WorldWideScience

Sample records for helicopter blade flapping

  1. Flap-lag-torsional dynamics of helicopter rotor blades in forward flight

    Science.gov (United States)

    Crespodasilva, M. R. M.

    1986-01-01

    A perturbation/numerical methodology to analyze the flap-lead/lag motion of a centrally hinged spring restrained rotor blade that is valid for both hover and for forward flight was developed. The derivation of the nonlinear differential equations of motion and the analysis of the stability of the steady state response of the blade were conducted entirely in a Symbolics 3670 Machine using MACSYMA to perform all the lengthy symbolic manipulations. It also includes generation of the fortran codes and plots of the results. The Floquet theory was also applied to the differential equations of motion in order to compare results with those obtained from the perturbation analysis. The results obtained from the perturbation methodology and from Floquet theory were found to be very close to each other, which demonstrates the usefullness of the perturbation methodology. Another problem under study consisted in the analysis of the influence of higher order terms in the response and stability of a flexible rotor blade in forward flight using Computerized Symbolic Manipulation and a perturbation technique to bypass the Floquet theory. The derivation of the partial differential equations of motion is presented.

  2. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  3. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    Directory of Open Access Journals (Sweden)

    Uğbreve;ur Dalli

    2011-01-01

    Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.

  4. Identification of Flap Motion Parameters for Vibration Reduction in Helicopter Rotors with Multiple Active Trailing Edge Flaps

    OpenAIRE

    Dalli, Uğbreve;ur; Yüksel, Şcedilefaatdin

    2011-01-01

    An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing condit...

  5. Smart actuation mechanisms for helicopter blades: design case for a mach-scaled model blade

    NARCIS (Netherlands)

    Paternoster, Alexandre

    2013-01-01

    This work is part of the European project “Clean Sky”, which aims at improving the efficiency and the global transport quality of aircraft. The research, in this project, is currently focussing on active flap systems for helicopters to adapt the blade aerodynamic properties to local aerodynamic

  6. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  7. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  8. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    Science.gov (United States)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  9. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  10. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Science.gov (United States)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  11. Helicopter blades running elevation measurement using omnidirectional vision

    Directory of Open Access Journals (Sweden)

    Chengtao CAI

    2017-12-01

    Full Text Available Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model, the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement. Keywords: Full-scale measurement, Helicopter blades elevation, Non-linear calibration, Omnidirectional vision, Unified sphere model

  12. Air and ground resonance of helicopters with elastically tailored composite rotor blades

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1993-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  13. Aeromechanical stability of helicopters with composite rotor blades in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.

  14. Development of a piezoelectric actuator for trailing-edge flap control of rotor blades

    Science.gov (United States)

    Straub, Friedrich K.; Ngo, Hieu T.; Anand, V.; Domzalski, David B.

    1999-06-01

    Piezoelectric actuator technology has now reached a level where macro-positioning applications in the context of smart structures can be considered. One application with high payoffs is vibration reduction, noise reduction, and performance improvements in helicopters. Integration of piezoelectric actuators in the rotor blade is attractive, since it attacks the problem at the source. The present paper covers the development of a piezoelectric actuator for trailing edge flap control on a 34-foot diameter helicopter main rotor. The design of an actuator using bi-axial stack columns, and its bench, shake, and spin testing are described. A series of enhancements lead to an improved version that, together with use of latest stack technology, meets the requirements. Next steps in this DARPA sponsored program are development of the actuator and full scale rotor system for wind tunnel testing in the NASA Ames 40 X 80 foot wind tunnel and flight testing on the MD Explorer.

  15. A morphing trailing edge flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    system has been further developed in corporation with the industrial partners Hydratech Industries (DK) and Rehau (DE). A new trailing edge flap design with spanwise voids (channels) and with a chord of 15cm suitable for a 1m chord blade section was developed. It was then manufactured by extrusion...

  16. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  17. Subjective assessment of simulated helicopter blade-slap noise

    Science.gov (United States)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  18. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  19. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The

  20. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    of insulating, semi-conductive and conductive materials in their structure. For this reason, the installation of a CRTEF in a blade requires a careful assessment of risks related to lightning strikes. The study of the lightning effects in the CRTEF system comprised the analysis of the discharge attachment......, the current transmission, including the study of the induced electromagnetic fields, and the effects of degradation of the flap material due to the exposure to the lightning high electric fields. The main tools for this analysis were the simulation by the finite elements method and testing in the high voltage...

  1. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  2. Nonlinear Characteristics of Helicopter Rotor Blade Airfoils: An Analytical Evaluation

    Directory of Open Access Journals (Sweden)

    Constantin Rotaru

    2013-01-01

    Full Text Available Some results are presented about the study of airloads of the helicopter rotor blades, the aerodynamic characteristics of airfoil sections, the physical features, and the techniques for modeling the unsteady effects found on airfoil operating under nominally attached flow conditions away from stall. The unsteady problem was approached on the basis of Theodorsen's theory, where the aerodynamic response (lift and pitching moment is considered as a sum of noncirculatory and circulatory parts. The noncirculatory or apparent mass accounts for the pressure forces required to accelerate the fluid in the vicinity of the airfoil. The apparent mass contributions to the forces and pitching moments, which are proportional to the instantaneous motion, are included as part of the quasi-steady result.

  3. Nonlinear analysis of composite thin-walled helicopter blades

    Science.gov (United States)

    Kalfon, J. P.; Rand, O.

    Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.

  4. Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.

    Science.gov (United States)

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2014-03-01

    This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Wireless Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements Definition and Technological Aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul J.M.; Basu, Biswajit

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  6. A simulation study of active feedback supression of dynamic response in helicopter rotor blades

    Science.gov (United States)

    Kana, D. D.; Bessey, R. L.; Dodge, F. T.

    1975-01-01

    A parameter study is presented for active feedback control applied to a helicopter rotor blade during forward flight. The study was performed on an electromechanical apparatus which included a mechanical model rotor blade and electronic analog simulation of interaction between blade deflections and aerodynamic loading. Blade response parameters were obtained for simulated vortex impinging at the blade tip at one pulse per revolution, and for a pulse which traveled from the blade tip toward its root. Results show that the response in a 1 - 10-per-rev frequency band is diminished by the feedback action, but at the same time responses at frequencies above 10-per-rev become increasingly more prominent with increased feedback amplitude, and can even lead to instability at certain levels. It appears that the latter behavior results from limitations of the laboratory simulation apparatus, rather than genuine potential behavior for a prototype helicopter.

  7. Design of helicopter rotor blades with actuators made of a piezomacrofiber composite

    Science.gov (United States)

    Glukhikh, S.; Barkanov, E.; Kovalev, A.; Masarati, P.; Morandini, M.; Riemenschneider, J.; Wierach, P.

    2008-01-01

    For reducing the vibration and noise of helicopter rotor blades, the method of their controlled twisting by using built-in deformation actuators is employed. In this paper, the influence of various design parameters of the blades, including the location of actuators made of a piezomacrofiber material, on the twist angle is evaluated. The results of a parametric analysis performed allowed us to refine the statement of an optimization problem for the rotor blades.

  8. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped...... fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risø Campus of the Technical University of Denmark......Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some...

  9. Model predictive control of trailing edge flaps on a wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Castaignet, D.B.

    2011-11-15

    Trailing edge flaps on wind turbine blades have been investigated for several years. Aero-servoelastic simulations carried out with different simulation tools, trailing edge flaps configurations and controller designs proved that trailing edge flaps are a suitable solution for reducing some of the wind turbine fatigue and extreme loads. This potential was confirmed with wind tunnel tests made on blade sections with trailing edge flaps and on a scaled two-bladed wind turbine in a wind tunnel. The work presented in this thesis includes a full-scale test run on a Vestas V27 wind turbine equipped with three trailing edge flaps on one blade, located on DTU's Risoe Campus in Roskilde, Denmark. This thesis is divided into three parts: the controller design, results from simulations, and results from the experiments. The trailing edge flaps controller designed for this project is based on a frequency-weighted model predictive control, tuned in order to target only the flapwise blade root loads at the frequencies contributing the most to blade root fatigue damage (the 1P, 2P and 3P frequencies), and to avoid unnecessary wear and tear of the actuators at high frequencies. A disturbance model consisting in periodic disturbances at the rotor speed harmonic frequencies and a quasi-steady input disturbance is aggregated to an analytical model of a spinning blade with trailing edge flaps. Simulations on a multi-megawatt wind turbine show the potential of the trailing edge flaps to reduce the flapwise blade root fatigue loads by 23%, but also the main shaft and the tower fatigue loads by up to 32%. Extreme loads during normal production also benefit from the trailing edge flaps. At last, the same controller was run on the Vestas V27 wind turbine located at the Risoe Campus of the Technical University of Denmark, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the

  10. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    OpenAIRE

    2016-01-01

    The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on ...

  11. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    Science.gov (United States)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  12. Helicopter rotor blade frequency evolution with damage growth and signal processing

    Science.gov (United States)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  13. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage on the bl...

  14. Structural and mechanism design of an active trailing-edge flap blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan [Samsung Techwin R and D Center, Seongnam (Korea, Republic of); Natarajan, Balakumaran; Eun, Won Jong; Shin, Sang Joon [Seoul National University, Seoul (Korea, Republic of); R, Viswamurthy S. [National Aerospace Laboratories, Bangalore (India); Park, Jae Sang [Agency for Defense Development, Daejeon (Korea, Republic of); Kim, Tae Song [Technical University of Denmark, Risoe Campus, Roskilde (Denmark)

    2013-09-15

    A conventional rotor control system restricted at 1/rev frequency component is unable to vary the hub vibratory loads and the aero acoustic noise, which exist in high frequency components. Various active rotor control methodologies have been examined in the literature to alleviate the problem of excessive hub vibratory loads and noise. The active control device manipulates the blade pitch angle with arbitrary higher harmonic frequencies individually. In this paper, an active trailing-edge flap blade, which is one of the active control methods, is developed to reduce vibratory loads and noise of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design, as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram. To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4 .deg. , three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin hinge induces additional flap hinge moment, it does not provide sufficient deflection angle. Therefore, the flap hinge is replaced by a pin-type hinge, and the results are evaluated.

  15. Frequency-Weighted Model Predictive Control of Trailing Edge Flaps on a Wind Turbine Blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Couchman, Ian; Poulsen, Niels Kjølstad

    2013-01-01

    flapwise blade root moment and trailing edge flap deflection. Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flaps deflection, and to target at loads with given frequencies only. The controller is first tested in servo-aeroelastic simulations, before being......This paper presents the load reduction achieved with trailing edge flaps during a full-scale test on a Vestas V27 wind turbine. The trailing edge flap controller is a frequency-weighted linear model predictive control (MPC) where the quadratic cost consists of costs on the zero-phase filtered...

  16. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    Science.gov (United States)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  17. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    International Nuclear Information System (INIS)

    Balasko, M.; Veres, I.; Molnar, Gy.; Balasko, Zs.; Svab, E.

    2004-01-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered

  18. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    Science.gov (United States)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  19. Neutron radiography and other NDE tests of main rotor helicopter blades

    CSIR Research Space (South Africa)

    De Beer, FC

    2004-10-01

    Full Text Available leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research...

  20. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  1. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    Science.gov (United States)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  2. Active load reduction by means of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Couchman, Ian; Castaignet, Damien; Poulsen, Niels Kjølstad

    2014-01-01

    This paper presents the blade fatigue load reduction achieved with a trailing edge flap during a full scale test on a Vestas V27 wind turbine. A frequency-weighted linear model predictive control (MPC) is tuned to decrease flapwise blade root fatigue loads at the frequencies where most of the blade...... damage occurs, i.e. the 1P and 2P frequencies (respectively 1 and 2 events per revolution). Frequency-weighted MPC is chosen for its ability to handle constraints on the trailing edge flap deflection and to optimise its actuation in order to decrease wear and tear of the actuator. The controller...... was first tested in aero-servo-elastic simulations, before being implemented on a Vestas V27 wind turbine. Consistent load reduction is achieved during the full-scale test. An average of 14% flapwise blade root fatigue load reduction is measured....

  3. Structural design optimization of a morphing trailing edge flap for wind turbine blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Lin, Yu-Huan; Aagaard Madsen, Helge

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design of the flex......A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design...... of the flexible part of the CRTEF based on a realistic blade section geometry in order to meet the required objectives and constraints. The objectives include the deflection requirements and the energy efficiency, while the constraints include the bending stiffness of the structure, the local shape deformations......, critical material strength, and manufacturing limitations. A model with arches forming concave on the flap surface and enclosing the voids to be pressurized results in the bending movement of the flap when pressure is applied on the voids to straighten the arches. The model is designed using SolidWorks...

  4. Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2003-07-01

    The current paper presents a turbulent flow simulation study past a generic helicopter RoBin with a four-bladed rotor using the Chimera moving grid approach. The aerodynamic performance of the rotor blades and their interactions with the RoBin fuselage are investigated using the k - {omega} SST turbulence model contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasisteady flow field. The rotor blades are rectangular, untapered, linearly twisted and are made from NACA 0012 airfoil profile. The blade motion (rotation and cyclic pitching) schedule is specified in the NASA wind tunnel testing of a generic helicopter RoBin. The aerodynamic radial load distributions in the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The rotor flow interacts strongly with the flow coming off from the fuselage and thus has a significant impact on helicopter aerodynamic performance. (author)

  5. Impact force identification for composite helicopter blades using minimal sensing

    Science.gov (United States)

    Budde, Carson N.

    In this research a method for online impact identification using minimal sensors is developed for rotor hubs with composite blades. Modal impact data and the corresponding responses are recorded at several locations to develop a frequency response function model for each composite blade on the rotor hub. The frequency response model for each blade is used to develop an impact identification algorithm which can be used to identify the location and magnitude of impacts. Impacts are applied in two experimental setups, including a four-blade spin test rig and a cantilevered full-sized composite blade. The impacts are estimated to have been applied at the correct location 92.3% of the time for static fiberglass blades, 97.4% of the time for static carbon fiber blades and 99.2% of the time for a full sized-static blade. The estimated location is assessed further and determined to have been estimated in the correct chord position 96.1% of the time for static fiberglass, 100% of the time for carbon fiber blades and 99.2% of the time for the full-sized blades. Projectile impacts are also applied statically and during rotation to the carbon fiber blades on the spin test rig at 57 and 83 RPM. The applied impacts can be located to the correct position 63.9%, 41.7% and 33.3% for the 0, 57 and 83 RPM speeds, respectively, while the correct chord location is estimated 100% of the time. The impact identification algorithm also estimates the force of an impact with an average percent difference of 4.64, 2.61 and 1.00 for static fiberglass, full sized, and carbon fiber blades, respectively. Using a load cell and work equations, the force of impact for a projectile fired from a dynamic firing setup is estimated at about 400 N. The average force measured for applied projectile impacts to the carbon fiber blades, rotating at 0, 57 and 83 RPM, is 368.8, 373.7 and 432.4 N, respectively.

  6. Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter

    Directory of Open Access Journals (Sweden)

    Jiayi Xie

    2017-06-01

    Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.

  7. Some practical issues in the computational design of airfoils for the helicopter main rotor blades

    Directory of Open Access Journals (Sweden)

    Kostić Ivan

    2004-01-01

    Full Text Available Very important requirement for the helicopter rotor airfoils is zero, or nearly zero moment coefficient about the aerodynamic center. Unlike the old technologies used for metal blades, modern production involving application of plastic composites has imposed the necessity of adding a flat tab extension to the blade trailing edge, thus changing the original airfoil shape. Using computer program TRANPRO, the author has developed and verified an algorithm for numerical analysis in this design stage, applied it on asymmetrical reflex camber airfoils, determined the influence of angular tab positioning on the moment coefficient value and redesigned some existing airfoils to include properly positioned tabs that satisfy very low moment coefficient requirement. .

  8. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    Science.gov (United States)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  9. Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades

    International Nuclear Information System (INIS)

    Tejero, F; Doerffer, P; Szulc, O

    2014-01-01

    The interest in the application of flow control devices has been rising in the last years. Recently, several passive streamwise vortex generators have been analysed in a configuration of a curved wall nozzle within the framework of the UFAST project (Unsteady Effects of Shock Wave Induced Separation, 2005 – 2009). Experimental and numerical results proved that the technology is effective in delaying flow separation. The numerical investigation has been extended to helicopter rotor blades in hover and forward flight applying the FLOWer solver (RANS approach) implementing the chimera overlapping grids technique and high performance computing. CFD results for hover conditions confirm that the proposed passive control method reduces the flow separation increasing the thrust over power consumption. The paper presents the numerical validation for both states of flight and the possible implementation of RVGs on helicopter rotor blades.

  10. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    Science.gov (United States)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  11. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  12. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  13. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    National Research Council Canada - National Science Library

    Balasko, M; Endroczi, G; Tarnai, Gy; Veres, I; Molnar, Gy; Svab, E

    2005-01-01

    The experiments regarding structural failures in helicopter rotor blade's composite structures causing water penetrations and bypasses were performed at the Dynamic Radiography Station (DRS) of the Budapest...

  14. Numerical investigation of turbulent flow past a four-bladed helicopter rotor using k - ω SST model

    International Nuclear Information System (INIS)

    Xu, H.; Khalid, M.

    2002-01-01

    In a previous study of the laminar flow over a four-bladed helicopter rotor, abnormal Cp distributions were observed on the upper surfaces of the blades. To address this problem, the aerodynamic performance of the same rotor is investigated using the k - ω SST turbulence model, as contained in the WIND code. The rotor is configured as a Chimera moving grid in a quasi-steady flow field. The rotor rotation schedule and the blade twisting are implemented as specified in the wind tunnel testing of a RoBin generic helicopter. More realistic Cp distributions on the blade surfaces are thus obtained. The aerodynamic load distributions in the radial direction of the rotor plane are generated by integrating the pressure on each blade surfaces along the blade chordwise direction. The analyses of these load distributions in the azmuthal direction provide a critical insight into the rotor model, which is based on the actuator-disc assumption. Also, some preliminary results for the flow past a full helicopter configuration, including the rotor and the RoBin fuselage, are presented. The current paper demonstrates the Chimera grid topologies and the Chimera grid generation technique for both blade and fuselage configuration. This would provide a powerful tool to simulate flow past an entire helicopter and to study the rotor-fuselage flow interaction. (author)

  15. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    Science.gov (United States)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  16. Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor

    Science.gov (United States)

    Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo

    2009-01-01

    Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured

  17. Proposed health state awareness of helicopter blades using an artificial neural network strategy

    Science.gov (United States)

    Lee, Andrew; Habtour, Ed; Gadsden, S. A.

    2016-05-01

    Structural health prognostics and diagnosis strategies can be classified as either model or signal-based. Artificial neural network strategies are popular signal-based techniques. This paper proposes the use of helicopter blades in order to study the sensitivity of an artificial neural network to structural fatigue. The experimental setup consists of a scale aluminum helicopter blade exposed to transverse vibratory excitation at the hub using single axis electrodynamic shaker. The intent of this study is to optimize an algorithm for processing high-dimensional data while retaining important information content in an effort to select input features and weights, as well as health parameters, for training a neural network. Data from accelerometers and piezoelectric transducers is collected from a known system designated as healthy. Structural damage will be introduced to different blades, which they will be designated as unhealthy. A variety of different tests will be performed to track the evolution and severity of the damage. A number of damage detection and diagnosis strategies will be implemented. A preliminary experiment was performed on aluminum cantilever beams providing a simpler model for implementation and proof of concept. Future work will look at utilizing the detection information as part of a hierarchical control system in order to mitigate structural damage and fatigue. The proposed approach may eliminate massive data storage on board of an aircraft through retaining relevant information only. The control system can then employ the relevant information to intelligently reconfigure adaptive maneuvers to avoid harmful regimes, thus, extending the life of the aircraft.

  18. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    Science.gov (United States)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  19. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  20. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    Science.gov (United States)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  1. A helicopter that flaps its wings : The Ornicopter flaps its wings like a bird to get into the air

    NARCIS (Netherlands)

    Van Holten, T.; Mols, B.

    2003-01-01

    No other type of aircraft is as manoeuvrable as a helicopter. Reverse in full flight, rotate in the air, hover at a standstill, the helicopter can do it all. The police, fire services, medical services, military and civil aviation all use the helicopter for the freedom of flight it offers. However,

  2. Simulation of Moving Trailing Edge Flaps on a Wind Turbine Blade using a Navier-Stokes based Immersed Boundary Method

    DEFF Research Database (Denmark)

    Behrens, Tim

    . Simulations demonstrated the feasibility and robustness of the approach. The hybrid immersed boundary approach proved to be able to handle 3D airfoil sections with span-wise flap gaps. The flow around and in the wake of a deflected flap at a Reynolds number of 1.63mio was investigated for steady inflow......As the rotor diameter of wind turbines increases, turbine blades with distributed aerodynamic control surfaces promise significant load reductions. Therefore, they are coming into focus in relation to research in academia and industry. Trailing edge flaps are of particular interest in terms...... conditions. A control for two span-wise independent flaps was implemented and first load reductions could be achieved. The hybrid method has demonstrated to be a versatile tool in the research of moving trailing edge flaps. The results shall serve as the basis for future investigations of the unsteady flow...

  3. Neutron radiography and other NDE tests of main rotor helicopter blades

    International Nuclear Information System (INIS)

    Beer, F.C. de; Coetzer, M.; Fendeis, D.; Silva, A. da Costa E

    2004-01-01

    A few nondestructive examination (NDE) techniques are extensively being used worldwide to investigate aircraft structures for all types of defects. The detection of corrosion and delaminations, which are believed to be the major initiators of defects leading to aircraft structural failures, are addressed by various NDE techniques. In a combined investigation by means of visual inspection, X-ray radiography and shearography on helicopter main rotor blades, neutron radiography (NRad) at SAFARI-1 research reactor operated by Necsa, was performed to introduce this form of NDE testing to the South African aviation industry to be evaluated for applicability. The results of the shearography, visual inspection and NRad techniques are compared in this paper. The main features and advantages of neutron radiography, within the framework of these investigations, will be highlighted

  4. Novel controller design demonstration for vibration alleviation of helicopter rotor blades

    Science.gov (United States)

    Ulker, Fatma Demet; Nitzsche, Fred

    2012-04-01

    This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.

  5. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    Science.gov (United States)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an

  6. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    Science.gov (United States)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  7. Classification of defects in honeycomb composite structure of helicopter rotor blades

    International Nuclear Information System (INIS)

    Balasko, M.; Svab, E.; Molnar, Gy.; Veres, I.

    2005-01-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected

  8. Classification of defects in honeycomb composite structure of helicopter rotor blades

    Science.gov (United States)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  9. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model...

  10. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model...

  11. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    Science.gov (United States)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  12. Blade vortex interaction noise reduction techniques for a rotorcraft

    Science.gov (United States)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  13. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    Science.gov (United States)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  14. NDT detection and quantification of induced defects on composite helicopter rotor blade and UAV wing sections

    Science.gov (United States)

    Findeis, Dirk; Gryzagoridis, Jasson; Musonda, Vincent

    2008-09-01

    Digital Shearography and Infrared Thermography (IRT) techniques were employed to test non-destructively samples from aircraft structures of composite material nature. Background information on the techniques is presented and it is noted that much of the inspection work reviewed in the literature has focused on qualitative evaluation of the defects rather than quantitative. There is however, need to quantify the defects if the threshold rejection criterion of whether the component inspected is fit for service has to be established. In this paper an attempt to quantify induced defects on a helicopter main rotor blade and Unmanned Aerospace Vehicle (UAV) composite material is presented. The fringe patterns exhibited by Digital Shearography were used to quantify the defects by relating the number of fringes created to the depth of the defect or flaw. Qualitative evaluation of defects with IRT was achieved through a hot spot temperature indication above the flaw on the surface of the material. The results of the work indicate that the Shearographic technique proved to be more sensitive than the IRT technique. It should be mentioned that there is "no set standard procedure" tailored for testing of composites. Each composite material tested is more likely to respond differently to defect detection and this depends generally on the component geometry and a suitable selection of the loading system to suit a particular test. The experimental procedure that is reported in this paper can be used as a basis for designing a testing or calibration procedure for defects detection on any particular composite material component or structure.

  15. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    International Nuclear Information System (INIS)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-01-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  16. Inspection of helicopter rotor blades with the help of guided waves and "turning modes": Experimental and finite element analysis

    Science.gov (United States)

    Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay

    2013-01-01

    Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.

  17. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  18. Design and manufacturing of a morphing flap for wind turbine blades

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Aagaard Madsen, Helge; Løgstrup Andersen, Tom

    2013-01-01

    This document describes the current status of the flap prototype development in the INDUFLAP project funded by the EUDP programme from the Danish Ministry of Energy.......This document describes the current status of the flap prototype development in the INDUFLAP project funded by the EUDP programme from the Danish Ministry of Energy....

