WorldWideScience

Sample records for helicopter rotor antenna

  1. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  2. Quad-Rotor Helicopter Autonomous Navigation Based on Vanishing Point Algorithm

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Quad-rotor helicopter is becoming popular increasingly as they can well implement many flight missions in more challenging environments, with lower risk of damaging itself and its surroundings. They are employed in many applications, from military operations to civilian tasks. Quad-rotor helicopter autonomous navigation based on the vanishing point fast estimation (VPFE algorithm using clustering principle is implemented in this paper. For images collected by the camera of quad-rotor helicopter, the system executes the process of preprocessing of image, deleting noise interference, edge extracting using Canny operator, and extracting straight lines by randomized hough transformation (RHT method. Then system obtains the position of vanishing point and regards it as destination point and finally controls the autonomous navigation of the quad-rotor helicopter by continuous modification according to the calculated navigation error. The experimental results show that the quad-rotor helicopter can implement the destination navigation well in the indoor environment.

  3. Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter

    Directory of Open Access Journals (Sweden)

    Jiayi Xie

    2017-06-01

    Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.

  4. Experimental Investigation of a Helicopter Rotor Hub Flow

    Science.gov (United States)

    Reich, David

    The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.

  5. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    Science.gov (United States)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  6. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    Science.gov (United States)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  7. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  8. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  9. Performance Analysis of a Utility Helicopter with Standard and Advanced Rotors

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo; Bousman, William G; Johnson, Wayne

    2002-01-01

    Flight test measurements of the performance of the UH-60 Black Hawk helicopter with both standard and advanced rotors are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II...

  10. Time domain system identification of longitudinal dynamics of single rotor model helicopter using sidpac

    International Nuclear Information System (INIS)

    Khaizer, A.N.; Hussain, I.

    2015-01-01

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)

  11. CAA modeling of helicopter main rotor in hover

    Science.gov (United States)

    Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George

    In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  12. CAA modeling of helicopter main rotor in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov Alexander N.

    2017-01-01

    Full Text Available In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers. Farfield noise at a remote observer position is calculated at post processing stage using FW–H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  13. Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2003-07-01

    The current paper presents a turbulent flow simulation study past a generic helicopter RoBin with a four-bladed rotor using the Chimera moving grid approach. The aerodynamic performance of the rotor blades and their interactions with the RoBin fuselage are investigated using the k - {omega} SST turbulence model contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasisteady flow field. The rotor blades are rectangular, untapered, linearly twisted and are made from NACA 0012 airfoil profile. The blade motion (rotation and cyclic pitching) schedule is specified in the NASA wind tunnel testing of a generic helicopter RoBin. The aerodynamic radial load distributions in the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The rotor flow interacts strongly with the flow coming off from the fuselage and thus has a significant impact on helicopter aerodynamic performance. (author)

  14. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2018-02-01

    Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes

  15. Numerical investigation of turbulent flow past a four-bladed helicopter rotor using k - ω SST model

    International Nuclear Information System (INIS)

    Xu, H.; Khalid, M.

    2002-01-01

    In a previous study of the laminar flow over a four-bladed helicopter rotor, abnormal Cp distributions were observed on the upper surfaces of the blades. To address this problem, the aerodynamic performance of the same rotor is investigated using the k - ω SST turbulence model, as contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasi-steady flow field. The rotor rotation schedule and the blade twisting are implemented as specified in the wind tunnel testing of a RoBin generic helicopter. More realistic Cp distributions on the blade surfaces are thus obtained. The aerodynamic load distributions in the radial direction of the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The analyses of these load distributions in the azmuthal direction provide a critical insight into the rotor model, which is based on the actuator-disc assumption. Also, some preliminary results for the flow past a full helicopter configuration, including the rotor and the RoBin fuselage, are presented. The current paper demonstrates the Chimera grid topologies and the Chimera grid generation technique for both blade and fuselage configuration. This would provide a powerful tool to simulate flow past an entire helicopter and to study the rotor-fuselage flow interaction. (author)

  16. Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions

    Science.gov (United States)

    Silva, Christopher; Yeo, Hyeonsoo; Johnson, Wayne R.

    2010-01-01

    A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions.

  17. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  18. Gust Response Analysis for Helicopter Rotors in the Hover and Forward Flights

    Directory of Open Access Journals (Sweden)

    Linpeng Wang

    2017-01-01

    Full Text Available Dynamic load due to gust for helicopter rotors directly affects the structural stress and flight performance. In case of gust, it may cause the loss of trust force or the increase of deflection for rotors. In current work, an effective coupled aeroelastic model based on a medium-deflection beam theory and a nonlinear unsteady aerodynamic model in the time domain were constructed. Three types of gust in vertical direction were added in the model. The dynamic response and structural load for helicopter rotors under three types of gust were calculated, respectively. Results indicated that when rotors suffer a gust in hover at downward direction, the thrust force on rotor disk would decrease significantly when the gust amplitude increases, which should be paid attention in the design. Among the three gust types with the same gust strength, the maximum instantaneous shear force due to impulse shape gust is the largest. When the rotors suffer a gust in a forward flight, the shear force at the root of rotors would increase with the gust strength first but then it decreases. More attention should be paid to the decrease of thrust force and the increase of structural load in a forward flight.

  19. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    Science.gov (United States)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  20. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    OpenAIRE

    2016-01-01

    The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on ...

  1. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  2. Failure Analysis on Tail Rotor Teeter Pivot Bolt on a Helicopter

    Science.gov (United States)

    Qiang, WANG; Zi-long, DONG

    2018-03-01

    Tail rotor teeter pivot bolt of a helicopter fractured when in one flight. Failure analysis on the bolt was finished in laboratory. Macroscopic observation of the tailor rotor teeter pivot bolt, macro and microscopic inspection on the fracture surface of the bolt was carried out. Chemical components and metallurgical structure was also carried out. Experiment results showed that fracture mode of the tail rotor teeter pivot bolt is fatigue fracture. Fatigue area is over 80% of the total fracture surface, obvious fatigue band characteristics can be found at the fracture face. According to the results were analyzed from the macroscopic and microcosmic aspects, fracture reasons of the tail rotor teeter pivot bolt were analyzed in detail

  3. Neutron radiography and other NDE tests of main rotor helicopter blades

    CSIR Research Space (South Africa)

    De Beer, FC

    2004-10-01

    Full Text Available leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research...

  4. Experimental Investigation of a Helicopter Rotor Hub Wake

    Science.gov (United States)

    Reich, David; Elbing, Brian; Schmitz, Sven

    2013-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The main objectives of the experiment were to understand the spatial- and temporal content of the unsteady wake downstream of a rotor hub up to a distance corresponding to the empennage. Primary measurements were the total hub drag and velocity measurements at three nominal downstream locations. Various flow structures were identified and linked to geometric features of the hub model. The most prominent structures were two-per-revolution (hub component: scissors) and four-per-revolution (hub component: main hub arms) vortices shed by the hub. Both the two-per-revolution and four-per-revolution structures persisted far downstream of the hub, but the rate of dissipation was greater for the four-per-rev structures. This work provides a dataset for enhanced understanding of the fundamental physics underlying rotor hub flows and serves as validation data for future CFD analyses.

  5. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor-blade/control...

  6. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  7. Design of helicopter rotor blades with actuators made of a piezomacrofiber composite

    Science.gov (United States)

    Glukhikh, S.; Barkanov, E.; Kovalev, A.; Masarati, P.; Morandini, M.; Riemenschneider, J.; Wierach, P.

    2008-01-01

    For reducing the vibration and noise of helicopter rotor blades, the method of their controlled twisting by using built-in deformation actuators is employed. In this paper, the influence of various design parameters of the blades, including the location of actuators made of a piezomacrofiber material, on the twist angle is evaluated. The results of a parametric analysis performed allowed us to refine the statement of an optimization problem for the rotor blades.

  8. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    Science.gov (United States)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  9. Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades

    International Nuclear Information System (INIS)

    Tejero, F; Doerffer, P; Szulc, O

    2014-01-01

    The interest in the application of flow control devices has been rising in the last years. Recently, several passive streamwise vortex generators have been analysed in a configuration of a curved wall nozzle within the framework of the UFAST project (Unsteady Effects of Shock Wave Induced Separation, 2005 – 2009). Experimental and numerical results proved that the technology is effective in delaying flow separation. The numerical investigation has been extended to helicopter rotor blades in hover and forward flight applying the FLOWer solver (RANS approach) implementing the chimera overlapping grids technique and high performance computing. CFD results for hover conditions confirm that the proposed passive control method reduces the flow separation increasing the thrust over power consumption. The paper presents the numerical validation for both states of flight and the possible implementation of RVGs on helicopter rotor blades.

  10. Aeromechanical stability of helicopters with composite rotor blades in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  11. Flowfield analysis of helicopter rotor in hover and forward flight based on CFD

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-05-01

    The helicopter rotor field is simulated in hover and forward flight based on Computational Fluid Dynamics(CFD). In hover case only one rotor is simulated with the periodic boundary condition in the rotational coordinate system and the grid is fixed. In the non-lift forward flight case, the total rotor is simulated in inertia coordinate system and the whole grid moves rigidly. The dual-time implicit scheme is applied to simulate the unsteady flowfield on the movement grids. The k – ω turbulence model is employed in order to capture the effects of turbulence. To verify the solver, the flowfield around the Caradonna-Tung rotor is computed. The comparison shows a good agreement between the numerical results and the experimental data.

  12. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  13. Flow Structures within a Helicopter Rotor Hub Wake

    Science.gov (United States)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  14. Novel controller design demonstration for vibration alleviation of helicopter rotor blades

    Science.gov (United States)

    Ulker, Fatma Demet; Nitzsche, Fred

    2012-04-01

    This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.

  15. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  16. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    OpenAIRE

    Dalli, Uğbreve;ur; Yüksel, Şcedilefaatdin

    2011-01-01

    An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing condit...

  17. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  18. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  19. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-04-01

    Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.

  20. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    2015-12-28

    graduate career a fun and (at times) productive pursuit. I owe a great deal to my parents , Kevin and Lisa, for their unconditional support. Finally...forward flight. Orchard and Newman [6] investigated fundamental design features of compound helicopters using a wing, a single rotor, and a propul- sor... style compound. For the case considered here, the coaxial rotors are unconstrained in lift offset. If a wing were used in a case that also included a lift

  1. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  2. Air and ground resonance of helicopters with elastically tailored composite rotor blades

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1993-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  3. A simulation study of active feedback supression of dynamic response in helicopter rotor blades

    Science.gov (United States)

    Kana, D. D.; Bessey, R. L.; Dodge, F. T.

    1975-01-01

    A parameter study is presented for active feedback control applied to a helicopter rotor blade during forward flight. The study was performed on an electromechanical apparatus which included a mechanical model rotor blade and electronic analog simulation of interaction between blade deflections and aerodynamic loading. Blade response parameters were obtained for simulated vortex impinging at the blade tip at one pulse per revolution, and for a pulse which traveled from the blade tip toward its root. Results show that the response in a 1 - 10-per-rev frequency band is diminished by the feedback action, but at the same time responses at frequencies above 10-per-rev become increasingly more prominent with increased feedback amplitude, and can even lead to instability at certain levels. It appears that the latter behavior results from limitations of the laboratory simulation apparatus, rather than genuine potential behavior for a prototype helicopter.

  4. Wireless Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements Definition and Technological Aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul J.M.; Basu, Biswajit

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  5. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    Science.gov (United States)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  6. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    Science.gov (United States)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  7. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  8. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    International Nuclear Information System (INIS)

    Balasko, M.; Veres, I.; Molnar, Gy.; Balasko, Zs.; Svab, E.

    2004-01-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered

  9. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    Science.gov (United States)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  10. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    Science.gov (United States)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  11. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    Science.gov (United States)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; hide

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  12. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    National Research Council Canada - National Science Library

    Balasko, M; Endroczi, G; Tarnai, Gy; Veres, I; Molnar, Gy; Svab, E

    2005-01-01

    The experiments regarding structural failures in helicopter rotor blade's composite structures causing water penetrations and bypasses were performed at the Dynamic Radiography Station (DRS) of the Budapest...

  13. Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance

    Science.gov (United States)

    Young, M. I.; Bailey, D. J.; Hirschbein, M. S.

    1974-01-01

    The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability.

  14. Advanced Airfoils Boost Helicopter Performance

    Science.gov (United States)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  15. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    Science.gov (United States)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  16. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  17. Advances in transitional flow modeling applications to helicopter rotors

    CERN Document Server

    Sheng, Chunhua

    2017-01-01

    This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.

  18. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  19. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    Science.gov (United States)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  20. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Science.gov (United States)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  1. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The

  2. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    Science.gov (United States)

    2016-10-01

    helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades, the helicopter body...is used to separate the main and tail rotor blade components of a helicopter from the composite radar returns. The received signal consists of returns...Two algorithms are presented in the report to separately extract main rotor blade returns and tail rotor blade returns from the composite signal

  3. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  4. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  5. Classification of defects in honeycomb composite structure of helicopter rotor blades

    International Nuclear Information System (INIS)

    Balasko, M.; Svab, E.; Molnar, Gy.; Veres, I.

    2005-01-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected

  6. Classification of defects in honeycomb composite structure of helicopter rotor blades

    Science.gov (United States)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  7. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  8. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    Science.gov (United States)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  9. Nonlinear Characteristics of Helicopter Rotor Blade Airfoils: An Analytical Evaluation

    Directory of Open Access Journals (Sweden)

    Constantin Rotaru

    2013-01-01

    Full Text Available Some results are presented about the study of airloads of the helicopter rotor blades, the aerodynamic characteristics of airfoil sections, the physical features, and the techniques for modeling the unsteady effects found on airfoil operating under nominally attached flow conditions away from stall. The unsteady problem was approached on the basis of Theodorsen's theory, where the aerodynamic response (lift and pitching moment is considered as a sum of noncirculatory and circulatory parts. The noncirculatory or apparent mass accounts for the pressure forces required to accelerate the fluid in the vicinity of the airfoil. The apparent mass contributions to the forces and pitching moments, which are proportional to the instantaneous motion, are included as part of the quasi-steady result.

  10. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    Science.gov (United States)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  11. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  12. Flying control of small-type helicopter by detecting its in-air natural features

    Directory of Open Access Journals (Sweden)

    Chinthaka Premachandra

    2015-05-01

    Full Text Available Control of a small type helicopter is an interesting research area in unmanned aerial vehicle development. This study aims to detect a more typical helicopter unequipped with markers as a means by which to resolve the various issues of the prior studies. Accordingly, we propose a method of detecting the helicopter location and pose through using an infrastructure camera to recognize its in-air natural features such as ellipse traced by the rotation of the helicopter's propellers. A single-rotor system helicopter was used as the controlled airframe in our experiments. Here, helicopter location is measured by detecting the main rotor ellipse center and pose is measured following relationship between the main rotor ellipse and the tail rotor ellipse. Following these detection results we confirmed the hovering control possibility of the helicopter through experiments.

  13. THE EFFECT OF DIFFERENT OPTIONS OF BLADES MAIN ROTOR ON THE X-SHAPED TAIL ROTOR OF THE MI-171 LL

    Directory of Open Access Journals (Sweden)

    Valery A. Ivchin

    2018-01-01

    Full Text Available This paper describes the effect of different rotor blades on the X-shaped tail rotor of the Mi-171 LL, observed conducting flight tests. The tests were carried out on the same helicopter in the similar atmospheric conditions.The objective of the tests was the comparison of flight performance of two sets of rotor blades of the helicopter Mi-171 LL. However, materials test revealed a difference in the angles of the tail rotor at different MRs with the same takeoff weight.The authors are grateful to I.G. Peskov, S.R. Zamula and A.I. Orlov for assistance in carrying out this work and the preparation of this article.Noted that the helicopter takeoff weight when hovering out of ground effect in ISA with blades from polymer composite materials (PCM exceeds the takeoff weight of the helicopter with the serial blades in the nominal mode of the engine operation at ~ 750kg, in the takeoff mode at ~ 700kg.Knowing the altitude and climatic characteristics of the engine, the obtained dependence allows to determine the balancing value of jрв on hovering at different combinations of pressure altitude and outside air temperature for a given speed of the main rotor (MR.It follows from the work that when the same value Nпр(95/nнвпр3 or Nfact the balancing values of jрв for the helicopter with the main rotor blades from the PCM is less than for the helicopters with serial blades by 0.5…0.9°. The difference in the angles of the tail rotor increases with growing of Nепр(95/nнвпр3 (Nfact. Perhaps this is caused by different induction effect of the main rotor on the tail rotor to the MR from PCM and the serial ones.As follows from the materials, the thrust of the main rotor with blades from PCM with the same engine power is more in comparison with the serial blades. Consequently inductive speeds of the main rotor are more and the angles of the tail rotor are less. It can be assumed that a large induced velocity of the main rotor increases the thrust

  14. Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.

    Science.gov (United States)

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2014-03-01

    This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Modelling and attenuation feasibility of the aeroelastic response of active helicopter rotor systems during the engagement/disengagement phase of maritime operation

    Science.gov (United States)

    Khouli, F.

    An aeroelastic phenomenon, known as blade sailing, encountered during maritime operation of helicopters is identified as being a factor that limits the tactical flexibility of helicopter operation in some sea conditions. The hazards associated with this phenomenon and its complexity, owing to the number of factors contributing to its occurrence, led previous investigators to conclude that advanced and validated simulation tools are best suited to investigate it. A research gap is identified in terms of scaled experimental investigation of this phenomenon and practical engineering solutions to alleviate its negative impact on maritime helicopter operation. The feasibility of a proposed strategy to alleviate it required addressing a gap in modelling thin-walled composite active beams/rotor blades. The modelling is performed by extending a mathematically-consistent and asymptotic reduction strategy of the 3-D elastic problem to account for embedded active materials. The derived active cross-sectional theory is validated using 2-D finite element results for closed and open cross-sections. The geometrically-exact intrinsic formulation of active maritime rotor systems is demonstrated to yield compact and symbolic governing equations. The intrinsic feature is shown to allow a classical and proven solution scheme to be successfully applied to obtain time history solutions. A Froude-scaled experimental rotor was designed, built, and tested in a scaled ship airwake environment and representative ship motion. Based on experimental and simulations data, conclusions are drawn regarding the influence of the maritime operation environment and the rotor operation parameters on the blade sailing phenomenon. The experimental data is also used to successfully validate the developed simulation tools. The feasibility of an open-loop control strategy based on the integral active twist concept to counter blade sailing is established in a Mach-scaled maritime operation environment

  16. Hovering and Low-Speed Performance and Control Characteristics of the Kaman Helicopter Rotor System as Determined on the Langley Helicopter Tower. TED No. NACA DE 205

    Science.gov (United States)

    Carpenter, Paul J.; Paulnock, Russell S.

