-Centered Evaluation Approach

    Science.gov (United States)

    Pribeanu, Costin; Balog, Alexandru; Iordache, Dragoş Daniel

    The development of Augmented Reality (AR) systems is creating new challenges and opportunities for the designers of e-learning systems. The mix of real and virtual requires appropriate interaction techniques that have to be evaluated with users in order to avoid usability problems. Formative usability aims at finding usability problems as early as possible in the development life cycle and is suitable to support the development of such novel interactive systems. This work presents an approach to the user-centered usability evaluation of an e-learning scenario for Biology developed on an Augmented Reality educational platform. The evaluation has been carried on during and after a summer school held within the ARiSE research project. The basic idea was to perform usability evaluation twice. In this respect, we conducted user testing with a small number of students during the summer school in order to get a fast feedback from users having good knowledge in Biology. Then, we repeated the user testing in different conditions and with a relatively larger number of representative users. In this paper we describe both experiments and compare the usability evaluation results.

  13. STRUCTURE, PROPAGATION, AND EXPANSION OF A CME-DRIVEN SHOCK IN THE HELIOSPHERE: A REVISIT OF THE 2012 JULY 23 EXTREME STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Hu, Huidong; Zhu, Bei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Vourlidas, Angelos, E-mail: liuxying@spaceweather.ac.cn [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20732 (United States)

    2017-01-10

    We examine the structure, propagation, and expansion of the shock associated with the 2012 July 23 extreme coronal mass ejection. Characteristics of the shock determined from multi-point imaging observations are compared to in situ measurements at different locations and a complex radio type II burst, which according to our definition has multiple branches that may not all be fundamental-harmonic related. The white-light shock signature can be modeled reasonably well by a spherical structure and was expanding backward even on the opposite side of the Sun. The expansion of the shock, which was roughly self-similar after the first ∼1.5 hr from launch, largely dominated over the translation of the shock center for the time period of interest. Our study also suggests a bow-shock morphology around the nose at later times due to the outward motion in combination with the expansion of the ejecta. The shock decayed and failed to reach Mercury in the backward direction and the Solar Terrestrial Relations Observatory B ( STEREO B ) and Venus in the lateral directions, as indicated by the imaging and in situ observations. The shock in the nose direction, however, may have persisted to the far outer heliosphere, with predicted impact on Dawn around 06:00 UT on July 25 and on Jupiter around 23:30 UT on July 27 by a magnetohydrodynamic model. The type II burst shows properties generally consistent with the spatial/temporal variations of the shock deduced from imaging and in situ observations. In particular, the low-frequency bands agree well with the in situ measurements of a very low density ahead of the shock at STEREO A .

  14. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    Science.gov (United States)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.type="synopsis">type="main">Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each sunspot cycle and that the polar field that has accumulated by the time of each sunspot minimum is a good

  15. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  16. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V., E-mail: hmalova@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-08-15

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  17. Scrum-Based Learning Environment: Fostering Self-Regulated Learning

    Science.gov (United States)

    Linden, Tanya

    2018-01-01

    Academics teaching software development courses are experimenting with teaching methods aiming to improve students' learning experience and learning outcomes. Since Agile software development is gaining popularity in industry due to positive effects on managing projects, academics implement similar Agile approaches in student-centered learning…

  18. Holistic Approach to Data Center Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Steven W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-18

    This presentation discusses NREL's Energy System Integrations Facility and NREL's holistic design approach to sustainable data centers that led to the world's most energy-efficient data center. It describes Peregrine, a warm water liquid cooled supercomputer, waste heat reuse in the data center, demonstrated PUE and ERE, and lessons learned during four years of operation.

  19. So You Want to Start a Peer Online Writing Center?

    Directory of Open Access Journals (Sweden)

    Christine Rosalia

    2013-03-01

    Full Text Available The purpose of this article is to share lessons learned in setting up three different peer online writing centers in three different contexts (EFL, Generation 1.5, and ESL. In each center the focus was on the language learner as a peer online writing advisor and their needs in maintaining centers “for and by” learners. Technology affordances and constraints for local contexts, which promote learner autonomy, are analyzed. The open-source platforms (Moodle, Drupal, and Google Apps are compared in terms of usability for peer writing center work, particularly centers where groups co-construct feedback for writers, asynchronously. This paper is useful for readers who would like a head start or deeper understanding of potential logistics and decision-making involved in establishing a peer online writing center within coursework and/or a self-access learning center.

  20. Streamlining Workflow for Endovascular Mechanical Thrombectomy: Lessons Learned from a Comprehensive Stroke Center.

    Science.gov (United States)

    Wang, Hongjin; Thevathasan, Arthur; Dowling, Richard; Bush, Steven; Mitchell, Peter; Yan, Bernard

    2017-08-01

    Recently, 5 randomized controlled trials confirmed the superiority of endovascular mechanical thrombectomy (EMT) to intravenous thrombolysis in acute ischemic stroke with large-vessel occlusion. The implication is that our health systems would witness an increasing number of patients treated with EMT. However, in-hospital delays, leading to increased time to reperfusion, are associated with poor clinical outcomes. This review outlines the in-hospital workflow of the treatment of acute ischemic stroke at a comprehensive stroke center and the lessons learned in reduction of in-hospital delays. The in-hospital workflow for acute ischemic stroke was described from prehospital notification to femoral arterial puncture in preparation for EMT. Systematic review of literature was also performed with PubMed. The implementation of workflow streamlining could result in reduction of in-hospital time delays for patients who were eligible for EMT. In particular, time-critical measures, including prehospital notification, the transfer of patients from door to computed tomography (CT) room, initiation of intravenous thrombolysis in the CT room, and the mobilization of neurointervention team in parallel with thrombolysis, all contributed to reduction in time delays. We have identified issues resulting in in-hospital time delays and have reported possible solutions to improve workflow efficiencies. We believe that these measures may help stroke centers initiate an EMT service for eligible patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, M. J.; Torre, S. Della; Gervasi, M.; Grandi, D.; Vacca, G. La; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M. [INFN, Milano-Bicocca, Milano (Italy); Jóhannesson, G. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Kachelriess, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Masi, N.; Quadrani, L. [INFN, Bologna (Italy); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ostapchenko, S. S. [Frankfurt Institute of Advanced Studies, Frankfurt (Germany)

    2017-05-10

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.

  2. Mobility Data Analytics Center.

    Science.gov (United States)

    2016-01-01

    Mobility Data Analytics Center aims at building a centralized data engine to efficiently manipulate : large-scale data for smart decision making. Integrating and learning the massive data are the key to : the data engine. The ultimate goal of underst...

  3. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  4. A student-centered approach for developing active learning: the construction of physical models as a teaching tool in medical physiology.

    Science.gov (United States)

    Rezende-Filho, Flávio Moura; da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Rabelo, Luiza Antas

    2014-09-15

    Teaching physiology, a complex and constantly evolving subject, is not a simple task. A considerable body of knowledge about cognitive processes and teaching and learning methods has accumulated over the years, helping teachers to determine the most efficient way to teach, and highlighting student's active participation as a means to improve learning outcomes. In this context, this paper describes and qualitatively analyzes an experience of a student-centered teaching-learning methodology based on the construction of physiological-physical models, focusing on their possible application in the practice of teaching physiology. After having Physiology classes and revising the literature, students, divided in small groups, built physiological-physical models predominantly using low-cost materials, for studying different topics in Physiology. Groups were followed by monitors and guided by teachers during the whole process, finally presenting the results in a Symposium on Integrative Physiology. Along the proposed activities, students were capable of efficiently creating physiological-physical models (118 in total) highly representative of different physiological processes. The implementation of the proposal indicated that students successfully achieved active learning and meaningful learning in Physiology while addressing multiple learning styles. The proposed method has proved to be an attractive, accessible and relatively simple approach to facilitate the physiology teaching-learning process, while facing difficulties imposed by recent requirements, especially those relating to the use of experimental animals and professional training guidelines. Finally, students' active participation in the production of knowledge may result in a holistic education, and possibly, better professional practices.

  5. Implementing the patient-centered medical home in complex adaptive systems: Becoming a relationship-centered patient-centered medical home.

    Science.gov (United States)

    Flieger, Signe Peterson

    This study explores the implementation experience of nine primary care practices becoming patient-centered medical homes (PCMH) as part of the New Hampshire Citizens Health Initiative Multi-Stakeholder Medical Home Pilot. The purpose of this study is to apply complex adaptive systems theory and relationship-centered organizations theory to explore how nine diverse primary care practices in New Hampshire implemented the PCMH model and to offer insights for how primary care practices can move from a structural PCMH to a relationship-centered PCMH. Eighty-three interviews were conducted with administrative and clinical staff at the nine pilot practices, payers, and conveners of the pilot between November and December 2011. The interviews were transcribed, coded, and analyzed using both a priori and emergent themes. Although there is value in the structural components of the PCMH (e.g., disease registries), these structures are not enough. Becoming a relationship-centered PCMH requires attention to reflection, sensemaking, learning, and collaboration. This can be facilitated by settings aside time for communication and relationship building through structured meetings about PCMH components as well as the implementation process itself. Moreover, team-based care offers a robust opportunity to move beyond the structures to focus on relationships and collaboration. (a) Recognize that PCMH implementation is not a linear process. (b) Implementing the PCMH from a structural perspective is not enough. Although the National Committee for Quality Assurance or other guidelines can offer guidance on the structural components of PCMH implementation, this should serve only as a starting point. (c) During implementation, set aside structured time for reflection and sensemaking. (d) Use team-based care as a cornerstone of transformation. Reflect on team structures and also interactions of the team members. Taking the time to reflect will facilitate greater sensemaking and learning and

  6. Mobile-Assisted Second Language Learning: Developing a Learner-Centered Framework

    Science.gov (United States)

    Leow, Choy Khim; Yahaya, Wan Ahmad Jaafar Wan; Samsudin, Zarina

    2014-01-01

    The Mobile Assisted Language Learning concept has offered infinite language learning opportunities since its inception 20 years ago. Second Language Acquisition however embraces a considerably different body of knowledge from first language learning. While technological advances have optimized the psycholinguistic environment for language…

  7. Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).

    Science.gov (United States)

    von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus

    2001-01-01

    Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…

  8. Validation of community models: 3. Tracing field lines in heliospheric models

    Science.gov (United States)

    MacNeice, Peter; Elliott, Brian; Acebal, Ariel

    2011-10-01

    Forecasting hazardous gradual solar energetic particle (SEP) bursts at Earth requires accurately modeling field line connections between Earth and the locations of coronal or interplanetary shocks that accelerate the particles. We test the accuracy of field lines reconstructed using four different models of the ambient coronal and inner heliospheric magnetic field, through which these shocks must propagate, including the coupled Wang-Sheeley-Arge (WSA)/ENLIL model. Evaluating the WSA/ENLIL model performance is important since it is the most sophisticated model currently available to space weather forecasters which can model interplanetary coronal mass ejections and, when coupled with particle acceleration and transport models, will provide a complete model for gradual SEP bursts. Previous studies using a simpler Archimedean spiral approach above 2.5 solar radii have reported poor performance. We test the accuracy of the model field lines connecting Earth to the Sun at the onset times of 15 impulsive SEP bursts, comparing the foot points of these field lines with the locations of surface events believed to be responsible for the SEP bursts. We find the WSA/ENLIL model performance is no better than the simplest spiral model, and the principal source of error is the model's inability to reproduce sufficient low-latitude open flux. This may be due to the model's use of static synoptic magnetograms, which fail to account for transient activity in the low corona, during which reconnection events believed to initiate the SEP acceleration may contribute short-lived open flux at low latitudes. Time-dependent coronal models incorporating these transient events may be needed to significantly improve Earth/Sun field line forecasting.

  9. Analysis of Business Center Implementation in Banyumas Regency

    Directory of Open Access Journals (Sweden)

    Lina Rifda Naufalin

    2017-06-01

    Full Text Available The research aims to help the development of business center as an entrepreneurship laboratory for vocational students in order to increase the number of young entrepreneurs in Indonesia. This study is also  to find out how the implementation of the existing Business Center program in SMK Banyumas District viewed from the aspects of learning, economics, organizational, and capital. Research method used qualitative method and techniques of collecting data used observation and interview. The place of research is in Vocational School 1 Purwokerto and Vocational School 2 Purwokerto. The sampling technique was purposive sampling technique. Validity of data in this research used data triangulation.The result of the research shows that the learning aspect of the implementation of the business center is effective because it becomes the student training center. Economic aspect of the business center is effective to carry out the activities of selling goods, goods production and service, business because it is supported by qualified human resources and internal audits conducted regularly. The aspect of the capital of the business center can be managed effectively.

  10. Lessons Learned Recruiting Minority Participants for Research in Urban Community Health Centers.

    Science.gov (United States)

    Fam, Elizabeth; Ferrante, Jeanne M

    2018-02-01

    To help understand and mitigate health disparities, it is important to conduct research with underserved and underrepresented minority populations under real world settings. There is a gap in the literature detailing real-time research staff experience, particularly in their own words, while conducting in-person patient recruitment in urban community health centers. This paper describes challenges faced at the clinic, staff, and patient levels, our lessons learned, and strategies implemented by research staff while recruiting predominantly low-income African-American women for an interviewer-administered survey study in four urban Federally Qualified Health Centers in New Jersey. Using a series of immersion-crystallization cycles, fieldnotes and research reflections written by recruiters, along with notes from team meetings during the study, were qualitatively analyzed. Clinic level barriers included: physical layout of clinic, very low or high patient census, limited private space, and long wait times for patients. Staff level barriers included: unengaged staff, overburdened staff, and provider and staff turnover. Patient level barriers included: disinterested patients, patient mistrust and concerns over confidentiality, no-shows or lack of patient time, and language barrier. We describe strategies used to overcome these barriers and provide recommendations for in-person recruitment of underserved populations into research studies. To help mitigate health disparities, disseminating recruiters' experiences, challenges, and effective strategies used will allow other researchers to build upon these experience in order to increase recruitment success of underserved and underrepresented minority populations into research studies. Copyright © 2018 National Medical Association. Published by Elsevier Inc. All rights reserved.