  19. Termovision and electricity capacitance measurements as a evaluation of a helicopter rotor’s blades delamination

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The article presents essential elements reached during investigations of heat section of rotor blades which have been done in AFIT. The investigations were related to a valuation of helicopter’s rotor blades delamination. They used a method of thermal field measurement as well as a electricity capacitance between an airframe and a heat element of the installation. A suggestion of such measurements appeared during the disassembly of rotor blade heat sections when some local unglue of heat element’s tape from the structure of blade’s heating pack has seen. Spots nearby separation of adhesive are a potential area of a local temperature increase, both the electric heating element and the mechanical structure of the blade. This is especially dangerous for composite structures. Overheated composite structures characterized by reduced flexibility and becomes prone to cracking. Therefore, the possibility of non-invasive monitoring adhesive spots, without removing the blades would be particularly useful.

  20. Material matters: Controllable rubber trailing edge flap regulates load on wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    In wind farms, nearby wind turbines exert considerable influence and generate turbulence on turbine blades. Because the blades are so long, there can be considerable differences in localized loading from the gusts along the blade. The Risø DTU researchers has developed a controllable rubber trail...... in an open jet wind tunnel shows promising results. In the wind tunnel, it is possible to regulate the wind speed as well as turn the blade profile to simulate a change in wind direction in relation to the profile....

  1. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  2. Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Aagaard Madsen, Helge

    2015-01-01

    at the Risø Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the AFS are described. The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, along with an overview of sensors on the setup and the test cases. The post-processing...... of data is discussed and results of steady, flap step and azimuth control flap cases are presented....

  3. Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter

    Science.gov (United States)

    Singleton, Jeffrey D.; Yeager, William T., Jr.; Wilbur, Matthew L.

    1990-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters.

  4. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  5. A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades

    Science.gov (United States)

    2016-09-01

    performance study of these algorithms in the particular problem of analysing backscatter signals from rotating blades. The report is organised as follows...provide further insight into the behaviour of the techniques. Here, the algorithms for MP, OMP, CGP, gOMP and ROMP terminate when 10 atoms are

  6. Report on the Audit of Performnce and Reliability of Cobra Helicopter Rotor Blades

    Science.gov (United States)

    1991-05-21

    We are providing this final report for your information and use. The audit was made from January to March 1991. The audit objective was to evaluate...internal controls. The audit was made in response to concerns raised by personnel at the Sharpe Army Depot about the K747 blade’s performance, maintenance, and reliability.

  7. INVESTINGATION DOWNWARD WIND PRESSURE ON A SMALL QUADROTOR HELICOPTER

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Small rotary-wing UAVs are susceptible to gusts and other environmental disturbances that affect inflow at their rotors. Inflow variations cause unexpected aerodynamic forces through changes in thrust conditions and unmodeled blade-flapping dynamics. This pa­per introduces an onboard, pressure-based flow measurement system developed for a small quadrotor helicopter. The probe-based instrumentation package provides spatially dis­tributed airspeed measurements along each of the aircra...

  8. Computational modeling of ice cracking and break-up from helicopter blades

    KAUST Repository

    Shiping, Zhang; Khurram, Rooh Ul Amin; Fouladi, Habibollah; Habashi, Wagdi G (Ed)

    2012-01-01

    In order to reduce the danger of impact onto components caused by break-up, it is important to analyze the shape of shed ice accumulated during flight. In this paper, we will present a 3D finite element method (FEM) to predict the shed ice shape by using a fluid-solid interaction (FSI) approach to determine the loads, and linear fracture mechanics to track crack propagation. Typical icing scenarios for helicopters are analyzed, and the possibility of ice break-up is investigated.

  9. Computational modeling of ice cracking and break-up from helicopter blades

    KAUST Repository

    Shiping, Zhang

    2012-06-25

    In order to reduce the danger of impact onto components caused by break-up, it is important to analyze the shape of shed ice accumulated during flight. In this paper, we will present a 3D finite element method (FEM) to predict the shed ice shape by using a fluid-solid interaction (FSI) approach to determine the loads, and linear fracture mechanics to track crack propagation. Typical icing scenarios for helicopters are analyzed, and the possibility of ice break-up is investigated.

  10. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    Science.gov (United States)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  11. Dermal uptake and excretion of 4,4'-methylenedianiline during rotor blade production in helicopter industry--an intervention study.

    Science.gov (United States)

    Weiss, Tobias; Schuster, Hubert; Müller, Johannes; Schaller, Karl-Heinz; Drexler, Hans; Angerer, Jürgen; Käfferlein, Heiko U

    2011-10-01

    Workers using composite materials by fibre reinforced laminate technology are exposed to 4,4'-methylenedianiline (MDA), a liver toxicant and suspected human carcinogen, during the production of rotor blades in helicopter industry. The aim of the study presented here was to assess the internal dose of MDA and the suitability of various personal protection measures at the workplace. Ambient monitoring and biological monitoring was carried out by analysing MDA in air and urine samples in seven workers of a highly specialized workplace (rotor blade production). Three different concepts of personal protection measures were applied to study the route of uptake and to evaluate strategies in decreasing workplace exposure. In addition, elimination kinetics of MDA was studied in three workers who were exposed to MDA on three consecutive working days. Ambient monitoring consistently provided air levels at or below the limit of quantification of 0.1 μg m(-3). Nevertheless, MDA was detected in 89% of all post-shift urine samples and median concentration was 4.2 μg l(-1). MDA in urine were >20 times higher than expected on data from ambient monitoring alone. A significant decrease in exposure could be achieved when workers have worn MDA-protective overalls in combination with MDA-protective gloves and a splash protection shield (from 9.8 μg l(-1) down to 3.7 μg l(-1)). The results show that MDA is taken up primarily via the skin at the workplaces under study. The excretion of MDA in urine was observed to be delayed after dermal exposure. Exposure assessment of MDA should be carried out by biological monitoring rather than ambient monitoring. For this purpose, urine samples midweek or at the end of the week should be used based on the observed delay in the excretion of MDA after dermal absorption. Uptake of MDA via the skin could not be completely avoided even if state-of-the-art personal protection measures were applied.

  12. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation 2. Finite-Element Approximation of Blades and a Model of Coupling of the Torsion Bar with the Blades

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2016-01-01

    A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.

  13. Merenje vibracija i relevantnih parametara leta transportnog helikoptera Mi-8 sa revitalizovanim lopaticama nosećeg rotora / Vibration and flight data measurement on the transport helicopter Mi-8 with replaced main rotor blades

    Directory of Open Access Journals (Sweden)

    Veljko Rakonjac

    2004-11-01

    Full Text Available Rad se odnosi na merenje parametara leta transportnog helikoptera ruske proizvodnje Mi-8 sa ugrađenim originalnim, kao i revitalizovanim - delimično kompozitnim lopaticama nosećeg rotora. Cilj merenja bio je dobijanje relevantnih podataka za ocenu kvaliteta revitalizovanih lopatica usled zamene lopatica nosećeg rotora. Prikazani su oprema, postupak i analiza rezultata merenja parametara leta i vibracija, uz poseban osvrt na probleme izazvane uticajem vibracija na mernu opremu. / This paper presents helicopter flight data acquisition made on the Russian helicopter Mi-8 with its original main rotor blades as well as with regenerated, partially composite ones. The purpose of the measurement was collecting data for flight quality of the main rotor composite blades changing the actual main rotor blades. This paper also presents equipment procedures and analysis of flight data and vitration measurements with special attention to problems caused by vibration influence on equipment.

  14. Power harvesting using piezoelectric materials: applications in helicopter rotors

    NARCIS (Netherlands)

    de Jong, Pieter

    2013-01-01

    The blades of helicopters are heavily loaded and are critical components. Failure of any one blade will lead to loss of the aircraft. Currently, the technical lifespan of helicopter blades is calculated using a worst-case operation scenario. The consequence is that a blade that may be suitable for,

  15. Advanced Airfoils Boost Helicopter Performance

    Science.gov (United States)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  16. Design and development of an active Gurney flap for rotorcraft

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2013-03-01

    The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.

  17. Smart actuation for helicopter rotorblades

    NARCIS (Netherlands)

    Paternoster, Alexandre; Loendersloot, Richard; de Boer, Andries; Akkerman, Remko; Berselli, G.; Vertechy, R.; Vassura, G.

    2012-01-01

    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight,

  18. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    Science.gov (United States)

    2016-10-01

    helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades, the helicopter body...is used to separate the main and tail rotor blade components of a helicopter from the composite radar returns. The received signal consists of returns...Two algorithms are presented in the report to separately extract main rotor blade returns and tail rotor blade returns from the composite signal

  19. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  20. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    Science.gov (United States)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  1. Hovering and Low-Speed Performance and Control Characteristics of the Kaman Helicopter Rotor System as Determined on the Langley Helicopter Tower. TED No. NACA DE 205

    Science.gov (United States)

    Carpenter, Paul J.; Paulnock, Russell S.

    1949-01-01

    An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.

  2. Gust-Tunnel Investigation of the Effect of a Sharp-Edge Gust on the Flapwise Blade Bending Moments of a Model Helicopter Rotor

    National Research Council Canada - National Science Library

    Maglieri, Domenic

    1955-01-01

    Preliminary investigations have been made in the Langley gust tunnel to determine the effects of a sharp-edge vertical gust on the blade flapwise vibratory bending moments of small model rotors having...

  3. Aeroelastic response and blade loads of a composite rotor in forward flight

    Science.gov (United States)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  4. A combined piezoelectric composite actuator and its application to wing/blade tips

    Science.gov (United States)

    Ha, Kwangtae

    A novel combined piezoelectric-composite actuator configuration is proposed and analytically modeled in this work. The actuator is a low complexity, active compliant mechanism obtained by coupling a modified star cross sectional configuration composite beam with a helicoidal bimorph piezoelectric actuator coiled around it. This novel actuator is a good candidate as a hinge tension-torsion bar actuator for a helicopter rotor blade flap or blade tip and mirror rotational positioning. In the wing tip case, the tip deflection angle is different only according to the aerodynamic moment depending on the hinge position of the actuator along the chord and applied voltage because there is no centrifugal force. For an active blade tip subject to incompressible flow and 2D quasi steady airloads, its twist angle is related not only to aerodynamic moment and applied voltage but also to coupling terms, such as the trapeze effect and the tennis racquet effect. Results show the benefit of hinge position aft of the aerodynamic center, such that the blade tip response is amplified by airloads. Contrary to this effect, results also show that the centrifugal effects and inertial effect cause an amplitude reduction in the response. Summation of these effects determines the overall blade tip response. The results for a certain hinge position of Xh=1.5% chord aft of the quarter chord point proves that the tip deflection target design range of beta ∈ [-2,+2] can be achieved for all pitch angle configurations chosen.

  5. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T

    2013-01-01

    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  6. Power performance optimization and loads alleviation with active flaps using individual flap control

    DEFF Research Database (Denmark)

    Pettas, Vasilis; Barlas, Athanasios; Gertz, Drew Patrick

    2016-01-01

    the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple....... In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being...

  7. High Fidelity Multidisciplinary Tool Development for Helicopter Quieting

    National Research Council Canada - National Science Library

    Chen, Chung-Lung; Chen, Ya-Chi; Chen, Bing; Jain, Rohit; Lund, Tom; Zhao, Hongwu; Wang, Z.-J; Sun, Yuzhi; Saberi, Hossein; Shih, T.-H

    2007-01-01

    .... The problem is indeed multidisciplinary. Current helicopter blade designers use computational models, which depend heavily on experimental data and cannot be used to predict any novel design, which is a significant departure from existing designs...

  8. Reduction of wind powered generator cost by use of a one bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Pruyn, R R; Wiesner, W; Ljungstroem, O [ed.

    1976-01-01

    Cost analysis supported by preliminary design studies of one and two bladed wind powered generator units shows that a 30% reduction in acquisition cost can be achieved with a one bladed design. Designs studied were sized for an output power of 1000 kilowatts. The one bladed design has the potential for reducing acquisition cost to $680 per available kilowatt if the unit is located in a region with mean surface winds of 15 mph. Vibratory loads of the one bladed design are significant and will require considerable design attention. The one per rev Coriolis torque caused by blade flapping is the most significant problem. The major source of blade flapping will be the velocity gradient of the ground boundary layer. A torsional vibration isolating coupling may be required in the generator drive to reduce the loads due to this vibratory torque. An inclined flapping hinge also is desirable to cause pitch-flap coupling that will suppress blade flap motions.

  9. 76 FR 52593 - Airworthiness Directives; Eurocopter Canada Ltd. Model BO 105 LS A-3 Helicopters

    Science.gov (United States)

    2011-08-23

    ... fatigue failure of a TT strap, loss of a blade, and subsequent loss of control of the helicopter. DATES... failure of a TT strap, loss of a blade, and subsequent loss of control of the helicopter. Since issuing... ASB also describes and contains a graph for determining the revised life limit, and provides various...

  10. Helicopters for the future

    Science.gov (United States)

    Ward, J. F.

    1984-01-01

    Technology needed to provide the basis for creating a widening rotary wing market include: well defined and proven design; reductions in noise, vibration, and fuel consumption; improvement of flying and ride quality; better safety; reliability; maintainability; and productivity. Unsteady transonic flow, yawed flow, dynamic stall, and blade vortex interaction are some of the problems faced by scientists and engineers in the helicopter industry with rotorcraft technology seen as an important development for future advanced high speed vehicle configurations. Such aircraft as the Boeing Vertol medium lift Model 360 composite aircraft, the Sikorsky Advancing Blade Concept (ABC) aircraft, the Bell Textron XV-15 Tilt Rotor Aircraft, and the X-wing rotor aircraft are discussed in detail. Even though rotorcraft technology has become an integral part of the military scene, the potential market for its civil applications has not been fully developed.

  11. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  12. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  13. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    birds , marine life and even insect wings. In some cases such as helicopters, wind turbines and compres- sors, dynamic stall becomes the primary...on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great...occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine

  14. A shape adaptive airfoil for a wind turbine blade

    Science.gov (United States)

    Daynes, Stephen; Weaver, Paul M.

    2011-04-01

    The loads on wind turbine components are primarily from the blades. It is important to control these blade loads in order to avoid damaging the wind turbine. Rotor control technology is currently limited to controlling the rotor speed and the pitch of the blades. As blades increase in length it becomes less desirable to pitch the entire blade as a single rigid body, but instead there is a requirement to control loads more precisely along the length of the blade. This can be achieved with aerodynamic control devices such as flaps. Morphing technologies are good candidates for wind turbine flaps because they have the potential to create structures that have the conflicting abilities of being load carrying, light-weight and shape adaptive. A morphing flap design with a highly anisotropic cellular structure is presented which is able to undergo large deflections and high strains without a large actuation penalty. An aeroelastic analysis couples the work done by aerodynamic loads on the flap, the flap strain energy and the required actuation work to change shape. The morphing flap is experimentally validated with a manufactured demonstrator and shown to have reduced actuation requirements compared to a conventional hinged flap.

  15. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    Science.gov (United States)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  16. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  17. The scalable design of flapping micro air vehicles inspired by insect flight

    NARCIS (Netherlands)

    Lentink, D.; Jongerius, S.R.; Bradshaw, N.L.

    2009-01-01

    Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit

  18. Development of a Wind Turbine Test Rig and Rotor for Trailing Edge Flap Investigation: Static Flap Angles Case

    International Nuclear Information System (INIS)

    Abdelrahman, Ahmed; Johnson, David A

    2014-01-01

    One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted

  19. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  20. Conference on Helicopter Structures Technology, Moffett Field, Calif., November 16-18, 1977, Proceedings

    Science.gov (United States)

    1978-01-01

    Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.

  1. Primary control of a Mach scale swashplateless rotor using brushless DC motor actuated trailing edge flaps

    Science.gov (United States)

    Saxena, Anand

    The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor

  2. A numerical analysis of the British Experimental Rotor Program blade

    Science.gov (United States)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  3. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    2014-01-01

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea......Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset...... of the measurements over a week is taken as input to stochastic load extrapolation whereby the one year extrapolated design extreme is obtained, which are then compared with the maximum extremes obtained from direct measurements over a six month period to validate the magnification in the load levels for the blade...... root flap moment, edge moment obtained by extrapolation. The validation yields valuable information on prescribing the slope of the local extrapolation curve at each mean wind speed. As an alternative to determining the contemporaneous loads for each primary extrapolated load, the blade root resultant...

  4. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  5. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros

    2015-01-01

    Within INNWIND.EU new concepts are investigated having the ultimate goal to reduce the cost per kilowatt-hour of the produced energy. With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields...... of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. Morphing technologies, along with other control concepts, are investigated under Task 2.3 of WP “Lightweight Rotor”, against aerodynamic compliance and requirements of the complete wind turbine...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...

  6. Investigation of a bearingless helicopter rotor concept having a composite primary structure

    Science.gov (United States)

    Bielawa, R. L.; Cheney, M. C., Jr.; Novak, R. C.

    1976-01-01

    Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested.

  7. 78 FR 18224 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA... Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats. This AD..., contact Robinson Helicopter Company, 2901 Airport Drive, Torrance, CA 90505; telephone (310) 539-0508; fax...

  8. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  9. Towards an industrial manufactured morphing trailing edge flap system for wind turbines

    OpenAIRE

    Aagaard Madsen , Helge; Løgstrup Andersen, Tom; Bergami, Leonardo; Jørgensen, Johnny Egtved; Candela Garolera, Anna; Holbøll, Joachim; Schettler, T.; Michels, P.; Schoebel, M.; Heisterberg, M.; Christensen, M.B.

    2014-01-01

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade has been developed in the period from 2006 to 2010 at DTU. The function of the system and its capability to change the lift on a blade section was measured during a wind tunnel experiment in 2009 with promising results. This led in 2011 to initiation of a new research project INDUFLAP with the main aim to transfer the flap technology to industry as concerns manufac...

  10. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending......, but performed poorly in torsion, when employing material off-sets....

  11. Breakdown and tracking properties of rubber materials for wind turbine blades

    DEFF Research Database (Denmark)

    Garolera, Anna Candela; Holboell, Joachim; Henriksen, Mogens

    2012-01-01

    The use of rubber materials in wind turbine blades, for example in controllable trailing edge flaps, requires research on their behavior under heavy exposure to electric fields and electrical discharges. Since the complex construction of blades usually involves several and often inhomogeneous mat...

  12. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  13. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2015-04-01

    The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.

  14. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    Science.gov (United States)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  15. Combat Rescue Helicopter (CRH)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-479 Combat Rescue Helicopter (CRH) As of FY 2017 President’s Budget Defense Acquisition...Name Combat Rescue Helicopter (CRH) DoD Component Air Force Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition... Helicopter (CRH) system will provide Personnel Recovery (PR) forces with a vertical takeoff and landing aircraft that is quickly deployable and

  16. Application of an active device for helicopter noise reduction in JAXA

    International Nuclear Information System (INIS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada

    2010-01-01

    Important issues in noise problems for current helicopters are described. An active tab (AT) was developed as a new active device for noise/vibration reduction under research cooperation between Japan Aerospace Exploration Agency (JAXA) and Kawada Industries, Inc. The wind tunnel test was conducted in order to investigate the effectiveness of the AT on the aeroacoustic characteristics of a helicopter. From the wind tunnel test, the capability of reducing blade vortex interaction (BVI) noise by an AT was verified. A new control law using instantaneous pressure change on a blade during BVI phenomena was introduced and applied to the wind tunnel testing. This new control law shows reasonable controllability for helicopter noise reduction. Furthermore, in order to analyze noise characteristics, the advanced computational fluid dynamics (CFD) code named JAXA o v3d was developed in JAXA and extended to include CFD-CSD (computational structure dynamics) coupling by using the beam theory for blade deformation. (invited paper)

  17. Computed tomography (CT) as a nondestructive test method used for composite helicopter components

    Science.gov (United States)

    Oster, Reinhold

    1991-09-01

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  18. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Henriksen, Lars Christian; Gaunaa, Mac

    2010-01-01

    . By enabling the trailing edge to move independently and quickly along the spanwise position of the blade, local small flutuations in the aerodynamic forces can be alleviated by deformation of the airfoil flap. Strain gauges are used as input for the flap controller, and the effect of placing strain gauges......The present work contains a deformable trailing edge flap controller integrated in a numerically simulated modern, variablespeed, pitch-regulated megawatt (MW)-size wind turbine. The aeroservoelastic multi-body code HAWC2 acts as a component in the control loop design. At the core of the proposed...... edge flaps on a wind turbine blade rather than a conclusive control design with traditional issues like stability and robustness fully investigated. Recent works have shown that the fatigue load reduction by use of trailing edge flaps may be greater than for traditional pitch control methods...

  19. A study of helicopter gust response alleviation by automatic control

    Science.gov (United States)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  20. Incomplete Faraday cage effect of helicopters used in platform live-line maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, G.W.; Bodger, P.S.; Woudberg, J.J. [University of Canterbury, Christchurch (New Zealand). Dept. of Electrical and Electronic Engineering

    1998-03-01

    The use of helicopters for maintenance on live overhead transmission lines has become a realistic option. The helicopter blades, body and working platform can be seen as creating an incomplete Faraday cage which may be an enhancement to live-line worker safety. This paper simulates the condition using a Faraday cage which can be dismantled in a controlled laboratory environment, to ascertain the effectiveness of apparatus. (author)

  1. Pedicled perforator flaps

    DEFF Research Database (Denmark)

    Demirtas, Yener; Ozturk, Nuray; Kelahmetoglu, Osman

    2009-01-01

    Described in this study is a surgical concept that supports the "consider and use a pedicled perforator flap whenever possible and indicated" approach to reconstruct a particular skin defect. The operation is entirely free-style; the only principle is to obtain a pedicled perforator flap...... to reconstruct the defect. The perforators are marked with a hand-held Doppler probe and multiple flaps are designed. The appropriate flap is elevated after identifying the perforator(s). Dissection of the perforator(s) or complete incision of the flap margins are not mandatory if the flap is mobilized...... adequately to cover the defect. Defects measuring 3 x 3 cm up to 20 x 20 cm at diverse locations were successfully reconstructed in 20 of 21 patients with 26 flaps. Pedicled perforator flaps offer us reliable and satisfactory results of reconstruction at different anatomic territories of the body. It sounds...

  2. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  3. Aeroelastic behavior of composite rotor blades with swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  4. Development of adaptive helicopter seat systems for aircrew vibration mitigation

    Science.gov (United States)

    Chen, Yong; Wickramasinghe, Viresh; Zimcik, David G.

    2008-03-01

    Helicopter aircrews are exposed to high levels of whole body vibration during flight. This paper presents the results of an investigation of adaptive seat mount approaches to reduce helicopter aircrew whole body vibration levels. A flight test was conducted on a four-blade helicopter and showed that the currently used passive seat systems were not able to provide satisfactory protection to the helicopter aircrew in both front-back and vertical directions. Long-term exposure to the measured whole body vibration environment may cause occupational health issues such as spine and neck strain injuries for aircrew. In order to address this issue, a novel adaptive seat mount concept was developed to mitigate the vibration levels transmitted to the aircrew body. For proof-of-concept demonstration, a miniature modal shaker was properly aligned between the cabin floor and the seat frame to provide adaptive actuation authority. Adaptive control laws were developed to reduce the vibration transmitted to the aircrew body, especially the helmet location in order to minimize neck and spine injuries. Closed-loop control test have been conducted on a full-scale helicopter seat with a mannequin configuration and a large mechanical shaker was used to provide representative helicopter vibration profiles to the seat frame. Significant vibration reductions to the vertical and front-back vibration modes have been achieved simultaneously, which verified the technical readiness of the adaptive mount approach for full-scale flight test on the vehicle.

  5. 77 FR 63260 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-10-16

    ... Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Robinson Helicopter Company (Robinson) Model R44 and R44 II helicopters equipped with emergency floats, which would require...

  6. 77 FR 12991 - Airworthiness Directives; Robinson Helicopter Company Helicopters

    Science.gov (United States)

    2012-03-05

    ... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA...) that was published in the Federal Register. That AD applies to Robinson Helicopter Company (Robinson) Model R22, R22 Alpha, R22 Beta, R22 Mariner, R44, and R44 II helicopters. The paragraph reference in...

  7. 77 FR 68055 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for Bell Helicopter Textron (BHT) Model 412, 412EP, and 412CF helicopters. This AD requires a repetitive inspection of the...

  8. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    Science.gov (United States)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  9. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  10. A new aeroelastic model for composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  11. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ....... The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved...

  12. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    Science.gov (United States)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  13. Helicopter noise in hover: Computational modelling and experimental validation

    Science.gov (United States)

    Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.

    2017-11-01

    The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.