    1949-01-01

    An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.

  17. Conference on Helicopter Structures Technology, Moffett Field, Calif., November 16-18, 1977, Proceedings

    Science.gov (United States)

    1978-01-01

    Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.

  18. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  19. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    birds , marine life and even insect wings. In some cases such as helicopters, wind turbines and compres- sors, dynamic stall becomes the primary...on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great...occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine

  20. A coupled CFD and wake model simulation of helicopter rotor in hover

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  1. Development and application of an analysis of axisymmetric body effects on helicopter rotor aerodynamics using modified slender body theory

    Science.gov (United States)

    Yamauchi, G.; Johnson, W.

    1984-01-01

    A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.

  2. Neutron radiography and other NDE tests of main rotor helicopter blades

    International Nuclear Information System (INIS)

    Beer, F.C. de; Coetzer, M.; Fendeis, D.; Silva, A. da Costa E

    2004-01-01

    A few nondestructive examination (NDE) techniques are extensively being used worldwide to investigate aircraft structures for all types of defects. The detection of corrosion and delaminations, which are believed to be the major initiators of defects leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research reactor operated by Necsa, was performed to introduce this form of NDE testing to the South African aviation industry to be evaluated for applicability. The results of the shearography, visual inspection and NRad techniques are compared in this paper. The main features and advantages of neutron radiography, within the framework of these investigations, will be highlighted

  3. Helicopter Fuselage Active Flow Control in the Presence of a Rotor

    Science.gov (United States)

    Martin, Preston B; Overmeyer, Austin D.; Tanner, Philip E.; Wilson, Jacob S.; Jenkins, Luther N.

    2014-01-01

    This work extends previous investigations of active flow control for helicopter fuselage drag and download reduction to include the effects of the rotor. The development of the new wind tunnel model equipped with fluidic oscillators is explained in terms of the previous test results. Large drag reductions greater than 20% in some cases were measured during powered testing without increasing, and in some cases decreasing download in forward flight. As confirmed by Particle Image Velocimetry (PIV), the optimum actuator configuration that provided a decrease in both drag and download appeared to create a virtual (fluidic) boat-tail fairing instead of attaching flow to the ramp surface. This idea of a fluidic fairing shifts the focus of 3D separation control behind bluff bodies from controlling/reattaching surface boundary layers to interacting with the wake flow.

  4. Evaluation of graphite composite materials for bearingless helicopter rotor application

    Science.gov (United States)

    Ulitchny, M. G.; Lucas, J. J.

    1974-01-01

    Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced.

  5. Spectral Analysis of the Wake behind a Helicopter Rotor Hub

    Science.gov (United States)

    Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian

    2016-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.

  6. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    Science.gov (United States)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  7. Integrated technology rotor/flight research rotor hub concept definition

    Science.gov (United States)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  8. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  9. Inspection of helicopter rotor blades with the help of guided waves and "turning modes": Experimental and finite element analysis

    Science.gov (United States)

    Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay

    2013-01-01

    Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.

  10. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    Science.gov (United States)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an

  11. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  12. 29 CFR 1926.551 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ...) Loose gear and objects. Every practical precaution shall be taken to provide for the protection of the employees from flying objects in the rotor downwash. All loose gear within 100 feet of the place of lifting... manner in which loads are connected to the helicopter. If, for any reason, the helicopter operator...

  13. The Application of Helicopter Rotor Defect Detection Using Wavelet Analysis and Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Jin-Li Sun

    2014-06-01

    Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.

  14. Investigation of a bearingless helicopter rotor concept having a composite primary structure

    Science.gov (United States)

    Bielawa, R. L.; Cheney, M. C., Jr.; Novak, R. C.

    1976-01-01

    Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested.

  15. Application of Vibration and Oil Analysis for Reliability Information on Helicopter Main Rotor Gearbox

    Science.gov (United States)

    Murrad, Muhamad; Leong, M. Salman

    Based on the experiences of the Malaysian Armed Forces (MAF), failure of the main rotor gearbox (MRGB) was one of the major contributing factors to helicopter breakdowns. Even though vibration and oil analysis are the effective techniques for monitoring the health of helicopter components, these two techniques were rarely combined to form an effective assessment tool in MAF. Results of the oil analysis were often used only for oil changing schedule while assessments of MRGB condition were mainly based on overall vibration readings. A study group was formed and given a mandate to improve the maintenance strategy of S61-A4 helicopter fleet in the MAF. The improvement consisted of a structured approach to the reassessment/redefinition suitable maintenance actions that should be taken for the MRGB. Basic and enhanced tools for condition monitoring (CM) are investigated to address the predominant failures of the MRGB. Quantitative accelerated life testing (QALT) was considered in this work with an intent to obtain the required reliability information in a shorter time with tests under normal stress conditions. These tests when performed correctly can provide valuable information about MRGB performance under normal operating conditions which enable maintenance personnel to make decision more quickly, accurately and economically. The time-to-failure and probability of failure information of the MRGB were generated by applying QALT analysis principles. This study is anticipated to make a dramatic change in its approach to CM, bringing significant savings and various benefits to MAF.

  16. Dynamic analysis of an SDOF helicopter model featuring skid landing gear and an MR damper by considering the rotor lift factor and a Bingham number

    Science.gov (United States)

    Saleh, Muftah; Sedaghati, Ramin; Bhat, Rama

    2018-06-01

    The present study addresses the performance of a skid landing gear (SLG) system of a rotorcraft impacting the ground at a vertical sink rate of up to 4.5 ms‑1. The impact attitude is assumed to be level as per chapter 527 of the Airworthiness Manual of Transport Canada Civil Aviation and part 27 of the Federal Aviation Regulations of the US Federal Aviation Administration. A single degree of freedom helicopter model is investigated under different values of rotor lift factor, L. In this study, three SLG versions are evaluated: (a) standalone conventional SLG; (b) SLG equipped with a passive viscous damper; and (c) SLG incorporated a magnetorheological energy absorber (MREA). The non-dimensional solutions of the helicopter models show that the two former SLG systems suffer adaptability issues with variations in the impact velocity and the rotor lift factor. Therefore, the alternative successful choice is to employ the MREA. Two different optimum Bingham numbers for compression and rebound strokes are defined. A new chart, called the optimum Bingham number versus rotor lift factor ‘B{i}o-L’, is introduced in this study to correlate the optimum Bingham numbers to the variation in the rotor lift factor and to provide more accessibility from the perspective of control design. The chart shows that the optimum Bingham number for the compression stroke is inversely linearly proportional to the increase in the rotor lift factor. This alleviates the impact force on the system and reduces the amount of magnetorheological yield force that would be generated. On the contrary, the optimum Bingham number for the rebound stroke is found to be directly linearly proportional to the rotor lift factor. This ensures controllable attenuation of the restoring force of the linear spring element. This idea can be exploited to generate charts for different landing attitudes and sink rates. In this article, the response of the helicopter equipped with the conventional undamped, damped

  17. Soft hub for bearingless rotors

    Science.gov (United States)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  18. Active twist of model rotor blades with D-spar design

    Directory of Open Access Journals (Sweden)

    A. Kovalovs

    2007-03-01

    Full Text Available The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D-spar made of UD GFRP, skin made of +45o/–45o GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam - by 3D 20-node structural solid elements SOLID186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.

  19. A Correction Method for UAV Helicopter Airborne Temperature and Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Longqing Fan

    2017-01-01

    Full Text Available This paper presents a correction method for UAV helicopter airborne temperature and humidity including an error correction scheme and a bias-calibration scheme. As rotor downwash flow brings measurement error on helicopter airborne sensors inevitably, the error correction scheme constructs a model between the rotor induced velocity and temperature and humidity by building the heat balance equation for platinum resistor temperature sensor and the pressure correction term for humidity sensor. The induced velocity of a spatial point below the rotor disc plane can be calculated by the sum of the induced velocities excited by center line vortex, rotor disk vortex, and skew cylinder vortex based on the generalized vortex theory. In order to minimize the systematic biases, the bias-calibration scheme adopts a multiple linear regression to achieve a systematically consistent result with the tethered balloon profiles. Two temperature and humidity sensors were mounted on “Z-5” UAV helicopter in the field experiment. Overall, the result of applying the calibration method shows that the temperature and relative humidity obtained by UAV helicopter closely align with tethered balloon profiles in providing measurements of the temperature profiles and humidity profiles within marine atmospheric boundary layers.

  20. 78 FR 9793 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2013-02-12

    ...-numbered main rotor hub inboard strap fittings (fittings). This AD requires magnetic particle inspecting... identified in this AD, contact Bell Helicopter Textron, Inc., P.O. Box 482, Fort Worth, TX 76101, telephone..., perform a magnetic particle inspection (MPI) of each fitting for a crack. If an MPI was already performed...

  1. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-08-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-76A helicopters to require modifying the electric rotor brake (ERB... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  2. Rotor design optimization using a free wake analysis

    Science.gov (United States)

    Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat

    1993-01-01

    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.

  3. Some practical issues in the computational design of airfoils for the helicopter main rotor blades

    Directory of Open Access Journals (Sweden)

    Kostić Ivan

    2004-01-01

    Full Text Available Very important requirement for the helicopter rotor airfoils is zero, or nearly zero moment coefficient about the aerodynamic center. Unlike the old technologies used for metal blades, modern production involving application of plastic composites has imposed the necessity of adding a flat tab extension to the blade trailing edge, thus changing the original airfoil shape. Using computer program TRANPRO, the author has developed and verified an algorithm for numerical analysis in this design stage, applied it on asymmetrical reflex camber airfoils, determined the influence of angular tab positioning on the moment coefficient value and redesigned some existing airfoils to include properly positioned tabs that satisfy very low moment coefficient requirement. .

  4. Final assessment of vibro-acoustic source strength descriptors of helicopter gearboxes

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Rasmussen, Ulrik Møller

    1996-01-01

    Two novel measurement techniques have been developed for quantifying the vibro-aqcoustic source strength of lightweight helicopter gearboxes. The accuracy, robustness and implementation of these methods have been examined by a comprehensive investigation, including theoretical studies of simple...... multi-modal beam systems and extensive experiments with more realistic small scale models and with large, detailed 3/4-scale test structures of a medium-size helicopter. In addition, partial verification tests have been conducted with the Eurocopter BK 117 helicopter and its main rotor gearbox....... The results of this work are essential as input for any prediction code of the internal noise in a helicopter cabin, because the prediction requires knowledge of the major sources, that is, the rotors, engines and gearboxes....

  5. 77 FR 68061 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD requires inspecting the tail rotor (T/R... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  6. 77 FR 28328 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-05-14

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Corporation (Sikorsky) Model S-92A helicopters, which requires inspecting the tail rotor (T/R) pylon for a... service information identified in this proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  7. Merenje vibracija i relevantnih parametara leta transportnog helikoptera Mi-8 sa revitalizovanim lopaticama nosećeg rotora / Vibration and flight data measurement on the transport helicopter Mi-8 with replaced main rotor blades

    Directory of Open Access Journals (Sweden)

    Veljko Rakonjac

    2004-11-01

    Full Text Available Rad se odnosi na merenje parametara leta transportnog helikoptera ruske proizvodnje Mi-8 sa ugrađenim originalnim, kao i revitalizovanim - delimično kompozitnim lopaticama nosećeg rotora. Cilj merenja bio je dobijanje relevantnih podataka za ocenu kvaliteta revitalizovanih lopatica usled zamene lopatica nosećeg rotora. Prikazani su oprema, postupak i analiza rezultata merenja parametara leta i vibracija, uz poseban osvrt na probleme izazvane uticajem vibracija na mernu opremu. / This paper presents helicopter flight data acquisition made on the Russian helicopter Mi-8 with its original main rotor blades as well as with regenerated, partially composite ones. The purpose of the measurement was collecting data for flight quality of the main rotor composite blades changing the actual main rotor blades. This paper also presents equipment procedures and analysis of flight data and vitration measurements with special attention to problems caused by vibration influence on equipment.

  8. Variable Speed Rotor System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  9. Safe-life and damage-tolerant design approaches for helicopter structures

    Science.gov (United States)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  10. Helicopter noise in hover: Computational modelling and experimental validation

    Science.gov (United States)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  11. Prediction of helicopter rotor noise in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2015-01-01

    Full Text Available Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  12. Prediction of helicopter rotor noise in hover

    Science.gov (United States)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2015-05-01

    Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.

  13. Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling

    Science.gov (United States)

    Ickes, Jacob C.

    Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form

  14. Power harvesting using piezoelectric materials: applications in helicopter rotors

    NARCIS (Netherlands)

    de Jong, Pieter

    2013-01-01

    The blades of helicopters are heavily loaded and are critical components. Failure of any one blade will lead to loss of the aircraft. Currently, the technical lifespan of helicopter blades is calculated using a worst-case operation scenario. The consequence is that a blade that may be suitable for,

  15. Computed tomography (CT) as a nondestructive test method used for composite helicopter components

    Science.gov (United States)

    Oster, Reinhold

    1991-09-01

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  16. Helicopter training simulators: Key market factors

    Science.gov (United States)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  17. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    Science.gov (United States)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  18. Study on Helicopter Antitorque Device Based on Cross-Flow Fan Technology

    Directory of Open Access Journals (Sweden)

    Du Siliang

    2016-01-01

    Full Text Available In order to improve low-altitude flight security of single-rotor helicopter, an experimental model of a helicopter antitorque device is developed for wind tunnel test. The model is based on the flow control technology of the cross-flow fan (CFF. Wind tunnel tests show that the model can produce side force. It is concluded that the influence of the CFF rotating speed, the rotor collective pitch, and the forward flight speed on the side force of the model is great. At the same time, the numerical simulation calculation method of the model has been established. Good agreement between experimental and numerical side force and power shows that results of numerical solution are reliable. Therefore, the results in actual helicopter obtained from Computational Fluid Dynamics (CFD solution are acceptable. This proves that this antitorque device can be used for a helicopter.

  19. A bistable mechanism for chord extension morphing rotors

    Science.gov (United States)

    Johnson, Terrence; Frecker, Mary; Gandhi, Farhan

    2009-03-01

    Research efforts have shown that helicopter rotor blade morphing is an effective means to improve flight performance. Previous example of rotor blade morphing include using smart-materials for trailing deflection and rotor blade twist and tip twist, the development of a comfortable airfoil using compliant mechanisms, the use of a Gurney flap for air-flow deflection and centrifugal force actuated device to increase the span of the blade. In this paper we explore the use of a bistable mechanism for rotor morphing, specifically, blade chord extension using a bistable arc. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. Bistable or "snap through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke. Bistable mechanisms do not require energy input to maintain a stable equilibrium state as both states do not require locking. In this work, we introduce a methodology for the design of bistable arcs for chord morphing using the finite element analysis and pseudo-rigid body model, to study the effect of different arc types, applied loads and rigidity on arc performance.

  20. Development in helicopter tail boom strake applications in the US

    Science.gov (United States)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  1. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  2. Numerical simulation of a hovering rotor using embedded grids

    Science.gov (United States)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  3. 77 FR 42958 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2012-07-23

    ... airworthiness directive (AD) for Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 (all versions) and BO-105LS... tail rotor pitch link and subsequent loss of control of the helicopter. DATES: This AD becomes... improperly swaged spherical bearing on the pitch link, which could result in loss of tail rotor control and...

  4. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  5. Design study of prestressed rotor spar concept

    Science.gov (United States)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  6. Efficient prediction of ground noise from helicopters and parametric studies based on acoustic mapping

    Directory of Open Access Journals (Sweden)

    Fei WANG

    2018-02-01

    Full Text Available Based on the acoustic mapping, a prediction model for the ground noise radiated from an in-flight helicopter is established. For the enhancement of calculation efficiency, a high-efficiency second-level acoustic radiation model capable of taking the influence of atmosphere absorption on noise into account is first developed by the combination of the point-source idea and the rotor noise radiation characteristics. The comparison between the present model and the direct computation method of noise is done and the high efficiency of the model is validated. Rotor free-wake analysis method and Ffowcs Williams-Hawkings (FW-H equation are applied to the aerodynamics and noise prediction in the present model. Secondly, a database of noise spheres with the characteristic parameters of advance ratio and tip-path-plane angle is established by the helicopter trim model together with a parametric modeling approach. Furthermore, based on acoustic mapping, a method of rapid simulation for the ground noise radiated from an in-flight helicopter is developed. The noise footprint for AH-1 rotor is then calculated and the influence of some parameters including advance ratio and flight path angle on ground noise is deeply analyzed using the developed model. The results suggest that with the increase of advance ratio and flight path angle, the peak noise levels on the ground first increase and then decrease, in the meantime, the maximum Sound Exposure Level (SEL noise on the ground shifts toward the advancing side of rotor. Besides, through the analysis of the effects of longitudinal forces on miss-distance and rotor Blade-Vortex Interaction (BVI noise in descent flight, some meaningful results for reducing the BVI noise on the ground are obtained. Keywords: Acoustic mapping, Helicopter, Noise footprint, Rotor noise, Second-level acoustic radiation model

  7. Development of Helicopter Capabilities in the U.S. Army During the Korean and Vietnam Wars

    Science.gov (United States)

    2016-06-10

    28. 14 and could land almost in any place bigger than its rotor diameter. It demonstrated the nature of the helicopter . Nevertheless, rotorcraft of... composition of airmobile units, and 67 methodology of helicopter use on the battlefield. The study seems to cover a broad spectrum of knowledge and...can be focused on the one of several aspects: employment of armored helicopters , land mobility vs helicopter mobility, composition of airmobile units

  8. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  9. Numerical simulation of helicopter engine plume in forward flight

    Science.gov (United States)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  10. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

    Science.gov (United States)

    Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.