  11. Self-Access Centers: Maximizing Learners’ Access to Center Resources

    Directory of Open Access Journals (Sweden)

    Mark W. Tanner

    2010-09-01

    Full Text Available Originally published in TESL-EJ March 2009, Volume 12, Number 4 (http://tesl-ej.org/ej48/a2.html. Reprinted with permission from the authors.Although some students have discovered how to use self-access centers effectively, the majority appear to be unaware of available resources. A website and database of materials were created to help students locate materials and use the Self-Access Study Center (SASC at Brigham Young University’s English Language Center (ELC more effectively. Students took two surveys regarding their use of the SASC. The first survey was given before the website and database were made available. A second survey was administered 12 weeks after students had been introduced to the resource. An analysis of the data shows that students tend to use SASC resources more autonomously as a result of having a web-based database. The survey results suggest that SAC managers can encourage more autonomous use of center materials by provided a website and database to help students find appropriate materials to use to learn English.

  12. Quality indicators for learner-centered postgraduate medical e-learning

    NARCIS (Netherlands)

    de Leeuw, Robert A; Westerman, Michiel; Scheele, Fedde

    2017-01-01

    Objectives: The objectives of this study were to identify the needs and expectations of learners and educational experts in postgraduate medical e-learning, and to contribute to the current literature. Methods: We performed four focus-group discussions with e-learning end-users (learners) and

  13. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  14. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    Science.gov (United States)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  15. Low-Energy Neutron Production in Solar Flares and the Importance of their Detection in the Inner Heliosphere

    Science.gov (United States)

    Murphy, Ronald; Kozlovsky, B.; Share, G.

    2012-05-01

    Neutron detectors on spacecraft in the inner-heliosphere can observe the low-energy (computer code incorporating up-dated neutron-production cross sections of the accelerated proton and alpha-particle reactions with heavier elements at low ion energies (Mercury. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observations of both neutrons and gamma rays. We find that a measurement of the 2.223 MeV neutron-capture line, even with a modest instrument at 1 AU, is as sensitive to the presence of low-energy interacting ions at the Sun as a 1-10 MeV neutron detector at 0.5 AU. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux will allow exploration of ion acceleration in weak flares not previously observable and may reveal ion acceleration at other sites not previously detected where low-energy neutron production could be the only high-energy signature of ion acceleration.

  16. Design of learner-centred constructivism based learning process

    OpenAIRE

    Schreurs, Jeanne; Al-Huneidi, Ahmad

    2012-01-01

    A Learner-centered learning is constructivism based and Competence directed. We define general competencies, domain competencies and specific course competencies. Constructivism based learning activities are based on constructivism theory. For each course module the intended learning level will be defined. A model is built for the design of a learner centered constructivism based and competency directed learning process. The application of it in two courses are presented. Constructivism ba...

  17. PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kubicka, M.; Möstl, C.; Amerstorfer, T.; Boakes, P. D.; Törmänen, O. [Space Research Institute, Austrian Academy of Sciences, 8042 Graz (Austria); Feng, L. [Purple Mountain Observatory, Chinese Academy of Sciences, West Beijing Road 2 Nanjing, 210008 (China); Eastwood, J. P., E-mail: christian.moestl@oeaw.ac.at [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-12-20

    Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, B{sub z}. Predicting the strength and duration of B{sub z} inside a CME with sufficient accuracy is currently impossible, forming the so-called B{sub z} problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, B{sub z}, and resulting disturbance storm time ( Dst ) index on Earth based only on magnetic field data, measured in situ in the inner heliosphere (<1 au). On 2012 June 12–16, three approximately Earthward-directed and interacting CMEs were observed by the Solar Terrestrial Relations Observatory imagers and Venus Express (VEX) in situ at 0.72 au, 6° away from the Sun–Earth line. The CME kinematics are calculated using the drag-based and WSA–Enlil models, constrained by the arrival time at VEX , resulting in the CME arrival time and speed on Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind . Our investigation shows promising results for the Dst forecast (predicted: −96 and −114 nT (from 2 Dst models); observed: −71 nT), for the arrival speed (predicted: 531 ± 23 km s{sup −1}; observed: 488 ± 30 km s{sup −1}), and for the timing (6 ± 1 hr after the actual arrival time). The prediction lead time is 21 hr. The method may be applied to vector magnetic field data from a spacecraft at an artificial Lagrange point between the Sun and Earth or to data taken by any spacecraft temporarily crossing the Sun–Earth line.

  18. Particle acceleration at corotating interaction regions in the three-dimensional heliosphere

    International Nuclear Information System (INIS)

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Balogh, A.; Forsyth, R.J.; Gosling, J.T.

    1998-01-01

    We have investigated the relationship between the energetic (∼1MeV) proton intensity (J) and the magnetic compression ratio (C) measured at the trailing edges of corotating interaction regions observed at Ulysses. In general, our results show that the proton intensity was well correlated with the compression ratio, provided that the seed intensity remained constant, consistent with predictions of the Fermi model. Specifically, our results indicate that particles were accelerated to above ∼1MeV in energy at or near the trailing edges of the compression regions observed in the midlatitude southern heliosphere, irrespective of whether the bounding reverse shocks were present or not. On the basis of this, we conclude that shock acceleration is probably not the only mechanism by which particles are accelerated to above ∼1MeV in energy at compression or interaction regions (CIRs). On the basis of magnetic field measurements obtained near the trailing edges of several midlatitude CIRs, we propose that particles could have been accelerated via the Fermi mechanism by being scattered back and forth across the trailing edges of the compression regions by large-amplitude Alfvacute en waves. Our results also show that the proton intensity was well correlated with the compression ratio during low solar activity periods but was essentially independent of C during periods of high solar activity. We suggest that the correlation between J and C was not observed during solar active periods because of significant variations in the seed intensity that result from sporadic contributions from transient solar events. In contrast, the correlation was observable during quiescent periods probably because contributions from transients had decreased dramatically, which allowed the CIRs to accelerate particles out of a seed population whose intensity remained relatively unperturbed. copyright 1998 American Geophysical Union

  19. Solar wind conditions in the outer heliosphere and the distance to the termination shock

    Science.gov (United States)

    Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.

  20. The CenterSpot: Safari Schoolroom.

    Science.gov (United States)

    Wirtz, Ruth E.

    1980-01-01

    Described are activities to be used in five learning centers which build on children's interests in wild animals. Developed is an imaginary safari park with artwork depicting wild animals and tropical vegetation. Objectives, materials, and directions are included. (KC)

  1. You Can Lead Students to Water, but You Can't Make Them Think: An Assessment of Student Engagement and Learning through Student-Centered Teaching

    Science.gov (United States)

    Bradford, Jennifer; Mowder, Denise; Bohte, Joy

    2016-01-01

    The current project conducted an assessment of specific, directed use of student-centered teaching techniques in a criminal justice and criminology research methods and statistics class. The project sought to ascertain to what extent these techniques improved or impacted student learning and engagement in this traditionally difficult course.…

  2. On the Effects of Pickup Ion-driven Waves on the Diffusion Tensor of Low-energy Electrons in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N. Eugene, E-mail: n.eugene.engelbrecht@gmail.com [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa)

    2017-11-01

    The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves. It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.

  3. 未来学习空间应用效果评价--以北京师范大学未来学习体验中心为例%Evaluation of the Future Learning Space:A Case Analysis of the Future Experiential Learning Center at Beijing Normal University

    Institute of Scientific and Technical Information of China (English)

    宋畅; 刘月; 陈悦; 李秋菊; 江丰光

    2015-01-01

    Research on active learning spaces has attracted great attention in recent years. A focus of the research is the design and use of these spaces that provide diverse and comfortable learning experiences. In 2014, the Future Ex-periential Learning Center at Beijing Normal University which contained eight classrooms with different functions was opened. They are interactive discussion classroom, interactive teaching classroom, interactive group-learning class-room, teacher education-training classroom, international cooperation remote classroom, mobile learning classroom, explore learning classroom, and recording and broadcasting control room. Twenty-one classes were taught in the Fu-ture Experiential Learning Center with eighteen teachers and more than 300 students involved. This study employed a combination of quantitative and qualitative methods to systematically evaluate the design and effects of the active learn-ing space at the Future Experiential Learning Center. We used questionnaires, interviews, and classroom observations to obtain data about student and teacher satisfaction and classroom interaction. Student satisfaction survey involved all the students. Questionnaires were sent to 215 students and 180 questionnaires were ultimate recovered. Teacher satis-faction survey was a sampling survey. Interviews were conducted with four typical teachers among all the eighteen teachers. Classroom observations were carried out in four typical classes which were chosen from all the twenty-one classes. The study found that students and teachers were overall satisfied with the classroom and believed the Future Learning Space could better support teaching. Firstly, the questionnaires showed that the mean value of the student satisfaction was 3. 90 (M=3. 90) which indicated the students were satisfied with the classroom generally. In all eight dimensions, there were five dimensions of which mean values were higher than the overall average (M=3. 90). They were classroom

  4. Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Science.gov (United States)

    Glowa, Liz; Goodell, Jim

    2016-01-01

    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of…

  5. Learners' Ensemble Based Security Conceptual Model for M-Learning System in Malaysian Higher Learning Institution

    Science.gov (United States)

    Mahalingam, Sheila; Abdollah, Faizal Mohd; Sahib, Shahrin

    2014-01-01

    M-Learning has a potential to improve efficiency in the education sector and has a tendency to grow advance and transform the learning environment in the future. Yet there are challenges in many areas faced when introducing and implementing m-learning. The learner centered attribute in mobile learning implies deployment in untrustworthy learning…

  6. Articulating Value and Impact Through Outcome-Centered Service Delivery: the Student and Learning Support Experience at the University of Sunderland.

    OpenAIRE

    Grieves, Kay; Pritchard, Oliver

    2018-01-01

    Purpose- The purpose of this paper is to share the ways in which Student and Learning Support at the University of Sunderland has embedded and matured a new outcome-centered performance model - our Quality Model - in order to create an agile evidence-base of value, outcome and impact evidence. We will also share how, having established the fundamental principles regarding value and impact capture in our library setting, the concepts and approaches have also been developed and applied successf...

  7. Epidemiologic methods lessons learned from environmental public health disasters: Chernobyl, the World Trade Center, Bhopal, and Graniteville, South Carolina.

    Science.gov (United States)

    Svendsen, Erik R; Runkle, Jennifer R; Dhara, Venkata Ramana; Lin, Shao; Naboka, Marina; Mousseau, Timothy A; Bennett, Charles

    2012-08-01

    Environmental public health disasters involving hazardous contaminants may have devastating effects. While much is known about their immediate devastation, far less is known about long-term impacts of these disasters. Extensive latent and chronic long-term public health effects may occur. Careful evaluation of contaminant exposures and long-term health outcomes within the constraints imposed by limited financial resources is essential. Here, we review epidemiologic methods lessons learned from conducting long-term evaluations of four environmental public health disasters involving hazardous contaminants at Chernobyl, the World Trade Center, Bhopal, and Graniteville (South Carolina, USA). We found several lessons learned which have direct implications for the on-going disaster recovery work following the Fukushima radiation disaster or for future disasters. These lessons should prove useful in understanding and mitigating latent health effects that may result from the nuclear reactor accident in Japan or future environmental public health disasters.

  8. Integrated Support Center for Nuclear Nonproliferation and Security

    International Nuclear Information System (INIS)

    Kimura, Naohito; Naoi, Yosuke

    2010-01-01

    In April 2010, at the Nuclear Security Summit, Japan demonstrated its commitment to the strengthening of nuclear non-proliferation and nuclear security and announced the establishment of the Integrated Comprehensive Support Center for Nuclear Non-proliferation and Nuclear Security in the Japan Atomic Energy Agency (JAEA), under the guidance and authority of the Ministry of Education, Culture, Sports and Science and Technology (MEXT), and in cooperation with other ministries. The goal of the Center is to strengthen nuclear non-proliferation and security in emerging nuclear power countries by sharing Japan's accumulated experiences in its peaceful use of nuclear energy. To achieve its goal, the Center serves three functions: (1) human resource and capacity building, (2) infrastructure development and technical assistance and (3) international coordination and cooperation. The Center will offer three types of training courses to strengthen human resources and capacity building in emerging nuclear power countries. In the Training Course on Nuclear Security, the participants will learn the design and evaluation process for physical protection and detection of and response to illegal or unauthorized acts related to nuclear materials. They will learn these issues not only through lectures and training but also using mockup facilities and virtual reality systems. Second, in the Training Course on Safeguards and State System of Accounting for and Control of Nuclear Material (SSAC), the Center will teach the experience of advanced safeguards activities in Japan for its full-scale nuclear fuel cycle facilities as a non-nuclear weapon state. The participants will learn the IAEA and national safeguards systems, the material accounting system and inspector activities. Third, in the Training on the International Nuclear Nonproliferation Framework, the participants will learn the international framework of nuclear non-proliferation including the IAEA safeguards system and

  9. Learning Across the Big-Science Boundary: Leveraging Big-Science Centers for Technological Learning

    CERN Document Server

    Autio, E.; Streit-Bianchi, M.

    2003-01-01

    The interaction between industrial companies and the public research sector has intensified significantly during recent years (Bozeman, 2000), as firms attempt to build competitive advantage by leveraging external sources of learning (Lambe et al., 1997). By crossing the boundary between industrial and re- search spheres, firms may tap onto sources of technological learning, and thereby gain a knowledge- based competitive advantage over their competitors. Such activities have been actively supported by national governments, who strive to support the international competitiveness of their industries (Georghiou et al., 2000; Lee, 1994; Rothwell et al., 1992).