  14. Influence of cross section variations on the structural behaviour of composite rotor blades

    Science.gov (United States)

    Rapp, Helmut; Woerndle, Rudolf

    1991-09-01

    A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.

  15. An investigation of unsteady 3-D effects on trailing edge flaps

    Directory of Open Access Journals (Sweden)

    E. Jost

    2017-05-01

    Full Text Available The present study investigates the impact of unsteady 3-D aerodynamic effects on a wind turbine blade with trailing edge flap by means of computational fluid dynamics (CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 to 80 % blade radius. The deflection frequency is varied in the range between 1 and 6 p. To quantify 3-D effects, rotor simulations are compared to 2-D airfoil computations and the 2-D theory by Theodorsen. It was found that the deflection of the flap on the 3-D rotor causes a complex wake development and induction which influences the loads over large parts of the blade. In particular, the rotor near wake with its trailing and shed vortex structures revealed a great impact. Trailing vorticity, a 3-D phenomenon, is caused by the gradient of bound circulation along the blade span. Shed vorticity originates from the temporal bound circulation gradient and is thus also apparent in 2-D. Both lead to an amplitude reduction and shed vorticity additionally to a hysteresis of the lift response with regard to the deflection signal in the flap section. A greater amplitude reduction and a less pronounced hysteresis is observed on the 3-D rotor compared to the 2-D airfoil case. Blade sections neighboring the flap experience, however, an opposing impact and hence partly compensate for the negative effect of trailing vortices in the flap section with respect to integral loads. Comparisons to steady flap deflections at the 3-D rotor revealed the high influence of dynamic inflow effects.

  16. An examination of the spectral class low frequency limit for helicopters

    Science.gov (United States)

    2011-01-01

    Currently, INM and AEDT do not use spectral data below 50 Hz in their noise computations. However, helicopter rotor rotational noise is dominant below 50Hz, with a fundamental frequency at the blade-pass frequency (BPF) and harmonics at integer multi...

  17. 100-kW hingeless metal wind turbine blade design, analysis and fabrication

    Science.gov (United States)

    Donham, R. E.; Schmidt, J.; Linscott, B. S.

    1975-01-01

    The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.

  18. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  19. Turbomachine blade assembly

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  20. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  1. 77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2012-05-22

    ...-0530; Directorate Identifier 2011-SW-075-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Bell Helicopter...

  2. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter

    2013-01-01

    major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  4. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  5. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ONE: PRELIMINARY DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.; Chow, Ray [Zimitar, Inc.; Nordenholz, Thomas R. [The California Maritime Academy; Wamble, John Lee [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  6. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME ZERO: OVERVIEW AND COMMERCIAL PATH

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  7. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME TWO: INNOVATION & COST OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  8. HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Zuteck, Michael D. [Zimitar, Inc.; Jackson, Kevin L. [Zimitar, Inc.; Santos, Richard A. [Zimitar, Inc.

    2015-05-16

    The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.

  9. Transonic airfoil design for helicopter rotor applications

    Science.gov (United States)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  10. Design and testing of a deformable wind turbine blade control surface

    International Nuclear Information System (INIS)

    Daynes, S; Weaver, P M

    2012-01-01

    Wind tunnel tests were conducted on a 1.3 m chord NACA 63–418 blade section fitted with an adaptive trailing edge flap. The 20% chord flap had an aramid honeycomb core covered with a silicone skin and was actuated using servo motors. The honeycomb core had a high stiffness in the thickness direction but was compliant in chordwise bending. These anisotropic properties offer a potential solution for the conflicting design requirements found in morphing trailing edge structures. Static and dynamic tests were performed up to a Reynolds number of 5.4 × 10 6 . The tests showed that deflecting the flap from − 10° to + 10° changes the blade section lift coefficient by 1.0 in non-stalled conditions. Dynamic tests showed the flap to be capable of operating up to 9° s −1 using a 15 V power supply. A two-dimensional static aeroelastic model of the morphing flap was developed to analyse strains, predict actuator requirements and study fluid–structure interaction effects. The model was used to conduct parametric studies to further improve the flap design. Potential applications include wind turbine blade load alleviation and increased wind energy capture. (paper)

  11. Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance

    Science.gov (United States)

    Young, M. I.; Bailey, D. J.; Hirschbein, M. S.

    1974-01-01

    The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability.

  12. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  13. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  14. Break in microkeratome oscillating pin during LASIK flap creation.

    Science.gov (United States)

    Balachandran, Chandrashekar; Aslanides, Ioannis M

    2010-06-01

    We describe the case of a 40-year-old female myope who presented for bilateral LASIK. Intra-operatively, the microkeratome oscillating pin broke during flap creation resulting in the separation of the disposable blade from the motor. This resulted in an irregular flap with missing pieces. The procedure was abandoned and the macerated partial flap repositioned as best as possible. The patient recovered a BCVA of 6/7.5. The manufacturer has since reported taking corrective measures to prevent this problem in the future. This case is a reminder that despite care and maintenance by user and manufacturer, extreme and rare hardware malfunctions can occur. Furthermore, although potentially sight threatening if managed well these complications can be followed by good recovery of vision.

  15. Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil...... section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap...... is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement...

  16. Method and apparatus for controlling pitch and flap angles of a wind turbine

    Science.gov (United States)

    Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA

    2009-05-12

    A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.

  17. 77 FR 52264 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2012-08-29

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... Airworthiness Directive (AD): Hughes Helicopters Inc., and McDonnel Douglas Helicopter Systems (Type Certificate...

  18. 78 FR 18226 - Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems...

    Science.gov (United States)

    2013-03-26

    ... Airworthiness Directives; Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type Certificate... directive (AD): 2013-05-16 Hughes Helicopters, Inc., and McDonnell Douglas Helicopter Systems (Type...

  19. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  20. Variability of extreme flap loads during turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Ronold, K O [Det Norske Veritas, Hoevik (Norway); Larsen, G C [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The variability of extreme flap loads is of utmost importance for design of wind-turbine rotor blades. The flap loads of interest consist of the flap-wise bendin moment response at the blade root whose variability in the short-term, for a given wind climate, can be represented by a stationary process. A model for the short-term bending moment process is presented, and the distribution of its associated maxima is derived. A model for the wind climate is given in terms of the probability distributions for the 10-minute mean wind speed and the standard deviation of the arbitrary wind speed. This is used to establish the distribution of the largest flap-wise bending moment in a specific reference period, and it is outlined how a characteristic bending moment for use in design can be extracted from this distribution. The application of the presented distribution models is demonstrated by a numerical example for a site-specific wind turbine. (au)

  1. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  2. Time Periodic Control of a Multi-Blade Helicopter.

    Science.gov (United States)

    1988-05-01

    part of an element of p X rotor inflow ratio; Langrangian multiplier; Poincare exponent H rotor inflow ratio with respect to the hub *P plane A...and a $ complex conjugate pair in the right- half plane resulting from ( the longitudinal velocity and pitch coupling. Without a horizontal tail, the ... Poincare Exponents . . .. 182 VI. Controller Gains ...... ................ 184 viii I ’Q List of Symbols Listed below are the principal symbols used in this

  3. Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load reduction and system identification

    DEFF Research Database (Denmark)

    Castaignet, Damien; Barlas, Thanasis K.; Buhl, Thomas

    2014-01-01

    model, from trailing edge flap angle to flapwise blade root moment, was derived and compared with the linear analytical model used in the model predictive control design model. Flex5 simulations run with the same model predictive control showed a good correlation between the simulations......A full-scale test was performed on a Vestas V27 wind turbine equipped with one active 70 cm long trailing edge flap on one of its 13 m long blades. Active load reduction could be observed in spite of the limited spanwise coverage of the single active trailing edge flap. A frequency-weighted model...

  4. [Saphenous perforator flap].

    Science.gov (United States)

    Winkel, R; Tajsic, N; Husum, H; Schlageter, M; Hanebuth, G; Hoffmann, R

    2013-04-01

    Replacement of full thickness soft tissue defects in the lower leg and ankle, appropriate to the defect and following the course of blood vessels feeding the skin of a distally hinged fasciocutaneous flap most reliably based on the individual anatomy of distal perforators of the posterior tibial artery. Full thickness soft tissue defects, up to 12 cm in length and up to 8 cm in width. Sufficient vascularization of the foot required, in osteomyelitis, and when joints, fractures, implants and tendons are exposed and when a split skin graft, a local flap, a suralis perforator flap or a free flap is not indicated. For patients, in whom a 1-2 h operation is not possible; necessity of angioplasty; decollement or scars around the distal perforators of the posterior tibial artery; local infection or necrosis of soft tissues and/or bone, which cannot be totally excised. Radical debridement; flap dissection without tourniquet; microdissection; design of the flap on the skin: pivot point ~ 10 cm (6-14 cm) proximal of the tip of the medial malleolus; base ~ 5 cm in width, between the course of the saphenous nerve and of the great saphenous vein and the Achilles tendon; adipofascial pedicle up to 15 cm in length sited over the septum between soleus and flexor digitorum muscles, following the course of the saphenous nerve, with a central skin stripe, which expands into a proximal skin island; skin island is outlined similar to the defect, but larger by 1 to 2 cm, surrounded by an adipofascial border: adjustment of the planning as well as of the elevation of these flaps according to the individual position and the caliber of perforators requires in each case the search for a perforator at the estimated pivot point. Delay of transposition, if the division of more than one perforator proximal to the pivot point obviously diminishes circulation. No "tunnelling "of the pedicle; defects of skin due to the elevation of the flap are replaced by split and meshed skin grafts or temporary

  5. Influence of inflow angle on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Li, Z M; Li, C

    2013-01-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance

  6. Active twist of model rotor blades with D-spar design

    Directory of Open Access Journals (Sweden)

    A. Kovalovs

    2007-03-01

    Full Text Available The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D-spar made of UD GFRP, skin made of +45o/–45o GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam - by 3D 20-node structural solid elements SOLID186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.

  7. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  8. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  9. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

    Science.gov (United States)

    Kovalovs, A.; Barkanov, E.; Ruchevskis, S.; Wesolowski, M.

    2017-05-01

    An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

  10. Fiscal 2000 pioneering research report on the research on advanced safety helicopter; 2000 nendo advanced safety helicopter no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted concerning helicopter operating environments and the trends of related technologies in Japan and abroad, and the needs and seeds were grasped. Research was made to study technical problems and measures to solve them for the development of a safe, low-noise, and low-cost next-generation advanced safety helicopter (ASH). A market research was conducted on traffic systems in the future, state of aviation-related infrastructures and their future, current state of people's daily life which centers about locomotion, and the effect that ASH would impose on society. A technical research was carried out relative to flight safety, which involved EVS (enhanced vision system), information display system for helicopters, collision avoidance advisory for pilots, air collision prevention system/surveillance system for helicopters, obstacle detection/warning system for helicopters, blade deicing system for helicopters, and so forth. Detailed investigations were also conducted for technologies for reduction in the manufacturing, maintenance, and development costs, and for reduction in noise. (NEDO)

  11. Towards a better understanding of helicopter external noise

    Science.gov (United States)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  12. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades...... the innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating...... rotor....

  13. Aeroelastic stability and response of horizontal axis wind turbine blades

    Science.gov (United States)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  14. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...... carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing......The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...

  15. Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    to withstand. The investigation focuses on a specific actuator type: the Adaptive Trailing Edge Flap (ATEF), which introduces a continuous deformation of the aft part of the airfoil camber-line. An aerodynamic model that accounts for the steady and unsteady effects of the flap deflection on a 2D airfoil...... section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able...... with flaps laid out on the outer 20 % of the blade span, from 77 % to 97% of the blade length. The configuration is first tested with a simplified cyclic control approach, which gives a preliminary indication of the load alleviation potential, and also reveals the possibility to enhance the rotor energy...

  16. Safe-life and damage-tolerant design approaches for helicopter structures

    Science.gov (United States)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  17. Adaptation of the Neural Network Recognition System of the Helicopter on Its Acoustic Radiation to the Flight Speed

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2015-01-01

    Full Text Available The article concerns the adaptation of a neural tract that recognizes a helicopter from the aerodynamic and ground objects by its acoustic radiation to the helicopter flight speed. It uses non-centered informative signs-indications of estimating signal spectra, which correspond to the local extremes (maximums and minimums of the power spectrum of input signal and have the greatest information when differentiating the helicopter signals from those of tracked vehicles. The article gives justification to the principle of the neural network (NN adaptation and adaptation block structure, which solves problems of blade passage frequency estimation when capturing the object and track it when tracking a target, as well as forming a signal to control the resonant filter parameters of the selection block of informative signs. To create the discriminatory characteristics of the discriminator are used autoregressive statistical characteristics of the quadrature components of signal, obtained through the discrete Hilbert Converter (DGC that perforMathematical modeling of the tracking meter using the helicopter signals obtained in real conditions is performed. The article gives estimates of the tracking parameter when using a tracking meter with DGC by sequential records of realized acoustic noise of the helicopter. It also shows a block-diagram of the adaptive NN. The scientific novelty of the work is that providing the invariance of used informative sign, the counts of local extremes of power spectral density (PSD to changes in the helicopter flight speed is reached due to adding the NN structure and adaptation block, which is implemented as a meter to track the apparent passage frequency of the helicopter rotor blades using its relationship with a function of the autoregressive acoustic signal of the helicopter.Specialized literature proposes solutions based on the use of training classifiers with different parametric methods of spectral representations

  18. Blowing Flap Experiment: PIV Measurements

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Bremmer, David M.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the flap vortex system. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  19. CAA modeling of helicopter main rotor in hover

    Directory of Open Access Journals (Sweden)

    Kusyumov Alexander N.

    2017-01-01

    Full Text Available In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers. Farfield noise at a remote observer position is calculated at post processing stage using FW–H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  20. CAA modeling of helicopter main rotor in hover

    Science.gov (United States)

    Kusyumov, Alexander N.; Mikhailov, Sergey A.; Batrakov, Andrey S.; Kusyumov, Sergey A.; Barakos, George

    In this work rotor aeroacoustics in hover is considered. Farfield observers are used and the nearfield flow parameters are obtained using the in house HMB and commercial Fluent CFD codes (identical hexa-grids are used for both solvers). Farfield noise at a remote observer position is calculated at post processing stage using FW-H solver implemented in Fluent and HMB. The main rotor of the UH-1H helicopter is considered as a test case for comparison to experimental data. The sound pressure level is estimated for different rotor blade collectives and observation angles.

  1. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL Project. Part II: Aeroelastic Stability Investigations

    Science.gov (United States)

    Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.

    2003-10-01

    The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.

  2. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul

    2010-01-01

    In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...... rotor-blade/control-system model was loosely coupled with various inflow and wake models in order to simulate both hover and forward-flight conditions. The resulting rotor blade response and pitch link loads are in good agreement with those predicted byCAMRADII. The present analysis features both model...... on an intrinsic formulation of moving beams implemented in the time domain. The rotor control system was modeled as a combination of rigid and elastic components. A multicomponent analysis was then developed by coupling the beam finite element model with the rotor control system model to obtain a complete rotor-blade/control...

  3. Operational Helicopter Aviation Medicine

    Science.gov (United States)

    1978-12-01

    attachments through the years; and finally, the blades used the same technology as in the U.S.--aluminum extruded leading edge spar and aluminum sheet...fabric cover- ing. Subsequent models have aluminum extruded spars and aluminum pockets. The blades are electrically de-iced as is the windshield. The...x 2000 to x x x 2145 Flight x x x x x 2200 to x x x 2345 Flight x x x x x x 2400 to Snack & x 0100 Testing x x x x 22-3 TABLE 2 FLIGHT PROFILE Bad

  4. Mechanisms and actuators for rotorcraft blade morphing

    Science.gov (United States)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  5. 78 FR 1730 - Airworthiness Directives; Bell Helicopter Textron Inc. Helicopters

    Science.gov (United States)

    2013-01-09

    ... Helicopter Textron Inc. (BHTI) Model 205A, 205A-1, and 205B helicopters with certain starter/generator power... that may lead to a fire in the starter/generator, smoke in the cockpit that reduces visibility, and... Office, M-30, West Building Ground Floor, Room W12- 140, 1200 New Jersey Avenue SE., Washington, DC 20590...

  6. 77 FR 729 - Airworthiness Directives; Enstrom Helicopter Corporation Helicopters

    Science.gov (United States)

    2012-01-06

    ... to the specified helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ... helicopters with a reversible trim motor, P/N 28-16621 (Ford Motor Company C1AZ- 14553A) or P/N AD1R-10...

  7. Testing of a new morphing trailing edge flap system on a novel outdoor rotating test rig

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    The morphing trailing edge system or flap system, CRTEF, has been developed over the last 10 years at DTU Wind Energy. After a promising wind tunnel test of the system in 2009 the INDUFLAP project has been carried out from 2011-2014 to transfer the technology from laboratory to industrial...... manufacturing and application. To narrow the gap between wind tunnel testing and full scale prototype testing we developed the rotating test rig. The overall objectives with the rotating test rig are: 1) to test the flap system in a realistic rotating environment with a realistic g-loading; 2) to measure...... the flap performance in real turbulent inflow and 3) to test the flap system in a realistic size and Reynolds number when comparing with full scale applications.. The rotating test rig consists of a 2.2m blade section attached to a 10m boom and mounted on a 100kW turbine platform. It was installed in June...

  8. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    Science.gov (United States)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  9. Tiltrotor research aircraft composite blade repairs: Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  10. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1992-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  11. 46 CFR 108.653 - Helicopter facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  12. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  13. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  14. The Versatile Modiolus Perforator Flap

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Thomsen, Jorn Bo

    2016-01-01

    BACKGROUND: Perforator flaps are well established, and their usefulness as freestyle island flaps is recognized. The whereabouts of vascular perforators and classification of perforator flaps in the face are a debated subject, despite several anatomical studies showing similar consistency. In our...... experience using freestyle facial perforator flaps, we have located areas where perforators are consistently found. This study is focused on a particular perforator lateral to the angle of the mouth; the modiolus and the versatile modiolus perforator flap. METHODS: A cohort case series of 14 modiolus...... perforator flap reconstructions in 14 patients and a color Doppler ultrasonography localization of the modiolus perforator in 10 volunteers. RESULTS: All 14 flaps were successfully used to reconstruct the defects involved, and the location of the perforator was at the level of the modiolus as predicted...

  15. The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling

    Science.gov (United States)

    Schmitz, Frederic H.; Greenwood, Eric

    2011-01-01

    A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.

  16. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    Science.gov (United States)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  17. World helicopter market study

    Science.gov (United States)

    Cleary, B.; Pearson, R. W.; Greenwood, S. W.; Kaplan, L.

    1978-01-01

    The extent of the threat to the US helicopter industry posed by a determined effort by foreign manufacturers, European companies in particular, to supply their own domestic markets and also to penetrate export markets, including the USA is assessed. Available data on US and world markets for civil and military uses are collated and presented in both graphic and tabular form showing the past history of production and markets and, where forecasts are available, anticipated future trends. The data are discussed on an item-by-item basis and inferences are drawn in as much depth as appears justified.

  18. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  19. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2005-01-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1.18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should...... on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating...... frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice....

  20. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  1. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter

    International Nuclear Information System (INIS)

    Usherwood, James R

    2009-01-01

    Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions

  2. Ceramic blade attachment system

    Science.gov (United States)

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  3. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  4. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  5. The freestyle pedicle perforator flap

    DEFF Research Database (Denmark)

    Gunnarsson, Gudjon Leifur; Jackson, Ian T; Westvik, Tormod S

    2015-01-01

    BACKGROUND: Perforating vessels are a consistent anatomical finding and well described in the current literature. Any skin flap can be raised on a subcutaneous pedicle as long as it contains at least one supplying perforator. Perforator flaps have been interlinked with microsurgery and generally...... not widely performed by the general plastic surgeons. The aim of this paper is to present the simplicity of pedicled perforator flap reconstruction of moderate-sized defects of the extremities and torso. METHODS: We retrospectively reviewed the charts of 34 patients reconstructed using 34 freestyle pedicled...... perforator flaps for moderate-sized defects of the truncus and extremities. We registered indications, flap size and localization, success rate, and complications. Most importantly, we describe a simple approach to the design of freestyle pedicled perforator flaps and elaborate on technical aspects...

  6. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  7. Vertebral pain in helicopter pilots

    Science.gov (United States)

    Auffret, R.; Delahaye, R. P.; Metges, P. J.; VICENS

    1980-01-01

    Pathological forms of spinal pain engendered by piloting helicopters were clinically studied. Lumbalgia and pathology of the dorsal and cervical spine are discussed along with their clinical and radiological signs and origins.

  8. A new experimental method for determining local airloads on rotor blades in forward flight

    Science.gov (United States)

    Berton, E.; Maresca, C.; Favier, D.

    This paper presents a new approach for determining local airloads on helicopter rotor blade sections in forward flight. The method is based on the momentum equation in which all the terms are expressed by means of the velocity field measured by a laser Doppler velocimeter. The relative magnitude of the different terms involved in the momentum and Bernoulli equations is estimated and the results are encouraging.

  9. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  10. Keystone flaps in coloured skin: Flap technology for the masses?

    Directory of Open Access Journals (Sweden)

    Satish P Bhat

    2013-01-01

    Full Text Available Introduction: Viscoelastic properties of skin in coloured ethnic groups are less favourable compared to Caucasians for executing Keystone flaps. Keystone flaps have so far been evaluated and reported only in Caucasians. The potential of Keystone flaps in a coloured ethnic group is yet unknown. Aim: This article reviews the experience to reconstruct skin defects presenting in a coloured ethnic group, by using Keystone flaps, with a review of existing literature. Design: Uncontrolled case series. Materials and Methods: This retrospective review involves 55 consecutive Keystone flaps used from 2009 to 2012, for skin defects in various locations. Patient demographic data, medical history, co-morbidity, surgical indication, defect features, complications, and clinical outcomes are evaluated and presented. Results: In this population group with Fitzpatrick type 4 and 5 skin, the average patient age was 35.73. Though 60% of flaps (33/55 in the series involved specific risk factors, only two flaps failed. Though seven flaps had complications, sound healing was achieved by suitable intervention giving a success rate of 96.36%. Skin grafts were needed in only four cases. Conclusions: Keystone flaps achieve primary wound healing for a wide spectrum of defects with an acceptable success rate in a coloured skin population with unfavorable biophysical properties. By avoiding conventional local flaps and at times even microsurgical flaps, good aesthetic outcome is achieved without additional skin grafts or extensive operative time. All advantages seen in previous studies were verified. These benefits can be most appreciated in coloured populations, with limited resources and higher proportion of younger patients and unfavorable defects.

  11. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitale for modelleing attached flows. It is therefore mostly using the potential theory, suitable for modelling attahed flows. It is therefore mostly applicable for Pitch Regualted Variabel Speed (PRVS......A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and therefore, the stresses present in a real...

  12. Nine Years of Cooperation: The US-German Memorandum of Understanding (MoU) on Helicopter Aeromechanics 2003-2012

    Science.gov (United States)

    2013-12-01

    qualities of side-stick controlled helicopters was given the “Ian Cheeseman Best Paper Award” at the Eu - ropean Rotorcraft Forum 2012. ii    As...Forum of the AHS, Phoenix, 2006 35    [22] Gardner, Anthony D., Richter, Kai, Rosemann, Henning : Simulation of Oscillat- ing Airfoils and Moving Flaps...Numerical Methods, 65th Annual Forum of the AHS, Grape- vine, TX, 2009 [26] Gardner, Anthony D., Richter, Kai, Rosemann, Henning : Numerical Investiga

  13. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  14. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  15. Analogy between a flapping wing and a wind turbine with a vertical axis of revolution

    Science.gov (United States)

    Gorelov, D. N.

    2009-03-01

    Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness.

  16. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  17. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  18. Simulations of a rotor with active deformable trailing edge flaps in half-wake inflow: Comparison of EllipSys 3D with HAWC2

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Zahle, Frederik; Sørensen, Niels N.

    2012-01-01

    Various research projects have focused on active aerodynamic load control of wind turbines using control devices on the blades, for example flaps. The aerodynamic load predictions of utilized aeroelastic codes have not yet been fully validated with full rotor CFD or experimental results. In this ...... a controller based on a Pitot tube velocity feedback measured at flap mid-span. Good agreement is found between EllipSys3D and HAWC2 in the prediction of the dynamic blade loads, considering the high complexity of the flow case....

  19. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  20. Full Scale Test SSP 34m blade, Combined load. Data report

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Nielsen, Magda; Jensen, Find Mølholt

    This report is part of the research project entitled “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55...... of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades’ respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed....