    2017-05-01

    An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

  11. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  12. Transonic airfoil design for helicopter rotor applications

    Science.gov (United States)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  13. Assessing inspection sensitivity as it relates to damage tolerance in composite rotor hubs

    Science.gov (United States)

    Roach, Dennis P.; Rackow, Kirk

    2001-08-01

    Increasing niche applications, growing international markets, and the emergence of advanced rotorcraft technology are expected to greatly increase the population of helicopters over the next decade. In terms of fuselage fatigue, helicopters show similar trends as fixed-wing aircraft. The highly unsteady loads experienced by rotating wings not only directly affect components in the dynamic systems but are also transferred to the fixed airframe structure. Expanded use of rotorcraft has focused attention on the use of new materials and the optimization of maintenance practices. The FAA's Airworthiness Assurance Center (AANC) at Sandia National Labs has joined with Bell Helicopter andother agencies in the rotorcraft industry to evaluate nondestructive inspection (NDI) capabilities in light of the damage tolerance of assorted rotorcraft structure components. Currently, the program's emphasis is on composite rotor hubs. The rotorcraft industry is constantly evaluating new types of lightweight composite materials that not only enhance the safety and reliability of rotor components but also improve performance and extended operating life as well. Composite rotor hubs have led to the use of bearingless rotor systems that are less complex and require less maintenance than their predecessors. The test facility described in this paper allows the structural stability and damage tolerance of composite hubs to be evaluated using realistic flight load spectrums of centrifugal force and bending loads. NDI was integrated into the life-cycle fatigue tests in order to evaluate flaw detection sensitivity simultaneously wiht residual strength and general rotor hub peformance. This paper will describe the evolving use of damage tolerance analysis (DTA) to direct and improve rotorcraft maintenance along with the related use of nondestructive inspections to manage helicopter safety. OVeralll, the data from this project will provide information to improve the producibility, inspectability

  14. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  15. Failure analysis of a helicopter's main rotor bearing

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.; Ali, N.

    2011-01-01

    Presented results report some of the findings of a detailed failure analysis carried out on a main rotor hub assembly, which had symptoms of burning and mechanical damage. The analysis suggests environmental degradation of the grease which causes pitting on bearing-balls. The consequent inefficient lubrication raises the temperature which leads to the smearing of cage material (brass) on the bearing-balls and ultimately causes the failure. The analysis has been supported by the microstructural studies, thermal analysis and micro-hardness testing performed on the affected main rotor bearing parts. (author)

  16. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  17. Towards a better understanding of helicopter external noise

    Science.gov (United States)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  18. Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent

    Science.gov (United States)

    Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza

    2017-11-01

    All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  19. 78 FR 63429 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-10-24

    ... Jersey Avenue SE., Washington, DC 20590-0001. Hand Delivery: Deliver to the ``Mail'' address between 9 a... rotor control turnbuckle ruptured because of corrosion. The damage was discovered during a flight... corrosion or a crack. The delivery date is the date the helicopter left Eurocopter's manufacturing plant in...

  20. Fatigue qualification of high thickness composite rotor components

    Science.gov (United States)

    Raggi, M.; Mariani, U.; Zaffaroni, G.

    Fatigue qualification aspects of composite rotor components are presented according with the safe life procedure usually applied by helicopter manufacturers. Test activities are identified at three levels of specimen complexity: coupon, structural element and full scale component. Particular attention is given to high thickness laminates qualification as far as environmental exposure is concerned. A practical approach for an accelerated conditioning procedure is described. The application to a main rotor tension link is presented showing the negligible effect of the moisture absorption on its fatigue strength.

  1. Crack of a helicopter main rotor actuator attachment: failure analysis and lessons learned

    Directory of Open Access Journals (Sweden)

    L. Allegrucci

    2013-10-01

    Full Text Available A Light Utility Helicopter (LUH, in the course of a training flight, leaving the ground during the taxi to take off, went into an uncontrolled rolling to the right; consequently the helicopter gradually laid down on the right side. The impact with the runway destroyed the rotating blades up to the hubs rotor. The accident investigation focused on main rotor oscillatory plate servo actuators . These components, directly linked to the cloche movements, regulate main rotor blades plane tilt and pitch. Following the preliminary examination, only front servo actuator attachment was found to be broken in two parts. In detail, the present paper deals with the fracture analysis results. The servo actuator attachment material is a 2014 Aluminum alloy extrudate, undergone to T651 heat treatment. Fracture surfaces were examined by optical and electronic microscopy in order to determine the main morphological features and consequently to trace the origin of failure mechanism and causes. The accordance with the specification requirements about alloy composition was verified by quantitative elementary analysis through inductive coupled plasma spectroscopy (ICP; furthermore, semi-quantitative elementary analysis was locally verified by Energy dispersion spectroscopy X ray (EDS_RX. Finally, the hydrogen content of the material was evaluated by the total hydrogen analysis. Microstructural and technological alloy characteristics were verified as well by using metallographic microscopy and hardness testing of the material.Macroscopic fracture surfaces evidences were characterized by the lack of any significant plastic deformations and by the presence of symmetry compared to the servo actuator axis. Microscopic fracture features of both the investigated surfaces were not coherent to the hypothesis of an impact of the main rotor to the soil. Further achieved evidences, such as grain boundary fracture propagation, the presence of corrosion products, were all in

  2. A numerical analysis of the British Experimental Rotor Program blade

    Science.gov (United States)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  3. Documentation of the Recirculation in a Closed-Chamber Rotor Hover Test

    Science.gov (United States)

    McCoy, Miranda; Wadcock, Alan J.; Young, Larry A.

    2016-01-01

    A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 < RPM < 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.

  4. Analysis of small-scale rotor hover performance data

    Science.gov (United States)

    Kitaplioglu, Cahit

    1990-01-01

    Rotor hover-performance data from a 1/6-scale helicopter rotor are analyzed and the data sets compared for the effects of ambient wind, test stand configuration, differing test facilities, and scaling. The data are also compared to full scale hover data. The data exhibited high scatter, not entirely due to ambient wind conditions. Effects of download on the test stand proved to be the most significant influence on the measured data. Small-scale data correlated resonably well with full scale data; the correlation did not improve with Reynolds number corrections.

  5. Development of a piezoelectric actuator for trailing-edge flap control of rotor blades

    Science.gov (United States)

    Straub, Friedrich K.; Ngo, Hieu T.; Anand, V.; Domzalski, David B.

    1999-06-01

    Piezoelectric actuator technology has now reached a level where macro-positioning applications in the context of smart structures can be considered. One application with high payoffs is vibration reduction, noise reduction, and performance improvements in helicopters. Integration of piezoelectric actuators in the rotor blade is attractive, since it attacks the problem at the source. The present paper covers the development of a piezoelectric actuator for trailing edge flap control on a 34-foot diameter helicopter main rotor. The design of an actuator using bi-axial stack columns, and its bench, shake, and spin testing are described. A series of enhancements lead to an improved version that, together with use of latest stack technology, meets the requirements. Next steps in this DARPA sponsored program are development of the actuator and full scale rotor system for wind tunnel testing in the NASA Ames 40 X 80 foot wind tunnel and flight testing on the MD Explorer.

  6. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    Science.gov (United States)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  7. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    Science.gov (United States)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  8. 77 FR 70360 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-11-26

    ... helicopters. This AD requires inspecting the cage of the free-wheel assembly for the correct alignment of the... tail rotor drive shaft free-wheel cage, which caused a pilot to experience a heavy jerk in the yaw.... That NPRM proposed to require inspecting the cage of the free-wheel assembly for the correct alignment...

  9. An examination of the spectral class low frequency limit for helicopters

    Science.gov (United States)

    2011-01-01

    Currently, INM and AEDT do not use spectral data below 50 Hz in their noise computations. However, helicopter rotor rotational noise is dominant below 50Hz, with a fundamental frequency at the blade-pass frequency (BPF) and harmonics at integer multi...

  10. Helicopters for the future

    Science.gov (United States)

    Ward, J. F.

    1984-01-01

    Technology needed to provide the basis for creating a widening rotary wing market include: well defined and proven design; reductions in noise, vibration, and fuel consumption; improvement of flying and ride quality; better safety; reliability; maintainability; and productivity. Unsteady transonic flow, yawed flow, dynamic stall, and blade vortex interaction are some of the problems faced by scientists and engineers in the helicopter industry with rotorcraft technology seen as an important development for future advanced high speed vehicle configurations. Such aircraft as the Boeing Vertol medium lift Model 360 composite aircraft, the Sikorsky Advancing Blade Concept (ABC) aircraft, the Bell Textron XV-15 Tilt Rotor Aircraft, and the X-wing rotor aircraft are discussed in detail. Even though rotorcraft technology has become an integral part of the military scene, the potential market for its civil applications has not been fully developed.

  11. Flight service evaluation of composite components on Bell 206L and Sikorsky S-76 helicopters

    Science.gov (United States)

    Baker, D. J.

    1983-01-01

    Progress on two programs to evaluate composite structural components in flight service on commercial helicopters is described. Thirty-six ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climatic areas. Four horizontal stabilizers and ten tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, specimens from materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 14,000 hours of accumulated service on the 206L components, tests on a S-76 horizontal stabilizer after 1600 hours of service, tests on a S-76 tail rotor spar after 2300 hours service, and two years of ground based exposure of material coupons are reported.

  12. Aeroelastic characteristics of the AH-64 bearingless tail rotor

    Science.gov (United States)

    Banerjee, D.

    1988-01-01

    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.

  13. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Science.gov (United States)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  14. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    Science.gov (United States)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  15. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  16. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  17. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  18. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  19. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  20. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    Science.gov (United States)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  1. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  2. Application of the ABC helicopter to the emergency medical service role

    Science.gov (United States)

    Levine, L. S.

    1981-01-01

    Attention is called to the use of helicopters in transporting the sick and injured to medical facilities. It is noted that the helicopter's speed of response and delivery increases patient survival rates and may reduce the cost of medical care and its burden on society. Among the vehicle characteristics desired for this use are a cruising speed of 200 knots, a single engine hover capability at 10,000 ft, and an absence of a tail rotor. Three designs for helicopters incorporating such new technologies as digital/optical control systems, all composite air-frames, and third-generation airfoils are presented. A sensitivity analysis is conducted to show the effect of design speed, mission radius, and single engine hover capability on vehicle weight, fuel consumption, operating costs, and productivity.

  3. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    Science.gov (United States)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  4. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  5. Aerodynamic design of the Cal Poly Da Vinci Human-Powered Helicopter

    Science.gov (United States)

    Larwood, Scott; Saiki, Neal

    1990-01-01

    This paper will discuss the methodology used in designing the rotor and drive propellers for the third generation Cal Poly Da Vinci Human-Powered Helicopter. The rotor was designed using a lifting surface, uniform inflow hover analysis code and the propeller was designed using a minimum induced-loss method. Construction, geometry, and operating considerations are discussed as they impact the designs. Optimization of the design performance is also explained. The propellers were tested in a wind tunnel and results are compared with theoretical data. Successful flight tests of the Da Vinci III are discussed.

  6. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    Science.gov (United States)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-10-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  7. 78 FR 40047 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2013-07-03

    ... through Friday, except Federal holidays. The AD docket contains this proposed AD, the economic evaluation... entities under the criteria of the Regulatory Flexibility Act. We prepared an economic evaluation of the..., P2, P2+, T1, T2, and T2+ helicopters, serial number (S/N) 0005 through 00829, with a tail rotor...

  8. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  9. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    Science.gov (United States)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  10. General model and control of an n rotor helicopter

    DEFF Research Database (Denmark)

    Sidea, Adriana-Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel

    2015-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model ofa multirotor that would be valid for different numbers of rotors. Furthermore, a set of SingleInput Single Output (SISO) controllers were implemented for attitude control. Both model andcontrollers were tested exper...

  11. Aeroelastic response and blade loads of a composite rotor in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  12. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    Science.gov (United States)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  13. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    Science.gov (United States)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  14. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    International Nuclear Information System (INIS)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-01-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  15. A hybrid flight control for a simulated raptor-30 v2 helicopter

    International Nuclear Information System (INIS)

    Khizer, A.N.

    2015-01-01

    This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode. (author)

  16. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  17. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  18. INVESTINGATION DOWNWARD WIND PRESSURE ON A SMALL QUADROTOR HELICOPTER

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Small rotary-wing UAVs are susceptible to gusts and other environmental disturbances that affect inflow at their rotors. Inflow variations cause unexpected aerodynamic forces through changes in thrust conditions and unmodeled blade-flapping dynamics. This pa­per introduces an onboard, pressure-based flow measurement system developed for a small quadrotor helicopter. The probe-based instrumentation package provides spatially dis­tributed airspeed measurements along each of the aircra...

  19. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    M. Ilyas

    2016-01-01

    Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.

  20. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  1. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    Science.gov (United States)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  2. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  3. Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method

    Science.gov (United States)

    Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.

    1991-01-01

    The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.

  4. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  5. A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter

    Science.gov (United States)

    vanDam, C. P.; Budge, A. M.; Duque, E. P. N.

    1996-01-01

    This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.

  6. Exploration of Configuration Options for a Large Civil Compound Helicopter

    Science.gov (United States)

    Russell, Carl; Johnson, Wayne

    2013-01-01

    Multiple compound helicopter configurations are designed using a combination of rotorcraft sizing and comprehensive analysis codes. Results from both the conceptual design phase and rotor comprehensive analysis are presented. The designs are evaluated for their suitability to a short-to-medium-haul civil transport mission carrying a payload of 90 passengers. Multiple metrics are used to determine the best configuration, with heavy emphasis placed on minimizing fuel burn.

  7. Stabilization and control of quad-rotor helicopter using a smartphone device

    Science.gov (United States)

    Desai, Alok; Lee, Dah-Jye; Moore, Jason; Chang, Yung-Ping

    2013-01-01

    In recent years, autonomous, micro-unmanned aerial vehicles (micro-UAVs), or more specifically hovering micro- UAVs, have proven suitable for many promising applications such as unknown environment exploration and search and rescue operations. The early versions of UAVs had no on-board control capabilities, and were difficult for manual control from a ground station. Many UAVs now are equipped with on-board control systems that reduce the amount of control required from the ground-station operator. However, the limitations on payload, power consumption and control without human interference remain the biggest challenges. This paper proposes to use a smartphone as the sole computational device to stabilize and control a quad-rotor. The goal is to use the readily available sensors in a smartphone such as the GPS, the accelerometer, the rate-gyros, and the camera to support vision-related tasks such as flight stabilization, estimation of the height above ground, target tracking, obstacle detection, and surveillance. We use a quad-rotor platform that has been built in the Robotic Vision Lab at Brigham Young University for our development and experiments. An Android smartphone is connected through the USB port to an external hardware that has a microprocessor and circuitries to generate pulse-width modulation signals to control the brushless servomotors on the quad-rotor. The high-resolution camera on the smartphone is used to detect and track features to maintain a desired altitude level. The vision algorithms implemented include template matching, Harris feature detector, RANSAC similarity-constrained homography, and color segmentation. Other sensors are used to control yaw, pitch, and roll of the quad-rotor. This smartphone-based system is able to stabilize and control micro-UAVs and is ideal for micro-UAVs that have size, weight, and power limitations.

  8. Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    Science.gov (United States)

    Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.

    1971-01-01

    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.

  9. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    Science.gov (United States)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  10. State of the art and prospectives of smart rotor control for wind turbines

    International Nuclear Information System (INIS)

    Barlas, T K; Kuik, G A M van

    2007-01-01

    The continued reduction in cost of energy of wind turbines, especially with the increasingly upscaling of the rotor, will require contribution from technology advances in many areas. Reducing loads on the rotor can offer great reduction to the total cost of wind turbines. With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for locally distributed aerodynamic control systems with built-in intelligence on the blades. Such concepts are often named in popular terms 'smart structures' or 'smart rotor control'. This paper focuses on research regarding active rotor control and smart structures for load reduction. It presents an overview of available knowledge and future concepts on the application of active aerodynamic control and smart structures for wind turbine applications. The goal of the paper is to provide a perspective on the current status and future directions of the specific area of research. It comprises a novel attempt to summarize and analyze possible advanced control systems for future wind turbines. The overview builds on existing research on helicopter rotors and expands similar concepts for wind turbine applications, based on ongoing research in the field. Research work has been analyzed through UPWIND project's work package on Smart Rotor Blades and Rotor Control. First, the specifications of unsteady loads, the state of the art of modern control for load reduction and the need for more advanced and detailed active aerodynamic control are analyzed. Also, overview of available knowledge in application of active aerodynamic control on rotating blades, from helicopter research, is provided. Concepts, methods, and achieved results are presented. Furthermore, R and D so far and up-to-date ongoing progress of similar applications for wind turbines are presented. Feasibility studies for wind turbine applications, preliminary performance evaluation and novel computational and

  11. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    Science.gov (United States)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  12. Control of a Quadrotor Equipped with a Fixed-wing by Tilting Some of Four Rotors

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakamura

    2017-03-01

    Full Text Available Abstract—Unmanned aerial vehicles (UAVs are beingexpected to be used for the vegetational observation and theinformation collection of disaster sites. Especially, rotorcraftstypified by helicopters are attractive, because they are able tohover and achieve vertical take-off and landing (VTOL.However, rotorcrafts have a disadvantage that it cannot have along-distance flight, because they fly by the thrust of upwarddirection. Aircrafts with tilt rotors are developed in order toovercome such disadvantages. Such aircrafts can be hovering andtake a VTOL and also a long-distance flight by changing theangle of the rotor. In this research, it is aimed at proposing aVTOL-type UAV with a fixed-wing and four tiltable rotors andcontrolling it.

  13. General model and control of an n rotor helicopter

    International Nuclear Information System (INIS)

    Sidea, A G; Brogaard, R Yding; Andersen, N A; Ravn, O

    2014-01-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems

  14. General model and control of an n rotor helicopter

    Science.gov (United States)

    Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.

    2014-12-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.

  15. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    NARCIS (Netherlands)

    Kruyt, J.W.; Quicazan Rubio, E.M.; Heijst, van G.J.F.; Altshuler, D.L.; Lentink, D.

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy.

  16. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  17. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  18. Development of a noncompact source theory with applications to helicopter rotors

    Science.gov (United States)

    Farassat, F.; Brown, T. J.

    1976-01-01

    A new formulation for determining the acoustic field of moving bodies, based on acoustic analogy, is derived. The acoustic pressure is given as the sum of two integrals, one of which has a derivative with respect to time. The integrands are functions of the normal velocity and surface pressure of the body. A computer program based on this formulation was used to calculate acoustic pressure signatures for several helicoptor rotors from experimental surface pressure data. Results are compared with those from compact source calculations. It is shown that noncompactness of steady sources on the rotor can account for the high harmonics of the pressure system. Thickness noise is shown to be a significant source of sound, especially for blunt airfoils in regions where noncompact source theory should be applied.

  19. Dermal uptake and excretion of 4,4'-methylenedianiline during rotor blade production in helicopter industry--an intervention study.