  10. Future applications of artificial intelligence to Mission Control Centers

    Science.gov (United States)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  11. Microsoft System Center 2012 R2 compliance management cookbook

    CERN Document Server

    Baumgarten, Andreas; Roesner, Susan

    2014-01-01

    Whether you are an IT manager, an administrator, or security professional who wants to learn how Microsoft Security Compliance Manager and Microsoft System Center can help fulfil compliance and security requirements, this is the book for you. Prior knowledge of Microsoft System Center is required.

  12. The role of informal science centers in science education: attitudes, skills, and self-efficacy

    OpenAIRE

    Sasson, Irit

    2014-01-01

    Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based q...

  13. An access to care center as a learning organization.

    Science.gov (United States)

    Parris, U

    2000-01-01

    The Durham Access to Care (DATC) is one of the new streamlined vehicles for the delivery of integrated home-based and community-based health services across Ontario. Management and staff in this change transition have undertaken to become a learning organization. To implement this visionary process leadership qualities and style is key. This article gives a brief account of DATC and its move to becoming a learning organization and the author's observational reflections of an effective leadership style.

  14. Interactive and collaborative learning in the classroom at the medical school Automated response systems and team-based learning.

    Science.gov (United States)

    Nasr, Rihab; Antoun, Jumana; Sabra, Ramzi; Zgheib, Nathalie K

    2016-01-01

    There has been a pedagogic shift in higher education from the traditional teacher centered to the student centered approach in teaching, necessitating a change in the role of the teacher from a supplier of information to passive receptive students into a more facilitative role. Active learning activities are based on various learning theories such as self-directed learning, cooperative learning and adult learning. There exist many instructional activities that enhance active and collaborative learning. The aim of this manuscript is to describe two methods of interactive and collaborative learning in the classroom, automated response systems (ARS) and team-based learning (TBL), and to list some of their applications and advantages. The success of these innovative teaching and learning methods at a large scale depends on few elements, probably the most important of which is the support of the higher administration and leadership in addition to the availability of “champions” who are committed to lead the change.

  15. ENERGY RESOURCES CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Virginia

    1979-11-01

    First I will give a short history of this Center which has had three names and three moves (and one more in the offing) in three years. Then I will tell you about the accomplishments made in the past year. And last, I will discuss what has been learned and what is planned for the future. The Energy and Environment Information Center (EEIC), as it was first known, was organized in August 1975 in San Francisco as a cooperative venture by the Federal Energy Administration (FEA), Energy Research and Development Administration (ERDA) and the Environmental Protection Agency (EPA). These three agencies planned this effort to assist the public in obtaining information about energy and the environmental aspects of energy. The Public Affairs Offices of FEA, ERDA and EPA initiated the idea of the Center. One member from each agency worked at the Center, with assistance from the Lawrence Berkeley Laboratory Information Research Group (LBL IRG) and with on-site help from the EPA Library. The Center was set up in a corner of the EPA Library. FEA and ERDA each contributed one staff member on a rotating basis to cover the daily operation of the Center and money for books and periodicals. EPA contributed space, staff time for ordering, processing and indexing publications, and additional money for acquisitions. The LBL Information Research Group received funds from ERDA on a 189 FY 1976 research project to assist in the development of the Center as a model for future energy centers.

  16. Working Together: How Teachers Teach and Students Learn in Collaborative Learning Environments

    Directory of Open Access Journals (Sweden)

    Mary Burns

    2014-01-01

    Full Text Available Active Learning in Maths and Science (ALMS was a six-month face-to-face professional development program for middle school maths and science teachers carried out between June and November, 2010 in two Indian states. ALMS’s theory of action is grounded in the belief that collaborative learning serves as a “gateway” to learner-centered instruction. Designers theorized that this shift from individual to collaborative learning would redefine the teacher’s role; alter the teacher and student relationship; change teachers’ organizational, instructional and assessment practices; and begin to lay the groundwork for an eventual shift toward full learner-centered instruction. As this paper will discuss, this proposed theory of action was largely confirmed. Over 80 percent of teachers across the two states regularly implemented collaborative learning techniques and began the larger journey toward learner-centered instruction. This implementation also resulted in a number of benefits for students, including greater levels of engagement, increased confidence, and improved behavior. The research also suggests that when teachers see positive changes as a result of their actions, their deeply-held beliefs about traditional instruction may conflict with what they in fact witnessed in their classrooms. This is the beginning of the evolution of change.

  17. VMware vCenter cookbook

    CERN Document Server

    Kuminsky, Konstantin

    2015-01-01

    If you are a system administrator who has some experience with virtualization and already uses VMware vCenter, but wishes to learn more, then this is the book for you. If you are looking for tips or shortcuts for common administration tasks as well as workarounds for pain points in vSphere administration, you'll find this guide useful.

  18. Epidemiologic Methods Lessons Learned from Environmental Public Health Disasters: Chernobyl, the World Trade Center, Bhopal, and Graniteville, South Carolina

    Directory of Open Access Journals (Sweden)

    Timothy A. Mousseau

    2012-08-01

    Full Text Available Background: Environmental public health disasters involving hazardous contaminants may have devastating effects. While much is known about their immediate devastation, far less is known about long-term impacts of these disasters. Extensive latent and chronic long-term public health effects may occur. Careful evaluation of contaminant exposures and long-term health outcomes within the constraints imposed by limited financial resources is essential. Methods: Here, we review epidemiologic methods lessons learned from conducting long-term evaluations of four environmental public health disasters involving hazardous contaminants at Chernobyl, the World Trade Center, Bhopal, and Graniteville (South Carolina, USA. Findings: We found several lessons learned which have direct implications for the on-going disaster recovery work following the Fukushima radiation disaster or for future disasters. Interpretation: These lessons should prove useful in understanding and mitigating latent health effects that may result from the nuclear reactor accident in Japan or future environmental public health disasters.

  19. REPORT AND RECOMMENDATION FOR LEARNING MATERIALS CENTER.

    Science.gov (United States)

    KEIM, WILLIAM A.; AND OTHERS

    THIS REPORT IS A HISTORY OF THE DEVELOPMENT OF A SET OF EDUCATIONAL SPECIFICATIONS FOR THE EXPANSION OF AN EXISTING LIBRARY AND THE ADDITION OF AN INSTRUCTIONAL MATERIALS CENTER. PRELIMINARY CONSIDERATION WAS GIVEN TO THE METHODS OF INSTRUCTION AT THE COLLEGE, THE STUDENTS, THE FACULTY, AND THE AVAILABLE FINANCIAL RESOURCES. A GENERAL STUDY…

  20. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  1. National Center for Mathematics and Science

    Science.gov (United States)

    NCISLA logo National Center for Improving Student Learning and Achievement in Mathematics and Wisconsin-Madison Powerful Practices in Mathematics & Sciences A multimedia product for educators . Scaling Up Innovative Practices in Mathematics and Science (Research Report). Thomas P. Carpenter, Maria

  2. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  3. User-Centered Design Strategies for Massive Open Online Courses (MOOCs)

    Science.gov (United States)

    Mendoza-Gonzalez, Ricardo, Ed.

    2016-01-01

    In today's society, educational opportunities have evolved beyond the traditional classroom setting. Most universities have implemented virtual learning environments in an effort to provide more opportunities for potential or current students seeking alternative and more affordable learning solutions. "User-Centered Design Strategies for…

  4. Learning styles and approaches to learning among medical undergraduates and postgraduates.

    Science.gov (United States)

    Samarakoon, Lasitha; Fernando, Tharanga; Rodrigo, Chaturaka

    2013-03-25

    The challenge of imparting a large amount of knowledge within a limited time period in a way it is retained, remembered and effectively interpreted by a student is considerable. This has resulted in crucial changes in the field of medical education, with a shift from didactic teacher centered and subject based teaching to the use of interactive, problem based, student centered learning. This study tested the hypothesis that learning styles (visual, auditory, read/write and kinesthetic) and approaches to learning (deep, strategic and superficial) differ among first and final year undergraduate medical students, and postgraduates medical trainees. We used self administered VARK and ASSIST questionnaires to assess the differences in learning styles and approaches to learning among medical undergraduates of the University of Colombo and postgraduate trainees of the Postgraduate Institute of Medicine, Colombo. A total of 147 participated: 73 (49.7%) first year students, 40 (27.2%) final year students and 34(23.1%) postgraduate students. The majority (69.9%) of first year students had multimodal learning styles. Among final year students, the majority (67.5%) had multimodal learning styles, and among postgraduates, the majority were unimodal (52.9%) learners.Among all three groups, the predominant approach to learning was strategic. Postgraduates had significant higher mean scores for deep and strategic approaches than first years or final years (p learning approaches suggest a positive shift towards deep and strategic learning in postgraduate students. However a similar difference was not observed in undergraduate students from first year to final year, suggesting that their curriculum may not have influenced learning methodology over a five year period.

  5. 21st Century Community Learning Centers: Stable Funding for Innovation and Continuous Improvement. Research Update: Highlights from the Out-of-School Time Database. Number 8

    Science.gov (United States)

    Wimer, Christopher; Harris, Erin

    2012-01-01

    As the only federal funding stream that provides dedicated funds for afterschool programs across the country, the 21st Century Community Learning Centers (21st CCLC) initiative plays an important role in supporting the innovation that takes place in afterschool programs. Social innovation has been defined as "a novel solution to a social…

  6. Mobile Based User-Centered Learning Environment for Adult Absolute Illiterates

    Directory of Open Access Journals (Sweden)

    Inayat ur-Rehman

    2016-01-01

    Full Text Available Education plays a vital role in the success of any community. Countries with increased literacy rate have improved their status on the world map. In recent years, the use of e-learning methodologies has been significant. However, majority of the previous methodologies are focused on the formal education or toddlers. The technoliteracy solutions for children are not suitable for adults and those designed specifically for adults are text dominant and require the users of these applications to be functional literate. Moreover, users’ interest (sense of belonging is not taken into consideration in existing solutions. To address the aforementioned issues, a user study is conducted to collect users’ interests. Another highlight of our study is that we develop our system as a mobile device application to facilitate our target user group. Based on the collected interests, a 3D virtual learning environment is designed and developed for adult illiterate learners. To evaluate the effectiveness of the proposed environment, an experimental study is carried out with users. The results show that the proposed learning environment significantly improves adults learning.

  7. Lessons learned: mobile device encryption in the academic medical center.

    Science.gov (United States)

    Kusche, Kristopher P

    2009-01-01

    The academic medical center is faced with the unique challenge of meeting the multi-faceted needs of both a modern healthcare organization and an academic institution, The need for security to protect patient information must be balanced by the academic freedoms expected in the college setting. The Albany Medical Center, consisting of the Albany Medical College and the Albany Medical Center Hospital, was challenged with implementing a solution that would preserve the availability, integrity and confidentiality of business, patient and research data stored on mobile devices. To solve this problem, Albany Medical Center implemented a mobile encryption suite across the enterprise. Such an implementation comes with complexities, from performance across multiple generations of computers and operating systems, to diversity of application use mode and end user adoption, all of which requires thoughtful policy and standards creation, understanding of regulations, and a willingness and ability to work through such diverse needs.

  8. Universal Design for Learning: Critical Need Areas for People with Learning Disabilities

    Science.gov (United States)

    Strobel, Wendy; Arthanat, Sajay; Bauer, Stephen; Flagg, Jennifer

    2007-01-01

    The primary market research outlined in this paper was conducted by the Rehabilitation Engineering Research Center on Technology Transfer to identify critical technology needs for people with learning disabilities. Based on the research conducted, the underlying context of these technology needs is Universal Design for Learning (UDL). The paper…

  9. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data

    Science.gov (United States)

    Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.

    2017-09-01

    Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer

  10. Learning and geometry computational approaches

    CERN Document Server

    Smith, Carl

    1996-01-01

    The field of computational learning theory arose out of the desire to for­ mally understand the process of learning. As potential applications to artificial intelligence became apparent, the new field grew rapidly. The learning of geo­ metric objects became a natural area of study. The possibility of using learning techniques to compensate for unsolvability provided an attraction for individ­ uals with an immediate need to solve such difficult problems. Researchers at the Center for Night Vision were interested in solving the problem of interpreting data produced by a variety of sensors. Current vision techniques, which have a strong geometric component, can be used to extract features. However, these techniques fall short of useful recognition of the sensed objects. One potential solution is to incorporate learning techniques into the geometric manipulation of sensor data. As a first step toward realizing such a solution, the Systems Research Center at the University of Maryland, in conjunction with the C...

  11. Quiet or Questioning? Students' Discussion Behaviors in Student-Centered Education across Cultures

    Science.gov (United States)

    Frambach, Janneke M.; Driessen, Erik W.; Beh, Philip; van der Vleuten, Cees P. M.

    2014-01-01

    A tool used in student-centered education is discussion among students in small learning groups. The Western origin of student-centered education, coupled with cross-cultural differences in communication styles, may detract from its cross-cultural applicability. This study investigates how in student-centered education, students' cultural…

  12. A Web-Based Learning Support System for Inquiry-Based Learning

    Science.gov (United States)

    Kim, Dong Won; Yao, Jingtao

    The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.

  13. Teaching and Learning Hand in Hand: Adaptive Teaching and Self-Regulated Learning

    Science.gov (United States)

    Randi, Judi

    2017-01-01

    This article presents case studies of two novice teachers and their mentors who, without formal knowledge of self-regulation theory, established a classroom environment that promoted self-regulated learning. This case was drawn from a larger descriptive study of novice teachers learning to integrate a student-centered visual literacy instructional…

  14. User-centered Technologies For Blind Children

    Directory of Open Access Journals (Sweden)

    Jaime Sánchez

    2008-01-01

    Full Text Available The purpose of this paper is to review, summarize, and illustrate research work involving four audio-based games created within a user-centered design methodology through successive usability tasks and evaluations. These games were designed by considering the mental model of blind children and their styles of interaction to perceive and process data and information. The goal of these games was to enhance the cognitive development of spatial structures, memory, haptic perception, mathematical skills, navigation and orientation, and problem solving of blind children. Findings indicate significant improvements in learning and cognition from using audio-based tools specially tailored for the blind. That is, technologies for blind children, carefully tailored through user-centered design approaches, can make a significant contribution to cognitive development of these children. This paper contributes new insight into the design and implementation of audio-based virtual environments to facilitate learning and cognition in blind children.