  1. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    Science.gov (United States)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  2. The Efficiency of a Hybrid Flapping Wing Structure—A Theoretical Model Experimentally Verified

    Directory of Open Access Journals (Sweden)

    Yuval Keren

    2016-07-01

    Full Text Available To propel a lightweight structure, a hybrid wing structure was designed; the wing’s geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping pattern was designed and manufactured, and a set of experiments for various parameters was performed. The simplified analytical model was updated according to the tests results, compensating for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations. The propelling efficiency of the hovering wing at various design parameters was calculated using the updated model. It was further validated by testing a smaller wing flapping at a higher frequency. Good and consistent test results were obtained in line with the updated model, yielding a simple, yet accurate tool, for flapping wings design.

  3. Helicopter fuel burn modeling in AEDT.

    Science.gov (United States)

    2011-08-01

    This report documents work done to enhance helicopter fuel consumption modeling in the Federal Aviation : Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data : were collected from helicopter flig...

  4. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    Electro-Technical Commission standard (IEC 61400-23). For static tests, the blade is pulled in either flap-wise or edge-wise directions to measure deflection or distributed strain at a few limited locations of a large-sized blade. Additionally, the paper explores the error associated with using a multi-camera system (two stereo-vision systems) in measuring 3D displacement and extracting structural dynamic parameters on a mock set up emulating a utility-scale wind turbine blade. The results obtained in this paper reveal that the multi-camera measurement system has the potential to identify the dynamic characteristics of a very large structure.

  5. Adaptive trailing edge flaps for active load alleviation in a smart rotor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.

    2013-08-15

    The work investigates the development of an active smart rotor concept from an aero-servo-elastic perspective. An active smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators, is able to alleviate the fluctuating part of the aerodynamic loads it has to withstand. The investigation focuses on a specific actuator type: the Adaptive Trailing Edge Flap (ATEF), which introduces a continuous deformation of the aft part of the airfoil camber-line. An aerodynamic model that accounts for the steady and unsteady effects of the flap deflection on a 2D airfoil section is developed, and, considering both attached and separated flow conditions, is validated by comparison against Computational Fluid Dynamic solutions and a panel code method. The aerodynamic model is integrated in the BEM-based aeroelastic simulation code HAWC2, thus providing a tool able to simulate the response of a wind turbine equipped with ATEF. A load analysis of the NREL 5 MW reference turbine in its baseline configuration reveals that the highest contribution to the blade flapwise fatigue damage originates from normal operation above rated wind speed, and from loads characterized by frequencies below 1 Hz. The analysis also reports that periodic load variations on the turbine blade account for nearly 11 % of the blade flapwise lifetime fatigue damage, while the rest is ascribed to load variations from disturbances of stochastic nature. The study proposes a smart rotor configuration with flaps laid out on the outer 20 % of the blade span, from 77 % to 97% of the blade length. The configuration is first tested with a simplified cyclic control approach, which gives a preliminary indication of the load alleviation potential, and also reveals the possibility to enhance the rotor energy capture below rated conditions by using the flaps. Two model based control algorithms are developed to actively alleviate the fatigue loads on the smart rotor with ATEF. The first

  6. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  7. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  8. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  9. Propeller Flaps: A Literature Review.

    Science.gov (United States)

    Sisti, Andrea; D'Aniello, Carlo; Fortezza, Leonardo; Tassinari, Juri; Cuomo, Roberto; Grimaldi, Luca; Nisi, Giuseppe

    2016-01-01

    Since their introduction in 1991, propeller flaps are increasingly used as a surgical approach to loss of substance. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rates using this reconstructing technique through a literature review. A search on PubMed was performed using "propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap" as key words. We selected clinical studies using propeller flaps as a reconstructing technique. We found 119 studies from 1991 to 2015. Overall, 1,315 propeller flaps were reported in 1,242 patients. Most frequent indications included loss of substance following tumor excision, repair of trauma-induced injuries, burn scar contractures, pressure sores and chronic infections. Complications were observed in 281/1242 patients (22.6%) occurring more frequently in the lower limbs (31.8%). Partial flap necrosis and venous congestion were the most frequent complications. The complications' rate was significantly higher in infants (70 years old) but there was not a significant difference between the sexes. Trend of complication rate has not improved during the last years. Propeller flaps showed a great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost. The quality and volume of the transferred soft tissue, the scar orientation and the possibility of direct donor site closure should be considered in order to avoid complications. Indications for propeller flaps are small- or medium-sized defects located in a well-vascularized area with healthy surrounding tissues. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  11. 46 CFR 109.577 - Helicopter fueling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling. 109.577 Section 109.577 Shipping... Miscellaneous § 109.577 Helicopter fueling. (a) The master or person in charge shall designate persons to conduct helicopter fueling operations. (b) Portable tanks are handled and stowed in accordance with...

  12. A study on double flap of Wells turbine for wave power conversion

    International Nuclear Information System (INIS)

    Kim, J. H.; Kim, B. S.; Lee, Y. H.; Yoon, S. H.; Lee, Y. W.

    2001-01-01

    A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 0021 wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis

  13. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    Science.gov (United States)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  14. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  15. Subsonic Swept Fan Blade

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  16. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  17. The Temporalis Muscle Flap in Maxillofacial Reconstruction

    International Nuclear Information System (INIS)

    ElSheikh, M; Zeitoun, I; ElMassry, M A K

    1991-01-01

    The temporalis muscle flap is a very versatile and valuable axial flap, which could be used in various reconstructive procedures in and around the oro-maxillofacial region. The surgical anatomy, vascular pattern and technique of elevation of the flap are described, together with our experience in different reconstructive situations. The advantages and disadvantages of the use of this flap are thoroughly discussed taking into consideration the potentiality of cancer recurrence under cover of the flap. (author)

  18. Helicopter transport: help or hindrance?

    Science.gov (United States)

    Plevin, Rebecca E; Evans, Heather L

    2011-12-01

    Traumatic injury continues to be a significant cause of morbidity and mortality in the year 2011. In addition, the healthcare expenditures and lost years of productivity represent significant economic cost to the affected individuals and their communities. Helicopters have been used to transport trauma patients for the past 40 years, but there are conflicting data on the benefits of helicopter emergency medical service (HEMS) in civilian trauma systems. Debate persists regarding the mortality benefit, cost-effectiveness, and safety of helicopter usage, largely because the studies to date vary widely in design and generalizability to trauma systems serving heterogeneous populations and geography. Strict criteria should be established to determine when HEMS transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate helicopter transport into their triage model. Research suggests that HEMS improves mortality in certain subgroups of trauma patients, both after transport from the scene of injury and following interfacility transport. Studies examining the cost-effectiveness of HEMS had mixed results, but the majority found that it is a cost-effective tool. Safety remains an issue of contention with HEMS transport, as helicopters are associated with significant safety risk to the crew and patient. However, this risk may be justified provided there is a substantial mortality benefit to be gained. Recent studies suggest that strict criteria should be established to determine when helicopter transport is warranted and most likely to positively affect patient outcomes. Individual trauma systems should conduct an assessment of their resources and needs in order to most effectively incorporate HEMS into their triage model. This will enable regional hospitals to determine if the costs and safety risks associated with HEMS are worthwhile

  19. The Pedicled LICAP Flap Combined with a Free Abdominal Flap In Autologous Breast Reconstructions

    Directory of Open Access Journals (Sweden)

    Thomas Sjøberg, MD

    2018-01-01

    Conclusion:. In selected patients with insufficient abdominal flap tissue, a combination of a free abdominal flap and a pedicled LICAP flap is a valuable option to increase breast size and cosmetic outcome. Additional symmetrizing surgery might still be necessary.

  20. THE EFFECT OF DIFFERENT OPTIONS OF BLADES MAIN ROTOR ON THE X-SHAPED TAIL ROTOR OF THE MI-171 LL

    Directory of Open Access Journals (Sweden)

    Valery A. Ivchin

    2018-01-01

    Full Text Available This paper describes the effect of different rotor blades on the X-shaped tail rotor of the Mi-171 LL, observed conducting flight tests. The tests were carried out on the same helicopter in the similar atmospheric conditions.The objective of the tests was the comparison of flight performance of two sets of rotor blades of the helicopter Mi-171 LL. However, materials test revealed a difference in the angles of the tail rotor at different MRs with the same takeoff weight.The authors are grateful to I.G. Peskov, S.R. Zamula and A.I. Orlov for assistance in carrying out this work and the preparation of this article.Noted that the helicopter takeoff weight when hovering out of ground effect in ISA with blades from polymer composite materials (PCM exceeds the takeoff weight of the helicopter with the serial blades in the nominal mode of the engine operation at ~ 750kg, in the takeoff mode at ~ 700kg.Knowing the altitude and climatic characteristics of the engine, the obtained dependence allows to determine the balancing value of jрв on hovering at different combinations of pressure altitude and outside air temperature for a given speed of the main rotor (MR.It follows from the work that when the same value Nпр(95/nнвпр3 or Nfact the balancing values of jрв for the helicopter with the main rotor blades from the PCM is less than for the helicopters with serial blades by 0.5…0.9°. The difference in the angles of the tail rotor increases with growing of Nепр(95/nнвпр3 (Nfact. Perhaps this is caused by different induction effect of the main rotor on the tail rotor to the MR from PCM and the serial ones.As follows from the materials, the thrust of the main rotor with blades from PCM with the same engine power is more in comparison with the serial blades. Consequently inductive speeds of the main rotor are more and the angles of the tail rotor are less. It can be assumed that a large induced velocity of the main rotor increases the thrust

  1. Flap Edge Noise Reduction Fins

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  2. 78 FR 9793 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2013-02-12

    ...-numbered main rotor hub inboard strap fittings (fittings). This AD requires magnetic particle inspecting... identified in this AD, contact Bell Helicopter Textron, Inc., P.O. Box 482, Fort Worth, TX 76101, telephone..., perform a magnetic particle inspection (MPI) of each fitting for a crack. If an MPI was already performed...

  3. Investigation of the maximum load alleviation potential using trailing edge flaps controlled by inflow data

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge

    2014-01-01

    The maximum fatigue load reduction potential when using trailing edge flaps on mega-watt wind turbines was explored. For this purpose an ideal feed forward control algorithm using the relative velocity and angle of attack at the blade to control the loads was implemented. The algorithm was applied...... to time series from computations with the aeroelastic code HAWC2 and to measured time series. The fatigue loads could be reduced by 36% in the computations if the in flow sensor was at the same position as the blade load. The decrease of the load reduction potential when the sensor was at a distance from...... the blade load location was investigated. When the algorithm was applied to measured time series a load reduction of 23% was achieved which is still promissing, but significantly lower than the value achieved in computations....

  4. Ceramic blade with tip seal

    Science.gov (United States)

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  5. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  6. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  7. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  8. Helicopter-Ship Qualification Testing

    NARCIS (Netherlands)

    Hoencamp, A.

    2015-01-01

    The goal of this research project is to develop a novel test methodology which can be used for optimizing cost and time efficiency of helicopter-ship qualification testing without reducing safety. For this purpose, the so-called “SHOL-X” test methodology has been established, which includes the

  9. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  10. Helicopter detection and classification demonstrator

    NARCIS (Netherlands)

    Koersel, A.C. van

    2000-01-01

    A technology demonstrator that detects and classifies different helicopter types automatically, was developed at TNO-FEL. The demonstrator is based on a PC, which receives its acoustic input from an all-weather microphone. The demonstrator uses commercial off-the-shelf hardware to digitize the

  11. [Aesthetic effect of wound repair with flaps].

    Science.gov (United States)

    Tan, Qian; Zhou, Hong-Reng; Wang, Shu-Qin; Zheng, Dong-Feng; Xu, Peng; Wu, Jie; Ge, Hua-Qiang; Lin, Yue; Yan, Xin

    2012-08-01

    To investigate the aesthetic effect of wound repair with flaps. One thousand nine hundred and ninety-six patients with 2082 wounds hospitalized from January 2004 to December 2011. These wounds included 503 deep burn wounds, 268 pressure sores, 392 soft tissue defects caused by trauma, 479 soft tissue defects due to resection of skin cancer and mole removal, 314 soft tissue defects caused by scar excision, and 126 other wounds. Wound area ranged from 1.5 cm x 1.0 cm to 30.0 cm x 22.0 cm. Sliding flaps, expanded flaps, pedicle flaps, and free flaps were used to repair the wounds in accordance with the principle and timing of wound repair with flaps. Five flaps showed venous congestion within 48 hours post-operation, 2 flaps of them improved after local massage. One flap survived after local heparin wet packing and venous bloodletting. One flap survived after emergency surgical embolectomy and bridging with saphenous vein graft. One flap showed partial necrosis and healed after skin grafting. The other flaps survived well. One thousand three hundred and twenty-one patients were followed up for 3 months to 2 years, and flaps of them were satisfactory in shape, color, and elasticity, similar to that of normal skin. Some patients underwent scar revision later with good results. Application of suitable flaps in wound repair will result in quick wound healing, good function recovery, and satisfactory aesthetic effect.

  12. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.

    2016-01-01

    to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...

  13. The importance of being top-heavy: Intrinsic stability of flapping flight

    Science.gov (United States)

    Ristroph, Leif; Liu, Bin; Zhang, Jun

    2011-11-01

    We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.

  14. Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2002-06-01

    Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

  15. Aeroelastic modeling of composite rotor blades with straight and swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  16. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  17. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  18. Free-style puzzle flap: the concept of recycling a perforator flap.

    Science.gov (United States)

    Feng, Kuan-Ming; Hsieh, Ching-Hua; Jeng, Seng-Feng

    2013-02-01

    Theoretically, a flap can be supplied by any perforator based on the angiosome theory. In this study, the technique of free-style perforator flap dissection was used to harvest a pedicled or free skin flap from a previous free flap for a second difficult reconstruction. The authors call this a free-style puzzle flap. For the past 3 years, the authors treated 13 patients in whom 12 pedicled free-style puzzle flaps were harvested from previous redundant free flaps and recycled to reconstruct soft-tissue defects at various anatomical locations. One free-style free puzzle flap was harvested from a previous anterolateral thigh flap for buccal cancer to reconstruct a foot defect. Total flap survival was attained in 12 of 13 flaps. One transferred flap failed completely. This patient had received postoperative radiotherapy after the initial cancer ablation and free anterolateral thigh flap reconstruction. Another free flap was used to close and reconstruct the wound. All the donor sites could be closed primarily. The free-style puzzle flap, harvested from a previous redundant free flap and used as a perforator flap to reconstruct a new defect, has proven to be versatile and reliable. When indicated, it is an alternative donor site for further reconstruction of soft-tissue defects.

  19. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Jonathan W. [University of Wyoming

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  20. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  1. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  2. Aeroservoelastic stability of a 2D airfoil section equipped with a trailing edge flap

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, Leonardo

    2008-11-15

    Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement of the pressure difference between the two sides of the airfoil. The stability of the aeroservoelastic system in a defined equilibrium state, and for a given flow speed, is then determined by solving an eigenvalue problem. Results show that the trailing edge control system modifies significantly the stability limits of the section. In the investigated case, increased flutter limits are reported when the elastic flap is left without control, whereas, by applying any of the control algorithms, the flutter velocity is reduced. Nevertheless, only in the heave control case the flutter limit becomes critically close to normal operation flow speeds. Furthermore, a marked dependence of the stability limits on the control gain is also observed and, by tuning the gain parameters, flutter and divergence can be suppressed for flow speed even above the flutter velocity encountered with uncontrolled flap. (author)

  3. PIV Measurements on a Blowing Flap

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  4. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  5. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  6. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  7. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  8. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  9. Effects of irradiation of skin flaps

    International Nuclear Information System (INIS)

    Sumi, Y.; Ueda, M.; Oka, T.; Torii, S.

    1984-01-01

    The reaction of skin flaps to irradiation and the optimum postoperative time for irradiation was studied in the rat. Flaps showed different reactions depending on the time of irradiation. There was a correlation between the radiosensitivity and the vascularity of the flap. Those flaps in the marginal hypovascular stage of revascularization showed reactions similar to normal skin. However, severe adverse reactions were observed in the marginal hypervascular stage

  10. A Helicopter submarine Search Game

    Science.gov (United States)

    1988-09-01

    Figure 3. Graphical representation of Baston and Bostock ................. 10 Figure 4. Dips and Speed Circle...dimen.ional helicopter submarine gaines studied by Meinardi [Ref. 7] and more recently by Baston and Bostock [Ref. 8]. Meinardi solves a discr,-te form of...the game while Baston and Bostock solve the continuous case. Bes.ides Danskin’s game, not much work has been done on the two dimensional case except

  11. Vascularized Fibula Flaps for Mandibular Reconstruction: An ...

    African Journals Online (AJOL)

    For decades, osseous vascularised flaps have been used for reconstruction of the mandible with the vascularised fibula flap (VFF) remaining the commonly used osseous free flap, reasons ranging from its adequate bone and pedicle length to its receptive dental implant placement quality. This report considers a modest use ...

  12. Efficient flapping flight of pterosaurs

    Science.gov (United States)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for

  13. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  14. 78 FR 45845 - Airworthiness Directives; Bell Helicopter Textron Helicopters

    Science.gov (United States)

    2013-07-30

    ..., whichever occurs first, cleaning and visually inspecting each T/R blade assembly for a crack, corrosion... be covered under warranty, thereby reducing the cost impact on affected individuals. We do not... a crack, corrosion (may be indicated by blistering, peeling, flaking, bubbling, or cracked paint), a...

  15. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  16. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  17. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  18. Bilateral simultaneous breast reconstruction with SGAP flaps.

    Science.gov (United States)

    Flores, Jaime I; Magarakis, Michael; Venkat, Raghunandan; Shridharani, Sachin M; Rosson, Gedge D

    2012-07-01

    Two work-horse approaches to postmastectomy breast reconstruction are the deep inferior epigastric perforator flap and the superior gluteal artery perforator (SGAP) flap [and its variation, the lateral septocutaneous superior gluteal artery perforator flap]. Our purpose was fourfold: 1) to analyze our experience with the SGAP flaps for simultaneous bilateral breast reconstruction; 2) to analyze our experience with lateral septocutaneous superior gluteal artery perforator flaps for that procedure; 3) to compare our results with those in the literature; and 4) to highlight the importance of preoperative three-dimensional computed tomographic angiography. A retrospective chart review was completed for 23 patients who underwent breast reconstruction between December 2005 and January 2010 via an SGAP flap (46 flaps). We reviewed flap weight, ischemia time, length of stay, overall flap survival, fat necrosis development, and emergency re-exploration. Mean weights were 571.2 ± 222.0 g (range 186-1,117 g) and 568.0 ± 237.5 g (range 209-1,115 g) for the left and right buttock flap, respectively. Mean ischemia time was 129.1 ± 15.7 and 177.7 ± 24.7 minutes for the first and second flap, respectively. Mean hospital stay was 5.3 ± 2.5 days. All flaps survived. Fat necrosis developed in five flaps (10.8%), and emergency re-exploration was required in three patients (three flaps). When harvesting abdominal tissue is a poor option, the SGAP flap is an efficacious procedure for patients desiring autologous breast reconstruction, and bilateral procedures can be performed simultaneously. Copyright © 2012 Wiley Periodicals, Inc.

  19. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  20. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  1. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field.......This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...

  2. Water channel experiments of a novel fully-passive flapping-foil turbine

    Science.gov (United States)

    Boudreau, Matthieu; Dumas, Guy; Rahimpour, Mostafa; Oshkai, Peter

    2016-11-01

    Experiments have been conducted to assess the performances of a fully-passive flapping-foil hydrokinetic turbine for which the blade's motions are stemming from the interaction between the blade's elastic supports (springs and dampers) and the flow field. Previous numerical studies conducted by Peng & Zhu (2009) and Zhu (2012) have proved that a simplified version of such a turbine can extract a substantial amount of energy from the flow while offering the potential to greatly simplify the complex mechanical apparatus needed to constrain and link the blade's pitching and heaving motions in the case of the more classical flapping-foil turbine (e.g., Kinsey et al., 2011). Based on the promising numerical investigations of Veilleux (2014) and Veilleux & Dumas (2016), who proposed a more general version of this novel concept, a prototype has been built and tested in a water channel at a chord Reynolds number of 17,000. Periodic motions of large amplitudes have been observed leading to interesting energy harvesting efficiencies reaching 25% for some specific sets of structural parameters. The sensitivity of the turbine's dynamics to each of the seven structural parameters appearing in the equations of motion has been experimentally evaluated around a case close to the optimal one. Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged by the authors.

  3. New blades shape up for dozers

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1985-05-01

    This article discusses the design of blades used on dozers for the reclamation work following surface mining. Two blades are described which have led to a 50% reduction in reclamation costs and a 20% reduction in fuel requirements over conventional equipment. These results are from work carried out at the Kayenta mine in Arizona, USA. Design considerations in the development of the blades are described. Descriptions of both the centre flow blades and the universal blades are given.

  4. Surveys of Students Challenge "Helicopter Parent" Stereotypes

    Science.gov (United States)

    Hoover, Eric

    2008-01-01

    Stories of "helicopter parents" abound. But several longtime student-affairs officials agree that while helicopter parents are real, their numbers--and behaviors--have been exaggerated. Parental involvement on campus, they say, is usually more of a help than a headache, for students and colleges alike. Some officials believe colleges must do even…

  5. 29 CFR 1926.551 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ...) Loose gear and objects. Every practical precaution shall be taken to provide for the protection of the employees from flying objects in the rotor downwash. All loose gear within 100 feet of the place of lifting... manner in which loads are connected to the helicopter. If, for any reason, the helicopter operator...

  6. Reconstruction of Facial Defect Using Deltopectoral Flap.

    Science.gov (United States)

    Aldelaimi, Tahrir N; Khalil, Afrah A

    2015-11-01

    Reconstruction of the head and neck is a challenge for otolarygology surgeons, maxillofacial surgeons as well as plastic surgeons. Defects caused by the resection and/or trauma should be closed with flaps which match in color, texture and hair bearing characteristics with the face. Deltopectoral flap is a one such flap from chest and neck skin mainly used to cover the facial defects. This study report a patient presenting with tragic Road Traffic Accident (RTA) admitted to maxillofacial surgery department at Ramadi Teaching Hospital, Anbar province, Iraq. An incision, medially based, was done and deltopectoral fascio-cutaneous flap was used for surgical exposure and closure of defects after RTA. There was no major complication. Good aesthetic and functional results were achieved. Deltopectoral flap is an excellent alternative for the reconstruction of head and neck. Harvesting and application of the flap is rapid and safe. Only a single incision is sufficient for dissection and flap elevation.

  7. Innervated boomerang flap for finger pulp reconstruction.

    Science.gov (United States)

    Chen, Shao-Liang; Chiou, Tai-Fung

    2007-11-01

    The boomerang flap originates from the dorsolateral aspect of the proximal phalanx of an adjacent digit and is supplied by the retrograde blood flow through the vascular arcades between the dorsal and palmar digital arteries. To provide sensation of the boomerang flap for finger pulp reconstruction, the dorsal sensory branch of the proper digital nerve and the superficial sensory branch of the corresponding radial or ulnar nerve are included within the skin flap. After transfer of the flap to the injured site, epineural neurorrhaphies are done between the digital nerves of the pulp and the sensory branches of the flap. We used this sensory flap in five patients, with more than 1 year follow-up, and all patients achieved measurable two-points discrimination. The boomerang flap not only preserves the proper palmar digital artery but also provides an extended and innervated skin paddle. It seems to be an alternative choice for one-stage reconstruction of major pulp defect.

  8. Cost-effectiveness of monitoring free flaps.

    Science.gov (United States)

    Subramaniam, Shiva; Sharp, David; Jardim, Christopher; Batstone, Martin D

    2016-06-01

    Methods of free flap monitoring have become more sophisticated and expensive. This study aims to determine the cost of free flap monitoring and examine its cost effectiveness. We examined a group of patients who had had free flaps to the head and neck over a two-year period, and combined these results with costs obtained from business managers and staff. There were 132 free flaps with a success rate of 99%. The cost of monitoring was Aus $193/flap. Clinical monitoring during this time period cost Aus$25 476 and did not lead to the salvage of any free flaps. Cost equivalence is reached between monitoring and not monitoring only at a failure rate of 15.8%. This is to our knowledge the first study to calculate the cost of clinical monitoring of free flaps, and to examine its cost-effectiveness. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. All rights reserved.

  9. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  10. 46 CFR 108.489 - Helicopter fueling facilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter fueling facilities. 108.489 Section 108.489... AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.489 Helicopter fueling facilities. (a) Each helicopter fueling facility must have a fire protection system that...

  11. Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.