    Science.gov (United States)

    Weiss, Tobias; Schuster, Hubert; Müller, Johannes; Schaller, Karl-Heinz; Drexler, Hans; Angerer, Jürgen; Käfferlein, Heiko U

    2011-10-01

    Workers using composite materials by fibre reinforced laminate technology are exposed to 4,4'-methylenedianiline (MDA), a liver toxicant and suspected human carcinogen, during the production of rotor blades in helicopter industry. The aim of the study presented here was to assess the internal dose of MDA and the suitability of various personal protection measures at the workplace. Ambient monitoring and biological monitoring was carried out by analysing MDA in air and urine samples in seven workers of a highly specialized workplace (rotor blade production). Three different concepts of personal protection measures were applied to study the route of uptake and to evaluate strategies in decreasing workplace exposure. In addition, elimination kinetics of MDA was studied in three workers who were exposed to MDA on three consecutive working days. Ambient monitoring consistently provided air levels at or below the limit of quantification of 0.1 μg m(-3). Nevertheless, MDA was detected in 89% of all post-shift urine samples and median concentration was 4.2 μg l(-1). MDA in urine were >20 times higher than expected on data from ambient monitoring alone. A significant decrease in exposure could be achieved when workers have worn MDA-protective overalls in combination with MDA-protective gloves and a splash protection shield (from 9.8 μg l(-1) down to 3.7 μg l(-1)). The results show that MDA is taken up primarily via the skin at the workplaces under study. The excretion of MDA in urine was observed to be delayed after dermal exposure. Exposure assessment of MDA should be carried out by biological monitoring rather than ambient monitoring. For this purpose, urine samples midweek or at the end of the week should be used based on the observed delay in the excretion of MDA after dermal absorption. Uptake of MDA via the skin could not be completely avoided even if state-of-the-art personal protection measures were applied.

  20. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  1. Kinetic analysis of elastomeric lag damper for helicopter rotors

    Science.gov (United States)

    Liu, Yafang; Wang, Jidong; Tong, Yan

    2018-02-01

    The elastomeric lag dampers suppress the ground resonance and air resonance that play a significant role in the stability of the helicopter. In this paper, elastomeric lag damper which is made from silicone rubber is built. And a series of experiments are conducted on this elastomeric lag damper. The stress-strain curves of elastomeric lag dampers employed shear forces at different frequency are obtained. And a finite element model is established based on Burgers model. The result of simulation and tests shows that the simple, linear model will yield good predictions of damper energy dissipation and it is adequate for predicting the stress-strain hysteresis loop within the operating frequency and a small-amplitude oscillation.

  2. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  3. Evaluation of composite components on the Bell 206L and Sikorsky S-76 helicopters

    Science.gov (United States)

    Baker, Donald J.

    1990-01-01

    Progress on two programs to evaluate structural composite components in flight service on Bell 206L and Sikorsky S-76 commercial helicopters is described. Forty ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin have been installed on Bell Model 206L helicopters that are operating in widely different climates. Component installation started in 1981 and selected components were removed and tested at prescribed intervals over a ten year evaluation. Four horizontal stabilizers and eleven tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 123,000 hours of accumulated service on the Bell 206L components and 53,000 hours on the Sikorsky S-76 components are reported. Seventy-eight Bell 206L components were removed and tested statically. Results of seven years of ground exposure of materials used to fabricate the Bell 206L components are presented. Results of tests on four Sikorsky S-76 horizontal stabilizers and eleven tail rotor spars are also presented. Panels of material used to fabricate the Sikorsky S-76 components that were exposed for six years were tested and results are presented.

  4. Flight service evaluation of composite helicopter components

    Science.gov (United States)

    Mardoian, George H.; Ezzo, Maureen B.

    1994-01-01

    This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.

  5. NDT detection and quantification of induced defects on composite helicopter rotor blade and UAV wing sections

    Science.gov (United States)

    Findeis, Dirk; Gryzagoridis, Jasson; Musonda, Vincent

    2008-09-01

    Digital Shearography and Infrared Thermography (IRT) techniques were employed to test non-destructively samples from aircraft structures of composite material nature. Background information on the techniques is presented and it is noted that much of the inspection work reviewed in the literature has focused on qualitative evaluation of the defects rather than quantitative. There is however, need to quantify the defects if the threshold rejection criterion of whether the component inspected is fit for service has to be established. In this paper an attempt to quantify induced defects on a helicopter main rotor blade and Unmanned Aerospace Vehicle (UAV) composite material is presented. The fringe patterns exhibited by Digital Shearography were used to quantify the defects by relating the number of fringes created to the depth of the defect or flaw. Qualitative evaluation of defects with IRT was achieved through a hot spot temperature indication above the flaw on the surface of the material. The results of the work indicate that the Shearographic technique proved to be more sensitive than the IRT technique. It should be mentioned that there is "no set standard procedure" tailored for testing of composites. Each composite material tested is more likely to respond differently to defect detection and this depends generally on the component geometry and a suitable selection of the loading system to suit a particular test. The experimental procedure that is reported in this paper can be used as a basis for designing a testing or calibration procedure for defects detection on any particular composite material component or structure.

  6. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  7. Model Predictive Control for a Small Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Jianfu Du

    2008-11-01

    Full Text Available Kinematical and dynamical equations of a small scale unmanned helicoper are presented in the paper. Based on these equations a model predictive control (MPC method is proposed for controlling the helicopter. This novel method allows the direct accounting for the existing time delays which are used to model the dynamics of actuators and aerodynamics of the main rotor. Also the limits of the actuators are taken into the considerations during the controller design. The proposed control algorithm was verified in real flight experiments where good perfomance was shown in postion control mode.

  8. Unique Two-Way Field Probe Concept Utilizing a Geodesic Sphere and Quad-Rotor

    Science.gov (United States)

    2015-03-26

    encompass the quad-rotor. This cage will behave like a faraday cage of sorts, shielding the quad-rotor’s RCS phenomenology from the radar’s antenna...test volume. Second, because the quad-rotor’s structural geometry is a cause for concern, a geodesic cage , in the shape of a sphere, will be built to...be the development of the geodesic cage that will encompass the quad-rotor along with an analysis of its scattering statistics as function of the

  9. Design Of Polymer Matrix Composite Materials Used For Helicopter Rotor Blades By Finite Element Method

    OpenAIRE

    Karaaslan, Nevzat Hakan

    2007-01-01

    Gelişmiş helikopter rotor paları genellikle kompozit malzemelerden üretilmektedirler ve yapılarında çeşitli hasarlara neden olabilecek yüksek derecede dinamik ve kararsız aerodinamik çevresel yüklerde çalışmaktadırlar. Bu yükleme şartlarına tekrarlı olarak maruz kalınması kompozit rotor pala yüzey kaplamalarında delaminasyon, çatlak vb. hasarlara neden olabilir. Bu tezin amacı, farklı kompozit rotor pala malzemelerinin, sonlu elemanlar yöntemi ile modellenmesi ve döner kanat yüzey kaplamaları...

  10. Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction

    Science.gov (United States)

    Howells, R. W.; Sciarra, J. J.

    1975-01-01

    A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.

  11. 78 FR 18224 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA... Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats. This AD..., contact Robinson Helicopter Company, 2901 Airport Drive, Torrance, CA 90505; telephone (310) 539-0508; fax...

  12. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.

  13. THE EFFECT OF COMPRESSIBILITY FOR DISPLACEMENT NOISE FROM THE HELICOPTER ROTOR

    Directory of Open Access Journals (Sweden)

    B. S. Kritskiy

    2015-01-01

    Full Text Available The problem of noise generation of rotor due to the thickness of blades - displacement noise is considered. The method of calculating the displacement noise, which is based on linear acoustic theory for the changes in the effective thickness of the blade over time due to the compressibility of the flow are described.

  14. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  15. A new experimental method for determining local airloads on rotor blades in forward flight

    Science.gov (United States)

    Berton, E.; Maresca, C.; Favier, D.

    This paper presents a new approach for determining local airloads on helicopter rotor blade sections in forward flight. The method is based on the momentum equation in which all the terms are expressed by means of the velocity field measured by a laser Doppler velocimeter. The relative magnitude of the different terms involved in the momentum and Bernoulli equations is estimated and the results are encouraging.

  16. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    Science.gov (United States)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  17. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  18. Performance prediction and flow-field analysis of rotors in hover using a coupled Euler/boundary layer method; Previsions des performances et de l`ecoulement pour des rotors en vol stationnaire par une methode couplee Euler/couche limite

    Energy Technology Data Exchange (ETDEWEB)

    Beaumier, P. [ONERA, 92 - Chatillon (France); Castellin, C.; Arnaud, G. [Eurocopter France, 13 - Marignane (France)

    1998-12-31

    The performance prediction of helicopter in hover is of key importance for manufacturers because hover is a design configuration for the definition of a rotor-craft. A lot of efforts have been made for more than 10 years all over the world in order to develop and validate numerical methods based on CFD. An Euler method (WAVES) developed by ONERA and coupled with a boundary layer code (MI3DI) is presented, validated and applied to compute the total performance of rotors with different tip shapes. A new boundary condition for the Euler code has been tested and enables better calculation by eliminating `numerical` recirculation. The code has demonstrated its ability to rank two rotors with different planforms in good agreement with experiment. Under industrial requirements new grid strategies have been studied and should allow to reduce CPU time consumption. It is shown that WAVES/MI3DI can be efficiently used in the aerodynamic design process of a new rotor. (authors) 7 refs.

  19. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    Science.gov (United States)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean

  20. Linear dynamic coupling in geared rotor systems

    Science.gov (United States)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  1. Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins

    Science.gov (United States)

    Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne

    2004-01-01

    Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.

  2. 77 FR 63260 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-10-16

    ... Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Robinson Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats, which would require...

  3. 77 FR 68055 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for Bell Helicopter Textron (BHT) Model 412, 412EP, and 412CF helicopters. This AD requires a repetitive inspection of the...

  4. Flap-lag-torsional dynamics of helicopter rotor blades in forward flight

    Science.gov (United States)

    Crespodasilva, M. R. M.

    1986-01-01

    A perturbation/numerical methodology to analyze the flap-lead/lag motion of a centrally hinged spring restrained rotor blade that is valid for both hover and for forward flight was developed. The derivation of the nonlinear differential equations of motion and the analysis of the stability of the steady state response of the blade were conducted entirely in a Symbolics 3670 Machine using MACSYMA to perform all the lengthy symbolic manipulations. It also includes generation of the fortran codes and plots of the results. The Floquet theory was also applied to the differential equations of motion in order to compare results with those obtained from the perturbation analysis. The results obtained from the perturbation methodology and from Floquet theory were found to be very close to each other, which demonstrates the usefullness of the perturbation methodology. Another problem under study consisted in the analysis of the influence of higher order terms in the response and stability of a flexible rotor blade in forward flight using Computerized Symbolic Manipulation and a perturbation technique to bypass the Floquet theory. The derivation of the partial differential equations of motion is presented.

  5. 77 FR 12991 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-03-05

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA...) that was published in the Federal Register. That AD applies to Robinson Helicopter Company (Robinson) Model R22, R22 Alpha, R22 Beta, R22 Mariner, R44, and R44 II helicopters. The paragraph reference in...

  6. Influence of cross section variations on the structural behaviour of composite rotor blades

    Science.gov (United States)

    Rapp, Helmut; Woerndle, Rudolf

    1991-09-01

    A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.

  7. A pilot's assessment of helicopter handling-quality factors common to both agility and instrument flying tasks

    Science.gov (United States)

    Gerdes, R. M.

    1980-01-01

    A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.

  8. A model for helicopter guidance on spiral trajectories

    Science.gov (United States)

    Mendenhall, S.; Slater, G. L.

    1980-01-01

    A point mass model is developed for helicopter guidance on spiral trajectories. A fully coupled set of state equations is developed and perturbation equations suitable for 3-D and 4-D guidance are derived and shown to be amenable to conventional state variable feedback methods. Control variables are chosen to be the magnitude and orientation of the net rotor thrust. Using these variables reference controls for nonlevel accelerating trajectories are easily determined. The effects of constant wind are shown to require significant feedforward correction to some of the reference controls and to the time. Although not easily measured themselves, the controls variables chosen are shown to be easily related to the physical variables available in the cockpit.

  9. 77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-05-22

    ...-0530; Directorate Identifier 2011-SW-075-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Bell Helicopter...

  10. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    Mantas Brazinskas

    2016-10-01

    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  11. Nonlinear analysis of composite thin-walled helicopter blades

    Science.gov (United States)

    Kalfon, J. P.; Rand, O.

    Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.

  12. 77 FR 52264 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2012-08-29

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... Airworthiness Directive (AD): Hughes Helicopters Inc., and McDonnel Douglas Helicopter Systems (Type Certificate...

  13. 78 FR 18226 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... directive (AD): 2013-05-16 Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type...

  14. Adaptation of the Neural Network Recognition System of the Helicopter on Its Acoustic Radiation to the Flight Speed

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2015-01-01

    Full Text Available The article concerns the adaptation of a neural tract that recognizes a helicopter from the aerodynamic and ground objects by its acoustic radiation to the helicopter flight speed. It uses non-centered informative signs-indications of estimating signal spectra, which correspond to the local extremes (maximums and minimums of the power spectrum of input signal and have the greatest information when differentiating the helicopter signals from those of tracked vehicles. The article gives justification to the principle of the neural network (NN adaptation and adaptation block structure, which solves problems of blade passage frequency estimation when capturing the object and track it when tracking a target, as well as forming a signal to control the resonant filter parameters of the selection block of informative signs. To create the discriminatory characteristics of the discriminator are used autoregressive statistical characteristics of the quadrature components of signal, obtained through the discrete Hilbert Converter (DGC that perforMathematical modeling of the tracking meter using the helicopter signals obtained in real conditions is performed. The article gives estimates of the tracking parameter when using a tracking meter with DGC by sequential records of realized acoustic noise of the helicopter. It also shows a block-diagram of the adaptive NN. The scientific novelty of the work is that providing the invariance of used informative sign, the counts of local extremes of power spectral density (PSD to changes in the helicopter flight speed is reached due to adding the NN structure and adaptation block, which is implemented as a meter to track the apparent passage frequency of the helicopter rotor blades using its relationship with a function of the autoregressive acoustic signal of the helicopter.Specialized literature proposes solutions based on the use of training classifiers with different parametric methods of spectral representations

  15. The making of helicopters: its strategic implications for EMS helicopter operations.

    Science.gov (United States)

    Thomas, F

    1998-01-01

    The purpose of this article is to provide EMS helicopter personnel with an understanding of the civil helicopter manufacturing industry. Specifically, this article examines the current helicopter marketplace and how various manufactures are responding to the recent decline in new helicopter sales. This article further describes how helicopters are designed and manufactured and how global markets, international competition, and strategic considerations are influencing future helicopter design and production. Data for this paper were obtained from a literature search through the ABI-inform Telnet Services offered through the University of Utah Marriott Library. On a search of "helicopter" during the past 5 years, 566 abstracts were identified, all of which were reviewed for information related to the purpose of this article. Forty-seven articles were identified and read in detail for information that may have related to the purpose of this article. In addition, a library search to identify textbooks that describe helicopter production systems was undertaken but did not identify any written resources. Because of the lack of written resources available in writing this article, a direct interview survey of leading helicopter manufactures, associations, and industry writers was conducted. Only information that was considered "public knowledge" was available because of concerns by the various manufactures that publication of confidential information could be detrimental to their competitive advantage. Because helicopter-manufacturing plants were not located within easy travel range, no direct observation of the production facilities could be undertaken. Furthermore, information regarding production and operational management was not easily accessible because the data were not published or were considered confidential. Therefore industry analysis had to take place through direct survey interviewing technique and data obtained through an analysis of the available published

  16. Control-Oriented Modeling and System Identification for Nonlinear Trajectory Tracking Control of a Small-Scale Unmanned Helicopter

    Science.gov (United States)

    Pourrezaei Khaligh, Sepehr

    Model-based control design of small-scale helicopters involves considerable challenges due to their nonlinear and underactuated dynamics with strong couplings between the different degrees-of-freedom (DOFs). Most nonlinear model-based multi-input multi-output (MIMO) control approaches require the dynamic model of the system to be affine-in-control and fully actuated. Since the existing formulations for helicopter nonlinear dynamic model do not meet these requirements, these MIMO approaches cannot be applied for control of helicopters and control designs in the literature mostly use the linearized model of the helicopter dynamics around different trim conditions instead of directly using the nonlinear model. The purpose of this thesis is to derive the 6-DOF nonlinear model of the helicopter in an affine-in-control, non-iterative and square input-output formulation to enable many nonlinear control approaches, that require a control-affine and square model such as the sliding mode control (SMC), to be used for control design of small-scale helicopters. A combination of the first-principles approach and system identification is used to derive this model. To complete the nonlinear model of the helicopter required for the control design, the inverse kinematics of the actuating mechanisms of the main and tail rotors are also derived using an approach suitable for the real-time control applications. The parameters of the new control-oriented formulation are identified using a time-domain system identification strategy and the model is validated using flight test data. A robust sliding mode control (SMC) is then designed using the new formulation of the helicopter dynamics and its robustness to parameter uncertainties and wind disturbances is tested in simulations. Next, a hardware-in-the-loop (HIL) testbed is designed to allow for the control implementation and gain tuning as well as testing the robustness of the controller to external disturbances in a controlled

  17. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  18. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  19. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  20. 77 FR 729 - Airworthiness Directives; Enstrom Helicopter Corporation Helicopters

    Science.gov (United States)

    2012-01-06

    ... to the specified helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ... helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ- 14553A) or P/N AD1R-10...

  1. Rotor

    International Nuclear Information System (INIS)

    Gronert, H.; Vetter, J.; Eckert, M.

    1978-01-01

    In the field of hollow high speed rotors there is an increasing demand for progressively higher speeds of safe operation. High speed operation causes support bearings to be carefully designed if the rotor speed is to pass safely through its critical speed of operation where intense vibration is experienced. Also the rotational speed is limited by the peripheral velocity and strength of the outside surface portion of the rotor. The invention proposes that elemental boron, which has great tensile strength and lightness be used to provide a major part of a hollow rotor so that increased operating speeds can be attained. Such a rotor is usable to provide a high speed centrifuge drum. (author)

  2. Rotorcraft research in India: recent developments

    OpenAIRE

    Ganguli, Ranjan

    2010-01-01

    Purpose - The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years The helicopter research is divided into the following parts health monitoring smart rotor design optimization control helicopter rotor dynamics active control of structural response (ACSR) and helicopter design and development Aspects of health monitoring and smart rotor are discussed in detail Further work needed and areas for international collaboration...

  3. Active vibration suppression of helicopter horizontal stabilizers

    Science.gov (United States)

    Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio

    2017-04-01

    Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.

  4. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2009-01-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d 15 from the PZN–8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified

  5. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2009-03-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.

  6. An improvement of the axial impulse theory for rotors, and the consequence for the aerodynamics of wind energy. De verbetering van de axiale impulstheorie voor rotoren, en de betekenis hiervan voor de windenergie aerodynamika

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuik, G.A.M.

    1985-11-01

    The classical axial momentum theory for wind turbines is critically considered and improved. The homogeneous load on the 'porous disk', i.e. the diameter of the rotor is found not to be homogeneous, but forces at the edge of this disk cause significant deviations. Consequences are: less power is generated than calculated and Lanchester-Betz maximum is not an absolute maximum. This edge-effect is not fully understood and calculated yet, nor is it incorporated in any existing model. Further investigations are made at Eindhoven with a helicopter rotor. (A.V.)

  7. Combat Rescue Helicopter (CRH)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-479 Combat Rescue Helicopter (CRH) As of FY 2017 President’s Budget Defense Acquisition...Name Combat Rescue Helicopter (CRH) DoD Component Air Force Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition... Helicopter (CRH) system will provide Personnel Recovery (PR) forces with a vertical takeoff and landing aircraft that is quickly deployable and

  8. 46 CFR 108.653 - Helicopter facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  9. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  10. RESULTS OF THE FIRST MI-171A2 FLYING LABORATORY TEST PHASE

    OpenAIRE

    V. A. Ivchin; K. Y. Samsonov

    2014-01-01

    The present publication describes the results of the first stage of the flying laboratory (Mi-171 helicopter) flight tests performed at Mil Moscow Helicopter Plant, JSC facilities. Main rotor components with blades made of polymer composite materials and X-type tail rotor were tested on the Mi-171 № 14987, flying laboratory, under Mi-171A Helicopter Retrofit Program.

  11. AERODYNAMIC CHARACTERISTICS CALCULATION ON SINGLE ROTOR BLADE USING FLOEFD, ANSYS FLUENT AND RC-VTOL

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The results of computational simulation of helicopter rotor's single blade flow, for which experimental (model test data are published, are represented in this article. The calculations were made in the universal software package of CFD modeling FloEFD, which was based on the solution of averaged equations' system of Navier-Stocks, as well as in the program software RC-VTOL using the vortex method. The obtained results are compared with experimental data and modeling results in the program software ANSYS Fluent (license of TsAGI Nr. 501024. The work shows satisfactory, and in some cases good calculation data reconciliation getting with different techniques including experimental.

  12. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  13. 78 FR 1730 - Airworthiness Directives; Bell Helicopter Textron Inc. Helicopters

    Science.gov (United States)

    2013-01-09

    ... Helicopter Textron Inc. (BHTI) Model 205A, 205A-1, and 205B helicopters with certain starter/generator power... that may lead to a fire in the starter/generator, smoke in the cockpit that reduces visibility, and... Office, M-30, West Building Ground Floor, Room W12- 140, 1200 New Jersey Avenue SE., Washington, DC 20590...

  14. Integrated technology rotor/flight research rotor concept definition study

    Science.gov (United States)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  15. RESULTS OF THE FIRST MI-171A2 FLYING LABORATORY TEST PHASE

    Directory of Open Access Journals (Sweden)

    V. A. Ivchin

    2014-01-01

    Full Text Available The present publication describes the results of the first stage of the flying laboratory (Mi-171 helicopter flight tests performed at Mil Moscow Helicopter Plant, JSC facilities. Main rotor components with blades made of polymer composite materials and X-type tail rotor were tested on the Mi-171 № 14987, flying laboratory, under Mi-171A Helicopter Retrofit Program.

  16. Modelling and Analysis of Vibrations in a UAV Helicopter with a Vision System

    Directory of Open Access Journals (Sweden)

    G. Nicolás Marichal Plasencia

    2012-11-01

    Full Text Available The analysis of the nature and damping of unwanted vibrations on Unmanned Aerial Vehicle (UAV helicopters are important tasks when images from on-board vision systems are to be obtained. In this article, the authors model a UAV system, generate a range of vibrations originating in the main rotor and design a control methodology in order to damp these vibrations. The UAV is modelled using VehicleSim, the vibrations that appear on the fuselage are analysed to study their effects on the on-board vision system by using Simmechanics software. Following this, the authors present a control method based on an Adaptive Neuro-Fuzzy Inference System (ANFIS to achieve satisfactory damping results over the vision system on board.

  17. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    Science.gov (United States)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  18. 46 CFR 108.489 - Helicopter fueling facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling facilities. 108.489 Section 108.489... AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.489 Helicopter fueling facilities. (a) Each helicopter fueling facility must have a fire protection system that...

  19. Hybrid magnetorheological fluid–elastomeric lag dampers for helicopter stability augmentation

    International Nuclear Information System (INIS)

    Hu Wei; Wereley, Norman M

    2008-01-01

    A laboratory demonstration of a hybrid magnetorheological fluid–elastomeric (MRFE) damper is investigated for adjustable or programmable lag mode damping in helicopters, so that damping requirements can be varied as a function of different flight conditions. The laboratory demonstration of this hybrid MRFE lag damper consists of a double lap shear elastomeric damper in parallel with two magnetorheological (MR) flow mode dampers. This is compared to a damper where only elastomeric materials are implemented, i.e., a double lap shear specimen. The relationship between the output force and the quasi-steady harmonic displacement input to a flow mode MR damper is exploited, where the output force can be adjusted as a function of applied magnetic field. Equivalent viscous damping is used to compare the damping characteristics of the hybrid damper to a conventional elastomeric damper under steady-state sinusoidal displacement excitation. To demonstrate feasibility, a hybrid MRFE damper test setup is designed, and single frequency (lag frequency or rotor in-plane bending frequency) and dual frequency (lag frequency and rotor frequency) tests are conducted under different magnetic fields. The hybrid MRFE damper exhibits amplitude-dependent damping behavior. However, with application of a magnetic field, the damping level is controlled to a specific damping level objective as a function of displacement amplitude. Similarly, under dual frequency conditions, damping degradation at the lag frequency, because of lag motion at the rotor frequency, can also be recovered by increasing magnetic field. A time-domain analysis is developed to study the nonlinear dynamic behavior of the hybrid MRFE damper. Using rate-dependent elasto-slides, the amplitude-dependent behavior of the hybrid MRFE damper is accurately reconstructed using both constant and current-dependent (i.e. controllable) parameters. The analysis is physically motivated and can be applied to the elastomer and MR fluid

  20. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  1. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  2. 46 CFR 109.577 - Helicopter fueling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling. 109.577 Section 109.577 Shipping... Miscellaneous § 109.577 Helicopter fueling. (a) The master or person in charge shall designate persons to conduct helicopter fueling operations. (b) Portable tanks are handled and stowed in accordance with...

  3. Evaluation of an oil-debris monitoring device for use in helicopter transmissions

    Science.gov (United States)

    Lewicki, David G.; Blanchette, Donald M.; Biron, Gilles

    1992-01-01

    Experimental tests were performed on an OH-58A helicopter main-rotor transmission to evaluate an oil-debris monitoring device (ODMD). The tests were performed in the NASA 500-hp Helicopter Transmission Test Stand. Five endurance tests were run as part of a U.S. Navy/NASA/Army advanced lubricants program. The tests were run at 100 percent design speed, 117-percent design torque, and 121 C (250 F) oil inlet temperature. Each test lasted between 29 and 122 hr. The oils that were used conformed to MIL-L-23699 and DOD-L-85734 specifications. One test produced a massive sun-gear fatigue failure; another test produced a small spall on one sun-gear tooth; and a third test produced a catastrophic planet-bearing cage failure. The ODMD results were compared with oil spectroscopy results. The capability of the ODMD to detect transmission component failures was not demonstrated. Two of the five tests produced large amounts of debris. For these two tests, two separate ODMD sensors failed, possibly because of prolonged exposure to relatively high oil temperatures. One test produced a small amount of debris and was not detected by the ODMD or by oil spectroscopy. In general, the ODMD results matched the oil spectroscopy results. The ODMD results were extremely sensitive to oil temperature and flow rate.

  4. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  5. STUDY ON SAFETY TECHNOLOGY SCHEME OF THE UNMANNED HELICOPTER

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2013-08-01

    Full Text Available Nowadays the unmanned helicopter is widely used for its' unique strongpoint, however, the high failure rate of unmanned helicopter seriously limits its further application and development. For solving the above problems, in this paper, the reasons for the high failure rate of unmanned helicopter is analyzed and the corresponding solution schemes are proposed. The main problem of the failure cause of the unmanned helicopter is the aircraft engine fault, and the failure cause of the unmanned helicopter is analyzed particularly. In order to improving the safety performance of unmanned helicopter system, the scheme of adding the safety parachute system to the unmanned helicopter system is proposed and introduced. These schemes provide the safety redundancy of the unmanned helicopter system and lay on basis for the unmanned helicopter applying into residential areas.

  6. An anthropometric analysis of Korean male helicopter pilots for helicopter cockpit design.

    Science.gov (United States)

    Lee, Wonsup; Jung, Kihyo; Jeong, Jeongrim; Park, Jangwoon; Cho, Jayoung; Kim, Heeeun; Park, Seikwon; You, Heecheon

    2013-01-01

    This study measured 21 anthropometric dimensions (ADs) of 94 Korean male helicopter pilots in their 20s to 40s and compared them with corresponding measurements of Korean male civilians and the US Army male personnel. The ADs and the sample size of the anthropometric survey were determined by a four-step process: (1) selection of ADs related to helicopter cockpit design, (2) evaluation of the importance of each AD, (3) calculation of required sample sizes for selected precision levels and (4) determination of an appropriate sample size by considering both the AD importance evaluation results and the sample size requirements. The anthropometric comparison reveals that the Korean helicopter pilots are larger (ratio of means = 1.01-1.08) and less dispersed (ratio of standard deviations = 0.71-0.93) than the Korean male civilians and that they are shorter in stature (0.99), have shorter upper limbs (0.89-0.96) and lower limbs (0.93-0.97), but are taller on sitting height, sitting eye height and acromial height (1.01-1.03), and less dispersed (0.68-0.97) than the US Army personnel. The anthropometric characteristics of Korean male helicopter pilots were compared with those of Korean male civilians and US Army male personnel. The sample size determination process and the anthropometric comparison results presented in this study are useful to design an anthropometric survey and a helicopter cockpit layout, respectively.

  7. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    Science.gov (United States)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  8. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  9. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  10. Microwave Antennas for Avionics. Lecture Series of the Avionics Panel and the Consultant and Exchange Programme Held in Rome, Italy on 7-8 May 1987; Guenzburg, Germany on 11-12 May 1987 and Ankara, Turkey on 14-15 May 1987.

    Science.gov (United States)

    1987-04-01

    of Aperture Phase Distribution In our version of the synthesis technique, the phase of the aperture field is expanded into Zernike or circle...polynomials, i.e., $(p ,<!.)= Z S c„„e^"* IV„(p), (34) n=1 m=-n )^ where p and ^ are the polar aperture coordinates and c_ = c . The Zernike ...scenarios. The experiments on the SH- 3D helicopter compared the loop antennas and existing wire antennas. Groundwave radiated field at different

  11. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  12. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  13. Does modern helicopter construction reduce noise exposure in helicopter rescue operations?

    Science.gov (United States)

    Küpper, Thomas; Jansing, Paul; Schöffl, Volker; van Der Giet, Simone

    2013-01-01

    During helicopter rescue operations the medical personnel are at high risk for hearing damage by noise exposure. There are two important factors to be taken into account: first, the extreme variability, with some days involving no exposure but other days with extreme exposure; second, the extreme noise levels during work outside the helicopter, e.g. during winch operations. The benefit of modern, less noisier constructions and the consequences for noise protection are still unknown. We estimated the noise exposure of the personnel for different helicopter types used during rescue operations in the Alps and in other regions of the world with special regard to the advanced types like Eurocopter EC 135 to compare the benefit of modern constructions for noise protection with earlier ones. The rescue operations over 1 year of four rescue bases in the Alps (Raron and Zermatt in Switzerland; Landeck and Innsbruck in Austria, n = 2731) were analyzed for duration of rescue operations (noise exposure). Noise levels were measured during rescue operations at defined points inside and outside the different aircraft. The setting is according to the European standard (Richtlinie 2003/10/EG Amtsblatt) and to Class 1 DIN/IEC 651. With both data sets the equivalent noise level L(eq8h) was calculated. For comparison it was assumed that all rescue operations were performed with a specific type of helicopter. Then model calculations for noise exposure by different helicopter types, such as Alouette IIIb, Alouette II 'Lama', Ecureuil AS350, Bell UH1D, Eurocopter EC135, and others were performed. Depending on modern technologies the situation for the personnel has been improved significantly. Nevertheless noise prevention, which includes noise intermissions in spare time, is essential. Medical checks of the crews by occupational medicine (e.g. 'G20' in Germany) are still mandatory.

  14. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    Science.gov (United States)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1993-01-01

    The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.

  15. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  16. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    Science.gov (United States)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  17. Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.

    Science.gov (United States)

    Dalle-Molle, John

    The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…

  18. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Science.gov (United States)

    Oktay, Tugrul; Sal, Firat

    2015-01-01

    Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841

  19. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Directory of Open Access Journals (Sweden)

    Tugrul Oktay

    2015-01-01

    Full Text Available Helicopter moving horizontal tail (i.e., MHT strategy is applied in order to save helicopter flight control system (i.e., FCS energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA. In order to observe improvement in behaviors of classical controls closed loop analyses are done.

  20. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  1. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  2. Helicopter fuel burn modeling in AEDT.

    Science.gov (United States)

    2011-08-01

    This report documents work done to enhance helicopter fuel consumption modeling in the Federal Aviation : Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data : were collected from helicopter flig...

  3. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  4. Helicopter industry - early beginnings to now; an outlook on the helicopter market and its major players in the rotorcraft industry

    NARCIS (Netherlands)

    Spranger, L.

    2013-01-01

    The helicopter is probably the most flexible aircraft that we know today. Although its history dates back to around 1500, the first practical helicopter wasn’t manufactured until the 1940s, roughly three decades after the Wright brothers’ first powered human flight. Today, helicopters fulfil a wide

  5. Helicopter transport: help or hindrance?

    Science.gov (United States)

    Plevin, Rebecca E; Evans, Heather L

    2011-12-01

    Traumatic injury continues to be a significant cause of morbidity and mortality in the year 2011. In addition, the healthcare expenditures and lost years of productivity represent significant economic cost to the affected individuals and their communities. Helicopters have been used to transport trauma patients for the past 40 years, but there are conflicting data on the benefits of helicopter emergency medical service (HEMS) in civilian trauma systems. Debate persists regarding the mortality benefit, cost-effectiveness, and safety of helicopter usage, largely because the studies to date vary widely in design and generalizability to trauma systems serving heterogeneous populations and geography. Strict criteria should be established to determine when HEMS transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate helicopter transport into their triage model. Research suggests that HEMS improves mortality in certain subgroups of trauma patients, both after transport from the scene of injury and following interfacility transport. Studies examining the cost-effectiveness of HEMS had mixed results, but the majority found that it is a cost-effective tool. Safety remains an issue of contention with HEMS transport, as helicopters are associated with significant safety risk to the crew and patient. However, this risk may be justified provided there is a substantial mortality benefit to be gained. Recent studies suggest that strict criteria should be established to determine when helicopter transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate HEMS into their triage model. This will enable regional hospitals to determine if the costs and safety risks associated with HEMS are worthwhile

  6. 78 FR 51123 - Airworthiness Directives; Bell Helicopter Textron

    Science.gov (United States)

    2013-08-20

    ...-0734; Directorate Identifier 2012-SW-080-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter...). SUMMARY: We propose to supersede an existing airworthiness directive (AD) for Bell Helicopter Textron (Bell) Model 222, 222B, 222U, 230, and 430 helicopters. The existing AD currently requires inspecting...

  7. The Effect of USMC Enlisted Aviation Maintenance Qualifications on Aviation Readiness

    Science.gov (United States)

    2015-12-01

    rotary wing platforms of USMC. Three types of squadrons are examined: the Marine Light Attack Helicopter Squadron (HMLA), the Marine Medium Tilt Rotor ...following: about one-half of the maintainers of interest in a helicopter or tilt- rotor squadron are < CDI; about 22% are CDIs; 15% are CDQARs; and 14% are...Maintenance Program ........................................7  2.  Squadron Composition

  8. Fiscal 2000 pioneering research report on the research on advanced safety helicopter; 2000 nendo advanced safety helicopter no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted concerning helicopter operating environments and the trends of related technologies in Japan and abroad, and the needs and seeds were grasped. Research was made to study technical problems and measures to solve them for the development of a safe, low-noise, and low-cost next-generation advanced safety helicopter (ASH). A market research was conducted on traffic systems in the future, state of aviation-related infrastructures and their future, current state of people's daily life which centers about locomotion, and the effect that ASH would impose on society. A technical research was carried out relative to flight safety, which involved EVS (enhanced vision system), information display system for helicopters, collision avoidance advisory for pilots, air collision prevention system/surveillance system for helicopters, obstacle detection/warning system for helicopters, blade deicing system for helicopters, and so forth. Detailed investigations were also conducted for technologies for reduction in the manufacturing, maintenance, and development costs, and for reduction in noise. (NEDO)

  9. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  10. Joint Ordnance Test Procedure (JOTP)-010 Safety and Suitability for Service Assessment Testing for Shoulder Launched Munitions

    Science.gov (United States)

    2016-05-09

    A. BACKGROUND/RATIONALE. ANNEX 1. ENVIRONMENTAL TESTS. A.1-16 TABLE A-4. HELICOPTER MAIN ROTOR PARAMETERS HELICOPTER MAIN ROTOR ...3.1.2.3.2 A.1-15 C.2-4.1.2 C.2-6 Helicopter Cargo Transportation Vibration A.1-3.1.2.3.3 A.1-15 C.2-4.2 C.2-7 Parachute Delivery A.1-3.1.2.3.4 A.1-16...inspection. This is typified by destructive inspection assessing the chemical ( composition , hazard properties, etc.) and physical (tensile, hardness, etc

  11. 78 FR 44043 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-07-23

    ... lead to failure of the swashplate and subsequent loss of helicopter control. DATES: We must receive..., which may cause failure of MRH parts and loss of control of the helicopter. The EASA AD requires..., Section 2.3 Flight Envelope, Item 2 Temperature Limits, of the helicopter's Rotorcraft Flight Manual (RFM...

  12. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  13. 14 CFR 29.71 - Helicopter angle of glide: Category B.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...

  14. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  15. Macroscopic balance model for wave rotors

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  16. Helicopter emergency medical service patient transport safe at night?

    NARCIS (Netherlands)

    Peters, J.H.; Wageningen, B. van; Hoogerwerf, N.; Biert, J.

    2014-01-01

    OBJECTIVE: Dutch helicopter emergency medical services are available 24/7. Working without daylight brings additional challenges, both in patient care and in-flight operation. We retrospectively evaluated the safety of this nighttime helicopter transportation of patients. METHODS: Our helicopter

  17. Test Record of Flight Tests Using Alcohol-to-Jet/JP-8 Blended Fuel

    Science.gov (United States)

    2015-09-01

    dual-piloted, twin-engine, turbine -powered, single main rotor helicopter manufactured by the Sikorsky Aircraft Corporation of United Technologies...addition to fuel flow metering, the HMU positions the VG actuator link through a hydraulic piston extending from the left side of the HMU. The VG... turbine -engine, tandem-rotor helicopter designed for transportation of cargo, troops, and weapons during day and night, visual and instrument

  18. ARL Summer Student Research Symposium Compendium of Abstracts. Volume 2

    Science.gov (United States)

    2015-12-01

    distribution is unlimited. 9 Correlation of RCAS Load Predictions for Active Flap Rotor Corle, Ethan Active devices on helicopter rotor blades show...production helicopters . Fluidic Flexible Matrix Composite (F2MC) tubes are a promising new class of high- authority, lightweight fluidic devices that can...the calibrations and for selected runs, I verified the component and product compositions using infrared spectroscopy. Using this data, I showed that

  19. Helicopter type and accident severity in Helicopter Emergency Medical Services missions.

    Science.gov (United States)

    Hinkelbein, Jochen; Schwalbe, Mandy; Wetsch, Wolfgang A; Spelten, Oliver; Neuhaus, Christopher

    2011-12-01

    Whereas accident rates and fatal accident rates for Helicopter Emergency Medical Services (HEMS) were investigated sufficiently, resulting consequences for the occupants remain largely unknown. The present study aimed to classify HEMS accidents in Germany to prognosticate accident severity with regard to the helicopter model used. German HEMS accidents (1 Sept. 1970-31 Dec. 2009) were gathered as previously reported. Accidents were categorized in relation to the most severe injury, i.e., (1) no; (2) slight; (3) severe; and (4) fatal injuries. Only helicopter models with at least five accidents were analyzed to retrieve representative data. Prognostication was estimated by the relative percentage of each injury type compared to the total number of accidents. The model BO105 was most often involved in accidents (38 of 99), followed by BK117 and UH-1D. OfN = 99 accidents analyzed, N = 63 were without any injuries (63.6%), N = 8 resulted in minor injuries of the occupants (8.1%), and N = 9 in major injuries (9.1%). Additionally, N = 19 fatal accidents (19.2%) were registered. EC135 and BK1 17 had the highest incidence of uninjured occupants (100% vs. 88.2%) and the lowest percentage of fatal injuries (0% vs. 5.9%; all P > 0.05). Most fatal accidents occurred with the models UH-1D, Bell 212, and Bell 412. Use of the helicopter models EC135 and BK117 resulted in a high percentage of uninjured occupants. In contrast, the fatality rate was highest for the models Bell UH-I D, Bell 222, and Bell 412. Data from the present study allow for estimating accident risk in HEMS missions and prognosticating resulting fatalities, respectively.

  20. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  1. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  2. Modern rotor balancing - Emerging technologies

    Science.gov (United States)

    Zorzi, E. S.; Von Pragenau, G. L.

    1985-01-01

    Modern balancing methods for flexible and rigid rotors are explored. Rigid rotor balancing is performed at several hundred rpm, well below the first bending mode of the shaft. High speed balancing is necessary when the nominal rotational speed is higher than the first bending mode. Both methods introduce weights which will produce rotor responses at given speeds that will be exactly out of phase with the responses of an unbalanced rotor. Modal balancing seeks to add weights which will leave other rotor modes unaffected. Also, influence coefficients can be determined by trial and error addition of weights and recording of their effects on vibration at speeds of interest. The latter method is useful for balancing rotors at other than critical speeds and for performing unified balancing beginning with the first critical speed. Finally, low-speed flexible balancing permits low-speed tests and adjustments of rotor assemblies which will not be accessible when operating in their high-speed functional configuration. The method was developed for the high pressure liquid oxygen turbopumps for the Shuttle.

  3. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  4. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  5. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Helicopter surface reference... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference requirements. No person may operate a helicopter under VFR unless that person has visual surface reference or...

  6. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    Science.gov (United States)

    2015-12-01

    automatic blade fold of the new composite rotor blades, new performance matched transmissions, a new four-bladed tail rotor and drive system, upgraded...Upgrades December 2015 SAR March 18, 2016 10:59:17 UNCLASSIFIED 4 Col Steven Girard PMA-276 USMC Light/Attack Helicopter Program Executive Officer...attack helicopter is to provide rotary wing close air support, anti-armor, armed escort, armed/visual reconnaissance and fire support coordination

  7. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  8. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  9. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.

    2013-01-01

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......:3 for the LightRotor baseline 10 MW reference rotor [10]. For the slatted case, a retwisting of the slatted inner part of the rotor was allowed for the slats to be able to work as intended. The new addition to the 2D CFD based design tool is that the representation of the airfoil and slats are done using splines......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  10. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......:3 for the LightRotor baseline 10 MW reference rotor [10]. For the slatted case, a retwisting of the slatted inner part of the rotor was allowed for the slats to be able to work as intended. The new addition to the 2D CFD based design tool is that the representation of the airfoil and slats are done using splines......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  11. 14 CFR 136.13 - Helicopter performance plan and operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...

  12. 14 CFR 136.11 - Helicopter floats for over water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter floats for over water. 136.11... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.11 Helicopter floats for over water. (a) A helicopter used in commercial air tours over water beyond the shoreline must...

  13. Evaluation of Low-Noise, Improved-Bearing-Contact Spiral Bevel Gears

    National Research Council Canada - National Science Library

    Lewicki, Davide

    2003-01-01

    .... Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand Low-noise, improved-bearing- contact spiral-bevel gears...

  14. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  15. Gust-Tunnel Investigation of the Effect of a Sharp-Edge Gust on the Flapwise Blade Bending Moments of a Model Helicopter Rotor

    National Research Council Canada - National Science Library

    Maglieri, Domenic

    1955-01-01

    Preliminary investigations have been made in the Langley gust tunnel to determine the effects of a sharp-edge vertical gust on the blade flapwise vibratory bending moments of small model rotors having...

  16. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  17. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  18. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    Science.gov (United States)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  19. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  20. Redesign of steam turbine rotor blades and rotor packages – Environmental analysis within systematic eco-design approach

    International Nuclear Information System (INIS)

    Baran, Jolanta

    2016-01-01

    Highlights: • Systematic approach to eco-design of steam turbine rotor blades was applied. • Eco-innovative solutions are based on structural and technological change. • At the stage of detailed design the variants were analyzed using LCA. • Main achieved benefits: energy and material savings, lower environmental impact. • Benefits related to the possible scale of the solution practical application. - Abstract: Eco-design of steam turbine blades could be one of the possibilities of decreasing the environmental impact of energy systems based on turbines. The paper investigates the eco-design approach to elaboration of the rotor blades and packages. The purpose is to present the course of eco-design of the rotor blades and the rotor packages taking account of eco-design assumptions, solutions and the concept itself. The following eco-design variants of the rotor blades and the rotor packages are considered: elements of the rotor blades made separately (baseline variant of the rotor blades); elements of the rotor blades made of one piece of material; blades in packages made separately and welded (baseline variant of the rotor packages); packages milled as integral elements. At the stage of detailed design, the Life Cycle Assessment (LCA) is performed in relation to a functional unit – the rotor blades and packages ready for installation in a steam turbine, which is the stage of the turbine. The obtained results indicate that eco-innovative solutions for the turbine blades and packages could be achieved through structural and technological changes. Applying new solutions of the rotor blades may produce the following main benefits: 3.3% lower use of materials, 29.4% decrease in energy consumption at the manufacturing stage, 7.7% decrease in the environmental impact in the life cycle. In relation to the rotor packages, the following main benefits may be achieved: 20.5% lower use of materials, 25.0% decrease in energy consumption at the production stage, 16

  1. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  2. Automatic guidance and control laws for helicopter obstacle avoidance

    Science.gov (United States)

    Cheng, Victor H. L.; Lam, T.

    1992-01-01

    The authors describe the implementation of a full-function guidance and control system for automatic obstacle avoidance in helicopter nap-of-the-earth (NOE) flight. The guidance function assumes that the helicopter is sufficiently responsive so that the flight path can be readily adjusted at NOE speeds. The controller, basically an autopilot for following the derived flight path, was implemented with parameter values to control a generic helicopter model used in the simulation. Evaluation of the guidance and control system with a 3-dimensional graphical helicopter simulation suggests that the guidance has the potential for providing good and meaningful flight trajectories.

  3. Numerical simulation of the tip aerodynamics and acoustics test

    Science.gov (United States)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  4. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya

    2014-01-01

    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  5. Square tracking sensor for autonomous helicopter hover stabilization

    Science.gov (United States)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  6. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  7. Converting a C-130 Hercules into a Compound Helicopter: A Conceptual Design Study

    Science.gov (United States)

    Kottapalli, Anjaney P.; Harris, Franklin D.

    2010-01-01

    . The performance of the Compound C-130 versus the C-130H shows a clear need for more powerful engines than are currently present on the C-130H. This would also adversely affect the Operating Empty Weight since a larger power plant requires more weight. However, one advantage that the Compound C-130 presents is the ability to hover and operate at low speeds in Helicopter Mode. While the C-130H is unable to travel at speeds lower than its stall speed, the Compound C-130 is able to hover using the main rotors. Thus, the Compound C-130 is able to operate independent of runways, let alone the condition of the nearest runway. Ultimately, the Compound C-130 is an effective aircraft in theaters requiring VTOL aircraft due to geographical considerations in terms or performance. Unfortunately, the weight penalty associated with converting the C-130H to a Compound C-130 suggests that further work in the area of the drive systems is required.

  8. Amplifying the helicopter drift in a conformal HMD

    Science.gov (United States)

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich

    2016-05-01

    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  9. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  10. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.

    2015-04-01

    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  11. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Science.gov (United States)

    2010-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  12. Attack Helicopter Operations: Art or Science

    Science.gov (United States)

    1991-05-13

    ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S

  13. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  14. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  15. CHANGES IN FLIGHT TRAINEE PERFORMANCE FOLLOWING SYNTHETIC HELICOPTER FLIGHT TRAINING.

    Science.gov (United States)

    CARO, PAUL W., JR.; ISLEY, ROBERT N.

    A STUDY WAS CONDUCTED AT THE U.S. ARMY PRIMARY HELICOPTER SCHOOL, FORT WOLTERS, TEXAS, TO DETERMINE WHETHER THE USE OF A HELICOPTER TRAINING DEVICE WOULD IMPROVE STUDENT PERFORMANCE DURING SUBSEQUENT HELICOPTER CONTACT FLIGHT TRAINING. SUBJECTS WERE TWO EXPERIMENTAL GROUPS AND TWO CONTROL GROUPS OF WARRANT OFFICER CANDIDATES ENROLLED FOR A…

  16. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  17. Review of wind energy activities at the CSIR

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-03-01

    Full Text Available of the design and manufacturing techniques for producing helicopter main and tail rotor blades in glass and carbon fibre reinforced composite material, offering significantly improved structural performance as well as lower cost by comparisons with imported... testing to develop the Rooivalk. Much of this effort has been applied to the design and manufacture of the rotor of the helicopter. Figure 2: CSIR’s full scale low wind speed turbine Figure 3: Ovid all composite trainer aircraft...

  18. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S. (Oak Ridge, TN)

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  19. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  20. Surveys of Students Challenge "Helicopter Parent" Stereotypes

    Science.gov (United States)

    Hoover, Eric

    2008-01-01

    Stories of "helicopter parents" abound. But several longtime student-affairs officials agree that while helicopter parents are real, their numbers--and behaviors--have been exaggerated. Parental involvement on campus, they say, is usually more of a help than a headache, for students and colleges alike. Some officials believe colleges must do even…

  1. Long Island north shore helicopter route environmental study

    Science.gov (United States)

    2012-02-21

    This report presents the results of the noise and emissions analysis of helicopter operations along the North Shore Helicopter Route of Long Island, New York performed by the Federal Aviation Administration, with the assistance of the Volpe Center...

  2. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  3. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes...

  4. Optimization of machining parameters of hard porcelain on a CNC ...

    African Journals Online (AJOL)

    s (2010) focus was to calculate drilled composite's surface roughness with the application of ... instance, objective function as well as restrictions on rotor enactment. ..... to aerodynamic optimization design of helicopter rotor blade, International.

  5. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  6. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  7. Substantially parallel flux uncluttered rotor machines

    Science.gov (United States)

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  8. U.S. Army Primary Helicopter School Training Program Performance Norms.

    Science.gov (United States)

    Barnes, John A.; Statham, Flavous D.

    The Helicopter Pilot Training Program of the Army differs from those of the other services in concept. It takes nonpilot servicemen and trains them to fly helicopters. The study provides normative performance data for a pilot trainee in an army light-observation helicopter as a first step toward establishing normative data for pilot performance in…

  9. Sleep and Alertness in North Sea Helicopter Operations

    NARCIS (Netherlands)

    Simons, M.; Wilschut, E.S.; Valk, P.J.L.

    2011-01-01

    Introduction : Dutch North Sea helicopter operations are characterized by multiple sector flights to offshore platforms under difficult environmental conditions. In the context of a Ministry of Transport program to improve safety levels of helicopter operations, we assessed effects of pre-duty

  10. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  11. 14 CFR 27.547 - Main rotor structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) [Reserved] (c) The main rotor structure must be designed to withstand the following...

  12. 78 FR 40055 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2013-07-03

    .... We also estimate that it would take about 3 work-hours per helicopter to rework the top cable cutter... helicopter to rework the top cable cutter assembly, $9,085 per helicopter to replace the top cable cutter... installing a WSPS upper installation, P/N 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N...

  13. 77 FR 52270 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2012-08-29

    ... would take about three work- hours per helicopter to rework the top cable-cutter assembly, one work... would be $255 per helicopter to rework the top cable-cutter assembly, $9,085 per helicopter to replace... 4G9540A00111, either: (i) Rework the top cable cutter assembly, P/N 423-83001-1, in accordance with the...

  14. Characterization of the Effect of Fiber Undulation on Strength and Stiffness of Composite Laminates

    Science.gov (United States)

    2015-03-01

    helicopter drivelines with flexible matrix composite shafting. Proceedings of the 61st American Helicopter Society Annual Forum; 2005 Jun 1–3...Grapevine, TX. Alexandria (VA): American Helicopter Society. p. 1582–1595. 2. Hannibal AJ, Gupta BP, Avila JA, Parr CH. Flexible matrix composites applied...to bearingless rotor system. Journal of the American Helicopter Society. 1985;30(1):21–27. 3. Ocalan M. High flexibility rotorcraft driveshafts

  15. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  16. Flexible-Rotor Balancing Demonstration

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Report describes method for balancing high-speed rotors at relatively low speeds and discusses demonstration of method on laboratory test rig. Method ensures rotor brought up to speeds well over 20,000 r/min smoothly, without excessive vibration amplitude at critical speeds or at operating speed.

  17. The quest for stall-free dynamic lift

    Science.gov (United States)

    Tung, C.; Mcalister, K. W.; Carr, Lawrence W.; Duque, E.; Zinner, R.

    1992-01-01

    During the past decade, numerous major effects have addressed the question of how to control or alleviate dynamic stall effects on helicopter rotors, but little concrete evidence of any significant reduction of the adverse characteristics of the dynamic stall phenomenon has been demonstrated. Nevertheless, it is important to remember that the control of dynamic stall is an achievable goal. Experiments performed at the US Army Aeroflight-dynamics Directorate more than a decade ago demonstrated that dynamic stall is not an unavoidable penalty of high amplitude motion, and that airfoils can indeed operate dynamically at angles far above the static-stall angle without necessarily forming a stall vortex. These experiments, one of them featuring a slat that was designed from static airfoil considerations, showed that unsteadiness can be a very beneficial factor in the development of high-lift devices for helicopter rotors. The experience drawn from these early experiments is now being focused on a program for the alleviation of dynamic-stall effects on helicopter rotors. The purpose of this effort is to demonstrate that rotor stall can be controlled through an improved understanding of the unsteady effects on airfoil stall and to document the role of specific means that lead to stall alleviation in the three dimensional unsteady environment of helicopter rotors in forward flight. The first concept to be addressed in this program will be a slatted airfoil. A two dimensional unsteady Navier-Stokes code has been modified to compute the flow around a two-element airfoil.

  18. Open Rotor - Analysis of Diagnostic Data

    Science.gov (United States)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  19. Rapid fabrication of flight worthy composite parts

    Science.gov (United States)

    Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.

    A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.

  20. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...

  1. Helicopter Emergency Medical Services: effects, costs and benefits

    NARCIS (Netherlands)

    A.N. Ringburg (Akkie)

    2009-01-01

    textabstractAdvanced prehospital medical care with air transport was introduced in the Netherlands in May 1995. The fi rst helicopter Mobile Medical Team, also called Helicopter Emergency Medical Service (HEMS) was a joint venture initiative of the VU Medical Center in Amsterdam and the Algemene

  2. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  3. Helicopter Noise Reduction Design Trade-Off Study

    Science.gov (United States)

    1977-01-01

    teeth . f orces gene ratea duriffg geaIr mIteshijog exl’ U: shaft vi brit ion which is’ trarvImi tted struc- ,tjyr, iy to th~e (,tsri 5Oli,&t through...mroticns , IJse uclo d, Lui goner oted usingq separate rotor performance cal cula Lion Ilvethods. bef- rotor. Perfornancef- cal culationl methods used...rotor noise directionality, the existence of a well defined minimum near the rotor plane is universally accepted. This minimum can be very sharp with

  4. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost-effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of...alternative helicopters for counterterrorism air assault missions. Any decision to acquire an aircraft must consider many factors, including technical

  5. Thermal state of a turbofan rotor

    Energy Technology Data Exchange (ETDEWEB)

    Bileka, B D; Diachenko, A M; Orinichev, I S

    1988-01-01

    Results of an experimental study of the thermal state of a combined turbofan rotor consisting of a peripheral turbine stage and a central fan stage are reported. In particular, attention is given to the effect of gas temperature, air flow rate, and rotation speed on temperature distributions at characteristic points of the rotor. The relative dimensionless temperatures of the turbofan rotor are shown to be constant under all the regimes investigated. An approximate method is proposed for calculating the temperature of the rotor elements, and the results of calculations are compared with experimental data.

  6. Basic Helicopter Handbook, Revised. AC 61-13A.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This technical manual was designed to assist applicants preparing for the private, commercial, and flight instructor pilot certificates with a helicopter rating. The chapters outline general aerodynamics, aerodynamics of flight, loads and load factors, function of controls, other helicopter components and their functions, introduction to the…

  7. 78 FR 15277 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-03-11

    ... the ASB as mandatory. Costs of Compliance We estimate that this AD affects three helicopters of U.S... of the helicopter's bottom structure. AD 2006- 0152 requires compliance with Eurocopter Alert Service... with France, EASA, its technical representative, has notified us of the unsafe condition described in...

  8. Rotor assembly and assay method

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  9. Differences in physical workload between military helicopter pilots and cabin crew

    NARCIS (Netherlands)

    van den Oord, Marieke H. A.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2014-01-01

    The 1-year prevalence of regular or continuous neck pain in military helicopter pilots of the Dutch Defense Helicopter Command (DHC) is 20%, and physical work exposures have been suggested as risk factors. Pilots and cabin crew perform different tasks when flying helicopters. The aims of the current

  10. Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor

    Energy Technology Data Exchange (ETDEWEB)

    Leon Pina, Roberto

    2009-12-15

    In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para

  11. Energy characteristics of Darrieus rotor ( review)

    Science.gov (United States)

    Gorelov, D. N.

    2010-09-01

    Presented below is the review of the results of experimental studies of energy characteristics of Darrieus rotor with vertical rotation axis. Influence of main geometry parameters of the rotor on its energy characteristics has been analyzed. It is shown that Darrieus rotor may have the higher level of energy characteristics than the best propeller wind turbines.

  12. Impacts of safety on the design of light remotely-piloted helicopter flight control systems

    International Nuclear Information System (INIS)

    Di Rito, G.; Schettini, F.

    2016-01-01

    This paper deals with the architecture definition and the safety assessment of flight control systems for light remotely-piloted helicopters for civil applications. The methods and tools to be used for these activities are standardised for conventional piloted aircraft, while they are currently a matter of discussion in case of light remotely-piloted systems flying into unsegregated airspaces. Certification concerns are particularly problematic for aerial systems weighing from 20 to 150 kgf, since the airworthiness permission is granted by national authorities. The lack of specific requirements actually requires to analyse both the existing standards for military applications and the certification guidelines for civil systems, up to derive the adequate safety objectives. In this work, after a survey on applicable certification documents for the safety objectives definition, the most relevant functional failures of a light remotely-piloted helicopter are identified and analysed via Functional Hazard Assessment. Different architectures are then compared by means of Fault-Tree Analysis, highlighting the contributions to the safety level of the main elements of the flight control system (control computers, servoactuators, antenna) and providing basic guidelines on the required redundancy level. - Highlights: • A method for architecture definition and safety assessment of light RW‐UAS flight control systems is proposed. • Relevant UAS failures are identified and analysed via Functional Hazard Assessment and Fault‐Tree Analysis. • The key safety elements are control computers, servoactuators and TX/RX system. • Single‐simplex flight control systems have inadequate safety levels. • Dual‐duplex flight control systems demonstrate to be safety compliant, with safety budgets dominated by servoactuators.

  13. 46 CFR 131.950 - Placard on lifesaving signals and helicopter recovery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Placard on lifesaving signals and helicopter recovery... SUPPLY VESSELS OPERATIONS Miscellaneous § 131.950 Placard on lifesaving signals and helicopter recovery..., Chapter V, of SOLAS 74/83; and (2) In helicopter recovery. (b) The signals must be employed by vessels or...

  14. 78 FR 52407 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-08-23

    ... prevent failure of float and subsequent loss of control of the helicopter during an emergency water... requirements were intended to prevent failure of float and subsequent loss of control of the helicopter during... in the float becoming punctured, failure of the float to inflate, and subsequent loss of control of...

  15. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    Science.gov (United States)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the

  16. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  17. Multicenter observational prehospital resuscitation on helicopter study.

    Science.gov (United States)

    Holcomb, John B; Swartz, Michael D; DeSantis, Stacia M; Greene, Thomas J; Fox, Erin E; Stein, Deborah M; Bulger, Eileen M; Kerby, Jeffrey D; Goodman, Michael; Schreiber, Martin A; Zielinski, Martin D; O'Keeffe, Terence; Inaba, Kenji; Tomasek, Jeffrey S; Podbielski, Jeanette M; Appana, Savitri N; Yi, Misung; Wade, Charles E

    2017-07-01

    Earlier use of in-hospital plasma, platelets, and red blood cells (RBCs) has improved survival in trauma patients with severe hemorrhage. Retrospective studies have associated improved early survival with prehospital blood product transfusion (PHT). We hypothesized that PHT of plasma and/or RBCs would result in improved survival after injury in patients transported by helicopter. Adult trauma patients transported by helicopter from the scene to nine Level 1 trauma centers were prospectively observed from January to November 2015. Five helicopter systems had plasma and/or RBCs, whereas the other four helicopter systems used only crystalloid resuscitation. All patients meeting predetermined high-risk criteria were analyzed. Patients receiving PHT were compared with patients not receiving PHT. Our primary analysis compared mortality at 3 hours, 24 hours, and 30 days, using logistic regression to adjust for confounders and site heterogeneity to model patients who were matched on propensity scores. Twenty-five thousand one hundred eighteen trauma patients were admitted, 2,341 (9%) were transported by helicopter, of which 1,058 (45%) met the highest-risk criteria. Five hundred eighty-five of 1,058 patients were flown on helicopters carrying blood products. In the systems with blood available, prehospital median systolic blood pressure (125 vs 128) and Glasgow Coma Scale (7 vs 14) was significantly lower, whereas median Injury Severity Score was significantly higher (21 vs 14). Unadjusted mortality was significantly higher in the systems with blood products available, at 3 hours (8.4% vs 3.6%), 24 hours (12.6% vs 8.9%), and 30 days (19.3% vs 13.3%). Twenty-four percent of eligible patients received a PHT. A median of 1 unit of RBCs and plasma were transfused prehospital. Of patients receiving PHT, 24% received only plasma, 7% received only RBCs, and 69% received both. In the propensity score matching analysis (n = 109), PHT was not significantly associated with mortality

  18. Aerodynamics of Rotorcraft (L’Aerodynamique des Aeronefs a Voilure Tournante)

    Science.gov (United States)

    1990-11-01

    appreciate wether or not the airfoil drag was liable to differ significantly from the 2-D value imposed In the CAMRAD calculation. Rotor blade boundary layer...0079, 1986 24. P.G. Wilby, M.J. Riley, Judith Miller, "Some unsteady effects on helicopter rotors." 7th European Rotorcraft and Powered Lift Forum...1981 W b 9-20 25. H.J. Riley, Judith Miller, "Pressure distributions on a helicopter swept tip from flight tests and from calculations", Paper No 9, 9th

  19. Reference Model 2: "Rev 0" Rotor Design

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  20. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  1. Flywheels Would Compensate for Rotor Imbalance

    Science.gov (United States)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  2. Prehospital helicopter transport and survival of patients with traumatic brain injury.

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; Mackenzie, Todd A

    2015-03-01

    To investigate the association of helicopter transport with survival of patients with traumatic brain injury (TBI), in comparison with ground emergency medical services (EMS). Helicopter utilization and its effect on the outcomes of TBI remain controversial. We performed a retrospective cohort study involving patients with TBI who were registered in the National Trauma Data Bank between 2009 and 2011. Regression techniques with propensity score matching were used to investigate the association of helicopter transport with survival of patients with TBI, in comparison with ground EMS. During the study period, there were 209,529 patients with TBI who were registered in the National Trauma Data Bank and met the inclusion criteria. Of these patients, 35,334 were transported via helicopters and 174,195 via ground EMS. For patients transported to level I trauma centers, 2797 deaths (12%) were recorded after helicopter transport and 8161 (7.8%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival [OR (odds ratio), 1.95; 95% confidence interval (CI), 1.81-2.10; absolute risk reduction (ARR), 6.37%]. This persisted after propensity score matching (OR, 1.88; 95% CI, 1.74-2.03; ARR, 5.93%). For patients transported to level II trauma centers, 1282 deaths (10.6%) were recorded after helicopter transport and 5097 (7.3%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival (OR, 1.81; 95% CI, 1.64-2.00; ARR 5.17%). This again persisted after propensity score matching (OR, 1.73; 95% CI, 1.55-1.94; ARR, 4.69). Helicopter transport of patients with TBI to level I and II trauma centers was associated with improved survival, in comparison with ground EMS.

  3. Apparatus and method for magnetically unloading a rotor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth Robert

    2018-02-13

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  4. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  5. Rotor for a line start permanent magnet machine

    Science.gov (United States)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  6. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-09-13

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop...

  7. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-07-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  8. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.

    2006-05-15

    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  9. 77 FR 68057 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Sikorsky Aircraft Corporation (Sikorsky) Model S-76C helicopters. This AD requires installing an improved... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  10. 78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-10-02

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward... Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main...

  11. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-19

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the manufacturer's..., contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, Mailstop s581a, 6900...

  12. 77 FR 21402 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-10

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the discovery of tail... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  13. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    Science.gov (United States)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  14. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  15. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  16. Mathematical model of secondary rotor of centrifuge based on magnetic or electromagnetic overhead and bottom viscous damper taking into account flexibility and viscosity of rotor, and program of calculating dynamics of rotor in centrifuge

    International Nuclear Information System (INIS)

    Andronov, I.N.

    1999-01-01

    The attempts to development of the rotor-dampers universal model with ability of fast correction of the parameters of mock-up rotor and dampers, their construction were made. The model that takes into account viscous characteristics of the material of the centrifuge rotor and allows research numerically into the rotor behaviour during over-speeding is suggested. The examples of calculations as show good effect of electromagnetic damping on the dynamics of the centrifuge rotor are given [ru

  17. Analysing Blast and Fragment Penetration Effects on Composite Helicopter Structures

    National Research Council Canada - National Science Library

    van't Hof, C; Herlaar, K; Luyten, J. M; van der Jagt, M. J

    2005-01-01

    .... The last decades the threat of helicopters has increased in military circumstances. Consequently the helicopters will be exposed to weapon effects like high blast loads and fragment impact more frequently...

  18. 78 FR 23698 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-04-22

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward firewall center... Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street...

  19. 77 FR 18969 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-03-29

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aircraft Corporation (Sikorsky) Model S-76C helicopters. This proposed AD is prompted by a bird-strike to.... For service information identified in this proposed AD, contact Sikorsky Aircraft Corporation, Attn...

  20. Software integration for automated stability analysis and design optimization of a bearingless rotor blade

    Science.gov (United States)

    Gunduz, Mustafa Emre

    Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used

  1. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  2. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  3. Modeling, Estimation, and Control of Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten

    and simulating different slung load suspension types. It further includes detection and response to wire slacking and tightening, it models the aerodynamic coupling between the helicopter and the load, and can be used for multilift systems with any combination of multiple helicopters and multiple loads...

  4. Ornicopter Multidisciplinary Analyses and Conceptual Design

    NARCIS (Netherlands)

    Wan, J.

    2014-01-01

    The tail rotor of conventional helicopters has always been considered a necessary 'evil'. It is necessary to counteract the reaction torque of the engine and to control the helicopter in yaw but it consumes substantial power, has only marginal control authority under unfavourable wind conditions,

  5. Simulating effectiveness of helicopter evasive manoeuvres to RPG attack

    Science.gov (United States)

    Anderson, D.; Thomson, D. G.

    2010-04-01

    The survivability of helicopters under attack by ground troops using rocket propelled grenades has been amply illustrated over the past decade. Given that an RPG is unguided and it is infeasible to cover helicopters in thick armour, existing optical countermeasures are ineffective - the solution is to compute an evasive manoeuvre. In this paper, an RPG/helicopter engagement model is presented. Manoeuvre profiles are defined in the missile approach warning sensor camera image plane using a local maximum acceleration vector. Required control inputs are then computed using inverse simulation techniques. Assessments of platform survivability to several engagement scenarios are presented.

  6. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  7. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  8. Useful life extension of steam turbine rotors; Alargamiento de la vida en rotores de turbina de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Arelle, Carlos [Turbomaquinas S. A. de C.V., La Piedad, Michoacan (Mexico)

    2007-11-15

    The continuous use of steam turbines, the chemistry of the steam itself and the variations of operation velocities, cause the gradual deterioration by erosion, oxidation and/or corrosion of the rotors and blades. When this happens most of the original manufacturers recommend to rectify the areas, diminishing the surfaces, or to compare with a new rotor. TURBOMAQUINARIAS S.A. de C.V. has developed the most reliable and safe methods to return the rotor to its original dimensions and in case of recurrent problems such as erosion, oxidation and/or wear, it offers the alternative of attaching coatings metallurgically compatible with which these problems are eliminated or diminished that might show up on the rotor surface as well as in the body of the discs or of the blades. These restoring methods are recommended by the international standards such as API 687. [Spanish] El uso continuo de las turbinas de vapor, la quimica del mismo vapor y la variacion de las velocidades de operacion, ocasionan el deterioro gradual por erosion, oxidacion y/o corrosion de los rotores y de los alabes. Al ocurrir esto la mayoria de los fabricantes originales recomiendan rectificar las areas, disminuyendo las superficies, o bien comparar un rotor nuevo. TURBOMAQUINARIAS S.A. de C.V. ha desarrollado los metodos mas confiables y seguros para devolver a su rotor las dimensiones originales y en caso de problemas recurrentes tales como erosion, oxidacion y/o desgaste, ofrece la alternativa de agregar recubrimientos metalurgicamente compatibles con los cuales se eliminan o se disminuyen estos problemas que pueden presentarse tanto en la superficie del rotor como del cuerpo de los discos o bien de los alabes. Estos metodos de restauracion son recomendados por las normas internacionales tales como la API 687.

  9. NASA/FAA helicopter simulator workshop

    Science.gov (United States)

    Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)

    1992-01-01

    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.

  10. Depot Maintenance: Executed Workload and Maintenance Operations at DOD Depots

    Science.gov (United States)

    2017-02-03

    in turn enable testing of helicopter rotor blades. The Army has also made investments in logistics software at all of its depots. According to the...maintenance and repair of structural helicopter airframes and blades; advanced composite technologies; flight controls and control surfaces; and...level maintenance on a wide range of vehicles and other military assets, including helicopters , combat vehicles, ships, aircraft, engines, and software

  11. Experimental investigation of main rotor wake

    Directory of Open Access Journals (Sweden)

    Stepanov Robert

    2017-01-01

    Full Text Available In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute. The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.

  12. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  13. Small-Scale Helicopter Automatic Autorotation : Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit

  14. The Helicopter Parent (Part 2): International Arrivals and Departures

    Science.gov (United States)

    Somers, Patricia; Settle, Jim

    2010-01-01

    The phenomenon of helicopter parenting has been widely reported, yet the research literature is anemic on the topic. Based on interviews and focus groups involving 190 academic and student services professionals, this article continues by discussing the social, psychological, economic, and cultural factors that influence helicoptering; exploring…

  15. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  16. Helicopter Approach Capability Using the Differential Global Positioning System

    Science.gov (United States)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  17. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  18. 77 FR 64439 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model Helicopters

    Science.gov (United States)

    2012-10-22

    ... unsafe condition for the Bell Model 430 helicopters. Discrepancies in the processing and display of air... pilot and copilot electronic attitude direction indicators airspeed indicators; [cir] Leak testing the... and responsibilities among the various levels of government. For the reasons discussed, I certify this...

  19. A practical approach to flexible rotor balancing

    International Nuclear Information System (INIS)

    Khan, M.I.; Chohan, G.Y.; Khan, M.Z.

    2001-01-01

    There are various conventional methods for flexible rotor balancing. These :methods have been applied successfully for balancing cylindrical rotors since long. One of these mostly used is modal balancing. Besides its usefulness, difficulties are encountered when sufficient number of balancing planes are not available under certain conditions where a rotor is enclosed at its both ends by discs. In this work, a practical technique of counter balancing has been introduced. This technique has proved its importance in balancing the rotors. We would discuss efficiency of this technique over the conventional modal balancing. (author)

  20. Aeroelastic characteristics of composite bearingless rotor blades

    Science.gov (United States)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  1. Topological dynamics in supramolecular rotors.

    Science.gov (United States)

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.

  2. Reliability model for helicopter main gearbox lubrication system using influence diagrams

    International Nuclear Information System (INIS)

    Rashid, H.S.J.; Place, C.S.; Mba, D.; Keong, R.L.C.; Healey, A.; Kleine-Beek, W.; Romano, M.

    2015-01-01

    The loss of oil from a helicopter main gearbox (MGB) leads to increased friction between components, a rise in component surface temperatures, and subsequent mechanical failure of gearbox components. A number of significant helicopter accidents have been caused due to such loss of lubrication. This paper presents a model to assess the reliability of helicopter MGB lubricating systems. Safety risk modeling was conducted for MGB oil system related accidents in order to analyse key failure mechanisms and the contributory factors. Thus, the dominant failure modes for lubrication systems and key contributing components were identified. The Influence Diagram (ID) approach was then employed to investigate reliability issues of the MGB lubrication systems at the level of primary causal factors, thus systematically investigating a complex context of events, conditions, and influences that are direct triggers of the helicopter MGB lubrication system failures. The interrelationships between MGB lubrication system failure types were thus identified, and the influence of each of these factors on the overall MGB lubrication system reliability was assessed. This paper highlights parts of the HELMGOP project, sponsored by the European Aviation Safety Agency to improve helicopter main gearbox reliability. - Highlights: • We investigated methods to optimize helicopter MGB oil system run-dry capability. • Used Influence Diagram to assess design and maintenance factors of MGB oil system. • Factors influencing overall MGB lubrication system reliability were identified. • This globally influences current and future helicopter MGB designs

  3. 14 CFR 61.161 - Aeronautical experience: Rotorcraft category and helicopter class rating.

    Science.gov (United States)

    2010-01-01

    ... category and helicopter class rating. 61.161 Section 61.161 Aeronautics and Space FEDERAL AVIATION... helicopter class rating. (a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot that...

  4. Rotor calculations for neutron spectroscopy; Calculs des rotors de spectrometres a neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gobert, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The determination of stress in a rotating disk plane of symmetry normal to the axis of rotation has been studied by a number of investigators. In a recent paper Reich gives an operating process for an analytical solution in an asymmetric rotating disk. In the report we give the calculation of finite difference stress solutions applicable to the two rotating disks. The equations are then programmed for the 360.75 computer by Fortran methods concerning the rotors of choppers. (author) [French] La determination des contraintes dans les disques symetriques, en rotation a ete etudiee par de nombreux auteurs. Dans un recent rapport, Reich donne une solution pour le calcul des disques asymetriques. Ce rapport concerne l'application du calcul des contraintes par differences finies aux deux types de rotors. Les equations ecrites en langage Fortran pour l'ordinateur 360.75 concerne les rotors de choppers. (auteur)

  5. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  6. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  7. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    Science.gov (United States)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  8. Overview of the Novel Intelligent JAXA Active Rotor Program

    Science.gov (United States)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  9. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  10. Dovetail Rotor Construction For Permanent-Magnet Motors

    Science.gov (United States)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  11. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...

  12. Development of adaptive helicopter seat systems for aircrew vibration mitigation

    Science.gov (United States)

    Chen, Yong; Wickramasinghe, Viresh; Zimcik, David G.

    2008-03-01

    Helicopter aircrews are exposed to high levels of whole body vibration during flight. This paper presents the results of an investigation of adaptive seat mount approaches to reduce helicopter aircrew whole body vibration levels. A flight test was conducted on a four-blade helicopter and showed that the currently used passive seat systems were not able to provide satisfactory protection to the helicopter aircrew in both front-back and vertical directions. Long-term exposure to the measured whole body vibration environment may cause occupational health issues such as spine and neck strain injuries for aircrew. In order to address this issue, a novel adaptive seat mount concept was developed to mitigate the vibration levels transmitted to the aircrew body. For proof-of-concept demonstration, a miniature modal shaker was properly aligned between the cabin floor and the seat frame to provide adaptive actuation authority. Adaptive control laws were developed to reduce the vibration transmitted to the aircrew body, especially the helmet location in order to minimize neck and spine injuries. Closed-loop control test have been conducted on a full-scale helicopter seat with a mannequin configuration and a large mechanical shaker was used to provide representative helicopter vibration profiles to the seat frame. Significant vibration reductions to the vertical and front-back vibration modes have been achieved simultaneously, which verified the technical readiness of the adaptive mount approach for full-scale flight test on the vehicle.

  13. Structural Integrity and Aging-Related Issues of Helicopters

    Science.gov (United States)

    2000-10-01

    inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best

  14. Dynamics of a split torque helicopter transmission. M.S. Thesis - Cleveland State Univ.

    Science.gov (United States)

    Krantz, Timothy L.

    1994-01-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  15. A kinesthetic-tactual display concept for helicopter-pilot workload reduction

    Science.gov (United States)

    Gilson, R. D.; Dunn, R. S.; Sun, P.

    1977-01-01

    A kinesthetic-tactual (K-T) display concept is now under research and development (R & D) at the Ohio State University. It appears to offer considerable promise for useful application in helicopters by conveying control information via the sense of touch. This is a review of the overall R & D program including the original K-T display design, initial studies in automobile and fixed-wing vehicles, and feasibility experiments in a helicopter simulator. In addition to investigations of control and potential workload reduction, present efforts are directed toward establishing optimal design requirements for K-T helicopter displays. Potential applications, modes of usage, and the kinds of information that may be displayed in helicopter applications are discussed along with a brief forecast of future R & D. A brief description of the latest multi-axis laboratory prototype K-T display is also provided.

  16. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  17. Development of a Field-Deployable Psychomotor Vigilance Test to Monitor Helicopter Pilot Performance.

    Science.gov (United States)

    McMahon, Terry W; Newman, David G

    2016-04-01

    Flying a helicopter is a complex psychomotor skill. Fatigue is a serious threat to operational safety, particularly for sustained helicopter operations involving high levels of cognitive information processing and sustained time on task. As part of ongoing research into this issue, the object of this study was to develop a field-deployable helicopter-specific psychomotor vigilance test (PVT) for the purpose of daily performance monitoring of pilots. The PVT consists of a laptop computer, a hand-operated joystick, and a set of rudder pedals. Screen-based compensatory tracking task software includes a tracking ball (operated by the joystick) which moves randomly in all directions, and a second tracking ball which moves horizontally (operated by the rudder pedals). The 5-min test requires the pilot to keep both tracking balls centered. This helicopter-specific PVT's portability and integrated data acquisition and storage system enables daily field monitoring of the performance of individual helicopter pilots. The inclusion of a simultaneous foot-operated tracking task ensures divided attention for helicopter pilots as the movement of both tracking balls requires simultaneous inputs. This PVT is quick, economical, easy to use, and specific to the operational flying task. It can be used for performance monitoring purposes, and as a general research tool for investigating the psychomotor demands of helicopter operations. While reliability and validity testing is warranted, data acquired from this test could help further our understanding of the effect of various factors (such as fatigue) on helicopter pilot performance, with the potential of contributing to helicopter operational safety.

  18. Coaxial Compound Helicopter for Confined Urban Operations

    Science.gov (United States)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  19. Causal Scale of Rotors in a Cardiac System

    Science.gov (United States)

    Ashikaga, Hiroshi; Prieto-Castrillo, Francisco; Kawakatsu, Mari; Dehghani, Nima

    2018-04-01

    Rotors of spiral waves are thought to be one of the potential mechanisms that maintain atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral waves. In this study, we aimed to elucidate the causal relationship between rotors and spiral waves in a numerical model of cardiac excitation. To accomplish the aim, we described the system in a series of spatiotemporal scales by generating a renormalization group, and evaluated the causal architecture of the system by quantifying causal emergence. Causal emergence is an information-theoretic metric that quantifies emergence or reduction between micro- and macro-scale behaviors of a system by evaluating effective information at each scale. We found that the cardiac system with rotors has a spatiotemporal scale at which effective information peaks. A positive correlation between the number of rotors and causal emergence was observed only up to the scale of peak causation. We conclude that rotors are not the universal mechanism to maintain spiral waves at all spatiotemporal scales. This finding may account for the conflicting benefit of rotor ablation in clinical studies.

  20. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  1. Thermomechanical Behavior of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki

    2003-01-01

    Full Text Available This article presents an analytical study of the dynamics and stability of rotors subjected to rubbing due to contact with seals, taking account of associated thermal effects. The seal interaction force acting on the shaft gives rise to a friction force, which is a source of heating and can induce so-called spiral vibrations. A mathematical model that has been developed couples the heat-conduction equation with the equations for motion of the rotor. Numerical simulations have been conducted that show the thermomechanical behavior of the rotor at various operating conditions. A procedure for analyzing the stability of multibearing rotors based on the system eigenvalue analysis and the state-space approach has been proposed. Finally, the experimental data related to full annular rub have been presented.

  2. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  3. Helicopter crashes into water: warning time, final position, and other factors affecting survival.

    Science.gov (United States)

    Brooks, Christopher J; MacDonald, Conor V; Baker, Susan P; Shanahan, Dennis F; Haaland, Wren L

    2014-04-01

    According to 40 yr of data, the fatality rate for a helicopter crash into water is approximately 25%. Does warning time and the final position of the helicopter in the water influence the survival rate? The National Transportation Safety Board (NTSB) database was queried to identify helicopter crashes into water between 1981 and 2011 in the Gulf of Mexico and Hawaii. Fatality rate, amount of warning time prior to the crash, and final position of the helicopter were identified. There were 133 helicopters that crashed into water with 456 crew and passengers. Of these, 119 occupants (26%) did not survive; of those who did survive, 38% were injured. Twelve died after making a successful escape from the helicopter. Crashes with 1 min. However, more than half of fatalities (57%) came from crashes for which the warning time could not be determined. Lack of warning time and how to survive in the water after the crash should be a topic for study in all marine survival/aircraft ditching courses. Investigators should be trained to provide estimates of warning time when investigating helicopter crashes into water.

  4. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  5. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  6. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  7. Study of Helicopter Performance and Terminal Instrument Procedures

    Science.gov (United States)

    1980-06-01

    possible employment of decelerating or other innovative approaches to be discussed in Section 3 and may be employed to advantage in reviewing missed...330J Puma is a 19 passenger medium helicopter manufactured by Societe Nationale Industrielle Aerospatiale of Marignane, France and marketed in the...for use by the French and British armed forces. It is manufactured by the Helicopter Divison of Societe Nationale Industrielle Aerospatiale of Marignane

  8. Vertebral pain in helicopter pilots

    Science.gov (United States)

    Auffret, R.; Delahaye, R. P.; Metges, P. J.; VICENS

    1980-01-01

    Pathological forms of spinal pain engendered by piloting helicopters were clinically studied. Lumbalgia and pathology of the dorsal and cervical spine are discussed along with their clinical and radiological signs and origins.

  9. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  10. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  11. HPOTP low-speed flexible rotor balancing, phase 1

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  12. Rotor assembly and method for automatically processing liquids

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  13. Extending helicopter operations to meet future integrated transportation needs.

    Science.gov (United States)

    Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Harvey, Catherine; Thomas, T Glyn

    2016-03-01

    Helicopters have the potential to be an integral part of the future transport system. They offer a means of rapid transit in an overly populated transport environment. However, one of the biggest limitations on rotary wing flight is their inability to fly in degraded visual conditions in the critical phases of approach and landing. This paper presents a study that developed and evaluated a Head up Display (HUD) to assist rotary wing pilots by extending landing to degraded visual conditions. The HUD was developed with the assistance of the Cognitive Work Analysis method as an approach for analysing the cognitive work of landing the helicopter. The HUD was tested in a fixed based flight simulator with qualified helicopter pilots. A qualitative analysis to assess situation awareness and workload found that the HUD enabled safe landing in degraded conditions whilst simultaneously enhancing situation awareness and reducing workload. Continued development in this area has the potential to extend the operational capability of helicopters in the future. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airworthiness Criteria for Helicopter... Appendix B to Part 29—Airworthiness Criteria for Helicopter Instrument Flight I. General. A transport category helicopter may not be type certificated for operation under the instrument flight rules (IFR) of...

  15. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  16. Using Discrete Event Simulation To Analyze Personnel Requirements For The Malaysian Armys New Utility Helicopter Fleet

    Science.gov (United States)

    2016-06-01

    HELICOPTER FLEET Hasnan bin Mohamad Rais Major, Malaysian Army B.S., University Technology of Malaysia , 2000 Submitted in partial...HELICOPTER MAINTENANCE POLICY B. The objective of MAA helicopter maintenance activities is to preserve helicopter safety and mission reliability to

  17. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Science.gov (United States)

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  18. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Directory of Open Access Journals (Sweden)

    Lesley J Rogers

    Full Text Available Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  19. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud

    2012-03-01

    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  20. The Helicopter Parent: Research toward a Typology (Part I)

    Science.gov (United States)

    Somers, Patricia; Settle, Jim

    2010-01-01

    With 117,000 hits on a recent Google[TM] search, the phenomenon of helicopter parenting has been widely reported in the popular press. Yet the scholarly literature is anemic on the topic. This article, part one of a two-part series, presents the small body of research on helicopter parenting and describes a qualitative study of 190 participants…

  1. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    Science.gov (United States)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  2. Internal Friction And Instabilities Of Rotors

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  3. Helicopter blades running elevation measurement using omnidirectional vision

    Directory of Open Access Journals (Sweden)

    Chengtao CAI

    2017-12-01

    Full Text Available Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model, the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement. Keywords: Full-scale measurement, Helicopter blades elevation, Non-linear calibration, Omnidirectional vision, Unified sphere model

  4. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airworthiness Criteria for Helicopter... Appendix B to Part 27—Airworthiness Criteria for Helicopter Instrument Flight I. General. A normal category helicopter may not be type certificated for operation under the instrument flight rules (IFR) of this chapter...

  5. The Use of Commercial Remote Sensing Systems in Predicting Helicopter Brownout Conditions

    Science.gov (United States)

    2009-09-01

    REFERENCES Anthoni, J. F. (2000). Soil Erosion and Conservation – Part 2. Retrieved 15 August 2009, from http://www.seafriends.org.nz/ enviro / soil ... soils susceptible to helicopter brownout. Helicopter brownout occurs when downwash disturbs the dust and sand beneath the aircraft during takeoff...destruction, as well as personnel injury or death. The likelihood of helicopter brownout is related to soil moisture content, particle size distribution, and

  6. Diagnostics of the vibrations of complex rotor systems

    Science.gov (United States)

    Yugraytis, I. Y.; Ragulskis, K. M.; Ionushas, R. A.; Karuzhene, I. P.

    1973-01-01

    The parameters of the imbalance of a complex rotor system, having n parallel rotors and having six degrees of freedom, can be determined from the parameters of the vibrations of two appropriate degrees of freedom. This considerably simplifies diagnostics of the vibrations of complex rotor systems.

  7. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  8. Stability of rotor systems: A complex modelling approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1998-01-01

    The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...... approach applying bounds of appropriate Rayleigh quotients. The rotor systems tested are: a simple Laval rotor, a Laval rotor with additional elasticity and damping in the bearings, and a number of rotor systems with complex symmetric 4 x 4 randomly generated matrices.......The dynamics of a large class of rotor systems can be modelled by a linearized complex matrix differential equation of second order, Mz + (D + iG)(z) over dot + (K + iN)z = 0, where the system matrices M, D, G, K and N are real symmetric. Moreover M and K are assumed to be positive definite and D...

  9. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong

    2011-06-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  11. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P

    2006-08-01

    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  12. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  13. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  14. VH-92A Presidential Helicopter (VH-92A)

    Science.gov (United States)

    2015-12-01

    provide safe, reliable, and timely transportation for the President, Vice President, Foreign Heads of State, and other official parties as directed by...the Director of the White House Military Office. Presidential helicopter transportation requirements are executed by Marine Helicopter Squadron One...Review Jul 2016 Jul 2016 Jan 2017 Jul 2016 Milestone C Jan 2019 Jan 2019 Jul 2019 Jan 2019 IOT &E Complete Mar 2020 Mar 2020 Sep 2020 Mar 2020 IOC Jul

  15. Environment-sensitive behavior of fluorescent molecular rotors

    Directory of Open Access Journals (Sweden)

    Theodorakis Emmanuel A

    2010-09-01

    Full Text Available Abstract Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.

  16. Broken-Rotor-Bar Diagnosis for Induction Motors

    International Nuclear Information System (INIS)

    Wang Jinjiang; Gao, Robert X; Yan Ruqiang

    2011-01-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  17. Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules

    Science.gov (United States)

    2017-06-12

    rotor helicopter designed for transportation of cargo, troops, and weapons during day, night, visual and instrument meteorological conditions. The...with composite spar wide-cord main rotor blades that provide 500 pounds more lift than the current UH-60L blades. Additionally, the new General...Power Spectral Density (PSD) format with superimposed sinusoidal components that are associated with the rotor speeds and blade count of each

  18. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...... perpendicular to the rotor axis is used to investigate the dynamics in the far wake Here, a precessing core is found and data indicate that the Strouhal number of the precessing is independent of the rotor speed...

  19. 29 CFR 1910.183 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ... objects. The employer shall take all necessary precautions to protect employees from flying objects in the... safety. The size and weight of loads, and the manner in which loads are connected to the helicopter shall...

  20. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  1. Helicopter-Ship Qualification Testing

    NARCIS (Netherlands)

    Hoencamp, A.

    2015-01-01

    The goal of this research project is to develop a novel test methodology which can be used for optimizing cost and time efficiency of helicopter-ship qualification testing without reducing safety. For this purpose, the so-called “SHOL-X” test methodology has been established, which includes the

  2. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  3. Evaluation of effect of oil film of rotor bearing

    Science.gov (United States)

    Alekseeva, L. B.; Maksarov, V. V.

    2018-03-01

    The high-rpm rotors were subjected to the dynamic analysis. Oscillations of a rotor spinning in gapped bearings were considered. It was stated that the rotor necks motion pattern depends on a lot of factors: a ratio of static and dynamic loads on the bearing, radial clearance size, presence of oil film between a neck and a bearing, elastic and inertial properties of a mounting group. The most unfavourable mode where static and dynamic loads are equal was detected without taking into account the oil film impact. The impact of oil film on the bearing assembly dynamics is significant in high-rpm rotors. The presence of oil film can possibly cause rotor buckling failure and self-starting. Rotor motion stability in small was studied. Herewith, various schemes were considered. Expressions, determining the stability zones of a rigid rotor on the fixed support and the supports with elastic and inertial elements, were given.

  4. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  5. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  6. System and method for smoothing a salient rotor in electrical machines

    Science.gov (United States)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.

    2016-12-13

    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  7. 78 FR 44050 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2013-07-23

    ..., and subsequent loss of helicopter control. DATES: We must receive comments on this proposed AD by... could result in failure of an engine, loss of engine power, and subsequent loss of helicopter control... corrosion, leaking grease, condensation, or water. This proposed AD is prompted by metallic debris from an...

  8. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    Science.gov (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  9. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Directory of Open Access Journals (Sweden)

    Wei WU

    2017-12-01

    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  10. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  11. THE DESIGN OF AXIAL PUMP ROTORS USING THE NUMERICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  12. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  13. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  14. Maryland's Helicopter Emergency Medical Services Experience From 2001 to 2011: System Improvements and Patients' Outcomes.

    Science.gov (United States)

    Hirshon, Jon Mark; Galvagno, Samuel M; Comer, Angela; Millin, Michael G; Floccare, Douglas J; Alcorta, Richard L; Lawner, Benjamin J; Margolis, Asa M; Nable, Jose V; Bass, Robert R

    2016-03-01

    Helicopter emergency medical services (EMS) has become a well-established component of modern trauma systems. It is an expensive, limited resource with potential safety concerns. Helicopter EMS activation criteria intended to increase efficiency and reduce inappropriate use remain elusive and difficult to measure. This study evaluates the effect of statewide field trauma triage changes on helicopter EMS use and patient outcomes. Data were extracted from the helicopter EMS computer-aided dispatch database for in-state scene flights and from the state Trauma Registry for all trauma patients directly admitted from the scene or transferred to trauma centers from July 1, 2000, to June 30, 2011. Computer-aided dispatch flights were analyzed for periods corresponding to field triage protocol modifications intended to improve system efficiency. Outcomes were separately analyzed for trauma registry patients by mode of transport. The helicopter EMS computer-aided dispatch data set included 44,073 transports. There was a statewide decrease in helicopter EMS usage for trauma patients of 55.9%, differentially affecting counties closer to trauma centers. The Trauma Registry data set included 182,809 patients (37,407 helicopter transports, 128,129 ambulance transports, and 17,273 transfers). There was an increase of 21% in overall annual EMS scene trauma patients transported; ground transports increased by 33%, whereas helicopter EMS transports decreased by 49%. Helicopter EMS patient acuity increased, with an attendant increase in patient mortality. However, when standardized with W statistics, both helicopter EMS- and ground-transported trauma patients showed sustained improvement in mortality. Modifications to state protocols were associated with decreased helicopter EMS use and overall improved trauma patient outcomes. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  15. A general method for closed-loop inverse simulation of helicopter maneuver flight

    OpenAIRE

    Wei WU

    2017-01-01

    Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provid...

  16. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  17. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  18. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  19. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  20. High-integrity databases for helicopter operations

    Science.gov (United States)

    Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg

    2009-05-01

    Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.