  15. On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto

    2018-01-01

    The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.

  16. Comparing Problem-Based Learning Students to Students in a Lecture-Based Curriculum: Learning Strategies and the Relation with Self-Study Time

    Science.gov (United States)

    Wijnen, Marit; Loyens, Sofie M. M.; Smeets, Guus; Kroeze, Maarten; van der Molen, Henk

    2017-01-01

    In educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one's own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational…

  17. Universal Design for Learning: Scanning for Alignment in K-12 Blended and Fully Online Learning Materials

    Science.gov (United States)

    Basham, James D.; Smith, Sean J.; Satter, Allyson L.

    2016-01-01

    In the process of evaluating online learning products for accessibility, researchers in the Center on Online Learning and Students with Disabilities concluded that most often consultation guides and assessment tools were useful in determining sensory accessibility but did not extend to critical aspects of learning within the Universal Design for…

  18. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  19. Writing-to-Learn, Writing-to-Communicate, & Scientific Literacy

    Science.gov (United States)

    Balgopal, Meena; Wallace, Alison

    2013-01-01

    Writing-to-learn (WTL) is an effective instructional and learning strategy that centers on the process of organizing and articulating ideas, as opposed to writing-to-communicate, which centers on the finished written product. We describe a WTL model that we have developed and tested with various student groups over several years. With effective…

  20. Carolinas Energy Career Center

    Energy Technology Data Exchange (ETDEWEB)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  1. Student teachers' perceptions about their experiences in a student centered course

    Directory of Open Access Journals (Sweden)

    Canan Perkan Zeki

    2014-03-01

    Full Text Available There is a growing need to provide curricula that meets the changing needs of students in higher education. To train pre-service teachers according to the demands of the new educational contexts, the move from teacher-centered curricula to learning-centered curricula is a must. The aim of this research is to examine the currently used curriculum of EGIT 450 Student Centered Education (SCE course to highlight suggestions for a better design and implementation of the SCE approach. A qualitative paradigm was used with an interpretive methodology. The participants of the study were the 37 third year undergraduate students enrolled in the course at one of the tertiary institutions in North Cyprus. Qualitative data were collected through end-of-the-semester reflective essays and analyzed through content analysis method. The findings revealed that SCE methodology helped improve student teachers' cognitive skills via holding an active role and their affective skills through group work activities emphasizing its effect on permanent learning and learning how to learn. Participants also pointed out the difficulty and complexity of the roles expected from the teacher and learners individually and cooperatively. The inefficiency of some of the teaching-learning activities, physical characteristics of the classroom setting and duration of the allocated time for the activities were among the weak aspects of the course.

  2. Learner-Centered Pedagogy: Considerations for Application in a Didactic Course

    Science.gov (United States)

    Moate, Randall M.; Cox, Jane A.

    2015-01-01

    A learner-centered teaching approach is well known in higher education but has not been fully addressed within counselor education. Instructors who adopt this approach value a collaborative approach to teaching and learning, one that honors students' wisdom and contributions. Teachers create a learning environment encouraging students to actively…

  3. Adult Basic Learning in an Activity Center: A Demonstration Approach.

    Science.gov (United States)

    Metropolitan Adult Education Program, San Jose, CA.

    Escuela Amistad, an activity center in San Jose, California, is now operating at capacity, five months after its origin. Average daily attendance has been 125 adult students, 18-65, most of whom are females of Mexican-American background. Activities and services provided by the center are: instruction in English as a second language, home…

  4. Personal Learning Environment – a Conceptual Study

    Directory of Open Access Journals (Sweden)

    Herbert Mühlburger

    2010-01-01

    Full Text Available The influence of digital technologies as well as the World Wide Web on education rises dramatically. In former years Learning Management Systems (LMS were introduced on educational institutes to address the needs both their institutions and their lecturers. Nowadays a shift from an institution-centered approach to a learner-centered one becomes necessary to allow individuality through the learning process and to think about learning strategies in general. In this paper a first approach of a Personal Learning Environment (PLE is described. The technological concept is pointed out as well as a study about the graphical user-interface done at Graz University of Technology (TU Graz. It can be concluded that PLEs are the next generation environments, which help to improve the learning and teaching behavior

  5. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Tamara van Gog; Desirée Joosten-ten Brinke; F. J. Prins; Dominique Sluijsmans

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  6. The Activity Theory Approach to Learning

    Directory of Open Access Journals (Sweden)

    Ritva Engeström

    2014-12-01

    Full Text Available In this paper the author offers a practical view of the theory-grounded research on education action. She draws on studies carried out at the Center for Research on Activity, Development and Learning (CRADLE at the University of Helsinki in Finland. In its work, the Center draws on cultural-historical activity theory (CHAT and is well-known for the theory of Expansive Learning and its more practical application called Developmental Work Research (DWR. These approaches are widely used to understand professional learning and have served as a theoreticaland methodological foundation for studies examining change and professional development in various human activities.

  7. The Plant Information Center (PIC): A Web-Based Learning Center for Botanical Study.

    Science.gov (United States)

    Greenberg, J.; Daniel, E.; Massey, J.; White, P.

    The Plant Information Center (PIC) is a project funded under the Institute of Museum and Library Studies that aims to provide global access to both primary and secondary botanical resources via the World Wide Web. Central to the project is the development and employment of a series of applications that facilitate resource discovery, interactive…

  8. Creating a flexible learning environment.

    Science.gov (United States)

    Taylor, B A; Jones, S; Winters, P

    1990-01-01

    Lack of classroom space is a common problem for many hospital-based nurse educators. This article describes how nursing educators in one institution redesigned fixed classroom space into a flexible learning center that accommodates their various programs. Using the nursing process, the educators assessed their needs, planned the learning environment, implemented changes in the interior design, and evaluated the outcome of the project. The result was a learning environment conducive to teaching and learning.

  9. Long-term solar activity and its implications to the heliosphere, geomagnetic activity, and the Earth’s climate

    Directory of Open Access Journals (Sweden)

    Tanskanen Eija

    2013-06-01

    Full Text Available The Sun’s long-term magnetic variability is the primary driver of space climate. This variability is manifested not only in the long-observed and dramatic change of magnetic fields on the solar surface, but also in the changing solar radiative output across all wavelengths. The Sun’s magnetic variability also modulates the particulate and magnetic fluxes in the heliosphere, which determine the interplanetary conditions and impose significant electromagnetic forces and effects upon planetary atmospheres. All these effects due to the changing solar magnetic fields are also relevant for planetary climates, including the climate of the Earth. The ultimate cause of solar variability, at time scales much shorter than stellar evolutionary time scales, i.e., at decadal to centennial and, maybe, even millennial or longer scales, has its origin in the solar dynamo mechanism. Therefore, in order to better understand the origin of space climate, one must analyze different proxies of solar magnetic variability and develop models of the solar dynamo mechanism that correctly produce the observed properties of the magnetic fields. This Preface summarizes the most important findings of the papers of this Special Issue, most of which were presented in the Space Climate-4 Symposium organized in 2011 in Goa, India.

  10. Neutron-decay Protons from Solar Flares as Seed Particles for CME-shock Acceleration in the Inner Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ronald J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Ko, Yuan-Kuen, E-mail: ronald.murphy@nrl.navy.mil, E-mail: yuan-kuen.ko@nrl.navy.mil [Code 7680, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-09-01

    The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s{sup −1} shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from the Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.

  11. An Integrated Multimedia Learning Model vs. the Traditional Face-to-Face Learning Model: An Examination of College Economics Classes

    Science.gov (United States)

    Son, Barbara; Simonian, Mark

    2016-01-01

    Multimedia learning tools can assist and help motivate students by supplementing traditional teaching modalities with learner-centered learning through application and practice. The overall effectiveness of multimedia learning has been documented (Son & Simonian, 2013; Son & Goldstone, 2012; Zhang, 2005). How are effective multimedia…

  12. Editorial: Advanced learning technologies

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lan

    2012-03-01

    Full Text Available Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile technologies and social media towards learner centered learning. This editorial note provides an overview of relevant issues discussed in this special issue.

  13. [Teaching practices and learning strategies in health careers].

    Science.gov (United States)

    Carrasco Z, Constanza; Pérez V, Cristhian; Torres A, Graciela; Fasce H, Eduardo

    2016-09-01

    Medical Education, according to the constructivist education paradigm, puts students as the protagonists of the teaching and learning process. It demands changes in the practice of teaching. However, it is unclear whether this new model is coherent with the teachers’ ways to cope with learning. To analyze the relationship between teaching practices and learning strategies among teachers of health careers in Chilean universities. The Teaching Practices Questionnaire and Learning Strategies Inventory of Schmeck were applied to 200 teachers aged 24 to 72 years (64% females). Teachers use different types of teaching practices. They commonly use deep and elaborative learning strategies. A multiple regression analysis showed that learning strategies had a 13% predictive value to identify student-centered teaching, but they failed to predict teacher-centered teaching. Teaching practices and learning strategies of teachers are related. Teachers frequently select constructivist model strategies, using different teaching practices in their work.

  14. E-Learning Tutoring System for Sijil Pelajaran Malaysia (SPM English

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Munirah

    2018-01-01

    Full Text Available An E-Learning tutoring system for English (SPM is an e-learning platform for Sijil Pelajaran Malaysia English subject. E-learning is a web based application that supports the delivery of learning, skills and knowledge related to the English subject in SPM. E-learning use the technology to enable people to learn anytime and anywhere. Besides, it is developed with the purpose to evaluate student’s performance through an online quiz. Nowadays, tuition center have a lot of students, hence insufficient time to analyze the individual performance in learning English. In addition, e-learning is able to reduce the printing cost and administrative cost at the same time reducing usage of paper and printed materials associate in learning. The system developed by using Javascript and PHP language based on system prototyping methodology. The result will produce student’s performance in monthly quiz and teacher are able to monitor the performance of each students. Although the development or this e-learning is based on requirement gathered via tuition center, however it can be proposed to be by any learning center or to self-study. It is hoped that this e-learning will be able to improve student knowledge in English language and subsequently help student to obtain the best result in SPM by providing more guided references and practices.

  15. Energy management of internet data centers in smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    This book reports the latest findings on intelligent energy management of Internet data centers in smart-grid environments. The book gathers novel research ideas in Internet data center energy management, especially scenarios with cyber-related vulnerabilities, power outages and carbon emission constraints. The book will be of interest to university researchers, R&D engineers and graduate students in communication and networking areas who wish to learn the core principles, methods, algorithms, and applications of energy management of Internet data centers in smart grids.

  16. Do "trainee-centered ward rounds" help overcome barriers to learning and improve the learning satisfaction of junior doctors in the workplace?

    Science.gov (United States)

    Acharya, Vikas; Reyahi, Amir; Amis, Samuel M; Mansour, Sami

    2015-01-01

    Ward rounds are widely considered an underutilized resource with regard to medical education, and therefore, a project was undertaken to assess if the initiation of "trainee-centered ward rounds" would help improve the confidence, knowledge acquisition, and workplace satisfaction of junior doctors in the clinical environment. Data were collated from junior doctors, registrar grade doctors, and consultants working in the delivery suite at Luton and Dunstable University Hospital in Luton over a 4-week period in March-April 2013. A review of the relevant literature was also undertaken. This pilot study found that despite the reservations around time constraints held by both junior and senior clinicians alike, feedback following the intervention was largely positive. The junior doctors enjoyed having a defined role and responsibility during the ward round and felt they benefited from their senior colleagues' feedback. Both seniors and junior colleagues agreed that discussing learning objectives prior to commencing the round was beneficial and made the round more learner-orientated; this enabled maximal learner-focused outcomes to be addressed and met. The juniors were generally encouraged to participate more during the round and the consultants endeavored to narrate their decision-making, both were measures that led to greater satisfaction of both parties. This was in keeping with the concept of "Legitimate peripheral participation" as described by Lave and Wenger. Overall, trainee-centered ward rounds did appear to be effective in overcoming some of the traditional barriers to teaching in the ward environment, although further work to formalize and quantify these findings, as well as using greater sample sizes from different hospital departments and the inclusion of a control group, is needed.

  17. Mobile Learning and Indigenous Education in Canada: A Synthesis of New Ways of Learning

    Science.gov (United States)

    Pulla, Siomonn

    2017-01-01

    M-Learning holds great potential for supporting the positive educational outcomes of underserved Indigenous communities in the Canadian North, and even in urban centers, that are at risk of exclusion from affordable, high-quality learning experiences. The technical advantages of having mobile technology to deliver educational curricula and assess…

  18. Centers of Excellence Contribution to Knowledge Augmentation

    International Nuclear Information System (INIS)

    Mignone, O.

    2016-01-01

    Full text: Knowledge management is a key need of the nuclear industry to cope with the knowledge limited augmentation and the risks of knowledge loss due to a number of reasons, such as: staff attrition, organizational changes, upgraded technologies, new projects implementation, and the nuclear power evolution in recent years (i.e., post-Fukushima upgrades). This document describes the contribution of nuclear centers of excellence to knowledge augmentation. The effective implementation of nuclear centers of excellence is a key success factor for the knowledge management programme of nuclear organizations. This document, is based on a real example of operating organization approach in launching such initiative for staff knowledge augmentation and performance improvement. Eventually, any type of organizations in the nuclear sector could apply the proposed technique to reach better knowledge usage. The nuclear centers of excellence are a key knowledge management initiative for the learning organizations that are caring about organizational intellectual capital and striving for performance improvement. The nuclear centers of excellence can be realized as a forum to exchange ideas, knowledge, information, experiences; to collect lessons learned; and to identify areas for improvement where further organizational competence building is needed. Usual realization of this initiative is going through an active staff involvement in knowledge sharing in a form of different technical communities of practice focusing on specific knowledge domains. (author

  19. Practicing Learner-Centered Teaching: Pedagogical Design and Assessment of a Second Life Project

    Science.gov (United States)

    Schiller, Shu Z.