    Science.gov (United States)

    Dalle-Molle, John

    The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…

  12. AERODYNAMIC CHARACTERISTICS CALCULATION ON SINGLE ROTOR BLADE USING FLOEFD, ANSYS FLUENT AND RC-VTOL

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The results of computational simulation of helicopter rotor's single blade flow, for which experimental (model test data are published, are represented in this article. The calculations were made in the universal software package of CFD modeling FloEFD, which was based on the solution of averaged equations' system of Navier-Stocks, as well as in the program software RC-VTOL using the vortex method. The obtained results are compared with experimental data and modeling results in the program software ANSYS Fluent (license of TsAGI Nr. 501024. The work shows satisfactory, and in some cases good calculation data reconciliation getting with different techniques including experimental.

  13. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  14. Measurement and Modelling of Multicopter UAS Rotor Blades in Hover

    Science.gov (United States)

    Nowicki, Nathalie

    2016-01-01

    Multicopters are becoming one of the more common and popular type of unmanned aircraft systems (UAS) which have both civilian and military applications. One example being the concept of drone deliveries proposed by the distribution company Amazon [1]. The electrical propulsion is considered to have both faster and easier deliveries and also environmental benefits compared to other vehicles that still use fossil fuel. Other examples include surveillance and just simple entertainment. The reason behind their success is often said to be due to their small size, relatively low cost, simple structure and finally simple usage. With an increase in the UAS market comes challenges in terms of security, as both people and other aircrafts could be harmed if not used correctly. Therefore further studies and regulations are needed to ensure that future use of drones, especially in the civilian and public sectors, are safe and efficient. Thorough research has been done on full scale, man or cargo transporting, helicopters so that most parts of flight and performance are fairly well understood. Yet not much of it have been verified for small multicopters. Until today many studies and research projects have been done on the control systems, navigation and aerodynamics of multicopters. Many of the methods used today for building multicopters involve a process of trial an error of what will work well together, and once that is accomplished some structural analysis of the multicopter bodies might be done to verify that the product will be strong enough and have a decent aerodynamic performance. However, not much has been done on the research of the rotor blades, especially in terms of structural stress analyses and ways to ensure that the commonly used parts are indeed safe and follow safety measures. Some producers claim that their propellers indeed have been tested, but again that usually tends towards simple fluid dynamic analyses and even simpler stress analyses. There is no real

  15. Helicopter overtriage in pediatric trauma.

    Science.gov (United States)

    Michailidou, Maria; Goldstein, Seth D; Salazar, Jose; Aboagye, Jonathan; Stewart, Dylan; Efron, David; Abdullah, Fizan; Haut, Elliot R

    2014-11-01

    Helicopter Emergency Medical Services (HEMS) have been designed to provide faster access to trauma center care in cases of life-threatening injury. However, the ideal recipient population is not fully characterized, and indications for helicopter transport in pediatric trauma vary dramatically by county, state, and region. Overtriage, or unnecessary utilization, can lead to additional patient risk and expense. In this study we perform a nationwide descriptive analysis of HEMS for pediatric trauma and assess the incidence of overtriage in this group. We reviewed records from the American College of Surgeons National Trauma Data Bank (2008-11) and included patients less than 16 years of age who were transferred from the scene of injury to a trauma center via HEMS. Overtriage was defined as patients meeting all of the following criteria: Glasgow Coma Scale (GCS) equal to 15, absence of hypotension, an Injury Severity Score (ISS) less than 9, no need for procedure or critical care, and a hospital length of stay of less than 24 hours. A total of 19,725 patients were identified with a mean age of 10.5 years. The majority of injuries were blunt (95.6%) and resulted from motor vehicle crashes (48%) and falls (15%). HEMS transported patients were predominately normotensive (96%), had a GCS of 15 (67%), and presented with minor injuries (ISS<9, 41%). Overall, 28 % of patients stayed in the hospital for less than 24 hours, and the incidence of overtriage was 17%. Helicopter overtriage is prevalent among pediatric trauma patients nationwide. The ideal model to predict need for HEMS must consider clinical outcomes in the context of judicious resource utilization. The development of guidelines for HEMS use in pediatric trauma could potentially limit unnecessary transfers while still identifying children who require trauma center care in a timely fashion. Copyright © 2014. Published by Elsevier Inc.

  16. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    International Nuclear Information System (INIS)

    Zhu, W J; Shen, W Z; Sørensen, J N

    2014-01-01

    This paper concerns a numerical study of employing an adaptive trailing edge flap to control the lift of an airfoil subject to unsteady inflow conditions. The periodically varying inflow is generated by two oscillating airfoils, which are located upstream of the controlled airfoil. To establish the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical simulations are convincing and may give some highlights for practical implementations of trailing edge flap to a wind turbine rotor blade

  17. Revisit of Nasolabial flap in the reconstruction of defects involving ...

    African Journals Online (AJOL)

    Conclusion: Data from this study suggest that NL flap is a reliable option for reconstruction of the oral floor, in form as well as function, without esthetic compromise and has a major role even in this era of free flaps. Keywords: Floor of mouth defects, local flaps, nasolabail flap, oral cavity defects, reconstruction, regional flaps ...

  18. Numerical investigation of three wind turbine blade tips

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J.; Soerensen, N.N.

    2002-08-01

    The complex three-dimensional flow around three different tip shapes on a rotating wind turbine blade is investigated and analyzed using Computational Fluid Dynamics. Differences in production, flap wise bending moments and forces are discussed. A method for determining the local inflow angle of attack is presented and further analysis is performed on lift and drag coefficients. It is shown that the original Standard tip results in a more concentrated tip vortex leading to a steeper gradient on both tangential and normal forces when approaching the tip, whereas the two tapered tips show a more flat behavior. This again leads to lower flap wise bending moments and lower production for the Standard tip compared to the two tapered tips. At 12 m/s, though, the Swept tip shows a separation pattern on the surface. This separation causes a decrease in normal force and an increase in tangential force. The Taper tip keeps the higher loading causing the flap wise bending moment to be higher as seen in measurements. To determine the radial variation of lift and drag coefficients the local inflow angle of attack is determined. It is shown that the Standard tip experiences a slightly larger angle of attack at the tip compared to the two tapered tips. The lift coefficients are kept at a more constant level for the two tapered tips due to the decrease in chord, while the drag coefficients actually decrease for the two tapered tips, especially for the Swept tip. For the Swept tip at 12 m/s both lift and drag coefficients changed considerably due to the separation. Differences in aerodynamic damping of the three tips were investigated using HAWCDAMP. The Standard tip seems to be slightly less damped with respect to the edgewise vibrations. (au)

  19. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    Science.gov (United States)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  20. Head and neck reconstruction with pedicled flaps in the free flap era.

    Science.gov (United States)

    Mahieu, R; Colletti, G; Bonomo, P; Parrinello, G; Iavarone, A; Dolivet, G; Livi, L; Deganello, A

    2016-12-01

    Nowadays, the transposition of microvascular free flaps is the most popular method for management of head and neck defects. However, not all patients are suitable candidates for free flap reconstruction. In addition, not every defect requires a free flap transfer to achieve good functional results. The aim of this study was to assess whether pedicled flap reconstruction of head and neck defects is inferior to microvascular free flap reconstruction in terms of complications, functionality and prognosis. The records of consecutive patients who underwent free flap or pedicled flap reconstruction after head and neck cancer ablation from 2006 to 2015, from a single surgeon, in the AOUC Hospital, Florence Italy were analysed. A total of 93 patients, the majority with oral cancer (n = 59), were included, of which 64 were pedicled flap reconstructions (69%). The results showed no significant differences in terms of functional outcome, flap necrosis and complications in each type of reconstruction. Multivariate regression analysis of flap necrosis and functional impairments showed no associated factors. Multivariate regression analysis of complicated flap healing showed that only comorbidities remained an explaining factor (p = 0.019). Survival analysis and proportional hazard regression analysis regarding cancer relapse or distant metastasis, showed no significant differences in prognosis of patients concerning both types of reconstruction. In this retrospective, non-randomised study cohort, pedicled flaps were not significantly inferior to free flaps for reconstruction of head and neck defects, considering functionality, complications and prognosis. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  1. Load alleviation on wind turbine blades using variable airfoil geometry

    Energy Technology Data Exchange (ETDEWEB)

    Basualdo, S.

    2005-03-01

    A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and, therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitable for modelling attached flows. It is therefore mostly applicable for Pitch Regulated Variable Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines. (author)

  2. On the Nonlinear Structural Analysis of Wind Turbine Blades using Reduced Degree-of-Freedom Models

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Larsen, Jesper Winther; Nielsen, Søren R.K.

    2008-01-01

    , modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based...... on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response...... of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model...

  3. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  4. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions

    NARCIS (Netherlands)

    Hummelink, S.L.; Verhulst, A.C.; Maal, T.J.J.; Hoogeveen, Y.L.; Schultze Kool, L.J.; Ulrich, D.J.O.

    2017-01-01

    BACKGROUND: Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available

  5. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    Science.gov (United States)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  6. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    International Nuclear Information System (INIS)

    Woods, Benjamin K S; Kothera, Curt S; Wang, Gang; Wereley, Norman M

    2014-01-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi. (paper)

  7. Derivation of airfoil characteristics for the LM 19.1 blade based on 3D CFD rotor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Soerensen, N N; Madsen, H A [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Airfoil characteristics for the LM 19.1 blade are derived from 3D CFD computations on a full-scale 41-m rotor. Based on 3D CFD the force distributions on the blades are determined, from which airfoil characteristics are derived using the momentum theory. The final airfoil characteristics are constructed using both wind tunnel measurements and 3D CFD. Compared to 2D wind tunnel measurements they show a low lift in stall for the airfoil sections at the tip. At the airfoil sections at the inner part of the blade, they show a high lift in stall. At about 60% radius the lift agrees well to 2D wind tunnel measurements. Aero-elastic calculations using the final airfoil characteristics show good agreement to measured power and flap moments. Furthermore, a fatigue load analysis shows a reduction of up to 15% of the load compared to commonly used data. (au)

  8. Dermatosurgery Rounds - The Island SKIN Infraorbital Flap

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2017-07-01

    Full Text Available The main objective in dermatologic surgery is complete excision of the tumour while achieving the best possible functional and cosmetic outcome. Also we must take into account age, sex, and tumour size and site. We should also consider the patient's expectations, the preservation of the different cosmetic units, and the final cosmetic outcome. Various reconstructive methods ranging from secondary healing to free flap applications are usedfor the reconstruction of perinasal or facial defects caused by trauma or tumour surgery. Herein, we describe the nasal infraorbital island skin flap for the reconstruction in a patient with basal cell carcinoma. No complications were observed in operation field. The infraorbital island skin flap which we describe for the perinasal area reconstruction is a safe, easily performed and versatile flap. The multidimensional use of this flap together with a relatively easy reconstruction plan and surgical procedure would be effective in flap choice.

  9. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions.

    Science.gov (United States)

    Hummelink, S; Verhulst, Arico C; Maal, Thomas J J; Hoogeveen, Yvonne L; Schultze Kool, Leo J; Ulrich, Dietmar J O

    2017-07-01

    Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available nowadays, we can combine information to preoperatively plan the optimal flap volume to be harvested. In this proof-of-concept, we investigated whether projection of a virtual flap planning onto the patient's abdomen using a projection method could result in harvesting the correct flap volume. In six patients (n = 9 breasts), 3D stereophotogrammetry and CTA data were combined from which a virtual flap planning was created comprising perforator locations, blood vessel trajectory and flap size. All projected perforators were verified with Doppler ultrasound. Intraoperative flap measurements were collected to validate the determined flap delineation volume. The measured breast volume using 3D stereophotogrammetry was 578 ± 127 cc; on CTA images, 527 ± 106 cc flap volumes were planned. The nine harvested flaps weighed 533 ± 109 g resulting in a planned versus harvested flap mean difference of 5 ± 27 g (flap density 1.0 g/ml). In 41 out of 42 projected perforator locations, a Doppler signal was audible. This proof-of-concept shows in small numbers that flap volumes can be included into a virtual DIEP flap planning, and transferring the virtual planning to the patient through a projection method results in harvesting approximately the same volume during surgery. In our opinion, this innovative approach is the first step in consequently achieving symmetric breast volumes in DIEP flap breast reconstructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Root coverage with bridge flap

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Gingival recession in anterior teeth is a common concern due to esthetic reasons or root sensitivity. Gingival recession, especially in multiple anterior teeth, is of huge concern due to esthetic reasons. Various mucogingival surgeries are available for root coverage. This case report presents a new bridge flap technique, which allows the dentist not only to cover the previously denuded root surfaces but also to increase the zone of attached gingiva at a single step. In this case, a coronally advanced flap along with vestibular deepening technique was used as root coverage procedure for the treatment of multiple recession-type defect. Here, vestibular deepening technique is used to increase the width of the attached gingiva. The predictability of this procedure results in an esthetically healthy periodontium, along with gain in keratinized tissue and good patient′s acceptance.

  11. Exotic wakes of flapping fins

    DEFF Research Database (Denmark)

    Schnipper, Teis

    We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured, with unpreced......We present, in 8 chapters, experiments on and numerical simulations of bodies flapping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs prescribed pitching oscillations where the foil rotates around its leading edge. In a flowing soap film is measured......-speed and the strength ratio of the vortices formed at the foil’s leading and trailing edge. The simulated vortex particles and measured thickness variations in the soap film show similar behaviour which indicates that the soap film provides a good approximation the flow of a two-dimensional incompressible and Newtonian...

  12. Medial canthal reconstruction with multiple local flaps

    Directory of Open Access Journals (Sweden)

    Akihiro Ogino

    2018-03-01

    Conclusion: This method is somewhat complicated compared to reconstruction with a single flap, but it is a combination of standard local flaps and is a simple reconstructive procedure. By adding additional resection, the suture line is consistent with the border of the facial unit, so postoperative scarring is inconspicuous. This technique is aesthetically useful because of the continuity of colour and texture resulting from the use of adjacent flaps.

  13. Pedicled Temporalis Muscle Flap for Craniofacial Reconstruction: A 35-Year Clinical Experience with 366 Flaps.

    Science.gov (United States)

    Spanio di Spilimbergo, Stefano; Nordera, Paolo; Mardini, Samir; Castiglione, Giusy; Chim, Harvey; Pinna, Vittore; Brunello, Massimo; Cusino, Claudio; Roberto, Squaquara; Baciliero, Ugo

    2017-02-01

    In the past 130 years, the temporalis muscle flap has been used for a variety of different indications. In this age of microsurgery and perforator flaps, the temporalis muscle flap still has many useful applications for craniofacial reconstruction. Three hundred sixty-six temporalis muscle flaps were performed in a single center between 1978 and 2012. The authors divided the cases into two series-before and after 1994-because, after 1994, they started to perform free flap reconstructions, and indications for reconstruction with a temporalis muscle flap were changed RESULTS:: In the series after 1994, flaps were most commonly used for reconstruction of defects in the maxilla, mandible, and oropharynx, in addition to facial reanimation and filling of orbital defects. Complications included total flap necrosis (1.6 percent) and partial flap necrosis (10.7 percent). The rate of material extrusion at the donor site decreased after porous polyethylene was uniformly used for reconstruction from 17.1 to 7.9 percent. The pedicled temporalis muscle flap continues to have many applications in craniofacial reconstruction. With increasing use of free flaps, the authors' indications for the pedicled temporalis muscle flap are now restricted to (1) orbital filling for congenital or acquired anophthalmia; (2) filling of unilateral maxillectomy defects; and (3) facial reanimation in selected cases of facial nerve palsy. Therapeutic, IV.

  14. Head and neck reconstruction with pedicled flaps in the free flap era

    NARCIS (Netherlands)

    Mahieu, R.; Colletti, G.; Bonomo, P.; Parrinello, G.; Iavarone, A.; Dolivet, G.; Livi, L.; Deganello, A.

    2016-01-01

    Nowadays, the transposition of microvascular free flaps is the most popular method for management of head and neck defects. However, not all patients are suitable candidates for free flap reconstruction. In addition, not every defect requires a free flap transfer to achieve good functional results.

  15. STUDY ON SAFETY TECHNOLOGY SCHEME OF THE UNMANNED HELICOPTER

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2013-08-01

    Full Text Available Nowadays the unmanned helicopter is widely used for its' unique strongpoint, however, the high failure rate of unmanned helicopter seriously limits its further application and development. For solving the above problems, in this paper, the reasons for the high failure rate of unmanned helicopter is analyzed and the corresponding solution schemes are proposed. The main problem of the failure cause of the unmanned helicopter is the aircraft engine fault, and the failure cause of the unmanned helicopter is analyzed particularly. In order to improving the safety performance of unmanned helicopter system, the scheme of adding the safety parachute system to the unmanned helicopter system is proposed and introduced. These schemes provide the safety redundancy of the unmanned helicopter system and lay on basis for the unmanned helicopter applying into residential areas.

  16. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  17. Refining the intrinsic chimera flap: a review.

    Science.gov (United States)

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  18. Optimal propulsive flapping in Stokes flows.

    Science.gov (United States)

    Was, Loïc; Lauga, Eric

    2014-03-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.

  19. Optimal propulsive flapping in Stokes flows

    International Nuclear Information System (INIS)

    Was, Loïc; Lauga, Eric

    2014-01-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. (paper)

  20. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.

    Science.gov (United States)

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-11-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  1. Numerical simulation and PIV experimental analysis of electrohydrodynamic plumes induced by a blade electrode

    International Nuclear Information System (INIS)

    Traore, Ph; Daaboul, M; Louste, Ch

    2010-01-01

    In this paper a comparative study between numerical and experimental results from particle image velocimetry (PIV) measurements is presented in the case of two-dimensional electrohydrodynamic plumes that arise when a sharp metallic blade, submerged in non-conducting liquids, supports a high electric potential. Experiments and numerical simulations have been conducted in order to compare both the approaches. Very good agreement has been found through velocity profiles and velocity fields which proves the relevance of our numerical model. For high potentials the jet flow issued forth from the blade becomes unsteady and starts to flap on the vertical wall. Some snapshots of the temporal evolution of the isocontours of charge density which is not accessible from experiment are presented thanks to the numerical simulation.

  2. Efficient prediction of ground noise from helicopters and parametric studies based on acoustic mapping

    Directory of Open Access Journals (Sweden)

    Fei WANG

    2018-02-01

    Full Text Available Based on the acoustic mapping, a prediction model for the ground noise radiated from an in-flight helicopter is established. For the enhancement of calculation efficiency, a high-efficiency second-level acoustic radiation model capable of taking the influence of atmosphere absorption on noise into account is first developed by the combination of the point-source idea and the rotor noise radiation characteristics. The comparison between the present model and the direct computation method of noise is done and the high efficiency of the model is validated. Rotor free-wake analysis method and Ffowcs Williams-Hawkings (FW-H equation are applied to the aerodynamics and noise prediction in the present model. Secondly, a database of noise spheres with the characteristic parameters of advance ratio and tip-path-plane angle is established by the helicopter trim model together with a parametric modeling approach. Furthermore, based on acoustic mapping, a method of rapid simulation for the ground noise radiated from an in-flight helicopter is developed. The noise footprint for AH-1 rotor is then calculated and the influence of some parameters including advance ratio and flight path angle on ground noise is deeply analyzed using the developed model. The results suggest that with the increase of advance ratio and flight path angle, the peak noise levels on the ground first increase and then decrease, in the meantime, the maximum Sound Exposure Level (SEL noise on the ground shifts toward the advancing side of rotor. Besides, through the analysis of the effects of longitudinal forces on miss-distance and rotor Blade-Vortex Interaction (BVI noise in descent flight, some meaningful results for reducing the BVI noise on the ground are obtained. Keywords: Acoustic mapping, Helicopter, Noise footprint, Rotor noise, Second-level acoustic radiation model

  3. Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals

    Science.gov (United States)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.

    2017-04-01

    In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.

  4. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  5. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  6. 29 CFR 1910.183 - Helicopters.

    Science.gov (United States)

    2010-07-01

    ... objects. The employer shall take all necessary precautions to protect employees from flying objects in the... safety. The size and weight of loads, and the manner in which loads are connected to the helicopter shall...

  7. Attack Helicopter Operations: Art or Science

    Science.gov (United States)

    1991-05-13

    ATTACK HELICOPTER OPERATIONS: ART OR SCIENCE ? BY LIEUTENANT COLONEL JAN CALLEN United States Army DISTRIBUTION STATEMENT A: Approved for public release...TASK IWORK UNIT ELEMENT NO. NO. NO. ACCESSION NC 11. TITLE (Include Socurity Classification) Attack Helicopter Operations: Art or Science ? 12. PERSONAL...OPERATIONS: ART OR SCIENCE ? AN INDIVIDUAL STUDY PROJECT by Lieutenant Colonel Jan Callen United States Army Colonel Greg Snelgrove Project Adviser U.S

  8. Helicopter training simulators: Key market factors

    Science.gov (United States)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  9. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  10. Composite blade damaging under impact

    NARCIS (Netherlands)

    Menouillard, T.; Réthoré, J.; Bung, H.; Suffis, A.

    2006-01-01

    Composites materials are now being used in primary aircraft structures, and other domains because of numerous advantages. A part of a continuous in-flight operating costs, gas turbine engine manufacturers are always looking for ways to decrease engine weight. This is the case of compressor blades

  11. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  12. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  13. Venous coupler use for free-flap breast reconstructions: specific analyses of TMG and DIEP flaps.

    Science.gov (United States)

    Bodin, Frédéric; Brunetti, Stefania; Dissaux, Caroline; Erik, A Sauleau; Facca, Sybille; Bruant-Rodier, Catherine; Liverneaux, Philippe

    2015-05-01

    The purpose of this report was to present the results of comparisons of anastomotic data and flap complications in the use of venous coupler in breast reconstruction with the transverse musculocutaneous gracilis (TMG) flap and the deep inferior epigastric perforator (DIEP) flap. Over a three-year period, 95 patients suffering from breast cancer were treated with mastectomy and breast reconstruction using free flaps. We performed 121 mechanical venous anastomoses for 105 flap procedures (80 DIEP and 25 TMG). The coupler size, anastomotic duration, number of anastomoses and postoperative complications were assessed for the entire series. The coupling device was perfectly suitable for all end-to-end anastomoses between the vein(s) of the flap and the internal mammary vein(s). No venous thrombosis occurred. The mean anastomotic time did not significantly differ between the DIEP (330 seconds) and TMG flap procedures (352 seconds) (P = 0.069). Additionally, there were no differences in coupling time observed following a comparison of seven coupler sizes (P = 0.066). The mean coupler size used during the TMG flap procedure was smaller than that used with the DIEP (2.4 mm versus 2.8 mm) (P TMG flap (28%) than with the DIEP flap (11%). The coupler size used was smaller for the TMG procedure and when double venous anastomosis was performed. Additionally, anastomotic time was not affected by the flap type or coupler size used or by anastomosis number. © 2014 Wiley Periodicals, Inc.

  14. Innovation in the planning of V-Y rotation advancement flaps: A template for flap design

    Directory of Open Access Journals (Sweden)

    Utku Can Dölen

    2018-01-01

    Full Text Available Local flaps exhibit excellent color matching that no other type of flap can compete with. Moreover, surgery using a local flap is easier and faster than surgery using a distant or free flap. However, local flaps can be much more difficult to design. We designed 2 templates to plan a V-Y rotation advancement flap. The template for a unilateral V-Y rotation advancement flap was used on the face (n=5, anterior tibia (n=1, posterior axilla (n=1, ischium (n=1, and trochanter (n=2. The template for a bilateral flap was used on the sacrum (n=8, arm (n=1, and anterior tibia (n=1. The causes of the defects were meningocele (n=3, a decubitus ulcer (n=5, pilonidal sinus (n=3, and skin tumor excision (n=10. The meningocele patients were younger than 8 days. The mean age of the adult patients was 50.4 years (range, 19–80 years. All the donor areas of the flaps were closed primarily. None of the patients experienced wound dehiscence or partial/total flap necrosis. The templates guided surgeons regarding the length and the placement of the incision for a V-Y rotation advancement flap according to the size of the wound. In addition, they could be used for the training of residents.

  15. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  16. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  17. Median forehead flap - beyond classic indication

    Directory of Open Access Journals (Sweden)

    Cristian R. Jecan

    2016-11-01

    Full Text Available Introduction. The paramedian forehead flap is one of the best options for reconstruction of the median upper two-thirds of the face due to its vascularity, color, texture match and ability to resurface all or part of the reconstructed area. The forehead flap is the gold standard for nasal soft tissue reconstruction and the flap of choice for larger cutaneous nasal defects having a robust pedicle and large amount of tissue. Materials and Methods. We are reporting a clinical series of cutaneous tumors involving the nose, medial canthus, upper and lower eyelid through a retrospective review of 6 patients who underwent surgical excision of the lesion and primary reconstruction using a paramedian forehead flap. Results. The forehead flap was used for total nose reconstruction, eyelids and medial canthal reconstruction. All flaps survived completely and no tumor recurrence was seen in any of the patients. Cosmetic and functional results were favorable. Conclusions. The forehead flap continues to be one of the best options for nose reconstruction and for closure of surgical defects of the nose larger than 2 cm. Even though is not a gold standard, median forehead flap can be an advantageous technique in periorbital defects reconstruction.