    2009-01-01

    Guided by the principles of learner-centered teaching methodology, a Second Life project is designed to engage students in active learning of virtual commerce through hands-on experiences and teamwork in a virtual environment. More importantly, an assessment framework is proposed to evaluate the learning objectives and learning process of the…

  20. Learning how to learn: Meta-learning strategies for the challenges of learning pharmacology.

    Science.gov (United States)

    Alton, Suzanne

    2016-03-01

    Nursing students have difficulty with pharmacology courses because of the complicated nomenclature and the difficulty of applying drug information to actual patient care. As part of a new pharmacology course being created, meta-learning strategies designed to diminish the difficulties of learning this difficult content were part of the course pedagogy. Strategies were demonstrated, reviewed in class, and implemented through homework assignments. The setting was an Academic Health Center's School of Nursing in the southern United States. Participants were third-year nursing students in an undergraduate nursing program. Surveys of students' opinions of learning gains were conducted at the end of the course over several semesters. In addition, pharmacology scores on a standardized exit exam were compared prior to implementing the course and after. Students reported learning dry material more easily, having greater confidence, and finding substantial value in the learning strategies. Students indicated the most helpful strategies, in descending order, as follows: making charts to compare and contrast drugs and drug classes, writing out drug flash cards, making or reviewing creative projects, prioritizing information, making or using visual study aids, and using time and repetition to space learning. Implementation of the new course improved pharmacology scores on a standardized exit exam from 67.0% to 74.3%. Overall response to learning strategies was positive, and the increase in the pharmacology standardized exit exam scores demonstrated the effectiveness of this instructional approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Visual Learning: A Learner Centered Approach to Enhance English Language Teaching

    Science.gov (United States)

    Philominraj, Andrew; Jeyabalan, David; Vidal-Silva, Christian

    2017-01-01

    This article presents an empirical study carried out among the students of higher secondary schools to find out how English language learning occurs naturally in an environment where learners are encouraged by an appropriate method such as visual learning. The primary data was collected from 504 students with different pretested questionnaires. A…

  2. Workforce Optimization for Bank Operation Centers: A Machine Learning Approach

    OpenAIRE

    Sefik Ilkin Serengil; Alper Ozpinar

    2017-01-01

    Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. In...

  3. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  4. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  5. Analysis of Business Center Implementation in Banyumas Regency

    OpenAIRE

    Lina Rifda Naufalin; Aldila Dinanti; Aldila Krisnaresanti

    2017-01-01

    The research aims to help the development of business center as an entrepreneurship laboratory for vocational students in order to increase the number of young entrepreneurs in Indonesia. This study is also to find out how the implementation of the existing Business Center program in SMK Banyumas District viewed from the aspects of learning, economics, organizational, and capital. Research method used qualitative method and techniques of collecting data used observation and interview. The pl...

  6. The Production of Low-energy Neutrons in Solar Flares and the Importance of Their Detection in the Inner Heliosphere

    Science.gov (United States)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2012-09-01

    Neutron detectors on spacecraft in the inner heliosphere can observe the low-energy (computer code incorporating updated neutron-production cross sections for the proton and α-particle reactions with heavier elements at all ion energies, especially at low energies (E ion Mercury has such a detector. We conclude that a full understanding of ion acceleration, transport, and interaction at the Sun requires observation of both neutrons and gamma rays with detectors of comparable sensitivity. We find that the neutron-capture line fluence at 1 AU is comparable to the 1-10 MeV neutron fluence at 0.5 AU, and therefore as effective for revealing low-energy ion acceleration. However, as the distance from the Sun to the neutron detector decreases, the tremendous increase of the low-energy neutron flux allows exploration of ion acceleration in weak flares not previously observable and may reveal acceleration at other sites not previously detected where low-energy neutrons could be the only high-energy signature of ion acceleration. Also, a measurement of the low-energy neutron spectrum will provide important information about the accelerated-ion spectrum that is not available from the capture line fluence measurement alone.

  7. Do collaborative practical tests encourage student-centered active learning of gross anatomy?

    Science.gov (United States)

    Green, Rodney A; Cates, Tanya; White, Lloyd; Farchione, Davide

    2016-05-06

    Benefits of collaborative testing have been identified in many disciplines. This study sought to determine whether collaborative practical tests encouraged active learning of anatomy. A gross anatomy course included a collaborative component in four practical tests. Two hundred and seven students initially completed the test as individuals and then worked as a team to complete the same test again immediately afterwards. The relationship between mean individual, team, and difference (between team and individual) test scores to overall performance on the final examination (representing overall learning in the course) was examined using regression analysis. The overall mark in the course increased by 9% with a decreased failure rate. There was a strong relationship between individual score and final examination mark (P learning occurring during the collaborative testing and that weaker students gained the benefit from team marks without significant active learning taking place. This negative outcome may be due to insufficient encouragement of the active learning strategies that were expected to occur during the collaborative testing process. An improved understanding of the efficacy of collaborative assessment could be achieved through the inclusion of questionnaire based data to allow a better interpretation of learning outcomes. Anat Sci Educ 9: 231-237. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  8. Constructivism Based Learning: Design and Practice

    Directory of Open Access Journals (Sweden)

    Lia Kurniawati

    2016-06-01

    Full Text Available Abstract One of many problems in the madrasahs is that learning processes less-involve students actively (teacher-centered, thus, it affects to the improvement of learning outcomes and quality of the graduates. The purposes of this study are , firstly, to analyze what type of constructivism learning models, which can be developed to overcome madrasahs’ problems. Secondly, how to design and implement a learning plan based on the developed constructivism models. This research was conducted at Private Islamic Elementary School  (Madrasah Ad-Diyanah Ciputat, South Tangerang. Research method used in this study is descriptive-qualitative research. The results showed that the active learning models based on constructivism are suitable to be developed in the Madarasah, which were the models of Problem Based Learning (PBM, Realistic Learning, Inquiry Learning and Thematic Learning and also how the development of the learning processes from the lesson plans to the learning implementation showed a paradigm shifting from teacher-centered to student-centered. Abstrak Salah satu permasalahan di madrasah-madrasah adalah proses pembelajaran yang kurang melibatkan siswa secara aktif (berpusat pada guru, sehingga hal ini mengakibatkan pada peningkatan hasil belajar dan kualitas lulusan. Tujuan dari penelitian ini adalah, pertama, untuk menganalisis jenis model pembelajaran konstruktivisme apa yang dapat dikembangkan untuk mengatasi permasalahan di madrasah. Ke dua, bagaimana merancang dan melaksanakan rencana pembelajaran berdasarkan model konstruktivisme yang dikembangkan. Penelitian ini dilaksanakan di Sekolah Dasar Swasta (madrasah Ad-Diayanah Ciputat, Tangerang Selatan. Metode penelitian yang digunakan adalah metode deskriptif-kualitatif. Hasil penelitian menunjukkan bahwa model pembelajaran aktif yang berbasis konstruktivisme sesuai untuk dikembangkan di madrasah, yakni model pembelajaran Problem Based Learning (PBL, Pembelajaran Realistis, Pembelajaran

  9. Anisotropies in TeV Cosmic Rays Related to the Local Interstellar Magnetic Field from the IBEX Ribbon

    International Nuclear Information System (INIS)

    Schwadron, N A; Moebius, E; Adams, F C; Christian, E; Desiati, P; Frisch, P; Funsten, H O; Jokipii, J R; McComas, D J; Zank, G P

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) observes enhanced Energetic Neutral Atoms (ENAs) emission in the keV energy range from a narrow (∼20° wide) ''ribbon'' in the sky that appears to be centered on the direction of the local interstellar (LIS) magnetic field. The Milagro collaboration, the Asγ collaboration and the IceCube observatory have recently made global maps of cosmic ray fluxes in the TeV energy range, revealing anisotropic structures ordered in part by the local interstellar magnetic field and the interstellar flow. This paper following from a recent publication in Science makes the link between these disparate observations by developing a simple model of the magnetic structure surrounding the heliosphere in the Local Interstellar Medium (LISM) that is consistent with both IBEX ENA fluxes and TeV cosmic ray anisotropies. The model also employs the revised velocity direction of the LIC derived from neutral He observations by IBEX. By modeling the propagation of cosmic rays through this magnetic field structure, we specifically show that (1) the large-scale TeV anisotropy provides a roughly consistent orientation for the local interstellar magnetic field at the center of the IBEX Ribbon and corroborates the ∼ 3 μG magnitude of the local interstellar magnetic field derived from IBEX observations of the global heliosphere; (2) and small-scale structures in cosmic rays (over < 30° angular scales) are influenced by the interstellar field interaction with the heliosphere at energies < 10 TeV. Thus, we provide a link between IBEX ENA observations, IBEX neutral observations of interstellar He, and TeV cosmic ray anisotropies, which are strongly influenced by the interactions between the local interstellar magnetic field, the flow of the local interstellar plasma, and the global heliosphere

  10. Study of the Index System for Assessing Learner-Centered Online Courses

    Science.gov (United States)

    Li, Mei

    2015-01-01

    With the development of e-learning, the quality of web-based courses attracts extensive interest. This paper draws upon the results conducted amongst students enrolled in an online language course at a northern Chinese university. The design of the course aims to create the learner-centered environment: personalized learning environment,…

  11. Leadership for Learning: Tasks of Learning Culture

    Science.gov (United States)

    Corrigan, Joe

    2012-01-01

    This is a comparative analysis of leadership related to organizational culture and change that occurred at a large Canadian university during a twenty year period 1983-2003. From an institutional development perspective, leadership is characterized as a culture creation and development responsibility. By centering on the tasks of learning culture,…

  12. A Case Study Documenting the Process by Which Biology Instructors Transition from Teacher-Centered to Learner-Centered Teaching

    Science.gov (United States)

    Marbach-Ad, Gili; Hunt Rietschel, Carly

    2016-01-01

    In this study, we used a case study approach to obtain an in-depth understanding of the change process of two university instructors who were involved with redesigning a biology course. Given the hesitancy of many biology instructors to adopt evidence-based, learner-centered teaching methods, there is a critical need to understand how biology instructors transition from teacher-centered (i.e., lecture-based) instruction to teaching that focuses on the students. Using the innovation-decision model for change, we explored the motivation, decision-making, and reflective processes of the two instructors through two consecutive, large-enrollment biology course offerings. Our data reveal that the change process is somewhat unpredictable, requiring patience and persistence during inevitable challenges that arise for instructors and students. For example, the change process requires instructors to adopt a teacher-facilitator role as opposed to an expert role, to cover fewer course topics in greater depth, and to give students a degree of control over their own learning. Students must adjust to taking responsibility for their own learning, working collaboratively, and relinquishing the anonymity afforded by lecture-based teaching. We suggest implications for instructors wishing to change their teaching and administrators wishing to encourage adoption of learner-centered teaching at their institutions. PMID:27856550

  13. Student Perceptions of Active Learning

    Science.gov (United States)

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  14. TIME-ON-TASK IN PRIMARY CLASSROOMS, DURING DIFFERENT TEACHING-LEARNING APPROACHES

    OpenAIRE

    Sachin Mohite; Meenal Dashputre

    2017-01-01

    The entire education system is moving from the teacher-centered teaching-learning approaches towards student-centered teaching-learning approaches, with anticipation that it would increase the learning outcomes. This empirical study was carried out to compare the traditional and non-traditional classrooms. It also tried to understand the effectiveness of the Alternate Instructions in the Mathematics and Primary Language (Marathi) classrooms. This study collected about 8000 snapshots from the ...

  15. Adolescent Learning in the Zoo: Embedding a Non-Formal Learning Environment to Teach Formal Aspects of Vertebrate Biology

    Science.gov (United States)

    Randler, Christoph; Kummer, Barbara; Wilhelm, Christian

    2012-06-01

    The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the self-determination theory, therefore, we used a group-based, hands-on learning environment. To address this questions, we used a treatment—control design (BACI) with different treatments and a control group. Pre-, post- and retention tests were applied. All treatments led to a substantial increase of learning and retention knowledge compared to the control group. Immediately after the zoo visit, the zoo-guide tour provided the highest scores, while after a delay of 6 weeks, the learner-centered environment combined with a teacher-guided summarizing scored best. We suggest incorporating the zoo as an out-of-school environment into formal school learning, and we propose different methods to improve learning in zoo settings.

  16. 34 CFR 669.1 - What is the Language Resource Centers Program?

    Science.gov (United States)

    2010-07-01

    ... improving the nation's capacity for teaching and learning foreign languages effectively. (Authority: 20 U.S... 34 Education 3 2010-07-01 2010-07-01 false What is the Language Resource Centers Program? 669.1... POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION LANGUAGE RESOURCE CENTERS PROGRAM General § 669.1 What is the...

  17. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  18. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  19. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    OpenAIRE

    Enrique Palou; Lourdes Gazca; Juan Antonio Díaz García; José Andrés Rojas Lobato; Luis Geraldo Guerrero Ojeda; José Francisco Tamborero Arnal; María Teresa Jiménez Munguía; Aurelio López-Malo; Juan Manuel Garibay

    2012-01-01

    A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been devel...

  20. A GENERALIZED DIFFUSION TENSOR FOR FULLY ANISOTROPIC DIFFUSION OF ENERGETIC PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.

    2012-01-01

    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.

  1. Student-centered and teacher-centered learning environment in pre-vocational secondary education: Needs and motivation

    NARCIS (Netherlands)

    Smit, Karin; De Brabander, Cornelis; Martens, Rob

    2017-01-01

    In this study the perception of psychological needs and motivation in a student-centred and a teacher-centred learning environment are compared, using Self Determination Theory as a framework. The self-report Intrinsic Motivation Inventory was completed by 230 students (mean age 16.1 years) in

  2. A User-Centered Educational Modeling Language Improving the Controllability of Learning Design Quality

    Science.gov (United States)

    Zendi, Asma; Bouhadada, Tahar; Bousbia, Nabila

    2016-01-01

    Semiformal EMLs are developed to facilitate the adoption of educational modeling languages (EMLs) and to address practitioners' learning design concerns, such as reusability and readability. In this article, SDLD (Structure Dialogue Learning Design) is presented, which is a semiformal EML that aims to improve controllability of learning design…

  3. Team-Based Learning Enhances Performance in Introductory Biology

    Science.gov (United States)

    Carmichael, Jeffrey

    2009-01-01

    Given the problems associated with the traditional lecture method, the constraints associated with large classes, and the effectiveness of active learning, continued development and testing of efficient student-centered learning approaches are needed. This study explores the effectiveness of team-based learning (TBL) in a large-enrollment…

  4. Problem-based learning: a strategic learning system design for the education of healthcare professionals in the 21st century.

    Science.gov (United States)

    Gwee, Matthew Choon-Eng

    2009-05-01

    Problem-based learning (PBL) was first implemented by McMaster University medical school in 1969 as a radical, innovative, and alternative pathway to learning in medical education, thus setting a new educational trend. PBL has now spread widely across the globe and beyond the healthcare disciplines, and has prevailed for almost four decades. PBL is essentially a strategic learning system design, which combines several complementary educational principles for the delivery of instruction. PBL is specifically aimed at enhancing and optimizing the educational outcomes of learner-centered, collaborative, contextual, integrated, self-directed, and reflective learning. The design and delivery of instruction in PBL involve peer teaching and learning in small groups through the social construction of knowledge using a real-life problem case to trigger the learning process. Therefore, PBL represents a major shift in the educational paradigm from the traditional teacher-directed (teacher-centered) instruction to student-centered (learner-centered) learning. PBL is firmly underpinned by several educational theories, but problems are often encountered in practice that can affect learning outcomes. Educators contemplating implementing PBL in their institutions should have a clear understanding of its basic tenets, its practice and its philosophy, as well as the issues, challenges, and opportunities associated with its implementation. Special attention should be paid to the training and selection of PBL tutors who have a critical role in the PBL process. Furthermore, a significant change in the mindsets of both students and teachers are required for the successful implementation of PBL. Thus, effective training programs for students and teachers must precede its implementation. PBL is a highly resource-intensive learning strategy and the returns on investment (i.e. the actual versus expected learning outcomes) should be carefully and critically appraised in the decision

  5. Comparing problem-based learning students to students in a lecture-based curriculum: learning strategies and the relation with self-study time

    OpenAIRE

    Wijnen, Marit; Loyens, Sofie; Smeets, Guus; Kroeze, Maarten; Molen, Henk

    2017-01-01

    textabstractIn educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one’s own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational method, is believed to stimulate the use of these effective learning strategies. Several aspects of PBL such as discussions of real-life pro...

  6. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    International cooperation has long been a vital element in the scientific investigation of solar variability and its impact on Earth and its space environment. Recently a new international cooeperative program in solar terrestrial physics has been established by the major space agencies of the world, called the International Living With a Star (ILWS) program. ILWS is a follow on to the highly successful International Solar Terrestrial Physics (ISTP) program which involved international parterners. ISTP, with its steady flow of discoveries and new knowledge in solar Terrestrial physics, has laid the foundation for the coordinated study of the Sun-Earth sytem as a connected stellar-planetary system, system which is humanity's home. The first step in establishing ILWS was taken in the fall of 2000 when funding was approved for the NASA's Living With a Star (LWS) program whose goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. The scientific goals of ILWS are defined in a broader sense, aiming to include future solar, heliospheric and solar terrestrial missions of both applied and fundamental scientific focus. The ultimate goal of ILWS wil be to increase our understanding of how solar variability affects the terrestrial and other planetary environments both in the short and long term, and in particular how man and society may be affected by solar variability and its consequences. The mission charter of ILWS is 'to stimulate, strengthen and coordinate space research in order to understand the governing processes of the connected Sun-Earth System as an integrated entity'. More detailed ILWS Objectives are to stimulate and facilitate: - The study of the Sun Earth connected system and the effects which influence life and society - Collaboration among all potential partners in solar-terrestrial space missions - Synergistic coordination of international

  7. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  8. Technology Acceptance of Healthcare E-Learning Modules: A Study of Korean and Malaysian Students' Perceptions

    Science.gov (United States)

    Neo, Mai; Park, Heykyung; Lee, Min-Jae; Soh, Jian-Yuan; Oh, Ji-Young

    2015-01-01

    Educators today are moving towards transforming their teaching and learning methods from conventional teacher-centered approaches to student-centered learning approaches with the support of technology so as to better motivate students to participate and engage in their learning process. This study was developed as a joint collaborative effort…

  9. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  10. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  11. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  12. Embodied and mediated learning in SMALLab: a student-centered mixed-reality environment

    NARCIS (Netherlands)

    Birchfield, D.A.; Campana, E.; Hatton, S.; Johnson-Glenberg, M.C.; Kelliher, A.; Olson, L.; Martinez, C.; Savvides, P.; Tolentino, L.; Uysal, S.

    2009-01-01

    In recent years, much work in K-12 educational technology has shifted away from addressing the problem of mere accessibility and toward a greater emphasis on the effective design of learning environments that make innovative use of emerging digital technologies. Contemporary research in the Learning

  13. ReaderBench: An Integrated Cohesion-Centered Framework

    NARCIS (Netherlands)

    Dascalu, Mihai; Stavarache, Lucia Larise; Dessus, Philippe; Trausan-Matu, Stefan; McNamara, Danielle S.; Bianco, Maryse

    2015-01-01

    Dascalu, M., Stavarache, L.L., Dessus, P., Trausan-Matu, S., McNamara, D.S., & Bianco, M. (2015). ReaderBench: An Integrated Cohesion-Centered Framework. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 505–508). Toledo,

  14. Using active learning strategies to investigate student learning and attitudes in a large enrollment, introductory geology course

    Science.gov (United States)

    Berry, Stacy Jane

    There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the modification of traditional instructional techniques to allow students the opportunity to be more cooperative (Task Group on General Education, 1988). This has guided educators and facilitators into shifting teaching paradigms from a teacher centered to a more student-centered curriculum. The present study investigated achievement outcomes and attitudes of learners in a large enrollment (n ~ 200), introductory geology course using a student centered learning cycle format of instruction versus another similar section that used a traditional lecture format. Although the course is a recruiting class for majors, over 95% of the students that enroll are non-majors. Measurements of academic evaluation were through four unit exams, classroom communication systems, weekly web-based homework, in-class activities, and a thematic collaborative poster/paper project and presentation. The qualitative methods to investigate the effectiveness of the teaching design included: direct observation, self-reporting about learning, and open-ended interviews. By disaggregating emerging data, we tried to concentrate on patterns and causal relationships between achievement performance and attitudes regarding learning geology. Statistical analyses revealed positive relationships between student engagement in supplemental activities and achievement mean scores within and between the two sections. Completing weekly online homework had the most robust relationship with overall achievement performance. Contrary to expectations, a thematic group project only led to modest gains in achievement performance, although the social and professional gains could be

  15. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  16. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    Science.gov (United States)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    , engaging in K-12 classroom activities and events, and by using websites and social media to share information. This presentation will highlight the successes and lessons learned as we enter the third year of this innovative model for a University Center.

  17. Program Evaluation Metrics for U.S. Army Lifelong Learning Centers

    National Research Council Canada - National Science Library

    Cianciolo, Anna T

    2007-01-01

    .... The impact of lifelong learning on organizational excellence seems clear. However, it is unknown how LLCs promote readiness using educational technology and how LLC effectiveness should be measured...

  18. A Learner-Centered Spiral Knowledge Approach to Teaching Isotope Geology

    Science.gov (United States)

    Reid, M. R.

    2006-12-01

    Aided by the insights I gained by participation in the Arizona Board of Regents Tri-University Collaboration on Learner-Centered Practice, I made major changes to a graduate course in isotope geology (GLG617), including: 1) implementation of a spiral knowledge approach (e.g., Bruner, 1990; Dyar et al., 2004); 2) incorporation of more learner-centered in-class activities; and 3) more explicit emphasis on skills that I regarded as important for success in geochemistry. In the geosciences, the field of isotope geology is now an essential area of inquiry with implications for geologic timescales, climate information, tracing geochemical processes, and biological evolution, to name a few. The traditional approach to teaching isotope geology suffers from the fact that learning tends to be compartmentalized by technique/approach and one subfield (e.g., stable or radiogenic isotopes) is usually favored by appearing earlier in semester. To make learning more integrated, I employed a simplified spiral learning approach so that common principles could be revisited several times over the course of the semester and, in so doing, students' grasp of the fundamental principles could be scaffolded into greater understanding. Other learner-centered changes to the course included more explicit emphasis on helping students become comfortable with interpreting data displayed graphically and explicit emphasis on helping students give and evaluate oral presentations that rely on isotope data. I also developed a detailed grading rubric for the final paper and allowed students to have a draft of their final papers evaluated and graded (guided by Huba and Freed, 2000) A number of cooperative learning activities developed specifically for this course (19 in all) enabled me to gain a better appreciation for students' learning. Activities included pair share, round-robin, small group explorations of techniques and case studies (sometimes as introduction to, sometimes as review of material

  19. Active Learning versus Traditional Teaching

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2009-05-01

    Full Text Available In traditional teaching most of the class time is spent with the professor lecturing and the students watching and listening. The students work individually, and cooperation is discouraged. On the other hand,  active learning  changes the focus of activity from the teacher to the learners, in which students solve problems, answer questions, formulate questions of their own, discuss, explain, debate during class;  moreover, students work in teams on problems and projects under conditions that assure positive interdependence and individual accountability. Although student-centered methods have repeatedly been shown to be superior to the traditional teacher-centered approach to instruction, the literature regarding the efficacy of various teaching methods is inconclusive. The purpose of this study was to compare the student perceptions of course and instructor effectiveness, course difficulty, and amount learned between the active learning and lecture sections  in Health Sciences´ courses by statistical data from Anhembi Morumbi University. Results indicated significant  difference between active  learning and traditional  teaching. Our conclusions were that strategies promoting  active  learning to  traditional lectures could increase knowledge and understanding.

  20. Establishment of a Learning Management System

    International Nuclear Information System (INIS)

    Han, K. W.; Kim, Y. T.; Lee, E. J.; Min, B. J.

    2006-01-01

    A web-based learning management system (LMS) has been established to address the need of customized education and training of Nuclear Training Center (NTC) of KAERI. The LMS is designed to deal with various learning types (e.g. on-line, off-line and blended) and a practically comprehensive learning activity cycle (e.g. course preparation, registration, learning, and postlearning) as well as to be user-friendly. A test with an example course scenario on the established system has shown its satisfactory performance. This paper discusses details of the established webbased learning management system in terms of development approach and functions of the LMS

  1. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  2. Neutralized solar energetic particles in the inner heliosphere: a parameter study

    Science.gov (United States)

    Wang, Xiao-Dong; Klecker, Berndt; Futaana, Yoshifumi; Cipriani, Fabrice; Barabash, Stas; Wieser, Martin

    2016-04-01

    The large fluxes of solar energetic particles (SEPs) in Gradual Events, dominated by protons, are believed to be produced by the acceleration of shocks driven by coronal mass ejections (CMEs). As SEPs propagate in the lower corona, there is a chance for them to be neutralized via the charge exchange and/or recombination processes and become energetic neutral atoms (ENAs). These ENAs retain the velocity of their parent SEPs and propagate in straight lines without the influence of the interplanetary magnetic field, and therefore might potentially serve as a new window to observe the particle acceleration processes in the solar corona. STEREO/Low Energy Telescope reported the first probable observation of hydrogen ENAs between 1.6 MeV - 5 MeV from the Sun prior to an X-class flare/CME [Mewaldt et al., 2009]. While such observations were somehow controversial, Wang et al. [2014] simulated the neutralization of solar energetic protons in the corona lower than 40 RS, and the result agreed with the STEREO observation. In this work, we further developed a production model of the ENA near the sun together with a transport model toward the inner planets, and explore the dependences of the ENA characteristics against the model parameters. These parameters include the angular width of the CME, its propagation direction with respect to the Sun-observer line, the propagation speed, the particle density in the corona, the abundances of O6+ and C4+, and the reaction rate of electron impact ionization in the loss of ENAs, and the heliospheric distance of the observer. The calculated ENA flux shows that at lower energy the expected ENA flux depends most sensitively on the CME apex angle and the CME propagation direction. At higher energy the dependence on the coronal density is more prominent. References Mewaldt, R. A., R. A. Leske, E. C. Stone, A. F. Barghouty, A. W. Labrador, C. M. S. Cohen, A. C. Cummings, A. J. Davis, T. T. von Rosenvinge, and M. E. Wiedenbeck (2009), STEREO

  3. Investigation of Chinese University Students’ Attributions of English Language Learning

    Directory of Open Access Journals (Sweden)

    Jinjin Lu

    2014-12-01

    Full Text Available Despite the importance of developing students’ learning autonomy in Chinese schools similar to Western cultured schools, many concerns are raised regarding the influence and effectiveness that learner autonomy has on students’ academic achievements. The aim of this study was to identify the attribution patterns of Chinese university students for success and failure toward students who learnt through autonomy learning (student-centered approaches compared with students who learnt through teacher-centered approaches. Within this study, mixed research methods were adopted, and students used a reflective method to distinguish whether they were taught English through a traditional or student-centered method. The findings of the study reveal that there are no significant differences in attributional patterns between students who had learnt in high school through autonomous learning and those who learnt through teacher-centered approaches. The findings have implications for policy and practice in the Chinese Ministry of Education system and recommendations for future research.

  4. Creating the learning situation to promote student deep learning: Data analysis and application case

    Science.gov (United States)

    Guo, Yuanyuan; Wu, Shaoyan

    2017-05-01

    How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.

  5. Meeting baccalaureate public/community health nursing education competencies in nurse-managed wellness centers.

    Science.gov (United States)

    Thompson, Cheryl W; Bucher, Julia A

    2013-01-01

    The purpose of this article is to describe how community health competencies for baccalaureate nursing education have been met by locating clinical experiences in nurse-managed wellness centers. Such centers are an ideal setting for students to integrate theoretical concepts into clinical practice while building on previous learning. Students are able to develop skills in community health nursing practice at individual, family, and population level. In addition, the practice setting provides other advantages. Clients who represent a vulnerable population group receive valuable health services. Students gain learning opportunities that are broader than community health competencies, and faculty are provided clinical practice, research, and scholarship opportunities. The challenges to year-round sustainability of nurse-managed centers are burdensome; however, the benefits outweigh the difficulty of those challenges. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Probing the Boundaries of the Heliosphere Using Observations of the Polar ENA Flux from IBEX and Cassini/INCA

    Science.gov (United States)

    Reisenfeld, D. B.; Janzen, P. H.; Bzowski, M.; Dialynas, K.; Funsten, H. O.; Fuselier, S. A.; Galli, A.; Kubiak, M. A.; McComas, D. J.; Schwadron, N.; Sokol, J. M.

    2016-12-01

    The IBEX Mission has been collecting ENAs from the outer heliosphere for nearly eight years, or three-quarters of a solar cycle. In that time, we have observed clear evidence of the imprint of the solar cycle in the time variation in the ENA flux. The most detailed of such studies has focused on the polar ENA flux observed by IBEX-Hi, as the IBEX spacecraft attitude allows for continuous coverage of the ENA flux incident from the ecliptic poles (Reisenfeld et al. 2012, 2016). By time correlating the ENA-derived heliosheath pressure to the observed 1 AU dynamic pressure, we can estimate the distance to the ENA source region. We can further derive the thickness of the ENA-producing region (presumably the inner heliosheath) by assuming pressure balance at the termination shock (TS). This requires using the 1 AU observations to derive the dynamic pressure at the TS shock by use of a mass-loaded solar wind propagation model (Schwadron et al. 2011), and by integrating ENA observations across all energies that significantly contribute to the heliosheath pressure. This means including polar ENA observations from not only IBEX-Hi, but from IBEX-Lo and Cassini/INCA, spanning an energy range of 15 eV to 40 keV. We will present our latest polar ENA observations and estimates for the distance to the TS and the thickness of the heliosheath.

  7. Bridging the Gap: Adaptive Games and Student-Centered VLEs

    Science.gov (United States)

    Del Blanco, Ángel; Torrente, Javier; Moreno-Ger, Pablo; Fernández-Manjón, Baltasar

    The widely used e-learning technology is facing new challenges such as how to produce student-centered systems that can be adapted to the needs of each student. Those objectives should be met in a standard compliant way to simplify general adoption. In this context, educational videogames are proposed as an ideal medium to facilitate adaptation and tracking of the students’ performance for assessment purposes. However, there are still barriers between the gaming and e-learning worlds preventing their mutual interaction. In this paper we propose a middleware to bridge this gap, integrating adaptive educational videogames in e-learning environments with a special focus on the ongoing standardization efforts.

  8. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    or postgraduate students interested in a variety of fields, including educational studies, educational psychology, social anthropology, and STS. Original ethnographic descriptions showing the fine details of how materials influence the learning process Introduces the advanced and complex Actor-Network Theory......The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning....... Drawing on science and technology studies (STS), Estrid Sørensen compares an Internet-based 3D virtual environment project in a fourth-grade class with the class's work with traditional learning materials, including blackboards, textbooks, notebooks, pencils, and rulers. Taking into account pupils...

  9. Implementation and evaluation of LMS mobile application: scele mobile based on user-centered design

    Science.gov (United States)

    Banimahendra, R. D.; Santoso, H. B.

    2018-03-01

    The development of mobile technology is now increasing rapidly, demanding all activities including learning should be done on mobile devices. It shows that the implementation of mobile application as a learning medium needs to be done. This study describes the process of developing and evaluating the Moodle-based mobile Learning Management System (LMS) application called Student Centered e-Learning Environment (SCeLE). This study discusses the process of defining features, implementing features into the application, and evaluating the application. We define the features using user research and literature study, then we implement the application with user-centered design basis, at the last phase we evaluated the application using usability testing and system usability score (SUS). The purpose of this study is to determine the extent to which this application can help the users doing their tasks and provide recommendation for the next research and development.

  10. Advanced Learning Theories Applied to Leadership Development

    Science.gov (United States)

    2006-11-01

    Center for Army Leadership Technical Report 2006-2 Advanced Learning Theories Applied to Leadership Development Christina Curnow...2006 5a. CONTRACT NUMBER W91QF4-05-F-0026 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Advanced Learning Theories Applied to Leadership Development 5c...ABSTRACT This report describes the development and implementation of an application of advanced learning theories to leadership development. A

  11. High-Tech Playground: Cultural Center Journey Expands Student Horizons of Faith and Culture.

    Science.gov (United States)

    Andersen, Colleen Curry

    2003-01-01

    Discusses how the John Paul II Cultural Center is an example of how Catholic educators have begun taking advantage of new teaching resources to help students understand their personal faith. Center contains hands-on and interactive journey to learning about Catholicism and the faiths of other people. (MZ)

  12. Women's Center Volunteer Intern Program: Building Community While Advancing Social and Gender Justice

    Science.gov (United States)

    Murray, Margaret A.; Vlasnik, Amber L.

    2015-01-01

    This program description explores the purpose, structure, activities, and outcomes of the volunteer intern program at the Wright State University Women's Center. Designed to create meaningful, hands-on learning experiences for students and to advance the center's mission, the volunteer intern program builds community while advancing social and…

  13. THE STUDENTS’ PERCEPTION OF THE EFFECTIVENESS OF ENGLISH AND ARABIC TEACHING AND LEARNING AT THE LANGUAGE AND CULTURE CENTER OF STATE INSTITUTE FOR ISLAMIC STUDIES SHEKH NURJATI CIREBON

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2014-10-01

    Full Text Available This study aimed to explore the effectiveness of English and Arabic teaching and learning the Language and Culture Center (LCC at the State Institute for Islamic Studies Shekh Nurjati Cirebon (SIIS SNJ based on the students’ perception. The study is to find out students’ opinion toward English and Arabic teaching and learning process and provide beneficial information for the teaching system in the LCC. This study used descriptive survey approach. The subjects were the students of English and Arabic intensive program. The data were collected through the questionnaire The results of the study are as follows. First, the teaching quality indicator is categorized as fairly effective. Second, the generic skills indicator is categorized as less effective. Third, students’ motivation indica-tor is categorized as less effective. Fourth, learning resources is categorized as not effective. Fifth, the assessment appropriateness is categorized as fairly effective. Sixth, the students’ workload is catego-rized as less effective. Seventh, the curriculum content is categorized as less effective. Keywords: students’ perception, teaching and learning, effectiveness.

  14. Rationale and methodology of a collaborative learning project in congenital cardiac care.

    Science.gov (United States)

    Wolf, Michael J; Lee, Eva K; Nicolson, Susan C; Pearson, Gail D; Witte, Madolin K; Huckaby, Jeryl; Gaies, Michael; Shekerdemian, Lara S; Mahle, William T

    2016-04-01

    Collaborative learning is a technique through which individuals or teams learn together by capitalizing on one another's knowledge, skills, resources, experience, and ideas. Clinicians providing congenital cardiac care may benefit from collaborative learning given the complexity of the patient population and team approach to patient care. Industrial system engineers first performed broad-based time-motion and process analyses of congenital cardiac care programs at 5 Pediatric Heart Network core centers. Rotating multidisciplinary team site visits to each center were completed to facilitate deep learning and information exchange. Through monthly conference calls and an in-person meeting, we determined that duration of mechanical ventilation following infant cardiac surgery was one key variation that could impact a number of clinical outcomes. This was underscored by one participating center's practice of early extubation in the majority of its patients. A consensus clinical practice guideline using collaborative learning was developed and implemented by multidisciplinary teams from the same 5 centers. The 1-year prospective initiative was completed in May 2015, and data analysis is under way. Collaborative learning that uses multidisciplinary team site visits and information sharing allows for rapid structured fact-finding and dissemination of expertise among institutions. System modeling and machine learning approaches objectively identify and prioritize focused areas for guideline development. The collaborative learning framework can potentially be applied to other components of congenital cardiac care and provide a complement to randomized clinical trials as a method to rapidly inform and improve the care of children with congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Decentering Self in Leadership: Putting Community at the Center in Leadership Studies.

    Science.gov (United States)

    Hartman, Eric

    2016-06-01

    Although students' personal passions typically determine the issue addressed by service-learning leadership initiatives, this chapter advocates for a community-centered alternative. This in-depth exploration of a leadership development course series models a community-need driven project and explores the benefits for both community and student learning. © 2016 Wiley Periodicals, Inc., A Wiley Company.

  16. Ecology-centered experiences among children and adolescents: A qualitative and quantitative analysis

    Science.gov (United States)

    Orton, Judy

    The present research involved two studies that considered ecology-centered experiences (i.e., experiences with living things) as a factor in children's environmental attitudes and behaviors and adolescents' ecological understanding. The first study (Study 1) examined how a community garden provides children in an urban setting the opportunity to learn about ecology through ecology-centered experiences. To do this, I carried out a yearlong ethnographic study at an urban community garden located in a large city in the Southeastern United States. Through participant observations and informal interviews of community garden staff and participants, I found children had opportunities to learn about ecology through ecology-centered experiences (e.g., interaction with animals) along with other experiences (e.g., playing games, reading books). In light of previous research that shows urban children have diminished ecological thought---a pattern of thought that privileges the relationship between living things---because of their lack of ecology-centered experiences (Coley, 2012), the present study may have implications for urban children to learn about ecology. As an extension of Study 1, I carried out a second study (Study 2) to investigate how ecology-centered experiences contribute to adolescents' environmental attitudes and behaviors in light of other contextual factors, namely environmental responsibility support, ecological thought, age and gender. Study 2 addressed three research questions. First, does ecological thought---a pattern of thought that privileges the relationship between living things---predict environmental attitudes and behaviors (EAB)? Results showed ecological thought did not predict EAB, an important finding considering the latent assumptions of previous research about the relationship between these two factors (e.g., Brugger, Kaiser, & Roczen, 2011). Second, do two types of contextual support, ecology-centered experiences (i.e., experiences with

  17. Effective collaborative learning in biomedical education using a web-based infrastructure.

    Science.gov (United States)

    Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang

    2012-01-01

    This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.

  18. NASA Langley/CNU Distance Learning Programs.

    Science.gov (United States)

    Caton, Randall; Pinelli, Thomas E.

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and currently there are a suite of five distance-learning programs. This paper presents the major…

  19. Lessons Learned from an LGBTQ Senior Center: A Bronx Tale.

    Science.gov (United States)

    McGovern, Justine; Brown, Dwayne; Gasparro, Vita

    This article describes an interdisciplinary pilot study exploring the impact of LGBTQ senior centers on the lives of center members. Many LGBTQ adults face the future having experienced stigma and bias, restricted rights, and rejection from family of origin, and are now growing older without the support of a partner and adult children. As a result, older LGBTQ adults experience higher rates of depression, loneliness and isolation, and shortened life expectancy as compared to non-LGBTQ peers. Findings from focus group and key informant interviews highlight features of LGBTQ senior center experiences that can significantly improve members' quality of life. These include providing family, acceptance and a home, which can have an impact on outlook and outcomes. Moreover, findings suggest the need for re-thinking hetero-normative definitions of "community" in the context of LGBTQ aging. Beyond sharing findings from the study, suggesting a conceptual framework for deepening understanding about LGBTQ aging, and identifying lines of future inquiry, the article articulates implications for social work research, practice and education. Ultimately, the article argues that social work is well positioned to improve quality of life for this under-served population when it adopts a cultural humility stance in research, practice and education.

  20. Technology Enhanced Learning in Programming Courses--International Perspective

    Science.gov (United States)

    Ivanovic, Mirjana; Xinogalos, Stelios; Pitner, Tomáš; Savic, Miloš

    2017-01-01

    Technology enhanced learning (TEL) is increasingly influencing university education, mainly in overcoming disadvantages of direct instruction teaching approaches, and encouraging creativity, problem solving and critical thinking in student-centered, interactive learning environments. In this paper, experiences from object-oriented programming…

  1. Using Language Corpora to Develop a Virtual Resource Center for Business English

    Science.gov (United States)

    Ngo, Thi Phuong Le

    2015-01-01

    A Virtual Resource Center (VRC) has been brought into use since 2008 as an integral part of a task-based language teaching and learning program for Business English courses at Nantes University, France. The objective of the center is to enable students to work autonomously and individually on their language problems so as to improve their language…

  2. The Model of Community Learning Center Development: A Case Study of PKBM Assolahiyah in West Java

    Directory of Open Access Journals (Sweden)

    Ferdinal Asmin

    2017-12-01

    Full Text Available Sustaining community learning center (CLC as a community activity centerby increasing the community capacity and skill to deal with socio-economics challenges is an important focus to ensure the success of CLC. This study was aimed to describe the sustainability elements of CLC development and analyze the policy elements that influence the sustainability of CLC program, particularly in related to CSR program. This study approach was combining a qualitative approach and quantitative approach with analytic decision method which is never conducted in the previous studies on CLC. Data and information were collected through document studies, observations and structured interviews through questionnaires, then they were analyzed using descriptive analysis and interpretive structural modeling (ISM analysis. From ten elements of CLC sustainability were analyzed, the result of study emphasized to the importance of CLC management capacity enhancement in PKBM Assolahiyah. The result was synthesized into a policy model of CLC development through CSR program. The policy model should involve the roles of government, scientist, and non-governmental organization (NGO to strengthen the CLC development

  3. Center for Cancer Research plays key role in first FDA-approved drug for treatment of Merkel cell carcinoma | Center for Cancer Research

    Science.gov (United States)

    The Center for Cancer Research’s ability to rapidly deploy integrated basic and clinical research teams at a single site facilitated the rapid FDA approval of the immunotherapy drug avelumab for metastatic Merkel cell carcinoma, a rare, aggressive form of skin cancer. Learn more...  

  4. Problem-Based Learning in Formal and Informal Learning Environments

    Science.gov (United States)

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  5. Improving education under work-hour restrictions: comparing learning and teaching preferences of faculty, residents, and students.

    Science.gov (United States)

    Jack, Megan C; Kenkare, Sonya B; Saville, Benjamin R; Beidler, Stephanie K; Saba, Sam C; West, Alisha N; Hanemann, Michael S; van Aalst, John A

    2010-01-01

    Faced with work-hour restrictions, educators are mandated to improve the efficiency of resident and medical student education. Few studies have assessed learning styles in medicine; none have compared teaching and learning preferences. Validated tools exist to study these deficiencies. Kolb describes 4 learning styles: converging (practical), diverging (imaginative), assimilating (inductive), and accommodating (active). Grasha Teaching Styles are categorized into "clusters": 1 (teacher-centered, knowledge acquisition), 2 (teacher-centered, role modeling), 3 (student-centered, problem-solving), and 4 (student-centered, facilitative). Kolb's Learning Style Inventory (HayGroup, Philadelphia, Pennsylvania) and Grasha-Riechmann's TSS were administered to surgical faculty (n = 61), residents (n = 96), and medical students (n = 183) at a tertiary academic medical center, after informed consent was obtained (IRB # 06-0612). Statistical analysis was performed using χ(2) and Fisher exact tests. Surgical residents preferred active learning (p = 0.053), whereas faculty preferred reflective learning (p style more often than surgical faculty (p = 0.01). Medical students preferred converging learning (42%) and cluster 4 teaching (35%). Statistical significance was unchanged when corrected for gender, resident training level, and subspecialization. Significant differences exist between faculty and residents in both learning and teaching preferences; this finding suggests inefficiency in resident education, as previous research suggests that learning styles parallel teaching styles. Absence of a predominant teaching style in residents suggests these individuals are learning to be teachers. The adaptation of faculty teaching methods to account for variations in resident learning styles may promote a better learning environment and more efficient faculty-resident interaction. Additional, multi-institutional studies using these tools are needed to elucidate these findings fully

  6. Worker-Centered Learning: A Union Guide to Workplace Literacy.

    Science.gov (United States)

    Sarmiento, Anthony R.; Kay, Ann

    This guide examines organized labor's views on adult literacy. It also describes several union-sponsored workplace education programs and suggests how a union can plan and operate a worker-centered literacy program. The book is organized in three parts. The first part examines workplace literacy in four chapters that cover the following: the…

  7. 77 FR 46096 - Centers for Disease Control and Prevention

    Science.gov (United States)

    2012-08-02

    ...), concerning strategies and goals for the programs and research within OPHPR, monitoring the overall strategic... Board Strategic National Stockpile ad hoc working group; CDC's response to laboratory biosafety issues... Learning Centers; update on CDC's biosurveillance and situational awareness activities; (2) BSC liaison...

  8. Effect of Child Centred Methods on Teaching and Learning of Science Activities in Pre-Schools in Kenya

    Science.gov (United States)

    Andiema, Nelly C.

    2016-01-01

    Despite many research studies showing the effectiveness of teacher application of child-centered learning in different educational settings, few studies have focused on teaching and learning activities in Pre-Schools. This research investigates the effect of child centered methods on teaching and learning of science activities in preschools in…

  9. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  10. Considering Peer Support for Self-Access Learning

    Directory of Open Access Journals (Sweden)

    Craig Manning

    2014-01-01

    Full Text Available This paper briefly examines if and how peer support can be implemented as an appropriate means to improve self-access learning. The potential for further alignment with the higher aims common among self-access learning centers will be examined. Opportunities for increasing interdependence, purpose, and level of challenge to foster student engagement will also be explored. Finally, future directions in self-access learning will be discussed.

  11. Making connections: Where STEM learning and Earth science data services meet

    Science.gov (United States)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.

    2016-12-01

    STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.

  12. Case-Based Web Learning Versus Face-to-Face Learning: A Mixed-Method Study on University Nursing Students.

    Science.gov (United States)

    Chan, Aileen Wai-Kiu; Chair, Sek-Ying; Sit, Janet Wing-Hung; Wong, Eliza Mi-Ling; Lee, Diana Tze-Fun; Fung, Olivia Wai-Man

    2016-03-01

    Case-based learning (CBL) is an effective educational method for improving the learning and clinical reasoning skills of students. Advances in e-learning technology have supported the development of the Web-based CBL approach to teaching as an alternative or supplement to the traditional classroom approach. This study aims to examine the CBL experience of Hong Kong students using both traditional classroom and Web-based approaches in undergraduate nursing education. This experience is examined in terms of the perceived self-learning ability, clinical reasoning ability, and satisfaction in learning of these students. A mixture of quantitative and qualitative approaches was adopted. All Year-3 undergraduate nursing students were recruited. CBL was conducted using the traditional classroom approach in Semester 1, and the Web-based approach was conducted in Semester 2. Student evaluations were collected at the end of each semester using a self-report questionnaire. In-depth, focus-group interviews were conducted at the end of Semester 2. One hundred twenty-two students returned their questionnaires. No difference between the face-to-face and Web-based approaches was found in terms of self-learning ability (p = .947), clinical reasoning ability (p = .721), and satisfaction (p = .083). Focus group interview findings complemented survey findings and revealed five themes that reflected the CBL learning experience of Hong Kong students. These themes were (a) the structure of CBL, (b) the learning environment of Web-based CBL, (c) critical thinking and problem solving, (d) cultural influence on CBL learning experience, and (e) student-centered and teacher-centered learning. The Web-based CBL approach was comparable but not superior to the traditional classroom CBL approach. The Web-based CBL experience of these students sheds light on the impact of Chinese culture on student learning behavior and preferences.

  13. WE-G-BRA-01: Patient Safety and Treatment Quality Improvement Through Incident Learning: Experience of a Non-Academic Proton Therapy Center

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y; Johnson, R; Zhao, L; Ramirez, E; Rana, S; Singh, H; Chacko, M [Procure Proton Therapy Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: Incident learning has been proven to improve patient safety and treatment quality in conventional radiation therapy. However, its application in proton therapy has not been reported yet to our knowledge. In this study, we report our experience in developing and implementation of an in-house incident learning system. Methods: An incident learning system was developed based on published principles and tailored for our clinical practice and available resource about 18 months ago. The system includes four layers of error detection and report: 1) dosimetry peer review; 2) physicist plan quality assurance (QA); 3) treatment delivery issue on call and record; and 4) other incident report. The first two layers of QA and report were mandatory for each treatment plan through easy-to-use spreadsheets that are only accessible by the dosimetry and physicist departments. The treatment delivery issues were recorded case by case by the on call physicist. All other incidents were reported through an online incident report system, which can be anonymous. The incident report includes near misses on planning and delivery, process deviation, machine issues, work flow and documentation. Periodic incident reviews were performed. Results: In total, about 116 errors were reported through dosimetry review, 137 errors through plan QA, 83 treatment issues through physics on call record, and 30 through the online incident report. Only 8 incidents (2.2%) were considered to have a clinical impact to patients, and the rest of errors were either detected before reaching patients or had negligible dosimetric impact (<5% dose variance). Personnel training & process improvements were implemented upon periodic incident review. Conclusion: An incident learning system can be helpful in personnel training, error reduction, and patient safety and treatment quality improvement. The system needs to be catered for each clinic’s practice and available resources. Incident and knowledge sharing among

  14. WE-G-BRA-01: Patient Safety and Treatment Quality Improvement Through Incident Learning: Experience of a Non-Academic Proton Therapy Center

    International Nuclear Information System (INIS)

    Zheng, Y; Johnson, R; Zhao, L; Ramirez, E; Rana, S; Singh, H; Chacko, M

    2015-01-01

    Purpose: Incident learning has been proven to improve patient safety and treatment quality in conventional radiation therapy. However, its application in proton therapy has not been reported yet to our knowledge. In this study, we report our experience in developing and implementation of an in-house incident learning system. Methods: An incident learning system was developed based on published principles and tailored for our clinical practice and available resource about 18 months ago. The system includes four layers of error detection and report: 1) dosimetry peer review; 2) physicist plan quality assurance (QA); 3) treatment delivery issue on call and record; and 4) other incident report. The first two layers of QA and report were mandatory for each treatment plan through easy-to-use spreadsheets that are only accessible by the dosimetry and physicist departments. The treatment delivery issues were recorded case by case by the on call physicist. All other incidents were reported through an online incident report system, which can be anonymous. The incident report includes near misses on planning and delivery, process deviation, machine issues, work flow and documentation. Periodic incident reviews were performed. Results: In total, about 116 errors were reported through dosimetry review, 137 errors through plan QA, 83 treatment issues through physics on call record, and 30 through the online incident report. Only 8 incidents (2.2%) were considered to have a clinical impact to patients, and the rest of errors were either detected before reaching patients or had negligible dosimetric impact (<5% dose variance). Personnel training & process improvements were implemented upon periodic incident review. Conclusion: An incident learning system can be helpful in personnel training, error reduction, and patient safety and treatment quality improvement. The system needs to be catered for each clinic’s practice and available resources. Incident and knowledge sharing among

  15. How Online Journalists Learn within a Non-Formal Context

    Science.gov (United States)

    Kronstad, Morten; Eide, Martin

    2015-01-01

    Purpose: The purpose of this paper is to contribute to the understanding of workplace learning, with a focus on the non-formal learning that takes place among online journalists. The focus of this article is journalists working in an online newspaper and their experiences with workplace and non-formal learning, centering on framework conditions…

  16. Music in Informal and formal learning situations in ECEC

    Directory of Open Access Journals (Sweden)

    Morten Sæther

    2016-12-01

    Full Text Available The aim of this article is, through theory, research and practical experiences, to discuss how informal teaching and learning situations exemplified by activities including music plays a part in Early Childhood Education and Care (ECEC. The theoretical frame in this article is based on perspectives on informal teaching and learning in music and in general (Green 2002, 2008; Henze, 2009; Folkestad, 2006; Mak, 2007. The tradition in Norwegian ECEC centers has been based on informal learning processes mainly through social interaction, play, dialogs, aesthetical and outdoor activities in everyday life. ECEC teachers challenged to articulate Informal teaching and learning as professional educators. In light of that statement it is introduced, theoretical perspectives and studies of professions (Abbott, 1988; Grimen, 2008; Heggen, 2008; Polanyi, 2002. The author describes and discusses opportunities of music in ECEC centers and how music can contribute learning in informal learning situations. The discussion refers narrative episodes from observations of ECEC practice. Methodology is based on thematic analysis inspired of  Riessman (2008 and Polkinghorne (1995.

  17. Teach Your Children: Learning Differences. Final Report.

    Science.gov (United States)

    Fisher, Allison L.; Willard, Penny

    A three-part series of evening workshops was designed to help adult basic education (ABE) parents identify learning styles and develop communication and advocacy skills, assertiveness, and self-esteem. At the workshops, instructors from the center presented an adaptation of curriculum on self-esteem for parenting developed by the Center for…

  18. On-line Professional Learning Communities: Increasing Teacher Learning and Productivity in Isolated Rural Communities

    Directory of Open Access Journals (Sweden)

    Dora Salazar

    2010-08-01

    Full Text Available On-line and distance professional learning communities provides teachers with increased access and flexibility as well as the combination of work and education. It also provides a more learner-centered approach, enrichment and new ways of interacting with teachers in isolated rural areas. For educational administrators, on-line learning offers high quality and usually cost-effective professional development for teachers. It allows upgrading of skills, increased productivity and development of a new learning culture. At the same time, it means sharing of costs, of training time, increased portability of training, and the exchange of creativity, information, and dialogue.

  19. Design, Implementation and Evaluation of a Learning Object that Supports the Mathematics Learning in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Roberto Munoz

    2018-04-01

    Full Text Available Information technologies have been widely used for entertainment and learning purposes by children with Autism Spectrum Disorders (ASD. Nonetheless, learning objects aiming at specific skills development in children with ASD require both a well bounded learning domain and a user-centered design process, considering skill levels of the users and the local geographical context and language. “Proyect@ Matemáticas” is a multi-touch based app designed for developing pre-calculus and functional mathematical skills in children with ASD, according to the Chilean regulations of learning goals for children with special educational necessities. This paper presents the User-centered design process conducted in order to develop the learning object, which included the evaluation by 15 experts in special educational needs, testing by 10 ASD-diagnosed children with different functional levels, and a multidisciplinary development team that also included a graphic designer diagnosed with ASD of high functionality. The development process yields to a validated learning object in terms of interactivity, design, engagement, and usability, from the point of view of the experts, and successful usage tests with ASD diagnosed children in terms of performance and achievement of learning outcomes. The application is currently available for download in the Google Play store for free, and currently has more than 15,000 downloads and an average rating of 4.2 out of 5 points.

  20. MyGfL: A Lifelong Learning Platform for Malaysian Society

    Science.gov (United States)

    Arabee Abdul Salam, Zailan; Mansur, Azmi

    2006-01-01

    MyGfL which stands for Malaysian Grid for Learning is a One-Stop-Center for quality assured online learning content, tools and services with the aim to promote and support the lifelong learning agenda in Malaysia. It is a platform that enables anyone to learn, unlearn and relearn from anywhere at anytime through any web browser so as to accelerate…