  18. The making of helicopters: its strategic implications for EMS helicopter operations.

    Science.gov (United States)

    Thomas, F

    1998-01-01

    The purpose of this article is to provide EMS helicopter personnel with an understanding of the civil helicopter manufacturing industry. Specifically, this article examines the current helicopter marketplace and how various manufactures are responding to the recent decline in new helicopter sales. This article further describes how helicopters are designed and manufactured and how global markets, international competition, and strategic considerations are influencing future helicopter design and production. Data for this paper were obtained from a literature search through the ABI-inform Telnet Services offered through the University of Utah Marriott Library. On a search of "helicopter" during the past 5 years, 566 abstracts were identified, all of which were reviewed for information related to the purpose of this article. Forty-seven articles were identified and read in detail for information that may have related to the purpose of this article. In addition, a library search to identify textbooks that describe helicopter production systems was undertaken but did not identify any written resources. Because of the lack of written resources available in writing this article, a direct interview survey of leading helicopter manufactures, associations, and industry writers was conducted. Only information that was considered "public knowledge" was available because of concerns by the various manufactures that publication of confidential information could be detrimental to their competitive advantage. Because helicopter-manufacturing plants were not located within easy travel range, no direct observation of the production facilities could be undertaken. Furthermore, information regarding production and operational management was not easily accessible because the data were not published or were considered confidential. Therefore industry analysis had to take place through direct survey interviewing technique and data obtained through an analysis of the available published

  19. Versatality of Nasolabial Flap in Orofacial Reconstruction

    Directory of Open Access Journals (Sweden)

    Nandesh Shetty

    2015-01-01

    Materials and Methods: A total of 10 patients were selected based on the size of surgical defect. Nasolabial flap was used to reconstruct defects of small to moderate size in the oro-facial region and post-operative follow up was done. Results: All of the patients underwent inferiorly based Transposition Island flap for reconstruction of different oro-facial defects. Few complications like bulky size of the flap, slight donor site distortion (scar formation and intra-oral hair growth were seen in six patients. Two incidences of infection in the transferred flap were seen. Conclusion: It is a safe minor procedure done under general anesthesia with good reconstructive results over small or moderately sized maxillofacial defects. Proper attention to flap design, operative technique and post - operative management are useful in reducing the incidence of complications.

  20. Energy management - The delayed flap approach

    Science.gov (United States)

    Bull, J. S.

    1976-01-01

    Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation aid co-located with the ILS glide slope transmitter. The Delayed Flap approach saves 250 lb of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large.

  1. Long Island north shore helicopter route environmental study

    Science.gov (United States)

    2012-02-21

    This report presents the results of the noise and emissions analysis of helicopter operations along the North Shore Helicopter Route of Long Island, New York performed by the Federal Aviation Administration, with the assistance of the Volpe Center...

  2. Analysing Blast and Fragment Penetration Effects on Composite Helicopter Structures

    National Research Council Canada - National Science Library

    van't Hof, C; Herlaar, K; Luyten, J. M; van der Jagt, M. J

    2005-01-01

    .... The last decades the threat of helicopters has increased in military circumstances. Consequently the helicopters will be exposed to weapon effects like high blast loads and fragment impact more frequently...

  3. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes...

  4. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-09-13

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop...

  5. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-19

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the manufacturer's..., contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, Mailstop s581a, 6900...

  6. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-07-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  7. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-08-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-76A helicopters to require modifying the electric rotor brake (ERB... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  8. Wind tunnel tests with combined pitch and free-floating flap control: data-driven iterative feedforward controller tuning

    Directory of Open Access Journals (Sweden)

    S. T. Navalkar

    2016-10-01

    Full Text Available Wind turbine load alleviation has traditionally been addressed in the literature using either full-span pitch control, which has limited bandwidth, or trailing-edge flap control, which typically shows low control authority due to actuation constraints. This paper combines both methods and demonstrates the feasibility and advantages of such a combined control strategy on a scaled prototype in a series of wind tunnel tests. The pitchable blades of the test turbine are instrumented with free-floating flaps close to the tip, designed such that they aerodynamically magnify the low stroke of high-bandwidth actuators. The additional degree of freedom leads to aeroelastic coupling with the blade flexible modes. The inertia of the flaps was tuned such that instability occurs just beyond the operational envelope of the wind turbine; the system can however be stabilised using collocated closed-loop control. A feedforward controller is shown to be capable of significant reduction of the deterministic loads of the turbine. Iterative feedforward tuning, in combination with a stabilising feedback controller, is used to optimise the controller online in an automated manner, to maximise load reduction. Since the system is non-linear, the controller gains vary with wind speed; this paper also shows that iterative feedforward tuning is capable of generating the optimal gain schedule online.

  9. KNOW-BLADE task-4 report. Navier-Stokes aeroelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.; Bertagnolio, F.; Soerensen, N.N.; Johansen, J.

    2005-01-01

    The problem of the aeroelastic stability of wind turbine blades is addressed in this report by advancing the aerodynamic modelling in the beam element type codes from the engineering-type empirical models to unsteady, 2D or 3D, Navier-Stokes solvers. In this project, structural models for the full wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) is its inability to model induced flow. The lack of a validation test case did not allow for quantitative comparisons with experimental data to be carried out; instead the results of the advanced aeroelastic tools are qualitatively cross-compared. All investigated methods predicted qualitatively similar results. They all resulted in positive aerodynamic damping values for the flap mode, in a decrease in damping with the increase of wind speeds and in a minimum value for the damping for wind speed around 15{approx}m/s. The eigenvalue analyses resulted in steeper distributions for this mode. The agreement in aerodynamic damping decrease with the increase of wind speed is also observed in the distributions for the lead-lag mode. In perspective, the uncoupled, linear method results in higher values of aerodynamic damping compared to the 3D aeroelastic tool. The quasi-3D tool results in lower aerodynamic damping values in the higher wind speeds and in lower damping values in the lower wind speed regime. Apart from the computations for the full blade, 2D computations for the so-called 'typical section' have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lag mode. The presence of roughness tapes has a small, rather negligible impact on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted

  10. Laser resurfacing of skin flaps: an experimental comparison

    Directory of Open Access Journals (Sweden)

    Srdan Babovic

    2011-05-01

    Full Text Available Objective. The influence of Coherent Ultrapulse, TruPulse and Erbium: YAG laser skin resurfacing on survival of the skin flaps when performed simultaneously was evaluated. Material and methods. We used twelve female Yucatan minipigs in the study. Skin flaps including paniculus carnosus were raised on the animals’ back. The flaps were sutured into the defect under tension. We designed 4 experimental groups: Control-Flaps only, Group 2-Flaps + 4 immediate TruPulse laser passes, Group 3-Flaps + 2 immediate Coherent UltraPulse laser passes, Group 4-Flaps – immediate 50J/cm2 total fluence with Erbium: YAG laser. Results. Flap survival in Control group was 98.8%. There was no flap in Group 2 with complete survival. Survival of the flaps in Group 2 (Tru-Pulse ranged from 75-90%, with average flap survival area of 85.2%. In Group 3 (UltraPulse all 24 flaps had some area of necrosis. Flap survival in Group 3 ranged from 75-95%, with an average of 85.6%. In Group 4 (Erbium: YAG flap survival area ranged from 70-95%, with all 24 flaps with some area of necrosis, with average flap survival area of 87.3%. There is a significant statistical difference in flap survival area between groups 2, 3 and 4 versus Control (p<0.001. Conclusion. The results of our study suggest that laser resurfacing of skin flaps sutured under tension in the same operative session is detrimental for skin flap survival. We also found no significant difference in flap survival area between TruPulse, Coherent UltraPulse and Erbium: YAG laser treated flaps.

  11. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    Science.gov (United States)

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Wavefront aberrometry and refractive outcomes of flap amputation after LASIK

    NARCIS (Netherlands)

    Al Saady, Rana L.; van der Meulen, Ivanka J.; Nieuwendaal, Carla P.; Engelbrecht, Leonore A.; Mourits, Maarten P.; Lapid-Gortzak, Ruth

    2014-01-01

    Laser in situ keratomileusis flap amputation was performed in 3 eyes of 2 patients because of flap melt and surface irregularity. In the first patient, a 34-year-old man, flaps were excised after a photorefractive keratectomy retreatment procedure on a previous LASIK flap had been done, secondary to

  13. The Versatile Extended Thoracodorsal Artery Perforator Flap for Breast Reconstruction

    DEFF Research Database (Denmark)

    Jacobs, Jordan; Børsen-Koch, Mikkel; Gunnarsson, Gudjon L.

    2016-01-01

    complications occurred in 10 of 106 (10%) cases and included hematoma (1/108), venous congestion (2/108), and partial flap necrosis (7/108). The reconstructive goal was achieved in 103 of 106 (97%) flaps. CONCLUSIONS: The TAP flap is a pedicled, fasciocutaneous flap that can be used for total breast...

  14. Dorsal hand coverage with free serratus fascia flap

    DEFF Research Database (Denmark)

    Fotopoulos, Peter; Holmer, Per; Leicht, Pernille

    2003-01-01

    in the flap, leaving the long thoracic nerve intact on the serratus muscle. Coverage of the flap with split-thickness skin graft is done immediately. The free serratus fascia flap is an ideal flap for dorsal hand coverage when the extensor tendons are exposed, especially because of low donor-site morbidity....

  15. A Review Of Pectoralis Major Musculocutaneous Island Flap In ...

    African Journals Online (AJOL)

    Like microvascular free flaps, pectoralis major flaps can be transferred in a single stage and have largely replaced deltepectoral (Bakanjiam) flap in head and neck reconstruction. This retrospective study was carried out to highlight the usefulness of this flap in different situations. Ten patients, aged six to 55 years operated ...

  16. Total endoscopic free flap harvest of a serratus anterior fascia flap for microsurgical lower leg reconstruction

    Directory of Open Access Journals (Sweden)

    Erdmann, Alfons

    2014-04-01

    Full Text Available [english] Background: A tremendous number of free flaps have been developed in the past. As the surgical result depends not only on a successful flap transfer but also on the harvest, this paper details the procedures for undertaking the first total endoscopic harvest of a serratus fascia flap for free flap transplantation to the lower leg. Patient and methods: In September 2012 we performed the first total endoscopic serratus anterior fascia free flap harvest. The incision of 2.5 cm length was made 10 cm in front of anterior muscle border of the latissimus dorsi at level with the midthorax. After insertion of a flexible laparoscopic single port system we started CO gas insufflation. We used this setting to meticulously prepare a neo cavity between atissimus dorsi and M. serratus anterior. The vessels were dissected and the thoraco-dorsal nerve was separated. With a second auxiliary incision we used a clamp to support the raising of the fascia flap from the underlying muscle. Finally we clipped the vessels to the latissimus dorsi muscle and the flap vessels at the Arteria and Vena axillaris. The flap was extracted via the 2.5 cm incision.Results: We were able to perform a total endoscopic harvest of a serratus fascia flap for free flap reconstruction of soft tissues. With this new operative technique we were able to avoid a long skin incision, which in our view lowers the morbidity at the harvest area.Conclusion: We describe a new method for the total endoscopic harvest of the serratus fascia flap for free flap transfer. The flap was harvested within reasonable time and following surgery leaves the patient with minimal donor site morbidity compared to the open technique.

  17. Comparison of gluteal perforator flaps and gluteal fasciocutaneous rotation flaps for reconstruction of sacral pressure sores.

    Science.gov (United States)

    Chen, Yen-Chou; Huang, Eng-Yen; Lin, Pao-Yuan

    2014-03-01

    The gluteus maximus myocutaneous flap was considered the workhorse that reconstructed sacral pressure sores, but was gradually replaced by fasciocutaneous flap because of several disadvantages. With the advent of the perforator flap technique, gluteal perforator (GP) flap has gained popularity nowadays. The aim of this study was to compare the complications and outcomes between GP flaps and gluteal fasciocutaneous rotation (FR) flaps in the treatment of sacral pressure sores. Between April 2007 and June 2012, 63 patients underwent sacral pressure sore reconstructions, with a GP flap used in 31 cases and an FR flap used in 32 cases. Data collected on the patients included patient age, gender, co-morbidity for being bedridden and follow-up time. Surgical details collected included the defect size, operative time and estimated blood loss. Complications recorded included re-operation, dehiscence, flap necrosis, wound infection, sinus formation, donor-site morbidity and recurrence. The complications and clinical outcomes were compared between these two groups. We found that there was no significant difference in patient demographics, surgical complications and recurrence between these two groups. In gluteal FR flap group, all recurrent cases (five) were treated by reuse of previous flaps. Both methods are comparable, good and safe in treating sacral pressure sores. Gluteal FR flap can be performed without microsurgical dissection, and re-rotation is feasible in recurrent cases. The authors suggest using gluteal FR flaps in patients with a high risk of sore recurrence. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Modelling and attenuation feasibility of the aeroelastic response of active helicopter rotor systems during the engagement/disengagement phase of maritime operation

    Science.gov (United States)

    Khouli, F.

    An aeroelastic phenomenon, known as blade sailing, encountered during maritime operation of helicopters is identified as being a factor that limits the tactical flexibility of helicopter operation in some sea conditions. The hazards associated with this phenomenon and its complexity, owing to the number of factors contributing to its occurrence, led previous investigators to conclude that advanced and validated simulation tools are best suited to investigate it. A research gap is identified in terms of scaled experimental investigation of this phenomenon and practical engineering solutions to alleviate its negative impact on maritime helicopter operation. The feasibility of a proposed strategy to alleviate it required addressing a gap in modelling thin-walled composite active beams/rotor blades. The modelling is performed by extending a mathematically-consistent and asymptotic reduction strategy of the 3-D elastic problem to account for embedded active materials. The derived active cross-sectional theory is validated using 2-D finite element results for closed and open cross-sections. The geometrically-exact intrinsic formulation of active maritime rotor systems is demonstrated to yield compact and symbolic governing equations. The intrinsic feature is shown to allow a classical and proven solution scheme to be successfully applied to obtain time history solutions. A Froude-scaled experimental rotor was designed, built, and tested in a scaled ship airwake environment and representative ship motion. Based on experimental and simulations data, conclusions are drawn regarding the influence of the maritime operation environment and the rotor operation parameters on the blade sailing phenomenon. The experimental data is also used to successfully validate the developed simulation tools. The feasibility of an open-loop control strategy based on the integral active twist concept to counter blade sailing is established in a Mach-scaled maritime operation environment

  19. 14 CFR 136.13 - Helicopter performance plan and operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...

  20. 14 CFR 135.207 - VFR: Helicopter surface reference requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false VFR: Helicopter surface reference... VFR/IFR Operating Limitations and Weather Requirements § 135.207 VFR: Helicopter surface reference requirements. No person may operate a helicopter under VFR unless that person has visual surface reference or...

  1. CHANGES IN FLIGHT TRAINEE PERFORMANCE FOLLOWING SYNTHETIC HELICOPTER FLIGHT TRAINING.

    Science.gov (United States)

    CARO, PAUL W., JR.; ISLEY, ROBERT N.

    A STUDY WAS CONDUCTED AT THE U.S. ARMY PRIMARY HELICOPTER SCHOOL, FORT WOLTERS, TEXAS, TO DETERMINE WHETHER THE USE OF A HELICOPTER TRAINING DEVICE WOULD IMPROVE STUDENT PERFORMANCE DURING SUBSEQUENT HELICOPTER CONTACT FLIGHT TRAINING. SUBJECTS WERE TWO EXPERIMENTAL GROUPS AND TWO CONTROL GROUPS OF WARRANT OFFICER CANDIDATES ENROLLED FOR A…

  2. Helicopter emergency medical service patient transport safe at night?

    NARCIS (Netherlands)

    Peters, J.H.; Wageningen, B. van; Hoogerwerf, N.; Biert, J.

    2014-01-01

    OBJECTIVE: Dutch helicopter emergency medical services are available 24/7. Working without daylight brings additional challenges, both in patient care and in-flight operation. We retrospectively evaluated the safety of this nighttime helicopter transportation of patients. METHODS: Our helicopter

  3. 14 CFR 136.11 - Helicopter floats for over water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter floats for over water. 136.11... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.11 Helicopter floats for over water. (a) A helicopter used in commercial air tours over water beyond the shoreline must...

  4. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  5. 78 FR 51123 - Airworthiness Directives; Bell Helicopter Textron

    Science.gov (United States)

    2013-08-20

    ...-0734; Directorate Identifier 2012-SW-080-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter...). SUMMARY: We propose to supersede an existing airworthiness directive (AD) for Bell Helicopter Textron (Bell) Model 222, 222B, 222U, 230, and 430 helicopters. The existing AD currently requires inspecting...

  6. 78 FR 44043 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-07-23

    ... lead to failure of the swashplate and subsequent loss of helicopter control. DATES: We must receive..., which may cause failure of MRH parts and loss of control of the helicopter. The EASA AD requires..., Section 2.3 Flight Envelope, Item 2 Temperature Limits, of the helicopter's Rotorcraft Flight Manual (RFM...

  7. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  8. Hydrodynamic schooling of flapping swimmers

    International Nuclear Information System (INIS)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-01-01

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing-wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. Lastly, these results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups

  9. Hydrodynamic schooling of flapping swimmers

    Science.gov (United States)

    Becker, Alexander D.; Masoud, Hassan; Newbolt, Joel W.; Shelley, Michael; Ristroph, Leif

    2015-10-01

    Fish schools and bird flocks are fascinating examples of collective behaviours in which many individuals generate and interact with complex flows. Motivated by animal groups on the move, here we explore how the locomotion of many bodies emerges from their flow-mediated interactions. Through experiments and simulations of arrays of flapping wings that propel within a collective wake, we discover distinct modes characterized by the group swimming speed and the spatial phase shift between trajectories of neighbouring wings. For identical flapping motions, slow and fast modes coexist and correspond to constructive and destructive wing-wake interactions. Simulations show that swimming in a group can enhance speed and save power, and we capture the key phenomena in a mathematical model based on memory or the storage and recollection of information in the flow field. These results also show that fluid dynamic interactions alone are sufficient to generate coherent collective locomotion, and thus might suggest new ways to characterize the role of flows in animal groups.

  10. Flap-lag stability data for a small-scale isolated hingeless rotor in forward flight

    Science.gov (United States)

    Mcnulty, Michael J.

    1989-01-01

    An isolated, hingeless rotor with discrete flap and lead-lag flexures and relatively rigid blades was tested in the Aeroflightdynamics Directorate's 7- by 10-Foot Wind Tunnel. The lead-lag stability of a structurally simple rotor configuration in forward flight was determined. The model tested had no cyclic pitch control, and was therefore operated untrimmed at several collective pitch angles, at shaft angles from 0 deg to -20 deg, and at advance ratios as high as 0.55. Two inplane natural frequencies, 0.61/rev and 0.72/rev, were tested for configuration both with and without structural flap lag coupling. Concomitant hover testing of the model was also conducted. Representative plots of the frequency and damping data are presented to show general trends, and complete tabular data and model properties information are included for use in detailed correlation exercises. The most prominent feature of the forward flight data is an abrupt increase in damping with advance ratio at certain high-speed, high shaft-angle conditions, with high flapping loads. The hover data are consistent with previous experimental and theoretical results for hingeless rotors without kinematic couplings. Overall, the data quality is very good and the data are expected to be useful in the development and validation of rotor aeroelastic stability analyses.

  11. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  12. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  13. Helicopter industry - early beginnings to now; an outlook on the helicopter market and its major players in the rotorcraft industry

    NARCIS (Netherlands)

    Spranger, L.

    2013-01-01

    The helicopter is probably the most flexible aircraft that we know today. Although its history dates back to around 1500, the first practical helicopter wasn’t manufactured until the 1940s, roughly three decades after the Wright brothers’ first powered human flight. Today, helicopters fulfil a wide

  14. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    Science.gov (United States)

    2013-12-01

    switching to the Gauss linear scheme in the more advanced stage of the iteration to get a better converged solution. The numerical stability may also...All the other equations were solved using an iterative Gauss - Seidel method (smoothSolver). The iterative solver tolerances were set to 10-7 for the... Gauss linearUpwind (second order upwind) scheme from the 1000th iteration onwards, until convergence was achieved. The Flow-field convergence was

  15. 3D Warping Actuation Driven Dynamic Camber Control Concept for Helicopter Rotor Blades, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In a rotorcraft, optimized camber change not only reduces vibratory hub loads and noise but also increases available thrust and improved flight control augmentation....

  16. Preliminary Airworthiness Evaluation AH-1S Helicopter with OGEE Tip Shape Rotor Blades

    Science.gov (United States)

    1980-05-01

    ENGINEER PROJECT PILOT HENRY ARNAIZ PROJECT ENGINEER DTIC MAY 1980 ELECTEV SEP 2 I8 Approved for public release; distribution unlimited. A UNITED STATES...compressibility effects between flights. 7. Airspeed and altitude were obtained from a boom-mounted pitot -static probe. Corrections for position error

  17. Design Of Polymer Matrix Composite Materials Used For Helicopter Rotor Blades By Finite Element Method

    OpenAIRE

    Karaaslan, Nevzat Hakan

    2007-01-01

    Gelişmiş helikopter rotor paları genellikle kompozit malzemelerden üretilmektedirler ve yapılarında çeşitli hasarlara neden olabilecek yüksek derecede dinamik ve kararsız aerodinamik çevresel yüklerde çalışmaktadırlar. Bu yükleme şartlarına tekrarlı olarak maruz kalınması kompozit rotor pala yüzey kaplamalarında delaminasyon, çatlak vb. hasarlara neden olabilir. Bu tezin amacı, farklı kompozit rotor pala malzemelerinin, sonlu elemanlar yöntemi ile modellenmesi ve döner kanat yüzey kaplamaları...

  18. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite exciting wave modes with high ISCC values, instantaneous ice de-bonding is not observed at input powers under 100 Watts. The two triggered ultrasonic wave modes of the structure occur at high excitation frequencies, 202 KHz and 500 KHz respectively. At these frequencies, the ultrasonic actuators do not provide large enough transverse shear stresses to exceed the shear adhesion strength of the ice layer. Neither the actuator exciting the SH1 mode (202 KHz), nor the actuator triggering the SH2 mode (500 KHz) instantaneously de-bonds ice layers with an input power under 100 Watts.

  19. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  20. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  1. Boomerang flap reconstruction for the breast.

    Science.gov (United States)

    Baumholtz, Michael A; Al-Shunnar, Buthainah M; Dabb, Richard W

    2002-07-01

    The boomerang-shaped latissimus dorsi musculocutaneous flap for breast reconstruction offers a stable platform for breast reconstruction. It allows for maximal aesthetic results with minimal complications. The authors describe a skin paddle to obtain a larger volume than either the traditional elliptical skin paddle or the extended latissimus flap. There are three specific advantages to the boomerang design: large volume, conical shape (often lacking in the traditional skin paddle), and an acceptable donor scar. Thirty-eight flaps were performed. No reconstruction interfered with patient's ongoing oncological regimen. The most common complication was seroma, which is consistent with other latissimus reconstructions.

  2. The transverse musculocutaneous gracilis flap for breast reconstruction: guidelines for flap and patient selection.

    Science.gov (United States)

    Schoeller, Thomas; Huemer, Georg M; Wechselberger, Gottfried

    2008-07-01

    The transverse musculocutaneous gracilis (TMG) flap has received little attention in the literature as a valuable alternative source of donor tissue in the setting of breast reconstruction. The authors give an in-depth review of their experience with breast reconstruction using the TMG flap. A retrospective review of 111 patients treated with a TMG flap for breast reconstruction in an immediate or a delayed setting between August of 2002 and July of 2007 was undertaken. Of these, 26 patients underwent bilateral reconstruction and 68 underwent unilateral reconstruction, and 17 patients underwent reconstruction unilaterally with a double TMG flap. Patient age ranged between 24 and 65 years (mean, 37 years). Twelve patients had to be taken back to the operating room because of flap-related problems and nine patients underwent successful revision microsurgically, resulting in three complete flap losses in a series of 111 patients with 154 transplanted TMG flaps. Partial flap loss was encountered in two patients, whereas fat tissue necrosis was managed conservatively in six patients. Donor-site morbidity was an advantage of this flap, with a concealed scar and minimal contour irregularities of the thigh, even in unilateral harvest. Complications included delayed wound healing (n = 10), hematoma (n = 5), and transient sensory deficit over the posterior thigh (n = 49). The TMG flap is more than an alternative to the deep inferior epigastric perforator (DIEP) flap in microsurgical breast reconstruction in selected patients. In certain indications, such as bilateral reconstructions, it possibly surpasses the DIEP flap because of a better concealed donor scar and easier harvest.

  3. Korean experience with steam turbine blade inspection

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Park, D.Y.; Park, Hyung Jin; Chung, Min Hwa

    1990-01-01

    Several turbine blade accidents in Korea have emphasized the importance of their adequate periodic inspection. As a typical example, a broken blade was found in the Low Pressure (LP) turbine at the 950 MWe KORI unit 3 during the 1986 overhaul after one year commercial operation. Since then the Manufacturer and the Utility company (KEPCO) have been concerned about the need of blade root inspection. The ultrasonic testing was applied to detect cracks in the blade roots without removing the blades from rotor. Due to the complex geometry of the roots, the test results could not be evaluated easily. We feel that the currently applied UT technique seems to be less reliable and more effective method of inspection must be developed in the near future. This paper describes the following items: The causes and analysis of blade damage The inspection techniques and results The remedial action to be taken (Repair and Replacement) The future plan

  4. A coupled CFD and wake model simulation of helicopter rotor in hover

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  5. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  6. Face resurfacing using a cervicothoracic skin flap prefabricated by lateral thigh fascial flap and tissue expander.

    Science.gov (United States)

    Li, Qingfeng; Zan, Tao; Gu, Bin; Liu, Kai; Shen, Guoxiong; Xie, Yun; Weng, Rui

    2009-01-01

    Resurfacing of facial massive soft tissue defect is a formidable challenge because of the unique character of the region and the limitation of well-matched donor site. In this report, we introduce a technique for using the prefabricated cervicothoracic skin flap for facial resurfacing, in an attempt to meet the principle of flap selection in face reconstructive surgery for matching the color and texture, large dimension, and thinner thickness (MLT) of the recipient. Eleven patients with massive facial scars underwent resurfacing procedures with prefabricated cervicothoracic flaps. The vasculature of the lateral thigh fascial flap, including the descending branch of the lateral femoral circumflex vessels and the surrounding muscle fascia, was used as the vascular carrier, and the pedicles of the fascial flap were anastomosed to either the superior thyroid or facial vessels in flap prefabrication. A tissue expander was placed beneath the fascial flap to enlarge the size and reduce the thickness of the flap. The average size of the harvested fascia flap was 6.5 x 11.7 cm. After a mean interval of 21.5 weeks, the expanders were filled to a mean volume of 1,685 ml. The sizes of the prefabricated skin flaps ranged from 12 x 15 cm to 15 x 32 cm. The prefabricated skin flaps were then transferred to the recipient site as pedicled flaps for facial resurfacing. All facial soft tissue defects were successfully covered by the flaps. The donor sites were primarily closed and healed without complications. Although varied degrees of venous congestion were developed after flap transfers, the marginal necrosis only occurred in two cases. The results in follow-up showed most resurfaced faces restored natural contour and regained emotional expression. MLT is the principle for flap selection in resurfacing of the massive facial soft tissue defect. Our experience in this series of patients demonstrated that the prefabricated cervicothoracic skin flap could be a reliable alternative

  7. Treatment of ischial pressure sores with both profunda femoris artery perforator flaps and muscle flaps.

    Science.gov (United States)

    Kim, Chae Min; Yun, In Sik; Lee, Dong Won; Lew, Dae Hyun; Rah, Dong Kyun; Lee, Won Jai

    2014-07-01

    Reconstruction of ischial pressure sore defects is challenging due to extensive bursas and high recurrence rates. In this study, we simultaneously applied a muscle flap that covered the exposed ischium and large bursa with sufficient muscular volume and a profunda femoris artery perforator fasciocutaneous flap for the management of ischial pressure sores. We retrospectively analyzed data from 14 patients (16 ischial sores) whose ischial defects had been reconstructed using both a profunda femoris artery perforator flap and a muscle flap between January 2006 and February 2014. We compared patient characteristics, operative procedure, and clinical course. All flaps survived the entire follow-up period. Seven patients (50%) had a history of surgery at the site of the ischial pressure sore. The mean age of the patients included was 52.8 years (range, 18-85 years). The mean follow-up period was 27.9 months (range, 3-57 months). In two patients, a biceps femoris muscle flap was used, while a gracilis muscle flap was used in the remaining patients. In four cases (25%), wound dehiscence occurred, but healed without further complication after resuturing. Additionally, congestion occurred in one case (6%), but resolved with conservative treatment. Among 16 cases, there was only one (6%) recurrence at 34 months. The combination of a profunda femoris artery perforator fasciocutaneous flap and muscle flap for the treatment of ischial pressure sores provided pliability, adequate bulkiness and few long-term complications. Therefore, this may be used as an alternative treatment method for ischial pressure sores.

  8. Route Flap Damping Made Usable

    Science.gov (United States)

    Pelsser, Cristel; Maennel, Olaf; Mohapatra, Pradosh; Bush, Randy; Patel, Keyur

    The Border Gateway Protocol (BGP), the de facto inter-domain routing protocol of the Internet, is known to be noisy. The protocol has two main mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately, RFD was found to severely penalize sites for being well-connected because topological richness amplifies the number of update messages exchanged. So most operators have disabled it. Through measurement, this paper explores the avenue of absolutely minimal change to code, and shows that a few RFD algorithmic constants and limits can be trivially modified, with the result being damping a non-trivial amount of long term churn without penalizing well-behaved prefixes' normal convergence process.

  9. Postirradiation flap infection about the oral cavity

    International Nuclear Information System (INIS)

    Cabbabe, E.B.; Herbold, D.R.; Sunwoo, Y.C.; Baroudi, I.F.

    1983-01-01

    Postirradiation alteration of oral flora is well documented in the literature. Infection as a complication leading to partial or complete loss of a flap used to reconstruct a defect in the oral cavity is a worrisome outcome. We describe how a flap that was judged clinically to be viable became overwhelmingly infected with the Klebsiella oxytoca, an oral cavity pathogen encountered in this patient following irradiation. Local and systemic changes led to detachment of the flap. This complication may be explained, in view of the absence of venous congestion or arterial ischemia both clinically and pathologically, by the proven contamination of the flap by the Klebsiella pathogen. Local factors resulted in lower resistance and subsequent overwhelming infection. Discussion of the case, review of pertinent literature, and proposed solutions are presented

  10. The role of postoperative hematoma on free flap compromise.

    Science.gov (United States)

    Ahmad, Faisal I; Gerecci, Deniz; Gonzalez, Javier D; Peck, Jessica J; Wax, Mark K

    2015-08-01

    Hematomas may develop in the postoperative setting after free tissue transfer. When hematomas occur, they can exert pressure on surrounding tissues. Their effect on the vascular pedicle of a free flap is unknown. We describe our incidence of hematoma in free flaps and outcomes when the flap is compromised. Retrospective chart review of 1,883 free flaps performed between July 1998 and June 2014 at a tertiary referral center. Patients with free flap compromise due to hematoma were identified. Etiology, demographic data, and outcomes were evaluated. Eighty-eight (4.7%) patients developed hematomas. Twenty (22.7%) of those had flap compromise. Twelve compromises (60%) showed evidence of pedicle thrombosis. The salvage rate was 75% versus 54% in 79 flaps with compromise from other causes (P = .12). Mean time to detection of the hematoma was 35.3 hours in salvaged flaps compared to 91.6 hours in unsalvageable flaps (P = .057). Time to operating room (OR) from detection was 2.8 hours in salvageable flaps compared to 12.4 hours in nonsalvageable flaps (P = .053). The salvage rate for flaps that returned to the OR in hematomas developed rarely. When they did, 23% went on to develop flap compromise. Prompt recognition and re-exploration allowed for a high salvage rate. Vessel thrombosis predicted inability to salvage the flap. 4 © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  12. Adaptor assembly for coupling turbine blades to rotor disks

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  13. Triple flap technique for vulvar reconstruction.

    Science.gov (United States)

    Mercut, R; Sinna, R; Vaucher, R; Giroux, P A; Assaf, N; Lari, A; Dast, S

    2018-04-09

    Perineal defects are encountered ever more frequently, in the treatment of vulvar cancers or abdominoperineal resection. The surgical treatment of vulvar cancer leads to significant skin defect. The aim of the reconstruction is not to provide volume but rather to resurface perineum. We propose a new solution to cover the extensive skin defect remaining after excision. We report 3 patients who underwent large excision for vulvar cancer, with lymph node dissection. For reconstruction, we performed 3 advancement flaps. Two V-Y flaps cantered on the infra-gluteal folds and based on pudendal perforator arteries were used to cover the postero-lateral parts of the defect. The third advancement flap from the superior aspect of the defect was a Y-V Mons pubis flap. The defects were successfully covered by the 3 flap technique. The first patient suffered a non-union that slowly healed by secondary intention. For the other cases, we used the same technique, but applied negative pressure wound therapy on the sutures, with excellent results. The 3 flap technique is a simple and reliable method and the donor site morbidity is minimal. It can be realised without changing the position of the patient after tumour excision, and does not require delicate perforator dissection. This surgical option can be easily applied, allowing better management of these cases. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  15. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    Science.gov (United States)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  16. The Counterproductive Effects of Helicopter Universities

    Science.gov (United States)

    Von Bergen, C. W.; Bressler, Martin S.

    2017-01-01

    Perhaps universities have gone too far in their attempts to provide the best learning experience for our students? We have heard of helicopter parents who hover over their sons and daughters, removing all obstacles their student might face and solve problems for them. Have colleges and universities adopted this same kind of behavior in their…

  17. Helicopter Parents Can Be a Good Thing

    Science.gov (United States)

    Hiltz, Julie

    2015-01-01

    Helicopter parents get a bad rap. Teachers and administrators should view them as a resource--not a nuisance. By encouraging open communication, teachers can begin to understand the motivations of these parents and find creative ways to connect them with opportunities to promote their students' academic success and the school's overall…

  18. Helicopter Parents Help Students, Survey Finds

    Science.gov (United States)

    Lipka, Sara

    2007-01-01

    Helicopter parents, notorious for hovering over their college-age children, may actually help students thrive, according to this year's National Survey of Student Engagement. Students whose parents intervene on their behalf--38 percent of freshmen and 29 percent of seniors--are more active in and satisfied with college, says the monstrous annual…

  19. Feasibility of Helicopter Support Seek Frost.

    Science.gov (United States)

    1980-05-01

    the allowable maximum weight can be used as the payload. The payload is a variable. Small helicopters with full fuel and auxillary tanks can fly...equipment, that the program to obtain icing approval on the S-76 will be finalized for management evaluation, and a decision can be made at that time to

  20. Performance Measurement in Helicopter Training and Operations.

    Science.gov (United States)

    Prophet, Wallace W.

    For almost 15 years, HumRRO Division No. 6 has conducted an active research program on techniques for measuring the flight performance of helicopter trainees and pilots. This program addressed both the elemental aspects of flying (i.e., maneuvers) and the mission- or goal-oriented aspects. A variety of approaches has been investigated, with the…

  1. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  2. Multicenter observational prehospital resuscitation on helicopter study.

    Science.gov (United States)

    Holcomb, John B; Swartz, Michael D; DeSantis, Stacia M; Greene, Thomas J; Fox, Erin E; Stein, Deborah M; Bulger, Eileen M; Kerby, Jeffrey D; Goodman, Michael; Schreiber, Martin A; Zielinski, Martin D; O'Keeffe, Terence; Inaba, Kenji; Tomasek, Jeffrey S; Podbielski, Jeanette M; Appana, Savitri N; Yi, Misung; Wade, Charles E

    2017-07-01

    Earlier use of in-hospital plasma, platelets, and red blood cells (RBCs) has improved survival in trauma patients with severe hemorrhage. Retrospective studies have associated improved early survival with prehospital blood product transfusion (PHT). We hypothesized that PHT of plasma and/or RBCs would result in improved survival after injury in patients transported by helicopter. Adult trauma patients transported by helicopter from the scene to nine Level 1 trauma centers were prospectively observed from January to November 2015. Five helicopter systems had plasma and/or RBCs, whereas the other four helicopter systems used only crystalloid resuscitation. All patients meeting predetermined high-risk criteria were analyzed. Patients receiving PHT were compared with patients not receiving PHT. Our primary analysis compared mortality at 3 hours, 24 hours, and 30 days, using logistic regression to adjust for confounders and site heterogeneity to model patients who were matched on propensity scores. Twenty-five thousand one hundred eighteen trauma patients were admitted, 2,341 (9%) were transported by helicopter, of which 1,058 (45%) met the highest-risk criteria. Five hundred eighty-five of 1,058 patients were flown on helicopters carrying blood products. In the systems with blood available, prehospital median systolic blood pressure (125 vs 128) and Glasgow Coma Scale (7 vs 14) was significantly lower, whereas median Injury Severity Score was significantly higher (21 vs 14). Unadjusted mortality was significantly higher in the systems with blood products available, at 3 hours (8.4% vs 3.6%), 24 hours (12.6% vs 8.9%), and 30 days (19.3% vs 13.3%). Twenty-four percent of eligible patients received a PHT. A median of 1 unit of RBCs and plasma were transfused prehospital. Of patients receiving PHT, 24% received only plasma, 7% received only RBCs, and 69% received both. In the propensity score matching analysis (n = 109), PHT was not significantly associated with mortality

  3. [A variant of island flaps for the covering of pressure sores: the hatchet flap. Apropos of 31 cases].

    Science.gov (United States)

    Quillot, M; Lodde, J P; Pegorier, O; Reynaud, J P; Cormerais, A

    1994-08-01

    The authors propose a modification of the classical design of island flaps for cover of pressure sores, applied to gluteus maximus and tensor fascia lata muscles: the hatchet flap. 31 flaps have been used including 13 gluteus maximus superior flaps for sacral pressure sores, 9 gluteal inferior flaps for ischial pressure sores and 9 tensor fascia lata flaps for trochanteric pressure sores. A small partial necrosis and two cases of sepsis were observed in this series, but did not require surgical revision. The authors emphasize the value of this modification of the classical flap design, which preserves an even better musculocutaneous capital in these patients, who are often already multi-operated. The very rapid recovery of patients supports the authors' application of hatchet flaps to the surgery of pressure sores, and suggests the extension to other musculocutaneous flaps in the future.

  4. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  5. Rescue of Primary Incomplete Microkeratome Flap with Secondary Femtosecond Laser Flap in LASIK

    Directory of Open Access Journals (Sweden)

    E. A. Razgulyaeva

    2014-01-01

    Full Text Available For laser-assisted in situ keratomileusis (LASIK retreatments with a previous unsuccessful mechanical microkeratome-assisted surgery, some surgical protocols have been described as feasible, such as relifting of the flap or the creation of a new flap and even the change to a surface ablation procedure (photorefractive keratectomy (PRK. This case shows the use of femtosecond technology for the creation of a secondary flap to perform LASIK in a cornea with a primary incomplete flap obtained with a mechanical microkeratome. As we were unable to characterize the interface of the first partial lamellar cut, a thick flap was planned and created using a femtosecond laser platform. As the primary cut was very thick in the nasal quadrant, a piece of loose corneal tissue appeared during flap lifting which was fitted in its position and not removed. Despite this condition and considering the regularity of the new femtosecond laser cut, the treatment was uneventful. This case report shows the relevance of a detailed corneal analysis with an advanced imaging technique before performing a secondary flap in a cornea with a primary incomplete flap. The femtosecond laser technology seems to be an excellent tool to manage such cases successfully.

  6. The Internal Pudendal Artery Perforator Thigh Flap: A New Freestyle Pedicle Flap for the Ischial Region

    Directory of Open Access Journals (Sweden)

    Ichiro Hashimoto, MD

    2014-05-01

    Conclusions: The perforator vessels of the internal pudendal artery are very close to the ischial tuberosity. Blood flow to the flap is reliable when careful debridement of the pressure sore is performed. The iPap thigh flap is a new option for soft-tissue defects in the ischial region, including ischial pressure sores.

  7. The prepuce free flap in 10 patients : modifications in flap design and surgical technique

    NARCIS (Netherlands)

    Werker, Paul M N

    The prepuce free flap was used in 10 oral and oropharyngeal reconstructions. During the course of this study, various modifications took place. Residual penile skin necrosis and skin island necrosis early in the series led to modification of flap design. This solved the donor-site problem by placing

  8. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  9. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  10. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  11. 49 CFR 236.707 - Blade, semaphore.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm. ...

  12. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  13. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  14. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  15. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  16. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  17. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  18. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  19. Free flap reconstruction for diabetic foot limb salvage.

    Science.gov (United States)

    Sato, Tomoya; Yana, Yuichiro; Ichioka, Shigeru

    2017-12-01

    Although free flap is gaining popularity for the reconstruction of diabetic foot ulcers, it is unclear whether free flap reconstruction increases the chances of postoperative independent ambulation. The aim of this study is to evaluate the relationship between free flap success and postoperative ambulation. This study reviewed 23 cases of free flap reconstruction for diabetic foot ulcers between January 2007 and March 2014. Free rectus abdominis, latissimus dorsi, and anterolateral thigh flaps were used in ten, eight, and five patients, respectively. A comparison was made between free flap success and postoperative independent ambulation using Fisher's exact test. Two patients developed congestive heart failure with fatal consequences within 14 days postoperatively, resulting in an in-hospital mortality rate of 8.7%. Five patients lost their flaps (21.7%). Of the 16 patients who had flap success, 12 achieved independent ambulation. Five patients with flap loss did not achieve independent ambulation, except one patient who underwent secondary flap reconstruction using a distally based sural flap. Fisher's exact test revealed that independent ambulation was associated with free flap success (p = 0.047). The present study indicates that free flap reconstruction may increase the possibility of independent ambulation for patients with extensive tissue defects due to diabetic ulcers. Intermediate limb salvage rates and independent ambulation rates were favourable in patients with successful reconstruction. The use of foot orthoses and a team approach with pedorthists were effective to prevent recurrence.

  20. Chimeric superficial temporal artery based skin and temporal fascia flap plus temporalis muscle flap - An alternative to free flap for suprastructure maxillectomy with external skin defect

    Directory of Open Access Journals (Sweden)

    Dushyant Jaiswal

    2011-01-01

    Full Text Available Flaps from temporal region have been used for mid face, orbital and peri-orbital reconstruction. The knowledge of the vascular anatomy of the region helps to dissect and harvest the muscle/fascia/skin/combined tissue flaps from that region depending upon the requirement. Suprastructure maxillectomy defects are usually covered with free flaps to fill the cavity. Here we report an innovative idea in which a patient with a supra structure maxillectomy with external skin defect was covered with chimeric flap based on the parietal and frontal branches of superficial temporal artery and the temporalis muscle flap based on deep temporal artery.

  1. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    Science.gov (United States)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  2. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  3. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Science.gov (United States)

    Oktay, Tugrul; Sal, Firat

    2015-01-01

    Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841

  4. Helicopter Control Energy Reduction Using Moving Horizontal Tail

    Directory of Open Access Journals (Sweden)

    Tugrul Oktay

    2015-01-01

    Full Text Available Helicopter moving horizontal tail (i.e., MHT strategy is applied in order to save helicopter flight control system (i.e., FCS energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA. In order to observe improvement in behaviors of classical controls closed loop analyses are done.

  5. Comparison of Dorsal Intercostal Artery Perforator Propeller Flaps and Bilateral Rotation Flaps in Reconstruction of Myelomeningocele Defects.

    Science.gov (United States)

    Tenekeci, Goktekin; Basterzi, Yavuz; Unal, Sakir; Sari, Alper; Demir, Yavuz; Bagdatoglu, Celal; Tasdelen, Bahar

    2018-04-09

    Bilateral rotation flaps are considered the workhorse flaps in reconstruction of myelomeningocele defects. Since the introduction of perforator flaps in the field of reconstructive surgery, perforator flaps have been used increasingly in the reconstruction of various soft tissue defects all over the body because of their appreciated advantages. The aim of this study was to compare the complications and surgical outcomes between bilateral rotation flaps and dorsal intercostal artery perforator (DICAP) flaps in the soft tissue reconstruction of myelomeningocele defects. Between January 2005-February 2017, we studied 47 patients who underwent reconstruction of myelomeningocele defects. Patient demographics, operative data, and postoperative data were reviewed retrospectively and are included in the study. We found no statistically significant differences in patient demographics and surgical complications between these two groups; this may be due to small sample size. With regard to complications-partial flap necrosis, cerebrospinal fluid (CSF) leakage, necessity for reoperation, and wound infection-DICAP propeller flaps were clinically superior to rotation flaps. Partial flap necrosis was associated with CSF leakage and wound infection, and CSF leakage was associated with wound dehiscence. Although surgical outcomes obtained with DICAP propeller flaps were clinically superior to those obtained with rotation flaps, there was no statistically significant difference between the two patient groups. A well-designed comparative study with adequate sample size is needed. Nonetheless, we suggest using DICAP propeller flaps for reconstruction of large myelomeningocele defects.

  6. Modified cup flap for volar oblique fingertip amputations

    Directory of Open Access Journals (Sweden)

    Ahmadli, A.

    2016-02-01

    Full Text Available We describe a modified volar “V-Y cup” flap for volar fingertip defects that do not exceed more than half of the distal phalanx for better aesthetic and functional outcome. In seven cases out of eight, the flap was elevated with a subdermal pedicle, whereas in one case, the flap was elevated as an island on the bilateral neurovascular bundle. The fingertips have been evaluated for sensibility using standard tests, hook nail deformity and patient satisfaction. Seven flaps have survived completely. The flap with skeletonized bilateral digital neurovascular bundle has shown signs of venous insufficiency on the 5 postoperative day with consecutive necrosis. Suturing the distal edges of the flap in a “cupping” fashion provided a normal pulp contour. The modified flap can be used for defects as mentioned above. Subdermally dissected pedicle-based flap is safe and easy to elevate. The aesthetic and functional outcomes have been reported to be satisfactory.

  7. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile ...

    African Journals Online (AJOL)

    equipment, cost, steep learning curve, and prolonged operating ... A Versatile Alternative when Reverse Sural Artery Flap is .... He had wound debridement, fracture reduction, and .... flaps that were raised in the patient and the logistics of limb.

  8. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  9. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  10. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  11. Preliminary Analysis of Helicopter Options to Support Tunisian Counterterrorism Operations

    Science.gov (United States)

    2016-04-27

    helicopters from Sikorsky to fulfill a number of roles in counterterrorism operations. Rising costs and delays in delivery raised the question of...whether other cost-effective options exist to meet Tunisia’s helicopter requirement. Approach Our team conducted a preliminary assessment of...alternative helicopters for counterterrorism air assault missions. Any decision to acquire an aircraft must consider many factors, including technical

  12. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    OpenAIRE

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems usingintentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integra...

  13. Scrotal reconstruction with superomedial fasciocutaneous thigh flap

    Directory of Open Access Journals (Sweden)

    DANIEL FRANCISCO MELLO

    2018-02-01

    Full Text Available ABSTRACT Objective: to describe the use of a superomedial fasciocutaneous thigh flap for scrotal reconstruction in open areas secondary to the surgical treatment of perineal necrotizing fasciitis (Fournier’s gangrene. Methods: retrospective analysis of cases treated at the Plastic Surgery Service of Santa Casa de Misericórdia, São Paulo, from 2009 to 2015. Results: fifteen patients underwent scrotal reconstruction using the proposed flap. The mean age was 48.9 years (28 to 66. Skin loss estimates in the scrotal region ranged from 60 to 100%. Definitive reconstruction was performed on average 30.6 days (22 to 44 after the initial surgical treatment. The mean surgical time was 76 minutes (65 to 90 to obtain the flaps, bilateral in all cases. Flap size ranged from 10cm to 13cm in the longitudinal direction and 8cm to 10cm in the cross-sectional direction. The complication rate was 26.6% (four cases, related to the occurrence of segmental and partial dehiscence. Conclusion: the superomedial fasciocutaneous flap of thigh is a reliable and versatile option for the reconstruction of open areas in the scrotal region, showing adequate esthetic and functional results.

  14. The forked flap repair for hypospadias

    Directory of Open Access Journals (Sweden)

    Anil Chadha

    2012-01-01

    Full Text Available Context: Despite the abundance of techniques for the repair of Hypospadias, its problems still persist and a satisfactory design to correct the penile curvature with the formation of neourethra from the native urethral tissue or genital or extragenital tissues, with minimal postoperative complications has yet to evolve. Aim: Persisting with such an endeavor, a new technique for the repair of distal and midpenile hypospadias is described. Materials and Methods: The study has been done in 70 cases over the past 11 years. The "Forked-Flap" repair is a single stage method for the repair of such Hypospadias with chordee. It takes advantage of the rich vascular communication at the corona and capitalizes on the established reliability of the meatal based flip-flap. The repair achieves straightening of the curvature of the penis by complete excision of chordee tissue from the ventral surface of the penis beneath the urethral plate. The urethra is reconstructed using the native plate with forked flap extensions and genital tissue relying on the concept of meatal based flaps. Water proofing by dartos tissue and reinforcement by Nesbit′s prepucial tissue transfer completes the one stage procedure. Statistical Analysis: An analysis of 70 cases of this single stage technique of repair of penile hypospadias with chordee, operated at 3 to 5 years of age over the past 11 years is presented. Results and Conclusion: The Forked Flap gives comparable and replicable results; except for a urethrocutaneous fistula rate of 4% no other complications were observed.

  15. An anthropometric analysis of Korean male helicopter pilots for helicopter cockpit design.

    Science.gov (United States)

    Lee, Wonsup; Jung, Kihyo; Jeong, Jeongrim; Park, Jangwoon; Cho, Jayoung; Kim, Heeeun; Park, Seikwon; You, Heecheon

    2013-01-01

    This study measured 21 anthropometric dimensions (ADs) of 94 Korean male helicopter pilots in their 20s to 40s and compared them with corresponding measurements of Korean male civilians and the US Army male personnel. The ADs and the sample size of the anthropometric survey were determined by a four-step process: (1) selection of ADs related to helicopter cockpit design, (2) evaluation of the importance of each AD, (3) calculation of required sample sizes for selected precision levels and (4) determination of an appropriate sample size by considering both the AD importance evaluation results and the sample size requirements. The anthropometric comparison reveals that the Korean helicopter pilots are larger (ratio of means = 1.01-1.08) and less dispersed (ratio of standard deviations = 0.71-0.93) than the Korean male civilians and that they are shorter in stature (0.99), have shorter upper limbs (0.89-0.96) and lower limbs (0.93-0.97), but are taller on sitting height, sitting eye height and acromial height (1.01-1.03), and less dispersed (0.68-0.97) than the US Army personnel. The anthropometric characteristics of Korean male helicopter pilots were compared with those of Korean male civilians and US Army male personnel. The sample size determination process and the anthropometric comparison results presented in this study are useful to design an anthropometric survey and a helicopter cockpit layout, respectively.

  16. Perforator plus flaps: Optimizing results while preserving function and esthesis

    Directory of Open Access Journals (Sweden)

    Mehrotra Sandeep

    2010-01-01

    Full Text Available Background: The tenuous blood supply of traditional flaps for wound cover combined with collateral damage by sacrifice of functional muscle, truncal vessels, or nerves has been the bane of reconstructive procedures. The concept of perforator plus flaps employs dual vascular supply to flaps. By safeguarding perforators along with supply from its base, robust flaps can be raised in diverse situations. This is achieved while limiting collateral damage and preserving nerves, vessels, and functioning muscle with better function and aesthesis. Materials and Methods: The perforator plus concept was applied in seven different clinical situations. Functional muscle and fasciocutaneous flaps were employed in five and adipofascial flaps in two cases, primarily involving lower extremity defects and back. Adipofascial perforator plus flaps were employed to provide cover for tibial fracture in one patients and chronic venous ulcer in another. Results: All flaps survived without any loss and provided long-term stable cover, both over soft tissue and bone. Functional preservation was achieved in all cases where muscle flaps were employed with no clinical evidence of loss of power. There was no sensory loss or significant oedema in or distal to the flap in both cases where neurovascular continuity was preserved during flap elevation. Fracture union and consolidation were satisfactory. One patient had minimal graft loss over fascia which required application of stored grafts with subsequent take. No patient required re-operation. Conclusions: Perforator plus concept is holistic and applicable to most flap types in varied situations. It permits the exercise of many locoregional flap options while limiting collateral functional damage. Aesthetic considerations are also addressed while raising adipofascial flaps because of no appreciable donor defects. With quick operating times and low failure risk, these flaps can be a better substitute to traditional flaps and at

  17. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  18. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  19. Curative effect observation of n-flap and off-flap EPi-LASIK in ametropia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-11-01

    Full Text Available AIM:To observe the clinical effect of on-flap and off-flap epipolis laser in situ keratomileusis(EPi-LASIKin ametropia.METHODS: Sixty-eight myopia patients(136 eyesreceiving surgical treatment were selected and divided into research group and control group according to different therapies. The patients in research group adopted off-flap EPi-LASIK and those in control group adopted on-flap EPi-LASIK. The index like uncorrected visual acuity, diopter and Haze of two groups before surgery, 1wk, 1 and 4mo after surgery was observed. RESULTS: One month after surgery, the uncorrected visual acuity of research group was 1.33±0.22 while that of control group was 1.22±0.19(PPPCONCLUSION:On-flap and off-flap EPi-LASIK are safe and effective surgery approaches in the clinical treatment of ametropia. The presence of corneal epithelial flap has a certain effect in the postoperative clinical outcome at early stage. The impact will be gradually reduced over time.

  20. Automatic guidance and control laws for helicopter obstacle avoidance

    Science.gov (United States)

    Cheng, Victor H. L.; Lam, T.

    1992-01-01

    The authors describe the implementation of a full-function guidance and control system for automatic obstacle avoidance in helicopter nap-of-the-earth (NOE) flight. The guidance function assumes that the helicopter is sufficiently responsive so that the flight path can be readily adjusted at NOE speeds. The controller, basically an autopilot for following the derived flight path, was implemented with parameter values to control a generic helicopter model used in the simulation. Evaluation of the guidance and control system with a 3-dimensional graphical helicopter simulation suggests that the guidance has the potential for providing good and meaningful flight trajectories.

  1. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  2. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Treatment of Ischial Pressure Sores with Both Profunda Femoris Artery Perforator Flaps and Muscle Flaps

    Directory of Open Access Journals (Sweden)

    Chae Min Kim

    2014-07-01

    Full Text Available Background Reconstruction of ischial pressure sore defects is challenging due to extensive bursas and high recurrence rates. In this study, we simultaneously applied a muscle flap that covered the exposed ischium and large bursa with sufficient muscular volume and a profunda femoris artery perforator fasciocutaneous flap for the management of ischial pressure sores. Methods We retrospectively analyzed data from 14 patients (16 ischial sores whose ischial defects had been reconstructed using both a profunda femoris artery perforator flap and a muscle flap between January 2006 and February 2014. We compared patient characteristics, operative procedure, and clinical course. Results All flaps survived the entire follow-up period. Seven patients (50% had a history of surgery at the site of the ischial pressure sore. The mean age of the patients included was 52.8 years (range, 18-85 years. The mean follow-up period was 27.9 months (range, 3-57 months. In two patients, a biceps femoris muscle flap was used, while a gracilis muscle flap was used in the remaining patients. In four cases (25%, wound dehiscence occurred, but healed without further complication after resuturing. Additionally, congestion occurred in one case (6%, but resolved with conservative treatment. Among 16 cases, there was only one (6% recurrence at 34 months. Conclusions The combination of a profunda femoris artery perforator fasciocutaneous flap and muscle flap for the treatment of ischial pressure sores provided pliability, adequate bulkiness and few long-term complications. Therefore, this may be used as an alternative treatment method for ischial pressure sores.

  4. Reconstruction of eyelids with Washio flap in anophthalmia.

    Science.gov (United States)

    Tvrdek, M; Kozák, J

    2014-01-01

    The authors present a case report of a patient with anophthalmia in whom retroauriculo-temporal flap (Washio flap) was used for reconstruction of eyelids. This flap, which is mostly used for reconstructions of nasal defects, was not used in this way according to available literature.

  5. Prospective evaluation of outcome measures in free-flap surgery.

    LENUS (Irish Health Repository)

    Kelly, John L

    2004-08-01

    Free-flap failure is usually caused by venous or arterial thrombosis. In many cases, lack of experience and surgical delay also contribute to flap loss. The authors prospectively analyzed the outcome of 57 free flaps over a 28-month period (January, 1999 to April, 2001). The setting was a university hospital tertiary referral center. Anastomotic technique, ischemia time, choice of anticoagulant, and the grade of surgeon were recorded. The type of flap, medications, and co-morbidities, including preoperative radiotherapy, were also documented. Ten flaps were re-explored (17 percent). There were four cases of complete flap failure (6.7 percent) and five cases of partial failure (8.5 percent). In patients who received perioperative systemic heparin or dextran, there was no evidence of flap failure (p = .08). The mean ischemia time was similar in flaps that failed (95 +\\/- 29 min) and in those that survived (92 +\\/- 34 min). Also, the number of anastomoses performed by trainees in flaps that failed (22 percent), was similar to the number in flaps that survived (28 percent). Nine patients received preoperative radiotherapy, and there was complete flap survival in each case. This study reveals that closely supervised anastomoses performed by trainees may have a similar outcome to those performed by more senior surgeons. There was no adverse effect from radiotherapy or increased ischemia time on flap survival.

  6. Dual omental flap in obliterating post-pneumonectomy ...

    African Journals Online (AJOL)

    Background: Post-pneumonectomy bronchopleural fistulae is associated with high mortality and morbidity. The omental flap has been widely used to manage this condition either through laparoscopic or open surgery with varied degrees of success. We present a modification of the omental flap by using two flaps of the ...

  7. Pilot ejection, parachute, and helicopter crash injuries.

    Science.gov (United States)

    McBratney, Colleen M; Rush, Stephen; Kharod, Chetan U

    2014-01-01

    USAF Pararescuemen (PJs) respond to downed aircrew as a fundamental mission for personnel recovery (PR), one of the Air Force's core functions. In addition to responding to these in Military settings, the PJs from the 212 Rescue Squadron routinely respond to small plane crashes in remote regions of Alaska. While there is a paucity of information on the latter, there have been articles detailing injuries sustained from helicopter crashes and while ejecting or parachuting from fixed wing aircraft. The following represents a new chapter added to the Pararescue Medical Operations Handbook, Sixth Edition (2014, editors Matt Wolf, MD, and Stephen Rush, MD, in press). It was designed to be a quick reference for PJs and their Special Operations flight surgeons to help with understanding of mechanism of injury with regard to pilot ejection, parachute, and helicopter accident injuries. It outlines the nature of the injuries sustained in such mishaps and provides an epidemiologic framework from which to approach the problem. 2014.

  8. NASA/FAA helicopter simulator workshop

    Science.gov (United States)

    Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)

    1992-01-01

    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.

  9. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......, the flow in the pedicle was reduced and the flow was recorded. RESULTS: The flaps showed a strong autoregulatory response with complete compensation for flow reductions of up to 70-80%. Infusion of nimodipine caused a 28+/-10% increase in blood flow and removed the autoregulation. Papaverine caused...... a further increase in blood flow by 61+/-19%. The time control experiments proved that the experimental procedure was reproducible and stable over time. CONCLUSIONS: A tissue flap can nearly completely compensate for repeated flow reductions of up to 70-80%. This is due to a decrease in the peripheral...

  10. Double papilla flap technique for dual purpose

    Directory of Open Access Journals (Sweden)

    P Mohan Kumar

    2012-01-01

    Full Text Available Marginal tissue recession exposes the anatomic root on the teeth, which gives rise to -common patient complaints. It is associated with sensitivity, tissue irritation, cervical abrasions, and esthetic concerns. Various types of soft tissue grafts may be performed when recession is deep and marginal tissue health cannot be maintained. Double papilla flap is an alternative technique to cover isolated recessions and correct gingival defects in areas of insufficient attached gingiva, not suitable for a lateral sliding flap. This technique offers the advantages of dual blood supply and denudation of interdental bone only, which is less susceptible to permanent damage after surgical exposure. It also offers the advantage of quicker healing in the donor site and reduces the risk of facial bone height loss. This case report presents the advantages of double papilla flap in enhancing esthetic and functional outcome of the patient.

  11. Autonomous vertical autorotation for unmanned helicopters

    Science.gov (United States)

    Dalamagkidis, Konstantinos

    Small Unmanned Aircraft Systems (UAS) are considered the stepping stone for the integration of civil unmanned vehicles in the National Airspace System (NAS) because of their low cost and risk. Such systems are aimed at a variety of applications including search and rescue, surveillance, communications, traffic monitoring and inspection of buildings, power lines and bridges. Amidst these systems, small helicopters play an important role because of their capability to hold a position, to maneuver in tight spaces and to take off and land from virtually anywhere. Nevertheless civil adoption of such systems is minimal, mostly because of regulatory problems that in turn are due to safety concerns. This dissertation examines the risk to safety imposed by UAS in general and small helicopters in particular, focusing on accidents resulting in a ground impact. To improve the performance of small helicopters in this area, the use of autonomous autorotation is proposed. This research goes beyond previous work in the area of autonomous autorotation by developing an on-line, model-based, real-time controller that is capable of handling constraints and different cost functions. The approach selected is based on a non-linear model-predictive controller, that is augmented by a neural network to improve the speed of the non-linear optimization. The immediate benefit of this controller is that a class of failures that would otherwise result in an uncontrolled crash and possible injuries or fatalities can now be accommodated. Furthermore besides simply landing the helicopter, the controller is also capable of minimizing the risk of serious injury to people in the area. This is accomplished by minimizing the kinetic energy during the last phase of the descent. The presented research is designed to benefit the entire UAS community as well as the public, by allowing for safer UAS operations, which in turn also allow faster and less expensive integration of UAS in the NAS.

  12. Helicopter Aircrew Training Using Fused Reality

    Science.gov (United States)

    2006-06-01

    PROCESS Blue screening involving human filming usually employs a blue or green backdrop, since skin contains little blue or green hue. These backdrops...Helicopter Aircrew Training Using Fused Reality 27 - 10 RTO-MP-HFM-136 a. b. c. d. e. f. Figure 13: Frames Showing Physical Object ( witch ... filming . However, when a user’s hands disrupt the light from a helmet-mounted light source, the shadows cast onto the distant background are diffuse and

  13. Learning Basic Mechatronics through Helicopter Workshop

    OpenAIRE

    Adzly Anuar; Maryam Huda Ahmad Phesal; Azrul Abidin Zakaria; Goh Chin Hock; Sivadass Thiruchelvam; Dickson Neoh Tze How; Muhammad Fahmi Abdul Ghani; Khairul Salleh Mohamed Sahari

    2014-01-01

    In recent years, technologies related to mechatronics and robotics is available even to elementary level students. It is now common to see schools in Malaysia using Lego Mindstorm as a tool for active learning on mechatronics and robotics. A new yet interesting way of learning mechatronics and robotics is introduced by Dr. Dan Barry, a former astronaut and his son Andrew Barry during their visit to Malaysia. The kits used are based on a 4-channel RC helicopter, Arduino Uno microcontroller, IR...

  14. Unit Advancement Flap for Lower Lip Reconstruction.

    Science.gov (United States)

    Ogino, Akihiro; Onishi, Kiyoshi; Okada, Emi; Nakamichi, Miho

    2018-05-01

    Lower lip reconstruction requires consideration of esthetic and functional outcome in selecting a surgical procedure, and reconstruction with local tissue is useful. The authors reconstructed full-thickness defects with a unit advancement flap. Reconstruction was performed using this method in 4 patients with lower lip squamous cell carcinoma in whom tumor resection with preservation of the mouth angle was possible. The lower lip resection width was 30 to 45 mm, accounting for 50% to 68% of the entire width of the lower lip. The flap was prepared by lateral extension from above the mental unit and matched with the potential wrinkle line of the lower lip in order to design a unit morphology surrounded by the anterior margin of the depressor labii inferioris muscle. It was elevated as a full-thickness flap composed of the orbicularis oris muscle, skin, and mucosa of the residual lower lip from the bilateral sides, and advanced to the defect. Flap transfer was adjusted by small triangular resection of the skin on the lateral side of the mental unit. The postoperative scar was inconspicuous in all patients and there was no impairment of the mouth opening-closing or articulation functions. This was a relatively simple surgical procedure. A blood supply of the flap was stable, and continuity of the orbicularis oris muscle was reconstructed by transferred the residual lower lip advancement flap from the bilateral sides. The postoperative mouth opening-closing function was sufficient, and dentures could be placed from an early phase in elderly patients. The postoperative scar was consistent with the lip unit morphology, being esthetically superior. This procedure may be applicable for reconstruction of defects approximately 1/3 to 2/3 the width of the lower lip where the mouth angle is preserved.

  15. High-integrity databases for helicopter operations

    Science.gov (United States)

    Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg

    2009-05-01

    Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.

  16. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  17. Flapping model of scalar mixing in turbulence

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1991-01-01

    Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects

  18. Hyperbaric oxygen therapy and surgical delay improve flap survival of reverse pedicle flaps for lower third leg and foot reconstruction

    Directory of Open Access Journals (Sweden)

    Pradeoth Mukundan Korambayil

    2015-06-01

    Full Text Available Aim: The purpose of the study is to present a management protocol for various types of soft tissue defects of the distal third region of leg and foot treated with pedicle flaps, by including hyperbaric oxygen (HBO therapy in the treatment regimen with flap delay. Methods: We present a prospective study of 23 patients with various types of soft tissue defects of the foot, and lower third of leg managed in our institution from December 2012 to December 2013. All soft tissue defects were treated by a reverse pedicle flap. Twelve patients were managed with flap delay with HBO therapy and 11 patients with immediate flaps without HBO therapy. The postoperative period, hospital course, and follow-up were documented. Results: Of 12 patients with flap delay and HBO, 10 patients did not suffer any complications secondary to flap transfer. One patient had discoloration of the tip of the flap, which settled without the intervention, and 1 patient had recurrent abscess formation, which required debridement and closure. Of 11 patients with direct transfer, 6 patients presented with complications including flap congestion, partial flap loss, and tip necrosis, which required secondary intervention. Conclusion: HBO therapy is a useful adjunct in flap delay of the reverse pedicle flap for soft tissue reconstruction of the lower third of the leg and foot regions.

  19. "The Practical Perforator Flap": the sural artery flap for lower extremity soft tissue reconstruction in wounds of war

    NARCIS (Netherlands)

    O.J.F. van Waes (Oscar); J.A. Halm (Jens); J. Vermeulen (Jefrey); S. Ashford (Sofie)

    2012-01-01

    textabstractBackground: Sural artery perforator flaps have been described for use as both local flaps and in free tissue transfer. We present the use of this flap for compound soft tissue defects of the lower limb in civilian casualties of armed conflict in Afghanistan. Methods/results: Detailed

  20. Perforator anatomy of the radial forearm free flap versus the ulnar forearm free flap for head and neck reconstruction

    NARCIS (Netherlands)

    Hekner, D.D.; Roeling, TAP; van Cann, EM

    The aim of this study was to investigate the vascular anatomy of the distal forearm in order to optimize the choice between the radial forearm free flap and the ulnar forearm free flap and to select the best site to harvest the flap. The radial and ulnar arteries of seven fresh cadavers were

  1. Parasacral Perforator Flaps for Reconstruction of Sacral Pressure Sores.

    Science.gov (United States)

    Lin, Chin-Ta; Chen, Shih-Yi; Chen, Shyi-Gen; Tzeng, Yuan-Sheng; Chang, Shun-Cheng

    2015-07-01

    Despite advances in reconstruction techniques, pressure sores continue to present a challenge to the plastic surgeon. The parasacral perforator flap is a reliable flap that preserves the entire contralateral side as a future donor site. On the ipsilateral side, the gluteal muscle itself is preserved and all flaps based on the inferior gluteal artery are still possible. We present our experience of using parasacral perforator flaps in reconstructing sacral defects. Between August 2004 and January 2013, 19 patients with sacral defects were included in this study. All the patients had undergone surgical reconstruction of sacral defects with a parasacral perforator flap. The patients' sex, age, cause of sacral defect, flap size, flap type, numbers of perforators used, rotation angle, postoperative complications, and hospital stay were recorded. There were 19 parasacral perforator flaps in this series. All flaps survived uneventfully except for 1 parasacral perforator flap, which failed because of methicillin-resistant Staphylococcus aureus infection. The overall flap survival rate was 95% (18/19). The mean follow-up period was 17.3 months (range, 2-24 months). The average length of hospital stay was 20.7 days (range, 9-48 days). No flap surgery-related mortality was found. Also, there was no recurrence of sacral pressure sores or infected pilonidal cysts during the follow-up period. Perforator-based flaps have become popular in modern reconstructive surgery because of low donor-site morbidity and good preservation of muscle. Parasacral perforator flaps are durable and reliable in reconstructing sacral defects. We recommend the parasacral perforator flap as a good choice for reconstructing sacral defects.

  2. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  3. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  4. Development of Standard Approach for Sickle Blade Manufacturing

    OpenAIRE

    Noordin, M. N. A; Hudzari, R. M; Azuan, H. N; Zainon, M. S; Mohamed, S. B; Wafi, S. A

    2016-01-01

    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sic...

  5. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  6. Aircraft rotor blade with passive tuned tab

    Science.gov (United States)

    Campbell, T. G. (Inventor)

    1985-01-01

    A structure for reducing vibratory airloading in a rotor blade with a leading edge and a trailing edge includes a cut out portion at the trailing edge. A substantially wedge shaped cross section, inertially deflectable tab, also with a leading edge and a trailing edge is pivotally mounted in the cut out portion. The trailing edge of the tab may move above and below the rotor blade. A torsion strap applies force against the tab when the trailing edge of the tab is above and below the rotor blade. A restraining member is slidably movable along the torsion strap to vary torsional biasing force supplied by the torsion bar to the tab. A plurality of movable weights positioned between plates vary a center of gravity of the tab. Skin of the tab is formed from unidirectional graphite and fiberglass layers. Sliders coupled with a pinned degree of freedom at rod eliminate bending of tab under edgewise blade deflection.

  7. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  8. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  9. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  10. Suspension Bridge Flutter for Girder with Separate Control Flaps

    DEFF Research Database (Denmark)

    Huynh, T.; Thoft-Christensen, Palle

    Active vibration control of long span suspension bridge flutter using separated control flaps (SFSC) has shown to increase effectively the critical wind speed of bridges. In this paper, an SFSC calculation based on modal equations of the vertical and torsional motions of the bridge girder including...... the flaps is presented. The length of the flaps attached to the girder, the flap configuration and the flap rotational angles are parameters used to increase the critical wind speed of the bridge. To illustrate the theory a numerical example is shown for a suspension bridge of 1000m+2500m+1000m span based...... on the Great Belt Bridge streamlined girder....

  11. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  12. Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch

    Science.gov (United States)

    Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team

    2017-11-01

    Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.

  13. Donor-site morbidity of the radial forearm free flap versus the ulnar forearm free flap.

    Science.gov (United States)

    Hekner, Dominique D; Abbink, Jan H; van Es, Robert J; Rosenberg, Antoine; Koole, Ronald; Van Cann, Ellen M

    2013-08-01

    Donor-site morbidity following harvest of the radial forearm free flap was compared with that following harvest of the ulnar forearm free flap. Twenty-eight radial forearm and 27 ulnar forearm flaps were harvested in 55 patients with head and neck defects. Pressure perception was measured with Semmes-Weinstein monofilaments. Cold perception was tested with chloroethyl. Donor-site healing was evaluated. Patients were interviewed about grip and pinch strength and donor-site appearance. In the radial forearm free flap group, pressure perception and cold perception were reduced in the donor hand, whereas in the ulnar group, no differences were observed between the donor and unoperated hands. In the radial forearm group, 15 percent of patients experienced reduced strength in the donor hand, whereas in the ulnar forearm group, none of the patients reported reduced strength in the donor hand. In the radial forearm group, 14 percent had partial or complete loss of the skin graft, whereas in the ulnar forearm group, 4 percent had partial loss of the skin graft. In the radial forearm group, 18 percent of patients were dissatisfied with the appearance of the donor site, and no complaints were reported in the ulnar forearm group. The authors' study shows less donor site-morbidity following harvest of the ulnar forearm free flap than following harvest of the radial forearm free flap. These results emphasize that the ulnar forearm free flap should be considered as an alternative for the radial forearm free flap for reconstruction of soft-tissue defects. Therapeutic, III.

  14. "Apron" flap and re-creation of the inframammary fold following TRAM flap breast reconstruction.

    Science.gov (United States)

    Amir, A; Silfen, R; Hauben, D J

    2000-03-01

    To the best of our knowledge, the recreation of an inframammary fold after TRAM flap breast reconstruction has not yet been described. This article offers a technique for the creation of an inframammary fold as a secondary procedure. The technique has been performed thus far in two patients with good aesthetic outcomes and no postoperative complications. It may also be suitable for adding bulk to the TRAM flap, especially in bilateral breast reconstruction, and for other minor chest deformities.

  15. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  16. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  17. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  18. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  19. Basic Helicopter Handbook, Revised. AC 61-13A.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This technical manual was designed to assist applicants preparing for the private, commercial, and flight instructor pilot certificates with a helicopter rating. The chapters outline general aerodynamics, aerodynamics of flight, loads and load factors, function of controls, other helicopter components and their functions, introduction to the…

  20. Small-Scale Helicopter Automatic Autorotation : Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit