WorldWideScience

Sample records for helicity selection rule

  1. Evasion of helicity selection rule in χc1→VV and χc2→VP via intermediate charmed meson loops

    International Nuclear Information System (INIS)

    Liu Xiaohai; Zhao Qiang

    2010-01-01

    The hadronic decays of χ c1 →VV and χ c2 →VP are supposed to be suppressed by the helicity selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the intermediate charmed meson loops can provide a mechanism for the evasion of the helicity selection rule, and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be examined by the forthcoming BES-III data in the near future.

  2. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  3. Observation of the helicity-selection-rule suppressed decay of the χc 2 charmonium state

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    The decays of χc 2→K+K-π0, KSK±π∓, and π+π-π0 are studied with the ψ (3686 ) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc 2→K*K ¯, χc 2→a2±(1320 )π∓/a20(1320 )π0 , and χc 2→ρ (770 )±π∓ are measured. Here, K*K ¯ denotes both K*±K∓ and its isospin-conjugated process K*0K¯ 0+c .c . , and K* denotes the resonances K*(892 ), K2*(1430 ), and K3*(1780 ). The observations indicate a strong violation of the helicity selection rule in χc 2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc 2→K*(892 )K ¯ are more than ten times larger than the upper limit of χc 2→ρ (770 )±π∓, which is so far the first direct observation of a significant U -spin symmetry breaking effect in charmonium decays.

  4. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    International Nuclear Information System (INIS)

    Wang, Y.-M.

    2013-01-01

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowing a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity

  5. Selective decay in a helicity-injected spheromak

    International Nuclear Information System (INIS)

    MartInez, P L Garcia; Farengo, R

    2009-01-01

    The non-linear evolution of several unstable equilibria, representative of helicity-injected spheromak configurations inside a cylindrical flux conserver, is studied by means of three dimensional resistive MHD simulations. These equilibria are force-free (∇ x B = λ(ψ)B) but do not correspond to minimum energy states, having linear λ(ψ) profiles with negative slope. Several aspects of this process are studied (magnetic energy relaxation, selective helicity decay, relaxed profiles) for different initial A slopes. The stability threshold predicted by linear theory is recovered. The results show that complete plasma relaxation leading to a uniform A, is achieved only if the initial profile is hollow enough. The evolution for cases just above the stability threshold is more gentle and does not end in a Taylor state. The final state in these cases has a linear λ(ψ) profile, as the initial condition, but with a smaller slope.

  6. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  7. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Directory of Open Access Journals (Sweden)

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  8. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  9. Polarization Selectivity of Artificial Anisotropic Structures Based on DNA-Like Helices

    International Nuclear Information System (INIS)

    Semchenko, I. V.; Khakhomov, S. A.; Balmakov, A. P.

    2010-01-01

    Currently, 2D and 3D structures of different symmetries can be formed from DNA molecules. The electromagnetic properties of this new natural chiral material can be changed by metalizing DNA. Spatial structures of this type can be used in nanotechnology to prepare metamaterials for the far-UV region. It is shown by the example of an octahedron and a cube composed of DNA-like helices that these structures may exhibit polarization selectivity to electromagnetic radiation. In addition, it is suggested that the effect of the polarization selectivity of DNA-like artificial structures may also occur in the soft X-ray region for all living organisms in nature due to the universal DNA form.

  10. Circular-Polarization-Selective Transmission Induced by Spin-Orbit Coupling in a Helical Tape Waveguide

    Science.gov (United States)

    Liu, Yahong; Guo, Qinghua; Liu, Hongchao; Liu, Congcong; Song, Kun; Yang, Biao; Hou, Quanwen; Zhao, Xiaopeng; Zhang, Shuang; Navarro-Cía, Miguel

    2018-05-01

    Spin-orbit coupling of light, describing the interaction between the polarization (spin) and spatial degrees of freedom (orbit) of light, plays an important role in subwavelength scale systems and leads to many interesting phenomena, such as the spin Hall effect of light. Here, based on the spin-orbit coupling, we design and fabricate a helical tape waveguide (HTW), which can realize a circular-polarization-selective process. When the incident circularly polarized wave is of the same handedness as the helix of the HTW, a nearly complete transmission is observed; in contrast, a counterrotating circular polarization of incident wave results in a much lower transmission or is even totally blocked by the HTW. Indeed, both simulations and experiments reveal that the blocked component of power leaks through the helical aperture of the HTW and forms a conical beam analogous to helical Cherenkov radiation due to the conversion from the spin angular momentum to the orbital angular momentum. Our HTW structure demonstrates its potential as a polarization selector in a broadband frequency range.

  11. Helical CT of ureteral disease

    International Nuclear Information System (INIS)

    Cikman, Pablo; Bengio, Ruben; Bulacio, Javier; Zirulnik, Esteban; Garimaldi, Jorge

    2000-01-01

    Among the new applications of helical CT is the study of the ureteral pathology. The objective of this paper was to evaluate patients with suspected pathology of this organ and the repercussion in the therapeutic plans. We studied 23 patients with a helical CT protocol, without IV contrast injection and performed multiplanar reconstruction (MPR). We called this procedure Pielo CT. Thirteen ureteral stones were detected, 6 calculi, 2 urinary tract tumors, dilatation of the system in a patient with neo-bladder. In 2 patients, in whom ureteral pathology was ruled out, we found other alterations that explained the symptoms, (gallbladder stones, disk protrusion). The Pielo CT let decide a therapeutical approach in 20 or 21 patients with ureteral pathology. (author)

  12. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field

  13. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: hzhang@bao.ac.cn [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  14. Selection rules for splitting strings

    NARCIS (Netherlands)

    Achucarro, A; Gregory, R

    1997-01-01

    It has been pointed out that Nielsen-Olesen vortices may be able to decay by pair production of black holes. We show that when the Abelian-Higgs model is embedded in a larger theory, the additional fields mau lead to selection rules for this process-even in the absence of fermions-due to the failure

  15. Electrically-induced polarization selection rules of a graphene quantum dot

    Science.gov (United States)

    Dong, Qing-Rui; Li, Yan; Jia, Chen; Wang, Fu-Li; Zhang, Ya-Ting; Liu, Chun-Xiang

    2018-05-01

    We study theoretically the single-electron triangular zigzag graphene quantum dot in uniform in-plane electric fields. The absorption spectra of the dot are calculated by the tight-binding method. The energy spectra and the distribution of wave functions are also presented to analyse the absorption spectra. The orthogonal zero-energy eigenstates are arranged along to the direction of the external field. The remarkable result is that all intraband transitions and some interband transitions are forbidden when the absorbed light is polarized along the direction of the electric field. With x-direction electric field, all intraband absorption is y polarized due to the electric-field-direction-polarization selection rule. Moreover, with y-direction electric field, all absorption is either x or y polarized due to the parity selection rule as well as to the electric-field-direction-polarization selection rule. Our calculation shows that the formation of the absorption spectra is co-decided by the polarization selection rules and the overlap between the eigenstates of the transition.

  16. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  17. Selection and application of C18200 chrome copper for the OHTE confinement test helical coil

    International Nuclear Information System (INIS)

    Puhn, F.A.; Graumann, D.W.

    1981-01-01

    The selection and qualification of copper for the OHTE confinement test helical coil (H-coil) was a crucial step in the success of this new experiment. Previous problems encountered at General Atomic Company with close tolerance machined parts made from high strength copper were identified. The design criteria included selecting a material with minimal warpage during machining, an electrical conductivity >80% IACS, and a yield strength of at least 241 Mpa (35 ksi). The investigation of candidate materials and testing samples led to selection of a material that fully met all requirements. The C18200 chrome copper forged plates were supplied by the Ampco Metal Division of Ampco-Pittsburgh Corporation

  18. Amplification of chirality in helical supramolecular polymers: the majority-rules principle.

    NARCIS (Netherlands)

    Gestel, van J.A.M.

    2004-01-01

    Amplification of chirality, being a strongly nonlinear response of the optical activity of helical polymers to a small (net) amount of optically active material, has recently been discovered in supramolecular copolymers. Apart from the sergeants-and-soldiers type we discussed in earlier work,

  19. Self-assembly of a double-helical complex of sodium.

    Science.gov (United States)

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  20. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shangbin; Zhang Hongqi, E-mail: yangshb@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  1. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Yang Shangbin; Zhang Hongqi

    2012-01-01

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  2. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  3. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  4. ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations

    Science.gov (United States)

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2012-10-01

    We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is

  5. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  6. Selection rules for the dematerialization of a particle into two photons

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    Selection rules governing the disintegration of a particle into two photons are derived from the general principle of invariance under rotation and inversion. The polarization state of the photons is completely fixed by the selection rules for initial particles with spin less than 2. These results which are independent of any specific assumption about the interactions may possibly offer a method of deciding the symmetry nature of mesons which decay into two photons. 4 tables

  7. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  8. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  9. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  10. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  11. On selection rules in vibrational and rotational molecular spectroscopy

    International Nuclear Information System (INIS)

    Guichardet, A.

    1986-01-01

    The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr

  12. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  13. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  14. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  15. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  16. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  17. Prospective comparison of helical CT with angiography in pulmonary embolism: global and selective vascular territory analysis. Interobserver agreement

    International Nuclear Information System (INIS)

    Ruiz, Yolanda; Caballero, Paloma; Caniego, Jose Luis; Friera, Alfonsa; Olivera, Maria Jose; Tagarro, David; Alvarez-Sala, Rodolfo

    2003-01-01

    The objective of this prospective study was to evaluate the sensitivity, specificity, positive and negative predictive values, and interobserver agreement in the diagnosis of pulmonary embolism with helical CT, compared with pulmonary angiography, for both global results and for selective vascular territories. Helical CT and pulmonary angiography were performed on 66 consecutive patients with clinical suspicion of pulmonary embolism. The exams were blindly interpreted by a vascular radiologist and by two independent thoracic radiologists. Results were analyzed for the final diagnosis as well as separately for 20 different arterial territories in each patient. Pulmonary angiography revealed embolism in 25 patients (38%); 48% were main, 28% lobar, 16% segmental, and 8% subsegmental. The sensitivity, specificity, and positive and negative predictive values of helical CT for observer 1 were, respectively, 91, 81.5, 75, and 94%; in 7.5% of the patients the exam was considered indeterminate. For observer 2 the values were, respectively, 88, 86, 81.5, and 91%; in 9% of the patients the exam was considered indeterminate. Main arteries were considered as non-valuable in 0-0.8%, the lobar in 1.5%, the segmental in 7.5-8.5%, and the subsegmental in 55-60%. Interobserver agreement for the final diagnosis was 80% (kappa 0.65). For each vascular territory, this was 98% (kappa 0.91) for main arteries, 92% (kappa 0.78) for lobar arteries, 79% (kappa 0.56) for segmental arteries, and 59% (kappa 0.21) for subsegmental arteries. Helical CT is a reliable method for pulmonary embolism diagnosis, with good interobserver agreement for main, lobar, and segmental territories. Worse results are found for subsegmental arteries, with high incidence of non-valuable branches and poor interobserver agreement. (orig.)

  18. New selection criteria for channel refueling of a Candu-6 reactor: introduction to floppy rules

    International Nuclear Information System (INIS)

    Brissette, D.

    2001-01-01

    A revised set of rules is in use at Gentilly-2 NGS for the selection of channels for refuelling. Traditional hard channel rejection rules (of go/no-go type) have been replaced by a more efficient set of soft evaluation rules based on concepts borrowed to the Fuzzy Logic. New evaluation rules, labelled as 'Floppy Rules', enable to assess and rate the channel suitability for refuelling by using a smooth and natural continuum of values qualifying excellent, good, fair and poor choices. Global channel suitability for refuelling is measured by combining separate ratings obtained from individual evaluation rules. Each evaluation rule is based on a specific control parameter related to local or lumped core properties. Two new software codes (NEWRULES and REFUEL) designed around the concept of Floppy Rules enable to perform a very efficient selection of optimized channel refuelling sequences either in manual and automatic mode. (author)

  19. Advance Pricing Agreements and the Selectivity Criterion in EU State Aid Rules

    OpenAIRE

    Härö, O

    2017-01-01

    The Commission of the EU has recently decided that Advance Pricing Agreement rulings (the APA rulings) that Ireland, Luxembourg and the Netherlands have granted for Apple, Fiat and Starbucks (respectively) constitute illegal State aid according to Article 107 of the Treaty on the Functioning of the European Union (TFEU). The Commission claims that the APA rulings deviate from the arm´s length principle and that they grant economic benefit for the beneficiary undertakings in a selective manner...

  20. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  1. Helicity in proton–proton elastic scattering and the spin structure of the pomeron

    Directory of Open Access Journals (Sweden)

    Carlo Ewerz

    2016-12-01

    Full Text Available We discuss different models for the spin structure of the nonperturbative pomeron: scalar, vector, and rank-2 symmetric tensor. The ratio of single-helicity-flip to helicity-conserving amplitudes in polarised high-energy proton–proton elastic scattering, known as the complex r5 parameter, is calculated for these models. We compare our results to experimental data from the STAR experiment. We show that the spin-0 (scalar pomeron model is clearly excluded by the data, while the vector pomeron is inconsistent with the rules of quantum field theory. The tensor pomeron is found to be perfectly consistent with the STAR data.

  2. The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold

    Directory of Open Access Journals (Sweden)

    Rodolfo Ciuffa

    2015-05-01

    Full Text Available The scaffold protein p62/SQSTM1 is involved in protein turnover and signaling and is commonly found in dense protein bodies in eukaryotic cells. In autophagy, p62 acts as a selective autophagy receptor that recognizes and shuttles ubiquitinated proteins to the autophagosome for degradation. The structural organization of p62 in cellular bodies and the interplay of these assemblies with ubiquitin and the autophagic marker LC3 remain to be elucidated. Here, we present a cryo-EM structural analysis of p62. Together with structures of assemblies from the PB1 domain, we show that p62 is organized in flexible polymers with the PB1 domain constituting a helical scaffold. Filamentous p62 is capable of binding LC3 and addition of long ubiquitin chains induces disassembly and shortening of filaments. These studies explain how p62 assemblies provide a large molecular scaffold for the nascent autophagosome and reveal how they can bind ubiquitinated cargo.

  3. Optimistic Selection Rule Better Than Majority Voting System

    Science.gov (United States)

    Sugiyama, Takuya; Obata, Takuya; Hoki, Kunihito; Ito, Takeshi

    A recently proposed ensemble approach to game-tree search has attracted a great deal of attention. The ensemble system consists of M computer players, where each player uses a different series of pseudo-random numbers. A combination of multiple players under the majority voting system would improve the performance of a Shogi-playing computer. We present a new strategy of move selection based on the search values of a number of players. The move decision is made by selecting one player from all M players. Each move is selected by referring to the evaluation value of the tree search of each player. The performance and mechanism of the strategy are examined. We show that the optimistic selection rule, which selects the player that yields the highest evaluation value, outperforms the majority voting system. By grouping 16 or more computer players straightforwardly, the winning rates of the strongest Shogi programs increase from 50 to 60% or even higher.

  4. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    Science.gov (United States)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  5. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  6. Communication: The H2@C60 inelastic neutron scattering selection rule: Expanded and explained

    Science.gov (United States)

    Poirier, Bill

    2015-09-01

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H2 translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H2@C60 TR Hamiltonian and eigenstates; (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.

  7. Code-specific learning rules improve action selection by populations of spiking neurons.

    Science.gov (United States)

    Friedrich, Johannes; Urbanczik, Robert; Senn, Walter

    2014-08-01

    Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

  8. Helical coil alignment in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Warwick, J.E.; Whitson, J.C.

    1985-01-01

    This paper presents a brief overview of the helical coil design concept, detailed descriptions of the method for installation and alignment, and discussions of segment installation and alignment equipment. Alignment is accomplished by optical methods using electronic theodolites connected to a microcomputer to form a coordinate measurement system. The coordinate measurement system is described in detail, along with target selection and fixturing for manipulation of the helical coil segments during installation. In addition, software is described including vendor-supplied software used in the coordinate measurement system and in-house-developed software used to calibrate segment and positioning fixture motion. 2 refs., 8 figs

  9. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    International Nuclear Information System (INIS)

    Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F

    2013-01-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)

  10. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Park, Sung-hong; Wang Haimin; Chae, Jongchul

    2010-01-01

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10 22 Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10 42 Mx 2 during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  11. Evaluation and Selection of Best Priority Sequencing Rule in Job Shop Scheduling using Hybrid MCDM Technique

    Science.gov (United States)

    Kiran Kumar, Kalla; Nagaraju, Dega; Gayathri, S.; Narayanan, S.

    2017-05-01

    Priority Sequencing Rules provide the guidance for the order in which the jobs are to be processed at a workstation. The application of different priority rules in job shop scheduling gives different order of scheduling. More experimentation needs to be conducted before a final choice is made to know the best priority sequencing rule. Hence, a comprehensive method of selecting the right choice is essential in managerial decision making perspective. This paper considers seven different priority sequencing rules in job shop scheduling. For evaluation and selection of the best priority sequencing rule, a set of eight criteria are considered. The aim of this work is to demonstrate the methodology of evaluating and selecting the best priority sequencing rule by using hybrid multi criteria decision making technique (MCDM), i.e., analytical hierarchy process (AHP) with technique for order preference by similarity to ideal solution (TOPSIS). The criteria weights are calculated by using AHP whereas the relative closeness values of all priority sequencing rules are computed based on TOPSIS with the help of data acquired from the shop floor of a manufacturing firm. Finally, from the findings of this work, the priority sequencing rules are ranked from most important to least important. The comprehensive methodology presented in this paper is very much essential for the management of a workstation to choose the best priority sequencing rule among the available alternatives for processing the jobs with maximum benefit.

  12. Contracting Selection for the Development of the Range Rule Risk Methodology

    National Research Council Canada - National Science Library

    1997-01-01

    ...-Effectiveness Risk Tool and contractor selection for the development of the Range Rule Risk Methodology. The audit objective was to determine whether the Government appropriately used the Ordnance and Explosives Cost-Effectiveness Risk Tool...

  13. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  14. Neutrino helicity flips via electroweak interactions

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.; Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794)

    1989-01-01

    Electroweak mechanisms via which neutrinos may flip helicity are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W, Z, and γ exchange, including their interference, are derived for both Dirac and Majorana neutrinos (with emphasis on the former). It is shown that in general flip and nonflip cross sections differ by more than just a multiplicative factor of m/sub ν/ 2 /4E/sub ν/ 2 contrary to what might be expected and that this additional dependence on helicities can be significant. It is also shown that within the context of the standard model with massive neutrinos, for νe yields νe scattering, σ/sub Z//sup flip//σ/sub γ//sup flip/ ∼ 10 4 , independent of particle masses and energies to a good approximation. As an application, using some general considerations and the fact that the observed bar nu/sub e/ burst from SN 1987A lasted several seconds, these weak-interaction flip cross sections are used to rule out μ and tau neutrino masses above 30 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed

  15. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  16. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    Science.gov (United States)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  17. Selection rules for electron transfer to the continuum in ion-atom collision

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Bernardi, G.C.; Garibotti, C.R.

    1985-10-01

    We consider the process of electron transfer to the in first order Born approximation. We analyse the expansion of the double-differential cross section in series of electron velocity and ejection angle. We found that the coefficients obey precise selection rules. We discuss the relation of these rules, which predict an asymmetric shape for the electron loss to the continuum cusp, with the interpretation of recent experimental results.

  18. A Method for the Comparison of Item Selection Rules in Computerized Adaptive Testing

    Science.gov (United States)

    Barrada, Juan Ramon; Olea, Julio; Ponsoda, Vicente; Abad, Francisco Jose

    2010-01-01

    In a typical study comparing the relative efficiency of two item selection rules in computerized adaptive testing, the common result is that they simultaneously differ in accuracy and security, making it difficult to reach a conclusion on which is the more appropriate rule. This study proposes a strategy to conduct a global comparison of two or…

  19. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  20. Computational Prediction of Atomic Structures of Helical Membrane Proteins Aided by EM Maps

    Science.gov (United States)

    Kovacs, Julio A.; Yeager, Mark; Abagyan, Ruben

    2007-01-01

    Integral membrane proteins pose a major challenge for protein-structure prediction because only ≈100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane α-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of α-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the α-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL. PMID:17496035

  1. Concept and development of measurement method of time sensitivity profile (TSP) in X-ray CT. Comparison of non-helical, single-slice helical, and multi-slice helical scans

    International Nuclear Information System (INIS)

    Tsujioka, Katsumi; Ida, Yoshihiro; Ohtsubo, Hironori; Takahashi, Yasukata; Niwa, Masayoshi

    2000-01-01

    We focused on the time element contained in a single CT image, and devised the concept of a time-sensitivity profile (TSP) describing how the time element is translated into an image. We calculated the data collection time range when the helical pitch is changed in non helical scans, single slice helical scans, and multi slice helical scans. We then calculated the time sensitivity profile (TSP) from the weighting applied when the data collection time range is translated into an image. TSP was also measured for each scanning method using our self-made moving phantom. TSPs obtained from the calculation and the experiments were very close. TSP showed interesting characteristics with each scanning method, especially in the case of multi slice helical scanning, in which TSP became shorter as helical pitch increased. We referred to the TSP's FWHM as the effective scanning time. When we conducted multi slice helical scanning at helical pitch 3, the effective scanning time increased to about 24% longer than that of a non helical scan. When we conducted multi slice helical scanning at helical pitch 5 or 6, the effective scanning time was about half that of a non helical scan. The time sensitivity profile (TSP) is a totally new concept that we consider an important element in discussing the time resolution of a CT scanner. The results of this review will provide significant data in determining the scanning parameters when scanning a moving object. (author)

  2. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  3. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  4. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  5. Controllable synthesis of helical, straight, hollow and nitrogen-doped carbon nanofibers and their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xun [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructure, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Zheng, E-mail: zhengxu@nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructure, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2012-12-15

    Graphical abstract: The helical, straight and hollow carbon nanofibers can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. Display Omitted Highlights: ► CNFs were synthesized via pyrolysis of acetylene on copper NPs. ► The helical, straight, hollow and N-doped CNFs can be selectively synthesized. ► The growth mechanism of different types of CNFs was proposed. -- Abstract: Carbon nanofibers (CNFs) with various morphologies were synthesized by catalytic pyrolysis of acetylene on copper nanoparticles which were generated from the in situ decomposition of copper acetylacetonate. The morphology of the pristine and acid-washed CNFs was investigated by field emission scanning electron microscope and high-resolution transmission electron microscope. Helical, straight and hollow CNFs can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. The growth mechanism for these three types of CNFs was proposed.

  6. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  7. Review of the helicity formalism

    International Nuclear Information System (INIS)

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  8. Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60.

    Science.gov (United States)

    Xu, Minzhong; Jiménez-Ruiz, Mónica; Johnson, Mark R; Rols, Stéphane; Ye, Shufeng; Carravetta, Marina; Denning, Mark S; Lei, Xuegong; Bačić, Zlatko; Horsewill, Anthony J

    2014-09-19

    We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

  9. Partner bands of 126Cs - first observation of chiral electromagnetic selection rules

    International Nuclear Information System (INIS)

    Grodner, E.; Sankowska, I.; Morek, T.; Rohozinski, S.G.; Droste, Ch.; Srebrny, J.; Pasternak, A.A.; Kisielinski, M.; Kowalczyk, M.; Kownacki, J.; Mierzejewski, J.; Krol, A.

    2011-01-01

    The lifetimes of the excited states belonging to the chiral partner bands built on the πh 11/2 xνh 11/2 -1 configuration in 126 Cs have been measured using the DSA technique. For the first time the large set of the experimental transition probabilities is in qualitative agreement with all selection rules predicted for the strong chiral symmetry breaking limit. The selection rules originate from two general features of a chiral nucleus, namely, from the existence of well separated left- and right-handed systems built of three angular momentum vectors and extra symmetries appearing in addition to the chiral symmetry breaking. The B(M1) staggering resulting from these additional symmetries is sensitive to triaxiality of odd-odd nuclei as well as configuration of valence particles.

  10. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  11. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  12. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  13. Communication: The H{sub 2}@C{sub 60} inelastic neutron scattering selection rule: Expanded and explained

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Bill, E-mail: Bill.Poirier@ttu.edu [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2015-09-14

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H{sub 2} translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H{sub 2}@C{sub 60} TR Hamiltonian and eigenstates; (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.

  14. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  15. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  16. Amino acid pair- and triplet-wise groupings in the interior of α-helical segments in proteins.

    Science.gov (United States)

    de Sousa, Miguel M; Munteanu, Cristian R; Pazos, Alejandro; Fonseca, Nuno A; Camacho, Rui; Magalhães, A L

    2011-02-21

    A statistical approach has been applied to analyse primary structure patterns at inner positions of α-helices in proteins. A systematic survey was carried out in a recent sample of non-redundant proteins selected from the Protein Data Bank, which were used to analyse α-helix structures for amino acid pairing patterns. Only residues more than three positions apart from both termini of the α-helix were considered as inner. Amino acid pairings i, i+k (k=1, 2, 3, 4, 5), were analysed and the corresponding 20×20 matrices of relative global propensities were constructed. An analysis of (i, i+4, i+8) and (i, i+3, i+4) triplet patterns was also performed. These analysis yielded information on a series of amino acid patterns (pairings and triplets) showing either high or low preference for α-helical motifs and suggested a novel approach to protein alphabet reduction. In addition, it has been shown that the individual amino acid propensities are not enough to define the statistical distribution of these patterns. Global pair propensities also depend on the type of pattern, its composition and orientation in the protein sequence. The data presented should prove useful to obtain and refine useful predictive rules which can further the development and fine-tuning of protein structure prediction algorithms and tools. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets

    International Nuclear Information System (INIS)

    Gou, Junli; Ma, Haifu; Yang, Zijiang; Shan, Jianqiang

    2017-01-01

    Highlights: •A review of heat transfer characteristics for water flow in helically coiled tubes are conducted. •An assessment of heat transfer models under different heat transfer modes in helically coiled tubes are performed. •This work could provide references for the use of the correlations and for further studies. -- Abstract: This paper presents an assessment of the heat transfer models under different heat transfer modes for water flow in helically coiled tubes based on the compiled datasets from the reviewed literatures. For single phase flow, most of the correlations of the heat transfer coefficient can fit well to the experiments. The correlations of Xin-Ebadian, Dravid and Kalb-Seader for laminar flow and those of Seban-McLaughlim, Mori-Nakayama, Xin-Ebadian, Hardik, Rogers-Mayhew, Mikaila-Poskas and El-Genk-Schriener for turbulent flow are recommended. For flow boiling heat transfer, Steiner-Taborek correlation could be utilized to predict the boiling heat transfer coefficients in helically coiled tubes for a relatively wide range of parameters. For dryout quality, the correlations of Hwang et al. and Santini et al. give relatively better predictions than others. However, more accurate correlations for flow boiling heat transfer coefficient and dryout quality need to be developed based on further investigations with wider parameter ranges in the future. The present work could provide references for the investigators for future uses of those correlations and for performing further investigations on the heat transfer characteristics of water flow in helically coiled tubes.

  18. Symmetry-adaptation and selection rules for effective crystal field Hamiltonians

    International Nuclear Information System (INIS)

    Tuszynski, J.A.

    1986-01-01

    The intention of this paper is to systematically derive an effective Hamiltonian in the presence of crystal fields in such a way as to incorporate relativistic effects and higher order perturbation corrections including configuration mixing. This Hamiltonian will then be conveniently represented as a symmetry-adapted series of one- and two-body double tensor operators whose matrix elements will be analyzed for selection rules. 16 references, 4 tables

  19. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  20. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  1. Selecting Pesticides and Nonchemical Alternatives: Green Thumbs' Rules of Thumb Decision Tools.

    Science.gov (United States)

    Grieshop, James I.; And Others

    1992-01-01

    A sample of 78 (of 320) home gardeners use rules of thumb (heuristics) to choose between chemical pesticides and nonchemical alternatives. Pesticides rank low in 24 choice attributes where alternatives rank high, and vice versa. Gender, age, and years of pesticide use correlate with pesticide selection. (SK)

  2. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  3. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    Science.gov (United States)

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  4. Rule-based versus probabilistic selection for active surveillance using three definitions of insignificant prostate cancer

    NARCIS (Netherlands)

    L.D.F. Venderbos (Lionne); M.J. Roobol-Bouts (Monique); C.H. Bangma (Chris); R.C.N. van den Bergh (Roderick); L.P. Bokhorst (Leonard); D. Nieboer (Daan); Godtman, R; J. Hugosson (Jonas); van der Kwast, T; E.W. Steyerberg (Ewout)

    2016-01-01

    textabstractTo study whether probabilistic selection by the use of a nomogram could improve patient selection for active surveillance (AS) compared to the various sets of rule-based AS inclusion criteria currently used. We studied Dutch and Swedish patients participating in the European Randomized

  5. New Classes of Quasi-helically Symmetric Stellarators

    International Nuclear Information System (INIS)

    Ku, L.P.; Boozer, A.H.

    2010-01-01

    New classes of quasi-helically symmetric stellarators with aspect ratios (le) 10 have been found which are stable to the perturbation of magnetohydrodynamic modes at plasma pressures of practical interest. These configurations have large rotational transform and good quality of flux surfaces. Characteristics of some selected examples are discussed in detail. The feasibility of using modular coils for these stellarators has been investigated. It is shown that practical designs for modular coils can be achieved.

  6. Forecasting Urban Air Quality via a Back-Propagation Neural Network and a Selection Sample Rule

    Directory of Open Access Journals (Sweden)

    Yonghong Liu

    2015-07-01

    Full Text Available In this paper, based on a sample selection rule and a Back Propagation (BP neural network, a new model of forecasting daily SO2, NO2, and PM10 concentration in seven sites of Guangzhou was developed using data from January 2006 to April 2012. A meteorological similarity principle was applied in the development of the sample selection rule. The key meteorological factors influencing SO2, NO2, and PM10 daily concentrations as well as weight matrices and threshold matrices were determined. A basic model was then developed based on the improved BP neural network. Improving the basic model, identification of the factor variation consistency was added in the rule, and seven sets of sensitivity experiments in one of the seven sites were conducted to obtain the selected model. A comparison of the basic model from May 2011 to April 2012 in one site showed that the selected model for PM10 displayed better forecasting performance, with Mean Absolute Percentage Error (MAPE values decreasing by 4% and R2 values increasing from 0.53 to 0.68. Evaluations conducted at the six other sites revealed a similar performance. On the whole, the analysis showed that the models presented here could provide local authorities with reliable and precise predictions and alarms about air quality if used at an operational scale.

  7. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  8. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  9. Bilingualism trains specific brain circuits involved in flexible rule selection and application.

    Science.gov (United States)

    Stocco, Andrea; Prat, Chantel S

    2014-10-01

    Bilingual individuals have been shown to outperform monolinguals on a variety of tasks that measure non-linguistic executive functioning, suggesting that some facets of the bilingual experience give rise to generalized improvements in cognitive performance. The current study investigated the hypothesis that such advantage in executive functioning arises from the need to flexibly select and apply rules when speaking multiple languages. Such flexible behavior may strengthen the functioning of the fronto-striatal loops that direct signals to the prefrontal cortex. To test this hypothesis, we compared behavioral and brain data from proficient bilinguals and monolinguals who performed a Rapid Instructed Task Learning paradigm, which requires behaving according to ever-changing rules. Consistent with our hypothesis, bilinguals were faster than monolinguals when executing novel rules, and this improvement was associated with greater modulation of activity in the basal ganglia. The implications of these findings for language and executive function research are discussed herein. Published by Elsevier Inc.

  10. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  11. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  12. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  13. Dynamics and deformability of α-, 310- and π-helices

    Directory of Open Access Journals (Sweden)

    Narwani Tarun Jairaj

    2018-01-01

    Full Text Available Protein structures are often represented as seen in crystals as (i rigid macromolecules (ii with helices, sheets and coils. However, both definitions are partial because (i proteins are highly dynamic macromolecules and (ii the description of protein structures could be more precise. With regard to these two points, we analyzed and quantified the stability of helices by considering α-helices as well as 310- and π-helices. Molecular dynamic (MD simulations were performed on a large set of 169 representative protein domains. The local protein conformations were followed during each simulation and analyzed. The classical flexibility index (B-factor was confronted with the MD root mean square flexibility (RMSF index. Helical regions were classified according to their level of helicity from high to none. For the first time, a precise quantification showed the percentage of rigid and flexible helices that underlie unexpected behaviors. Only 76.4% of the residues associated with α-helices retain the conformation, while this tendency drops to 40.5% for 310-helices and is never observed for π-helices. α-helix residues that do not remain as an α-helix have a higher tendency to assume β-turn conformations than 310- or π-helices. The 310-helices that switch to the α-helix conformation have a higher B-factor and RMSF values than the average 310-helix but are associated with a lower accessibility. Rare π-helices assume a β-turn, bend and coil conformations, but not α- or 310-helices. The view on π-helices drastically changes with the new DSSP (Dictionary of Secondary Structure of Proteins assignment approach, leading to behavior similar to 310-helices, thus underlining the importance of secondary structure assignment methods.

  14. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  15. A solution to the vertical barΔI/sup →/vertical bar = 1/2 rule and other dynamical selection rules in particle physics

    International Nuclear Information System (INIS)

    Oneda, S.; Terasaki, K.

    1984-01-01

    Algebraic approach is developed in the framework of QCD and Electroweak theories. It is stressed that many seemingly different dynamical selection rules can share the same origin. In particular, derivation of vertical bar Δ I → vertical bar = 1/2 rule and explicit identification of its small violation are made for the Κ → 2 π decays, using new much milder soft-pion extrapolation. As a byproduct, the Β → ωπ decays are predicted to be predominantly λ = +-1 transitions in consistency with experiment

  16. General architecture of the alpha-helical globule.

    Science.gov (United States)

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  17. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  18. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  19. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  20. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca [Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); McKay, Mairi; Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh (United Kingdom)

    2017-02-10

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  1. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  2. Evasion of HSR in S-wave charmonium decaying to P-wave light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang [Qufu Normal University, Department of Physics, Qufu (China); Liu, Xiao-Hai [Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Zhao, Qiang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); CAS, Theoretical Physics Center for Science Facilities, Beijing (China)

    2013-09-15

    The S-wave charmonium decaying to a P-wave and S-wave light hadron pairs are supposed to be suppressed by the helicity selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the intermediate charmed meson loops can provide a possible mechanism for the evasion of the helicity selection rule, and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be examined by the forthcoming BES-III data in the near future. (orig.)

  3. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  4. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  5. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  6. Systematic periodicity in waviness of vertically aligned carbon nanotubes explained by helical buckling

    Science.gov (United States)

    Jahangiri, Mehdi

    2017-09-01

    A hypothesis is proposed in this work to account for the geometry of individual vertically aligned carbon nanotubes (VACNTs) that not only justifies the directionality of their growth, but also explains the origin of the waviness frequently reported for these nanotube forests. Such waviness has fundamental effects on the transport/conduction properties of VACNTs, either through or along them, regarding phenomena such as mass, stress, heat and electricity. Despite the general opinion about randomness of carbon nanotubes (CNTs) tortuosity, we demonstrate here that rules of helical buckling of tubular strings is applicable to VACNTs, based on which a regular 3D helical geometry is proposed for VACNTs, with a 2D sine wave shape side-profile. In this framework, gradual increase of the total free surface energy by growth of CNTs ensues their partial cohesion, driven by van der Waals interactions, to reduce the excess surface energy. On the other hand, their cohesion is accompanied by their deformation and loss of straightness, which in turn, translates to buildup of an elastic strain energy in the system. The balance of the two energies along with the spatial constraints on each CNT at its contact points with neighboring CNTs, is manifested in its helical buckling, that is systematically influenced by nanostructural characteristics of VACNTs, such as their diameter, wall thickness and inter-CNT spacing.

  7. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  8. Feasibility study of helical tomotherapy for total body or total marrow irradiation

    International Nuclear Information System (INIS)

    Hui, Susanta K.; Kapatoes, Jeff; Fowler, Jack; Henderson, Douglas; Olivera, Gustavo; Manon, Rafael R.; Gerbi, Bruce; Mackie, T. R.; Welsh, James S.

    2005-01-01

    Total body radiation (TBI) has been used for many years as a preconditioning agent before bone marrow transplantation. Many side effects still plague its use. We investigated the planning and delivery of total body irradiation (TBI) and selective total marrow irradiation (TMI) and a reduced radiation dose to sensitive structures using image-guided helical tomotherapy. To assess the feasibility of using helical tomotherapy (A) we studied variations in pitch, field width, and modulation factor on total body and total marrow helical tomotherapy treatments. We varied these parameters to provide a uniform dose along with a treatment times similar to conventional TBI (15-30 min). (B) We also investigated limited (head, chest, and pelvis) megavoltage CT (MVCT) scanning for the dimensional pretreatment setup verification rather than total body MVCT scanning to shorten the overall treatment time per treatment fraction. (C) We placed thermoluminescent detectors (TLDs) inside a Rando phantom to measure the dose at seven anatomical sites, including the lungs. A simulated TBI treatment showed homogeneous dose coverage (±10%) to the whole body. Doses to the sensitive organs were reduced by 35%-70% of the target dose. TLD measurements on Rando showed an accurate dose delivery (±7%) to the target and critical organs. In the TMI study, the dose was delivered conformally to the bone marrow only. The TBI and TMI treatment delivery time was reduced (by 50%) by increasing the field width from 2.5 to 5.0 cm in the inferior-superior direction. A limited MVCT reduced the target localization time 60% compared to whole body MVCT. MVCT image-guided helical tomotherapy offers a novel method to deliver a precise, homogeneous radiation dose to the whole body target while reducing the dose significantly to all critical organs. A judicious selection of pitch, modulation factor, and field size is required to produce a homogeneous dose distribution along with an acceptable treatment time. In

  9. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  10. A real-scale helical coil winding trial of the Large Helical Device

    International Nuclear Information System (INIS)

    Senba, T.; Yamamoto, T.; Tamaki, T.; Asano, K.; Suzuki, S.; Yamauchi, T.; Uchida, K.; Nakanishi, K.; Yamagiwa, T.; Suzuki, S.; Miyoshi, R.; Sasa, H.; Watanabe, S.; Tatemura, M.; Hatada, N.; Yamaguchi, S.; Imagawa, S.; Yanagi, N.; Satow, T.; Yamamoto, J.; Motojima, O.

    1995-01-01

    A real-scale helical coil winding trial of the Large Helical Device (LHD) has been conducted for a study of coil winding configuration and winding methods and for exhibiting the state of the art. It includes construction and test run of a specifically designed winding machine and development of various manufacturing methods for accurate coil winding. It has been carried out in Hitachi Works before in situ winding, and has provided much needed engineering data for construction of the LHD. (orig.)

  11. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  12. Towards 'selection rules' in the radiation chemistry of molecular materials

    International Nuclear Information System (INIS)

    Feldman, V.I.; Inst. of Synthetic Polymetric Materials, Moscow; Moscow State Univ.

    2002-01-01

    Complete text of publication follows. There are a lot of experimental evidences suggesting that the primary radiation-induced events in organic solids and polymers are highly selective and sensitive to conformation, molecular packing, matrix environment, etc. Nevertheless, specific 'selection rules' in the radiation chemistry of molecules in solids are still not established. This contribution presents a review of our recent studies of the radiation damage in organic molecules in low-temperature matrices and polymers aimed at elucidation of basic physical factors controlling selectivity of the primary chemical events. The following aspects will be analyzed: 1. 'Fine tuning' effects in positive hole trapping in rigid systems containing molecular 'traps' with close ionization energy. 2. Selective chemical bond weakening in ionized molecules: experimental and theoretical results. 3. Matrix-assisted and matrix-controlled chemical reactions of ionized molecules in solid media (including the effect of 'matrix-catalysis'). 4. Effect of excess energy on the fate of ionized molecules in solid matrices: the role of intramolecular and intermolecular relaxation. Finally, the problem of experimental and theoretical simulation of the distribution of the radiation-induced events in complex molecular systems and polymers will be addressed

  13. Helicity-flip in particle production on nuclei

    International Nuclear Information System (INIS)

    Faeldt, G.

    1977-01-01

    Coherent nuclear production processes are generally analyzed assuming helicity conserving production amplitudes. In view of the uncertainties of the actual helicity structure this could be a dangerous assumption. It is shown that helicity-flip contributions might be part of the explanation of the small effective (pππ)-nucleon cross sections observed in coherent production. (Auth.)

  14. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  15. Dual phase helical CT: diagnosis value for early pancreatic carcinoma

    International Nuclear Information System (INIS)

    Shen Bingqi; Zhang Ling; Zheng Keguo; Xu Dasheng

    2006-01-01

    Objective: To study dual-phase helical CT for the evaluation of early pancreatic cacinoma. Methods: Dual-phase helical CT was performed on 21 patients with early pancreatic carcinoma. In the enhanced imaging the contrast material was intravenously injected in a dose of 1.5 ml/kg at a rate of 3 ml/s. The image acquisition of the lesion in pancreatic phase (PP) and portal venous phase (PVP) were started at 35 seconds and 65 seconds after the start of the injection respectively. The enhancement of normal pancreas and tumor during the two phases was observed and compared. All data were statistically analyzed. Results: Tumor-pancreas contrast was significantly greater in PP (45.16±113.23) HU than in PVP (23.15±12.44) HU (t=2.13, P<0.01). Conclusion: Dual-phase helical CT scan for pancreas, including the imaging of the pancreatic and portal , venous phase, can be applied as an optimal selection. It can delineate early pancreatic carcinoma clearly and provide more information for the diagnosis of the lesion. The tumor-pancreas contrast was much higher' in PP than in PVP. (authors)

  16. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  17. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  18. Introduction of helical computed tomography affects patient selection for V/Q lung scan

    International Nuclear Information System (INIS)

    Zettinig, G.; Baudrexel, S.; Leitha, Th.

    2002-01-01

    Aim: Retrospective analysis for determination of the effect of helical computed tomography (HCT) on utilization of V/Q lung scanning to diagnose pulmonary embolism (PE) in a large general hospital. Methods: A total number of 2676 V/Q scans of in- and out-patients referred to our department between March 1992 and December 1998 and between April 1997 and December 1998 were analyzed by an identical group of nuclear physicians. Results: Neither the total number of annually performed V/Q scans (446 ± 135) nor the mean age of patients (56 years ± 17) changed significantly since the introduction of HCT. However, the referral pattern was different. The percentage of patients with high and intermediate probability for PE decreased significantly from 15.2% to 9.4% (p <0.01) and from 10.2% to 7.3% (p <0.05), respectively. Low probability scans significantly increased from 37.8% to 42.7% (p <0.05). The percentage of normal scans did not change significantly, however, there was a highly significant increase summarizing patients with normal and low probability scans (74.6% to 83.3%; p <0.01). Conclusion: The introduction of HCT affected the selection of patients referred for V/Q lung scanning since V/Q scanning was primarily used to exclude rather to confirm PE. (orig.)

  19. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  20. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  1. Generalized helicity and Beltrami fields

    International Nuclear Information System (INIS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  2. Hidden selection rules, M5-instantons and fluxes in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, & I.N.F.N. Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, 69120 Heidelberg (Germany)

    2015-10-21

    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper http://dx.doi.org/10.1007/JHEP09(2015)198, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)s which are responsible for ‘hidden’ selection rules. We discuss how for non-generic embeddings the M5-instanton can probe ‘locally massless’ U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1) gauge fluxes in the stable degeneration limit.

  3. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  4. Appropriateness guidelines and predictive rules to select patients for upper endoscopy: a nationwide multicenter study.

    Science.gov (United States)

    Buri, Luigi; Hassan, Cesare; Bersani, Gianluca; Anti, Marcello; Bianco, Maria Antonietta; Cipolletta, Livio; Di Giulio, Emilio; Di Matteo, Giovanni; Familiari, Luigi; Ficano, Leonardo; Loriga, Pietro; Morini, Sergio; Pietropaolo, Vincenzo; Zambelli, Alessandro; Grossi, Enzo; Intraligi, Marco; Buscema, Massimo

    2010-06-01

    Selecting patients appropriately for upper endoscopy (EGD) is crucial for efficient use of endoscopy. The objective of this study was to compare different clinical strategies and statistical methods to select patients for EGD, namely appropriateness guidelines, age and/or alarm features, and multivariate and artificial neural network (ANN) models. A nationwide, multicenter, prospective study was undertaken in which consecutive patients referred for EGD during a 1-month period were enrolled. Before EGD, the endoscopist assessed referral appropriateness according to the American Society for Gastrointestinal Endoscopy (ASGE) guidelines, also collecting clinical and demographic variables. Outcomes of the study were detection of relevant findings and new diagnosis of malignancy at EGD. The accuracy of the following clinical strategies and predictive rules was compared: (i) ASGE appropriateness guidelines (indicated vs. not indicated), (ii) simplified rule (>or=45 years or alarm features vs. <45 years without alarm features), (iii) logistic regression model, and (iv) ANN models. A total of 8,252 patients were enrolled in 57 centers. Overall, 3,803 (46%) relevant findings and 132 (1.6%) new malignancies were detected. Sensitivity, specificity, and area under the receiver-operating characteristic curve (AUC) of the simplified rule were similar to that of the ASGE guidelines for both relevant findings (82%/26%/0.55 vs. 88%/27%/0.52) and cancer (97%/22%/0.58 vs. 98%/20%/0.58). Both logistic regression and ANN models seemed to be substantially more accurate in predicting new cases of malignancy, with an AUC of 0.82 and 0.87, respectively. A simple predictive rule based on age and alarm features is similarly effective to the more complex ASGE guidelines in selecting patients for EGD. Regression and ANN models may be useful in identifying a relatively small subgroup of patients at higher risk of cancer.

  5. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  6. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  7. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    Science.gov (United States)

    Zhong, Sheng

    There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share

  8. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  9. Polarized excitons and optical activity in single-wall carbon nanotubes

    Science.gov (United States)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  10. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  11. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  12. MAGNETIC HELICITY FLUX IN THE PRESENCE OF SHEAR

    International Nuclear Information System (INIS)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac and Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  13. Magnetic Helicity Flux in the Presence of Shear

    Science.gov (United States)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  14. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  15. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  16. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  17. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  18. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  19. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  20. Predicting higher selection in elite junior Australian Rules football: The influence of physical performance and anthropometric attributes.

    Science.gov (United States)

    Robertson, Sam; Woods, Carl; Gastin, Paul

    2015-09-01

    To develop a physiological performance and anthropometric attribute model to predict Australian Football League draft selection. Cross-sectional observational. Data was obtained (n=4902) from three Under-18 Australian football competitions between 2010 and 2013. Players were allocated into one of the three groups, based on their highest level of selection in their final year of junior football (Australian Football League Drafted, n=292; National Championship, n=293; State-level club, n=4317). Physiological performance (vertical jumps, agility, speed and running endurance) and anthropometric (body mass and height) data were obtained. Hedge's effect sizes were calculated to assess the influence of selection-level and competition on these physical attributes, with logistic regression models constructed to discriminate Australian Football League Drafted and National Championship players. Rule induction analysis was undertaken to determine a set of rules for discriminating selection-level. Effect size comparisons revealed a range of small to moderate differences between State-level club players and both other groups for all attributes, with trivial to small differences between Australian Football League Drafted and National Championship players noted. Logistic regression models showed multistage fitness test, height and 20 m sprint time as the most important attributes in predicting Draft success. Rule induction analysis showed that players displaying multistage fitness test scores of >14.01 and/or 20 m sprint times of football players being recruited to the highest level of the sport. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  2. ADDITIVE SELF-HELICITY AS A KINK MODE THRESHOLD

    International Nuclear Information System (INIS)

    Malanushenko, A.; Longcope, D. W.; Fan, Y.; Gibson, S. E.

    2009-01-01

    In this paper, we propose that additive self-helicity, introduced by Longcope and Malanushenko, plays a role in the kink instability for complex equilibria, similar to twist helicity for thin flux tubes. We support this hypothesis by a calculation of additive self-helicity of a twisted flux tube from the simulation of Fan and Gibson. As more twist gets introduced, the additive self-helicity increases, and the kink instability of the tube coincides with the drop of additive self-helicity, after the latter reaches the value of H A /Φ 2 ∼ 1.5 (where Φ is the flux of the tube and H A is the additive self-helicity). We compare the additive self-helicity to twist for a thin subportion of the tube to illustrate that H A /Φ 2 is equal to the twist number, studied by Berger and Field, when the thin flux tube approximation is applicable. We suggest that the quantity H A /Φ 2 could be treated as a generalization of a twist number, when the thin flux tube approximation is not applicable. A threshold on a generalized twist number might prove extremely useful studying complex equilibria, just as the twist number itself has proven useful studying idealized thin flux tubes. We explicitly describe a numerical method for calculating additive self-helicity, which includes an algorithm for identifying a domain occupied by a flux bundle and a method of calculating potential magnetic field confined to this domain. We also describe a numerical method to calculate twist of a thin flux tube, using a frame parallelly transported along the axis of the tube.

  3. Early clinical phase of patient's management after polytrauma using 1- and 4-slice helical CT

    International Nuclear Information System (INIS)

    Kloeppel, R.; Kahn, T.; Schreiter, D.; Dietrich, J.; Josten, C.

    2002-01-01

    In the early clinical phase the comprehensive imaging of patients with multiple trauma using helical CT is already established. Aim of this study was to assess whether MSCT may improve the patient management and the diagnostic results.The procedure is designed as follows: after life-thretening treatment x-ray of chest and ultrasound are carried out in the emergency room. Then the patient is moved to CT. From 1998 to december 2000 241 patients were examined using a single slice helical CT (Somatom plus 4), in 2001 79 patients using a 4-slice helical CT (Somatom VZ, Siemens Med.Sol.). After CT selected radiograms of the extremities were taken.359 of 360 procedures were carried out successfully. Excluding 1 case (death during 1-sl. h CT) all relevant lesions of head, neck, and body were diagnosed. Although the patients had an injury severity score of ∼30. The change from 1slice-helical CT to 4 slice-helical CT allowed us to reduce the stay in the CT room from 28 to 16 min. The total lethality decreased by ∼4%.Advantages for the patient arose from the standardized examination protocol using multislice CT. If integrated in an interdisciplinary management concept, it is a good compromise between examination time, comprehensive diagnostic imaging, life-saving therapeutic procedures, and therapy planning. (orig.) [de

  4. Clinical application of helical CT colonography

    International Nuclear Information System (INIS)

    Zeng Huiliang; Zhu Xinjin; Liang Rujian; Liang Jianhao; Ou Weiqian; Wen Haomao

    2009-01-01

    Objective: To investigate the clinical value of 16-slice helical CT colonography in the diagnosis of colon tumor and polypus. Methods: 16-slice helical CT volumetric scanning was performed in 18 patients with colonic disease, including colonic tumor (n=16) and colonic polypus (n=2). 3D images, virtual endoscopy and multiplanar reformation were obtained in the AW4.1 workstation. CT appearances were compared with operation and fiberoptic colonoscopy. Results: Satisfied results were achieved from 18 patients, no difference found in results between CT colonography and operation in 16 patients with colonic tumor. Conclusion: 16-slice helical CT colonography is of great value in preoperative staging of colonic tumor and have a high value in clinical application. (authors)

  5. Neutrino's helicity in a gravitational field

    International Nuclear Information System (INIS)

    Pansart, J.P.

    1996-01-01

    By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)

  6. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  7. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  8. Helicity amplitudes for matter-coupled gravity

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Novaes, S.F.; Spehler, D.

    1992-07-01

    The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)

  9. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  10. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  11. Design windows and cost analysis on helical reactors

    International Nuclear Information System (INIS)

    Kozaki, Y.; Imagawa, S.; Sagara, A.

    2007-01-01

    The LHD type helical reactors are characterized by a large major radius but slender helical coil, which give us different approaches for power plants from tokamak reactors. For searching design windows of helical reactors and discussing their potential as power plants, we have developed a mass-cost estimating model linked with system design code (HeliCos), thorough studying the relationships between major plasma parameters and reactor parameters, and weight of major components. In regard to cost data we have much experience through preparing ITER construction. To compare the weight and cost of magnet systems between tokamak and helical reactors, we broke down magnet systems and cost factors, such as weights of super conducting strands, conduits, support structures, and winding unit costs, through estimating ITER cost data basis. Based on FFHR2m1 deign we considered a typical 3 GWth helical plant (LHD type) with the same magnet size, coil major radius Rc 14 m, magnetic energy 120 GJ, but increasing plasma densities. We evaluated the weight and cost of magnet systems of 3 GWth helical plant, the total magnet weights of 16,000ton and costs of 210 BYen, which are similar values of tokamak reactors (10,200 ton, 110 BYen in ITER 2002 report, and 21,900 ton, 275 BYen in ITER FDR1999). The costs of strands and winding occupy 70% of total magnet costs, and influence entire power plants economics. The design windows analysis and comparative economics studies to optimize the main reactor parameters have been carried out. Economics studies show that it is misunderstanding to consider helical coils are too large and too expensive to achieve power plants. But we should notice that the helical reactor design windows and economics are very sensitive to allowable blanket space (depend on ergodic layer conditions) and diverter configuration for decreasing heat loads. (orig.)

  12. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  13. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  14. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  15. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  16. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  17. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  18. Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap

    Science.gov (United States)

    Kim, Hyunyoung Y.; Kim, Daisik S.

    2018-01-01

    We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.

  19. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  20. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  1. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  2. Bourdieu's Distinction between Rules and Strategies and Secondary Principal Practice: A Review of Selected Literature

    Science.gov (United States)

    Anderson, Karen

    2016-01-01

    This paper reviews a selection of literature on secondary principal practice from which to propose an approach for further research. The review demonstrates that applications of Bourdieu's theory of practice have contributed to understandings about secondary principal practice, and that the distinction he made between rules and strategies has the…

  3. Stiffness versus architecture of single helical polyisocyanopeptides

    NARCIS (Netherlands)

    Buul, van A.M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J.C.; Christianen, P.C.M.; Kouwer, P.H.J.; Nolte, R.J.M.; Engelkamp, H.; Blank, K.; Rowan, A.E.

    2013-01-01

    Helical structures play a vital role in nature, offering mechanical rigidity, chirality and structural definition to biological systems. Little is known about the influence of the helical architecture on the intrinsic properties of polymers. Here, we offer an insight into the nano architecture of

  4. Catechol-Acylhydrazone-Liganden für die Bildung heterodinuklearer Helicate

    OpenAIRE

    Latorre Martínez, Irene Cristina

    2011-01-01

    The interest for artificial helical structures has steadily grown since the first definition by Lehn and the investigations done later on. Not only the spectacular properties and potential applications of these compounds are important features of these substances but also their special characteristics are interesting for the supramolecular chemists. The synthesis of ligands with special donor atoms at the coordination sites is the crucial point and makes the selective binding of f- and d- met...

  5. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  6. Self/anti-self charge conjugate states in the helicity basis

    International Nuclear Information System (INIS)

    Dvoeglazov, Valeriy V.

    2013-01-01

    We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-like and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. Particular attention has been paid to the question of (anti)commutation of the Charge conjugation operator and the Parity in the helicity basis. Dynamical equations have also been presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The chirality and the helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states have been discussed

  7. Resonant helical fields in tokamaks

    International Nuclear Information System (INIS)

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  8. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  9. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  10. Using helical compressors for coke gas condensation

    Energy Technology Data Exchange (ETDEWEB)

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N

    1982-08-01

    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  11. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  12. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  13. Reduced bispectrum seeded by helical primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hortúa, Héctor Javier [Universidad Nacional de Colombia-Bogotá, Facultad de Ciencias, Departamento de Física, Carrera 30 Calle 45-03, C.P. 111321 Bogotá (Colombia); Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co [Grupo de Gravitación y Cosmología, Observatorio Astronómico Nacional, Universidad Nacional de Colombia, cra 45 No 26-85, Edificio Uriel Gutierréz, Bogotá, D.C. (Colombia)

    2017-06-01

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlation case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.

  14. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    Science.gov (United States)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  15. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  16. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  17. The helical tomotherapy thread effect

    International Nuclear Information System (INIS)

    Kissick, M.W.; Fenwick, J.; James, J.A.; Jeraj, R.; Kapatoes, J.M.; Keller, H.; Mackie, T.R.; Olivera, G.; Soisson, E.T.

    2005-01-01

    Inherent to helical tomotherapy is a dose variation pattern that manifests as a 'ripple' (peak-to-trough relative to the average). This ripple is the result of helical beam junctioning, completely unique to helical tomotherapy. Pitch is defined as in helical CT, the couch travel distance for a complete gantry rotation relative to the axial beam width at the axis of rotation. Without scattering or beam divergence, an analytical posing of the problem as a simple integral predicts minima near a pitch of 1/n where n is an integer. A convolution-superposition dose calculator (TomoTherapy, Inc.) included all the physics needed to explore the ripple magnitude versus pitch and beam width. The results of the dose calculator and some benchmark measurements demonstrate that the ripple has sharp minima near p=0.86(1/n). The 0.86 factor is empirical and caused by a beam junctioning of the off-axis dose profiles which differ from the axial profiles as well as a long scatter tail of the profiles at depth. For very strong intensity modulation, the 0.86 factor may vary. The authors propose choosing particular minima pitches or using a second delivery that starts 180 deg off-phase from the first to reduce these ripples: 'Double threading'. For current typical pitches and beam widths, however, this effect is small and not clinically important for most situations. Certain extremely large field or high pitch cases, however, may benefit from mitigation of this effect

  18. Selection rules for Cooper pairing in two-dimensional interfaces and sheets

    Science.gov (United States)

    Scheurer, Mathias S.; Agterberg, Daniel F.; Schmalian, Jörg

    2017-12-01

    Thin sheets deposited on a substrate and interfaces of correlated materials offer a plethora of routes towards the realization of exotic phases of matter. In these systems, inversion symmetry is broken which strongly affects the properties of possible instabilities—in particular in the superconducting channel. By combining symmetry and energetic arguments, we derive general and experimentally accessible selection rules for Cooper instabilities in noncentrosymmetric systems, which yield necessary and sufficient conditions for spontaneous time-reversal-symmetry breaking at the superconducting transition and constrain the orientation of the triplet vector. We discuss in detail the implications for various different materials. For instance, we conclude that the pairing state in thin layers of Sr2RuO4 must, as opposed to its bulk superconducting state, preserve time-reversal symmetry with its triplet vector being parallel to the plane of the system. All triplet states of this system allowed by the selection rules are predicted to display topological Majorana modes at dislocations or at the edge of the system. Applying our results to the LaAlO3/SrTiO3 heterostructures, we find that while the condensates of the (001) and (110) oriented interfaces must be time-reversal symmetric, spontaneous time-reversal-symmetry breaking can only occur for the less studied (111) interface. We also discuss the consequences for thin layers of URu2Si2 and UPt3 as well as for single-layer FeSe. On a more general level, our considerations might serve as a design principle in the search for time-reversal-symmetry-breaking superconductivity in the absence of external magnetic fields.

  19. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2010-01-01

    The formation of helices is an ubiquitous phenomenon for molecular structures whether they are biological, organic, or inorganic, in nature. Helical structures have geometrical constraints analogous to close packing of three-dimensional crystal structures. For helical packing the geometrical cons...

  20. Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm.

    Science.gov (United States)

    Wang, Xiaopu; Hu, Chengzhi; Schurz, Lukas; De Marco, Carmela; Chen, Xiangzhong; Pané, Salvador; Nelson, Bradley J

    2018-05-31

    Magnetic helical microswimmers, also known as artificial bacterial flagella (ABFs), perform 3D navigation in various liquids under low-strength rotating magnetic fields by converting rotational motion to translational motion. ABFs have been widely studied as carriers for targeted delivery and release of drugs and cells. For in vivo/ in vitro therapeutic applications, control over individual groups of swimmers within a swarm is necessary for several biomedical applications such as drug delivery or small-scale surgery. In this work, we present the selective control of individual swimmers in a swarm of geometrically and magnetically identical ABFs by modifying their surface chemistry. We confirm experimentally and analytically that the forward/rotational velocity ratio of ABFs is independent of their surface coatings when the swimmers are operated below their step-out frequency (the frequency requiring the entire available magnetic torque to maintain synchronous rotation). We also show that ABFs with hydrophobic surfaces exhibit larger step-out frequencies and higher maximum forward velocities compared to their hydrophilic counterparts. Thus, selective control of a group of swimmers within a swarm of ABFs can be achieved by operating the selected ABFs at a frequency that is below their step-out frequencies but higher than the step-out frequencies of unselected ABFs. The feasibility of this method is investigated in water and in biologically relevant solutions. Selective control is also demonstrated inside a Y-shaped microfluidic channel. Our results present a systematic approach for realizing selective control within a swarm of magnetic helical microswimmers.

  1. New narrow boson resonances and SU(4) symmetry: Selection rules, SU(4) mixing, and mass formulas

    International Nuclear Information System (INIS)

    Takasugi, E.; Oneda, S.

    1975-01-01

    General SU(4) sum rules are obtained for bosons in the theoretical framework of asymptotic SU(4), chiral SU(4) direct-product SU(4) charge algebra, and a simple mechanism of SU(4) and chiral SU(4) direct-product SU(4) breaking. The sum rules exhibit a remarkable interplay of the masses, SU(4) mixing angles, and axial-vector matrix elements of 16-plet boson multiplets. Under a particular circumstance (i.e., in the ''ideal'' limit) this interplay produces selection rules which may explain the remarkable stability of the newly found narrow boson resonances. General SU(4) mass formulas and inter-SU(4) -multiplet mass relations are derived and SU(4) mixing parameters are completely determined. Ground state 1 -- and 0 -+ 16-plets are especially discussed and the masses of charmed and uncharmed new members of these multiplets are predicted

  2. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  3. Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.

    Science.gov (United States)

    Ell, Shawn W

    2013-12-01

    The impact of Parkinson's disease (PD) on rule-guided behavior has received considerable attention in cognitive neuroscience. The majority of research has used PD as a model of dysfunction in frontostriatal networks, but very few attempts have been made to investigate the possibility of adapting common experimental techniques in an effort to identify the conditions that are most likely to facilitate successful performance. The present study investigated a targeted training paradigm designed to facilitate rule learning and application using rule-based categorization as a model task. Participants received targeted training in which there was no selective-attention demand (i.e., stimuli varied along a single, relevant dimension) or nontargeted training in which there was selective-attention demand (i.e., stimuli varied along a relevant dimension as well as an irrelevant dimension). Following training, all participants were tested on a rule-based task with selective-attention demand. During the test phase, PD patients who received targeted training performed similarly to control participants and outperformed patients who did not receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a subset of the PD patients were tested on the Wisconsin card sorting task (WCST). PD patients who received targeted training outperformed PD patients who did not receive targeted training on several WCST performance measures. These data further characterize the contribution of frontostriatal circuitry to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of targeted training.

  4. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  5. Modification of selection rules as a P-noninvariant effect in the charge-monopole system

    International Nuclear Information System (INIS)

    Tolkachev, E.A.; Tomil'chik, L.M.; Shnir, Y.M.

    1983-01-01

    It is shown that P-noninvariance in the theory of magnetic charge, connected with the non-removability of the discontinuity of the phase of the wave function of charged particles in the field of a Dirac monopole, leads to a change in the selection rules for dipole radiation, which can in principle be used as a critical test for a model with magnetically charged quarks

  6. A PMBGA to Optimize the Selection of Rules for Job Shop Scheduling Based on the Giffler-Thompson Algorithm

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2012-01-01

    Full Text Available Most existing research on the job shop scheduling problem has been focused on the minimization of makespan (i.e., the completion time of the last job. However, in the fiercely competitive market nowadays, delivery punctuality is more important for maintaining a high service reputation. So in this paper, we aim at solving job shop scheduling problems with the total weighted tardiness objective. Several dispatching rules are adopted in the Giffler-Thompson algorithm for constructing active schedules. It is noticeable that the rule selections for scheduling consecutive operations are not mutually independent but actually interrelated. Under such circumstances, a probabilistic model-building genetic algorithm (PMBGA is proposed to optimize the sequence of selected rules. First, we use Bayesian networks to model the distribution characteristics of high-quality solutions in the population. Then, the new generation of individuals is produced by sampling the established Bayesian network. Finally, some elitist individuals are further improved by a special local search module based on parameter perturbation. The superiority of the proposed approach is verified by extensive computational experiments and comparisons.

  7. Mode Selection Rule for Three-Delay Systems

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2017-12-01

    We study the mode selection rule for a three-delay system to determine which oscillation mode is first excited by the Hopf bifurcation with increasing control parameter. We use linear stability analysis to detect an oscillating mode excited by the first bifurcation. There are two conditions, relevant and irrelevant conditions, determined by the ratios of three delay times, t1, t2, and tf, where tf is fixed and t1 and t2 are set as 0 < t1 < tf and 0 < t2 < tf. In a neighborhood of the relevant condition defined such that both t1/tf = n1/m1 and t2/tf = n2/m2 are ratios of odd to odd, oscillations nearly equal to the \\tilde{m}th-harmonic mode are excited, where \\tilde{m} is the least common multiple of m1 and m2. In the parameter space (t1,t2), there are irrelevant lines each of which is determined by a rational dependence of t1, t2, and tf, and does not allow any relevant condition. Extremely high order modes are observed along both sides of the irrelevant line. In particular, the line t2 = tf - t1, i.e., a diagonal with a slope of -1, shows the strongest irrelevancy.

  8. Non-perturbative selection rules in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-09-29

    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.

  9. Pion-nucleon charge-exchange polarization by Gribov Reggeon calculus and the derivative rule

    International Nuclear Information System (INIS)

    Ardill, R.W.B.; Koehler, P.; Moriarty, K.J.M.

    1977-01-01

    The phenomenological consequences of the Gribov Reggeon calculus for the reaction πsup(-)+p→πdeg+n at 6 GeV/c are investigated and the polarization is obtained. The derivative rules is used to calculate the helicity flip amplitude. The results are very encouraging and would seem to indicate that the Gribov Reggeon calculus can be considered a more satisfactory approach to two-body phenomenology than the absorption model

  10. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  11. A Prospective Evaluation of Helical Tomotherapy

    International Nuclear Information System (INIS)

    Bauman, Glenn; Yartsev, Slav; Rodrigues, George; Lewis, Craig; Venkatesan, Varagur M.; Yu, Edward; Hammond, Alex; Perera, Francisco; Ash, Robert; Dar, A. Rashid; Lock, Michael; Baily, Laura; Coad, Terry C; Trenka, Kris C.; Warr, Barbara; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2007-01-01

    Purpose: To report results from two clinical trials evaluating helical tomotherapy (HT). Methods and Materials: Patients were enrolled in one of two prospective trials of HT (one for palliative and one for radical treatment). Both an HT plan and a companion three-dimensional conformal radiotherapy (3D-CRT) plan were generated. Pretreatment megavoltage computed tomography was used for daily image guidance. Results: From September 2004 to January 2006, a total of 61 sites in 60 patients were treated. In all but one case, a clinically acceptable tomotherapy plan for treatment was generated. Helical tomotherapy plans were subjectively equivalent or superior to 3D-CRT in 95% of plans. Helical tomotherapy was deemed equivalent or superior in two thirds of dose-volume point comparisons. In cases of inferiority, differences were either clinically insignificant and/or reflected deliberate tradeoffs to optimize the HT plan. Overall imaging and treatment time (median) was 27 min (range, 16-91 min). According to a patient questionnaire, 78% of patients were satisfied to very satisfied with the treatment process. Conclusions: Helical tomotherapy demonstrated clear advantages over conventional 3D-CRT in this diverse patient group. The prospective trials were helpful in deploying this technology in a busy clinical setting

  12. Review of the helicity formalism; Revision del formalismo de helicidad

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, F; Cerrada, M; Fernandez, E

    1972-07-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs.

  13. Raman selection rules and tensor elements for PMN-0.3PT single crystal

    International Nuclear Information System (INIS)

    Ge, Wanyin; Zhu, Wenliang; Pezzotti, Giuseppe

    2009-01-01

    Selection rules were put forward theoretically and Raman tensor elements experimentally determined for PMN-0.3PT single-crystal. Such a body of information was then employed to evaluate local domain orientation in a relaxor-based PMN-0.3PT material by means of polarized microprobe Raman spectroscopy. The dependence of Raman spectra upon crystal rotation under different polarized probe configurations was experimentally confirmed by collecting the intensity variation of selected Raman modes on Euler's angle rotation in a poled single-crystal. The periodicity of relative Raman intensity of selected Raman bands revealed symmetry properties. Upon exploiting such properties and with the knowledge of the Raman tensor elements from the A g and E g vibrational modes, a viable path becomes available to determine domain texture in relaxor-based PMN-PT materials with high spatial resolution. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  15. Stabilized helical peptides: overview of the technologies and its impact on drug discovery.

    Science.gov (United States)

    Klein, Mark

    2017-11-01

    Protein-protein interactions are predominant in the workings of all cells. Until now, there have been a few successes in targeting protein-protein interactions with small molecules. Peptides may overcome some of the challenges of small molecules in disrupting protein-protein interactions. However, peptides present a new set of challenges in drug discovery. Thus, the study of the stabilization of helical peptides has been extensive. Areas covered: Several technological approaches to helical peptide stabilization have been studied. In this review, stapled peptides, foldamers, and hydrogen bond surrogates are discussed. Issues regarding design principles are also discussed. Furthermore, this review introduces select computational techniques used to aid peptide design and discusses clinical trials of peptides in a more advanced stage of development. Expert opinion: Stabilized helical peptides hold great promise in a wide array of diseases. However, the field is still relatively new and new design principles are emerging. The possibilities of peptide modification are quite extensive and expanding, so the design of stabilized peptides requires great attention to detail in order to avoid a large number of failed lead peptides. The start of clinical trials with stapled peptides is a promising sign for the future.

  16. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2015-01-01

    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation....... The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static...... mixers, but in porous media....

  17. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus......' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement...

  18. Geometric analysis of alloreactive HLA α-helices.

    Science.gov (United States)

    Ribarics, Reiner; Karch, Rudolf; Ilieva, Nevena; Schreiner, Wolfgang

    2014-01-01

    Molecular dynamics (MD) is a valuable tool for the investigation of functional elements in biomolecules, providing information on dynamic properties and processes. Previous work by our group has characterized static geometric properties of the two MHC α-helices comprising the peptide binding region recognized by T cells. We build upon this work and used several spline models to approximate the overall shape of MHC α-helices. We applied this technique to a series of MD simulations of alloreactive MHC molecules that allowed us to capture the dynamics of MHC α-helices' steric configurations. Here, we discuss the variability of spline models underlying the geometric analysis with varying polynomial degrees of the splines.

  19. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  20. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  1. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  2. Learning a New Selection Rule in Visual and Frontal Cortex

    NARCIS (Netherlands)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-01-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the

  3. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  4. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  5. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  6. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its......The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...

  7. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  8. Chaotic coordinates for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Suzuki, Y. [National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292 (Japan)

    2014-10-15

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.

  9. Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials.

    Science.gov (United States)

    Maeda, Katsuhiro; Yashima, Eiji

    2017-08-01

    Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.

  10. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  11. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    Science.gov (United States)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  12. Low-energy properties of fractional helical Luttinger liquids

    NARCIS (Netherlands)

    Meng, T.; Fritz, L.|info:eu-repo/dai/nl/371569559; Schuricht, D.|info:eu-repo/dai/nl/369284690; Loss, D.

    2014-01-01

    We investigate the low-energy properties of (quasi) helical and fractional helical Luttinger liquids. In particular, we calculate the Drude peak of the optical conductivity, the density of states, as well as charge transport properties of the interacting system with and without attached Fermi liquid

  13. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  14. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  15. Manipulation of wavefront using helical metamaterials.

    Science.gov (United States)

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  16. Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems

    Science.gov (United States)

    Zhang, Xiaoou; Shan, Wen-Yu; Xiao, Di

    2018-02-01

    We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number w , a topological quantity of the Bloch bands. Specifically, in a CN-invariant chiral fermion system, the angular momentum of bright exciton states is given by w ±1 +n N with n being an integer. We demonstrate our theory by proposing two chiral fermion systems capable of hosting dark s -like excitons: gapped surface states of a topological crystalline insulator with C4 rotational symmetry and biased 3 R -stacked MoS2 bilayers. In the latter case, we show that gating can be used to tune the s -like excitons from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical control of optical transitions in two-dimensional material.

  17. Drift mode calculations for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2000-01-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated

  18. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  19. Strong coupling between a permalloy ferromagnetic contact and helical edge channel in a narrow HgTe quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kononov, A.; Egorov, S. V. [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation); Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics (Russian Federation); Deviatov, E. V., E-mail: dev@issp.ac.ru [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation)

    2016-11-15

    We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.

  20. RULES FOR SELECTING AND USING KEY PERFORMANCE INDICATORS FOR THE SERVICE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Alexandra - Elena RUSĂNEANU

    2014-06-01

    Full Text Available There is no question that performance is the desired result of every activity or action. In order to correctly measure an organization’s performance it is necessary to select key performance indicators (KPIs that will deliver long-term value to the company. KPIs are presenting performance information for all levels of the organization and they are reflecting the progress made so far to achieve strategic objectives. The selection of the key performance indicators must be made according to the organization’s industry and activity. The company must truly understand its business and its mission. Also, KPIs must be closely linked to the strategic objectives. The focus of this research is to present effective rules for defining key performance indicators for the Service industry. This sector of economy consists in generating intangible goods like experience, expertise and information. Therefore, monitoring this type of services requires a different approach when defining performance indicators compared to the manufacturing industry.

  1. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-01-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10 43 Mx 2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10 43 Mx 2 , in the corona over ∼1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  2. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Famin Qiu

    2015-03-01

    Full Text Available Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT. Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

  3. Utility of three-dimensional helical CT in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Maeda, Yoshiaki; Hata, Yoshinobu; Matsuoka, Shinnichi; Nakajima, Nobuhisa; Ito, Toichi; Osada, Tadahiro; Sano, Fumio

    2004-01-01

    Although utility of three-dimensional (3D) helical CT for preoperative examination of breast cancer has been discussed, the accuracy of the helical CT in diagnosing breast cancer has not been fully evaluated. In this study 56 malignant and 28 benign breast tumors were evaluated preoperatively with 3D-helical CT, and their imaging results were compared with pathological findings of surgical specimens. Helical CT identified the presence of malignancy in 54 out of the 56 cancer cases tested and the sensitivity and specificity in distinguishing between malignant and benign tumors were 82% and 57%, respectively. The sensitivity and specificity in diagnosing the presence of metastatic axillary lymph nodes using helical CT were 70% and 80%, respectively. The sensitivity and specificity in diagnosing the presence of extensive intraductal component (EIC) using helical CT were 71% and 86%, respectively. Helical CT visualized all of the tumors in multifocal breast cancer cases. In conclusion, 3D-helical CT is a useful modality for preoperative examination of breast cancer, especially for assessing axillary lymph node status, and EIC, and will be helpful for conducting sentinel lymph node biopsy (SNLB) and breast-conserving surgery. (author)

  4. Radiation characteristics of helical tomotherapy

    International Nuclear Information System (INIS)

    Jeraj, Robert; Mackie, Thomas R.; Balog, John; Olivera, Gustavo; Pearson, Dave; Kapatoes, Jeff; Ruchala, Ken; Reckwerdt, Paul

    2004-01-01

    Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent

  5. Evaluation of coronary artery disease by helical CT using retrospective ECG-gating

    International Nuclear Information System (INIS)

    Kawawa, Yoko

    2001-01-01

    The purpose of this study is to evaluate the usefulness of helical CT using retrospective ECG-gating for visualization of the coronary artery and detection of coronary artery disease. We performed a coronary artery phantom study and established this new application, with 1-mm collimation, 1-mm table increment, and 0.1-mm reconstruction (0.8 sec/rotation). Helical CT of 31 patients with 39 coronary artery diseases (34 coronary artery stenoses, 1 vasospastic angina, 1 coronary artery dissection, 1 coronary artery ectasia and 2 coronary artery aneurysms) was performed in a single breath hold and ECG-gating without and with intravenous injection of nonionic iodine contrast material. We selected the images which were not affected by cardiac motion from the reconstruction images, in order to visualize the coronary artery for detection of coronary artery disease. The coronary artery was well visualized in 32 out of 39 vessels (82%). A good visualization of the coronary artery was correlated with the heart rate. Further, in this well visualized group, coronary artery diseases were detected in 24 out of 31 cases (77%). One case of vasospastic angina was not included. It was difficult to detect coronary artery disease in cases of heavily calcified vessels or in the left circumflex artery. Helical CT using this retrospective ECG-gating is a useful noninvasive examination for evaluation of coronary artery disease. (author)

  6. Helical CT of traumatic injuries of the thoracic aorta

    International Nuclear Information System (INIS)

    Mengozzi, E.; Burzi, M.; Miceli, M.; Lipparini, M.; Sartoni Galloni, S.

    2000-01-01

    Acute thoracic aortic injuries account for up to 10-20% of fatalities in high-speed deceleration road accidents and have an estimated immediate fatality rate of 80-90%. Untreated survivors to acute trauma (10-20%) have a dismal prognosis: 30% of them die within 6 hours, 40-50% die within 24 hours, and 90% within 4 months. It was investigated the diagnostic accuracy of Helical Computed Tomography (Helical CT) in acute traumatic injuries of the thoracic aorta, and the role of this technique in the diagnostic management of trauma patients with a strong suspicion of aortic rupture. It was compared retrospectively the chest Helical CT findings of 256 trauma patients examined June 1995 through August 1999. Chest Helical CT examinations were performed according to trauma score, to associated traumatic lesions and to plain chest radiographic findings. All the examinations were performed with no intravenous contrast agent administration and the pitch 2 technique. After a previous baseline study, contrast-enhanced scans were acquired with pitch 1 in 87 patients. Helical CT showed aortic lesions in 9 of 256 patients examined. In all the 9 cases it was found a mediastinal hematoma and all of them had positive plain chest radiographic findings of mediastinal enlargement. Moreover, in 6 cases aortic knob blurring was also evident on plain chest film and in 5 cases depressed left mainstem bronchus and trachea deviation rightwards were observed. All aortic lesions were identified on axial scans and located at the isthmus of level. Aortic rupture was always depicted as pseudo diverticulum of the proximal descending tract and intimal flap. It was also found that periaortic hematoma in 6 cases and intramural hematoma in 1 case. There were non false positive results in the series: 7 patients with Helical CT diagnosis of aortic rupture were submitted to conventional aortography that confirmed both type and extension of the lesions as detected by Helical CT, and all findings were

  7. Controllable helical deformations on printed anisotropic composite soft actuators

    Science.gov (United States)

    Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi

    2018-04-01

    Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

  8. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    Helical channels are widely applied in different application areas. In a converging diverging nozzle, helical channels are mainly used for cooling of its wall. The characteristics of fluid flow and heat transfer inside helical duct for a converging diverging nozzle is not commonly dealt in present literatures. In this paper CFD ...

  9. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  10. Resonant helical fields in the TBR tokamak

    International Nuclear Information System (INIS)

    Bender, O.W.

    1986-01-01

    The influence of external resonant helical fields (RHF) in the tokamak TBR plasma discharges was investigated. These fields were created by helical windings wounded on the TBR vessel with the same helicity of rational magnetic surfaces, producing resonant efects on these surfaces. The characteristics of the MHZ activity (amplitude, frequency and poloidal and toroidal wave numbers, m=2,3,4 and n=1, respectively) during the plasma discharges were modified by eletrical winding currents of the order of 2% of the plasma current. These characterisitics were measured for diferent discharges safety factors at the limiter (q) between 3 and 4, with and without the RHF, with the atenuation of the oscillation amplitudes and the increasing of their frequencies. The existente of expontaneous and induced magnetic islands were investigated. The data were compared with results obtained in other tokamaks. (author) [pt

  11. Recent Results of Helical Nonneutral Plasmas on Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Himura, H.; Yamamoto, Y.; Sanpei, A.; Masamune, S.; Wakabayashi, H.; Isobe, M.

    2006-01-01

    First of all, non-constant space potential φs and electron density ne on magnetic surfaces of helical nonneutral plasmas are verified experimentally. The difference in φs enlarges significantly at the outer region inside the closed magnetic surfaces, and the corresponding equipotential surfaces are inferred to shift upward vertically with respect to magnetic surfaces. Meanwhile, larger value of ne is clearly observed in the downward region (z < 0) of magnetic surfaces, which seems to be consistent with the φs measurement. These results are the first evidence which strongly suggests the equilibrium proposed for nonneutral plasmas confined in closed magnetic surfaces. Secondly, in order to investigate the mechanism of the multiple disruption of helical nonneutral plasmas observed in experiments, space and time evolutions of electron flux are measured carefully inside the magnetic surfaces, when the plasma disruption occurs. Surprisingly, a set of data show that the observed disruption is at first happened at ρ ∼ 0.8, where ρ is the normalized minor radius, and then, it seems to propagate inside magnetic surfaces

  12. A comparison of due-date selection rules

    NARCIS (Netherlands)

    Baker, K.R.; Bertrand, J.W.M.

    1981-01-01

    In sequencing and scheduling models it is usually assumed that due dates represent exogeneous information. In many practical settings, however, due dates can be discretionary, or at least negotiable. Relatively few studies have incorporated discretionary due dates, and even then the rules proposed

  13. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  14. Theory of dynamics in long pulse helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Toda, S.; Yokoyama, M.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    2001-01-01

    Self-organized dynamics of toroidal helical plasma, which is induced by the nonlinear transport property, is discussed. Neoclassical ripple diffusion is a dominant mechanism that drives the radial electric field. The bifurcation nature of the electric field generation gives rise to the electric field domain interface, across which the electric field changes strongly. This domain interface is an origin of internal transport barrier in helical systems. This nonlinearity gives rise to the self-organized oscillations; the electric field pulsation is one of the examples. Based on the model of density limit, in which the competition between the transport loss and radiation loss is analyzed, dynamics near the density limit of helical systems is also discussed. (author)

  15. Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads

    Science.gov (United States)

    Polishchuk, A. I.; Maksimov, F. A.

    2017-11-01

    The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.

  16. Self-assembly of hard helices: a rich and unconventional polymorphism.

    Science.gov (United States)

    Kolli, Hima Bindu; Frezza, Elisa; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille; Hudson, Toby S; De Michele, Cristiano; Sciortino, Francesco

    2014-11-07

    Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft matter systems, all featuring the helix as their basic structural unit, from natural polynucleotides and polypeptides to synthetic helical polymers, and from bacterial flagella to colloidal helices. Here we present an extensive investigation of the phase diagram of hard helices using a variety of methods. Isobaric Monte Carlo numerical simulations are used to trace the phase diagram; on going from the low-density isotropic to the high-density compact phases a rich polymorphism is observed, exhibiting a special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present full characterization of the latter, showing that they have unconventional features, ascribable to the helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-nematic phase transition, and the results are compared with those stemming from an Onsager-like theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition; within the simplifying assumption of perfectly parallel helices, we compare different levels of approximation, that is second- and third-virial expansions and a Parsons-Lee correction.

  17. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  18. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-02-15

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.

  19. Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Smith, D.R.; Reiman, A.H.

    2004-01-01

    We present analytic, high-beta (β ∼ O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current

  20. Characteristic features of edge transport barrier formed in helical divertor configuration of the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Ohdachi, S.; Watanabe, F.

    2006-10-01

    In a helical divertor configuration of the Large Helical Device (LHD), transport barrier was formed through low to high confinement (L-H) transition in the plasma edge region including ergodic field layer of which region is in the magnetic hill. The plasma stored energy or the averaged bulk plasma beta dia > (derived from diamagnetic measurement) starts to increase just after the transition. In the case that both dia > and line-averaged electron density e > at the transition are relatively high as dia >≥1.5% and e >≥2x10 19 m -3 , the increase is hampered by rapid growth of edge MHD modes and/or small ELM like activities just after the transition. On the other hand, the transition at lower e > (≤1.5x10 19 m -3 ) and dia > (<2%) leads to a continuous increase in the stored energy with a time scale longer than the global energy confinement time, without suffering from these MHD activities near the edge. The ETB typically formed in electron density profile extends into ergodic field layer defined in the vacuum field. The width of ETB is almost independent of the toroidal field strength from 0.5T to 1.5T and is much larger than the poloidal ion gyro-radius. When resonant helical field perturbations are applied to expand a magnetic island size at the rational surface of the rotational transform ι/2π=1 near the edge, the L-H transition is triggered at lower electron density compared with the case without the field perturbations. The application of large helical field perturbations also suppresses edge MHD modes and ELM like activities. (author)

  1. Gynecological applications of helical CT using SmartPrep

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, Akira; Kakizaki, Dai; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1999-11-01

    SmartPrep is software program for scanning a given region of interest (ROI) at optimal contrast density. An operator can arbitrarily define ROI and preset the CT value at which scanning should be started. After the injection of a contrast medium, system conducts continuous monitoring of the ROI and the operator starts helical scanning of the planned region when the present CT value has been reached. In comparison with conventional helical CT that requires a period of time from the beginning of contrast medium injection to the beginning of scanning, SmartPrep minimizes personal error and better depicts the artery-predominant phase under optimal conditions. In this study we examine the usefulness of contrast-enhanced helical CT using SmartPrep in the evaluation of gynecological disease. When the contrast medium was injected into the dorsal vein of the hand at a rate of 3 ml/sec, strong staining of pelvic arteries was observed in the CT images started at 17 to 23 sec after injection. The early-phase helical CT obtained under these conditions provided good depiction of lesions in cases of placenta accreta and invasive mole, as well as clear demonstration of tumor angiogenesis and evaluation of laterality in cases of cervical cancer. Comparison of the early and delayed phase also facilitated easier evaluation of lymph nodes than conventional comparison of simple and contrast-enhanced CT. The results thus suggest the usefulness of contrast-enhanced helical CT using SmartPrep in gynecology. (author)

  2. Helical CT in evaluation of the bronchial tree

    International Nuclear Information System (INIS)

    Perhomaa, M.; Laehde, S.; Rossi, O.; Suramo, I.

    1997-01-01

    Purpose: To establish a protocol for and to assess the value of helical CT in the imaging of the bronchial tree. Material and Methods: Noncontrast helical CT was performed in 30 patients undergoing fiberoptic bronchoscopy for different reasons. Different protocols were compared; they included overlapping 10 mm, 5 mm, or 3 mm slices and non-tilted, cephalad or caudal tilted images. Ordinary cross-sectional and multiplanar 2D reformats were applied for visualization of the bronchial branches. The effect of increasing the helical pitch was tested in one patient. Results: A total of 92.1-100% of the segmental bronchi present in the helical acquisitions were identified by the different protocols. The collimation had no significant impact on the identification of the bronchial branches, but utilization of 3-mm overlapping slices made it easier to distinguish the nearby branches and provided better longitudinal visualization of the bronchi in 2D reformats. The tilted scans illustrated the disadvantage of not covering all segmental bronchi in one breath-hold. An increase of the pitch from 1 to 1.5 did not cause noticeable blurring of the images. CT and bronchoscopic findings correlated well in the area accessible to bronchoscopy, but CT detected 5 additional pathological lesions (including 2 cancers) in the peripheral lung. Conclusion: Helical CT supplemented with bronchography-like 2D reformats provides an effective method complementary to bronchoscopy in the examination of the bronchial tree. (orig.)

  3. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  4. Path selection rules for droplet trains in single-lane microfluidic networks

    Science.gov (United States)

    Amon, A.; Schmit, A.; Salkin, L.; Courbin, L.; Panizza, P.

    2013-07-01

    We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom.

  5. Conformal avoidance helical tomotherapy for dogs with nasopharyngeal tumors

    International Nuclear Information System (INIS)

    Welsh, J.S.; Turek, M.; Mackie, T.R.; Miller, P.; Mehta, M.P.; Forrest, L.J.

    2003-01-01

    Helical tomotherapy provides a unique means of delivering intensity-modulated radiation therapy (IMRT) using a novel treatment unit, which merges features of a linear accelerator with a helical CT scanner. Thanks to the CT imaging capacity, targeted regions can be visualized prior to, during, or immediately after each treatment. Such image-guidance through megavoltage CT will allow the realization and refinement of the concept of adaptive radiotherapy - the reconstruction of the actually delivered daily dose (as opposed to planned dose) accompanied by prescription adjustments when appropriate. In addition to this unique feature, helical tomotherapy promises further improvements in the specific avoidance of critical normal structures, i.e. conformal avoidance, the counterpart of conformal therapy. The first definitive treatment protocol using helical tomotherapy is presently underway for dogs with nasopharyngeal tumors. In general, such tumors can be treated with conventional external beam radiation therapy but at the cost of severe ocular toxicity due to the anatomy of the canine head. These are readily measurable toxicities and are almost universal in incidence; therefore, the canine nasopharyngeal tumor presents an ideal model to assess the ability to conformally avoid critical structures. It is hoped that conformal avoidance helical tomotherapy will improve tumor control via dose-escalation while reducing ocular toxicity in these veterinary patients. A total of 10 fractions are scheduled for these patients; the first 3 dogs have all received at least 7 fractions delivered via helical tomotherapy. Although preliminary, the first 3 dogs treated have not shown any evidence of ocular toxicity in this ongoing study

  6. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  7. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  8. The helical structure of DNA facilitates binding

    International Nuclear Information System (INIS)

    Berg, Otto G; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-01-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general. (paper)

  9. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  10. Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of a reversed-field pinch.

    Science.gov (United States)

    Frassinetti, L; Predebon, I; Koguchi, H; Yagi, Y; Hirano, Y; Sakakita, H; Spizzo, G; White, R B

    2006-10-27

    The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.

  11. Helical twisting in nemato-cholesteric systems based on cholesterol derivatives and photosensitive azoxy compounds

    Energy Technology Data Exchange (ETDEWEB)

    Serbina, M. I.; Kasian, N. A.; Lisetski, L. N., E-mail: lisetski@isma.kharkov.ua [NAS of Ukraine, Institute for Scintillation Materials, STC ' Institute for Single Crystals' (Ukraine)

    2013-01-15

    For cholesteric liquid crystal systems containing photosensitive nematic ZhK-440 and a mixture of cholesterol derivatives, changes in helical twisting induced by UV radiation were studied. The UV-induced shift of selective reflection maximum {lambda}{sub max} was shown to depend upon concentration of the nematic component. For low concentrations of ZhK-440, {lambda}{sub max} increases, which correlates with corresponding changes with increasing temperature. For higher concentrations, {lambda}{sub max} decreases, regardless of the temperature behavior of the system. A theoretical description of the available experimental data is proposed on the basis of development of molecular models of helical twisting, including an assumed possibility of ordered orientation of short molecular axes of cis-isomers formed as a result of UV irradiation, which is determined by the sense of the cholesteric helix already present in the system.

  12. l=1 helical axis heliotron device in Kyoto university

    International Nuclear Information System (INIS)

    Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.

    1999-01-01

    Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles

  13. Tokamak startup using point-source dc helicity injection.

    Science.gov (United States)

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  14. Results of auricular helical rim reconstruction with post-auricular tube flap.

    Science.gov (United States)

    Iljin, Aleksandra; Lewandowicz, Edward; Antoszewski, Bogusław; Zieliński, Tomasz

    2016-01-01

    The aim of the study was to present our experience with post-auricular tube flap (ptf) and clinical evaluation of the results following auricular helical rim reconstruction with this technique in patients after trauma. We analyzed the results in 12 patients who underwent three-staged auricular helical rim reconstruction with ptf following trauma in the Department of Plastic, Reconstructive and Aesthetic Surgery between 2005-2014. The patients were followed-up for at least 1 year. We evaluated early and long-term results after surgery including plastic surgeon's and patient's opinion. Postoperative results were satisfactory (very good) in 10 cases, both in the opinion of the plastic surgeon and patients. Transient venous congestion of the helix occurred in two cases (16.6%). This complication did not have any influence on estimation of the results after surgery. Delayed wound healing in the poles of the reconstructed helical edge, as well as non-aesthetic helical scars with imperfections of helical rim, were seen in another two patients (16.6%). 1. Post-auricular tube flap reconstructions after helical rim trauma allowed for complete restoration of contour, size and orientation of the helix and the whole operated ear, which confirms the efficiency of the applied technique. 2. Reconstructive surgery with post-auricular tube flap in patients with auricular helical rim defects contributed to postoperative satisfaction in both patients and doctors' estimations.

  15. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  16. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  17. Complex Dynamics of Droplet Traffic in a Bifurcating Microfluidic Channel: Periodicity, Multistability, and Selection Rules

    Science.gov (United States)

    Sessoms, D. A.; Amon, A.; Courbin, L.; Panizza, P.

    2010-10-01

    The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.

  18. A Lennard-Jones-like perspective on first order transitions in biological helices

    DEFF Research Database (Denmark)

    Oskolkov, Nikolay N.; Bohr, Jakob

    2013-01-01

    Helical structures with Lennard-Jones self-interactions are studied for optimal conformations. For this purpose, their self-energy is analyzed for extrema with respect to the geometric parameters of the helices. It is found that Lennard-Jones helices exhibit a first order phase transition from...

  19. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Coucke, Philippe [Dept. of Radiation Oncology, Liege Univ. Hospital (Belgium); Lenaerts, Eric [Dept. of Medical Physics, Liege Univ. Hospital (Belgium); De Patoul, Nathalie; Vynckier, Stefaan [Dept. of Medical Physics, St Luc Univ. Hospital, Brussels (Belgium); Scalliet, Pierre [Dept. of Radiation Oncology, St Luc Univ. Hospital, Brussels (Belgium); Nickers, Philippe [Dept. of Radiation Oncology, Oscar Lambret Center, Lille (France)

    2009-11-15

    Background and purpose: dose escalation in order to improve the biochemical control in prostate cancer requires the application of irradiation techniques with high conformality. The dosimetric selectivity of three radiation modalities is compared: high-dose-rate brachytherapy (HDR-BT), intensity-modulated radiation radiotherapy (IMRT), and helical tomotherapy (HT). Patients and methods: ten patients with prostate adenocarcinoma treated by a 10-Gy HDR-BT boost after external-beam radiotherapy were investigated. For each patient, HDR-BT, IMRT and HT theoretical treatment plans were realized using common contour sets. A 10-Gy dose was prescribed to the planning target volume (PTV). The PTVs and critical organs' dose-volume histograms obtained were compared using Student's t-test. Results: HDR-BT delivers spontaneously higher mean doses to the PTV with smaller cold spots compared to IMRT and HT. 33% of the rectal volume received a mean HDR-BT dose of 3.86 {+-} 0.3 Gy in comparison with a mean IMRT dose of 6.57 {+-} 0.68 Gy and a mean HT dose of 5.58 {+-} 0.71 Gy (p < 0.0001). HDR-BT also enables to better spare the bladder. The hot spots inside the urethra are greater with HDR-BT. The volume of healthy tissue receiving 10% of the prescribed dose is reduced at least by a factor of 8 with HDR-BT (p < 0.0001). Conclusion: HDR-BT offers better conformality in comparison with HT and IMRT and reduces the volume of healthy tissue receiving a low dose. (orig.)

  20. Markov analysis of alpha-helical, beta-sheet and random coil regions of proteins

    International Nuclear Information System (INIS)

    Macchiato, M.; Tramontano, A.

    1983-01-01

    The rules up to now used to predict the spatial configuration of proteins from their primary structure are mostly based on the recurrence analysis of some doublets, triplets and so on of contiguous amino acids, but they do not take into account the correlation characteristics of the whole amino acid sequence. A statistical analysis of amino acid sequences for the alpha-helical, beta-sheet and random coil regions of about twenty proteins with known secondary structure by considering correlations effects has been carried out. The obtained results demonstrate that these sequences are at least a second-order Markov chain, i.e. they appear as if they were generated by a source that remembers at least the two aminoacids before the one being generated and that these two previous symbols influence the present choice

  1. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  2. Three-dimensional helical CT for treatment planning of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Hideko; Enomoto, Kohji; Ikeda, Tadashi [Keio Univ., Tokyo (Japan). School of Medicine] [and others

    1999-01-01

    The role of three-dimensional (3D) helical CT in the treatment planning of breast cancer was evaluated. Of 36 patients examined, 30 had invasive ductal carcinoma, three had invasive lobular carcinoma, one had DCIS, one had DCIS with minimal invasion, and 1 had Paget`s disease. Patients were examined in the supine position. The whole breast was scanned under about 25 seconds of breath-holding using helical CT (Proceed, Yokogawa Medical Systems, or High-speed Advantage, GE Medical Systems). 3D imaging was obtained with computer assistance (Advantage Windows, GE Medical Systems). Linear and/or spotty enhancement on helical CT was considered to suggest DCIS or intraductal spread in the area surrounding the invasive cancer. Of 36 patients, 24 showed linear and/or spotty enhancement on helical CT, and 22 of those 24 patients had DCIS or intraductal spread. In contrast, 12 of 36 patients were considered to have little or no intraductal spread on helical CT, and eight of the 12 patients had little or no intraductal spread on pathological examination. The sensitivity, specificity, and accuracy rates for detecting intraductal spread on MRI were 85%, 80%, and 83%, respectively. 3D helical CT was considered useful in detecting intraductal spread and planning surgery, however, a larger study using a precise correlation with pathology is necessary. (author)

  3. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  4. Max-out-in pivot rule with Dantzig's safeguarding rule for the simplex method

    International Nuclear Information System (INIS)

    Tipawanna, Monsicha; Sinapiromsaran, Krung

    2014-01-01

    The simplex method is used to solve linear programming problem by improving the current basic feasible solution. It uses a pivot rule to guide the search in the feasible region. The pivot rule is used to select an entering index in simplex method. Nowadays, many pivot rule have been presented, but no pivot rule shows superior performance than other. Therefore, this is still an active research in linear programming. In this research, we present the max-out-in pivot rule with Dantzig's safeguarding for simplex method. This rule is based on maximum improvement of objective value of the current basic feasible point similar to the Dantzig's rule. We can illustrate by Klee and Minty problems that our rule outperforms that of Dantzig's rule by the number of iterations for solving linear programming problems

  5. Alpha-Effect, Current and Kinetic Helicities for Magnetically Driven ...

    Indian Academy of Sciences (India)

    tribpo

    Key words. Sun—dynamo, helicity, turbulent convection. Extended abstract. Recent numerical simulations lead to the result that turbulence is much more mag- netically driven than believed. ... positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicity which is negative ...

  6. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  7. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Lan Mingming, E-mail: lan_mingming@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang Deyuan; Cai Jun; Zhang Wenqiang; Yuan Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2011-12-15

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment. - Highlights: > We used the microorganism cells as forming template to fabricate the bio-based helical soft-core ferromagnetic particles. > Microorganism selected as forming templates was Spirulina platens, which are of natural helical shape and have high aspect ratio. > Coated Spirulina cells were a kind lightweight ferromagnetic particle.

  8. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  9. Field of a helical Siberian Snake

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  10. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Yoshimura, Keiji [Department of Physics, Montana State University Bozeman, MT 59717 (United States); Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), 1428 Buenos Aires (Argentina)

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  11. Helical bifurcation and tearing mode in a plasma—a description based on Casimir foliation

    International Nuclear Information System (INIS)

    Yoshida, Z; Dewar, R L

    2012-01-01

    The relation between the helical bifurcation of a Taylor relaxed state (a Beltrami equilibrium) and a tearing mode is analyzed in a Hamiltonian framework. Invoking an Eulerian representation of the Hamiltonian, the symplectic operator (defining a Poisson bracket) becomes non-canonical, i.e. the symplectic operator has a nontrivial cokernel (dual to its nullspace), foliating the phase space into level sets of Casimir invariants. A Taylor relaxed state is an equilibrium point on a Casimir (helicity) leaf. Changing the helicity, equilibrium points may bifurcate to produce helical relaxed states; a necessary and sufficient condition for bifurcation is derived. Tearing yields a helical perturbation on an unstable equilibrium, producing a helical structure approximately similar to a helical relaxed state. A slight discrepancy found between the helically bifurcated relaxed state and the linear tearing mode viewed as a perturbed, singular equilibrium state is attributed to a Casimir element (named ‘helical flux’) pertinent to a ‘resonance singularity’ of the non-canonical symplectic operator. While the helical bifurcation can occur at discrete eigenvalues of the Beltrami parameter, the tearing mode, being a singular eigenfunction, exists for an arbitrary Beltrami parameter. Bifurcated Beltrami equilibria appearing on the same helicity leaf are isolated by the helical-flux Casimir foliation. The obstacle preventing the tearing mode to develop in the ideal limit turns out to be the shielding current sheet on the resonant surface, preventing the release of the ‘potential energy’. When this current is dissipated by resistivity, reconnection is allowed and tearing instability occurs. The Δ′ criterion for linear tearing instability of Beltrami equilibria is shown to be directly related to the spectrum of the curl operator. (paper)

  12. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  13. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  14. Kinetic theory of rf current drive and helicity injection

    International Nuclear Information System (INIS)

    Mett, R.R.

    1992-01-01

    Current drive and helicity injection by plasma waves are examined with the use of kinetic theory. The Vlasov equation yields a general current drive formula that contains resonant and nonresonant (ponderomotivelike) contributions. Standard quasilinear current drive is described by the former, while helicity current drive may be contained in the latter. Since direct analytical comparison of the sizes of the two terms is, in general, difficult, a new approach is taken. Solution of the drift-kinetic equation shows that the standard Landau damping/transit time magnetic pumping quasilinear diffusion coefficient is the only contribution to steady-state current drive to leading order in ε=ρ L /l, where ρ L is the Larmor radius and l is the inhomogeneity scale length. All nonresonant contributions, including the helicity, appear at higher order, after averages are taken over a flux surface, over azimuth, and over time. Consequently, at wave frequencies well below the electron cyclotron frequency, a wave helicity flux perpendicular to the magnetic field does not influence the parallel motion of electrons to leading order and therefore will not drive a significant current. Any current associated with a wave helicity flux is then either ion current (and thus inefficient) or electron current stemming from effects not included in the drift-kinetic treatment, such as cyclotron, collisional, or nonlinear (i.e., not quasilinear)

  15. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  16. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  17. Helical-tokamak hybridization concepts for compact configuration exploration and MHD stabilization

    International Nuclear Information System (INIS)

    Oishi, T.; Yamazaki, K.; Arimoto, H.; Baba, K.; Hasegawa, M.; Ozeki, H.; Shoji, T.; Mikhailov, M.I.

    2010-11-01

    To search for low-aspect-ratio torus systems, a lot of exotic confinement concepts are proposed so far historically. One of the authors previously proposed the tokamak-helical hybrid called TOKASTAR (Tokamak-Stellarator Hybrid) to improve the magnetic local shear near the bad curvature region. This is characterized by simple and compact coil systems with enough divertor space relevant to reactor designs. Based on this TOKASTAR concept, a toroidal mode number N=2 C (compact) -TOKASTAR machine (R - 35 mm) was constructed. The rotational transform of this compact helical configuration is rather small to confine hot ions, but can be utilized as a compact electron plasma machine for multi-purposes. The C-TOKASTAR has a pair of spherically winding helical coils and a pair of poloidal coils. Existence of magnetic surface and electron confinement property in C-TOKASTAR device were investigated by an electron-emission impedance method. Calculation of the particle orbit also supports that closed magnetic surface is formed in the cases that the ratio between poloidal and helical coil current is appropriate. Another aspect of the research using TOKASTAR configuration includes the evaluation of the effect of the outboard helical field application to tokamak plasmas. It is considered that outboard helical field has roles to assist the initiation of plasma current, to improve MHD stability, and so on. To check these roles, we made TOKASTAR-2 machine (R - 0.12 m, B - 1 kG) with ohmic heating central coil, eight toroidal field coils, a pair of vertical field coils and two outboard helical field coil segments. The electron cyclotron heating plasma start-up and plasma current disruption control experiments might be expected in this machine. Calculation of magnetic field line tracing has revealed that magnetic surface can be formed using additional outer helical coils. (author)

  18. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)

    International Nuclear Information System (INIS)

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-01-01

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties

  19. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  20. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  1. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  2. Finite element analysis of helical flows in human aortic arch: A novel index

    OpenAIRE

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  3. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  4. Examining the Conservation of Kinks in Alpha Helices.

    Directory of Open Access Journals (Sweden)

    Eleanor C Law

    Full Text Available Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures.

  5. Helical Phase Inflation and Monodromy in Supergravity Theory

    Directory of Open Access Journals (Sweden)

    Tianjun Li

    2015-01-01

    Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

  6. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    International Nuclear Information System (INIS)

    Villata, M.; Ferrari, A.

    1994-01-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets

  7. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  8. The evolution of helical cosmic magnetic fields as predicted by MHD closure theory

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Jedamzik, Kartsen [Univ. Montpellier-2. (France). Laboratoire Univers et Particules de Montpellier

    2013-04-15

    We extend our recent derivation of the time evolution equations for the energy content of magnetic fields and turbulent motions for incompressible, homogeneous, and isotropic turbulence to include the case of non-vanishing helicity. These equations are subsequently numerically integrated in order to predict the present day primordial magnetic field strength and correlation length, depending on its initial helicity and magnetic energy density. We find that all prior analytic predictions for helical magnetic fields, such as the epoch when they become maximally helical and their subsequent growth of correlation length L {proportional_to} a{sup 1/3} and decrease of magnetic field strength B {proportional_to} a{sup -1/3} with scale factor a are well confirmed by the simulations. An initially fully helical primordial magnetic field is a factor 4 x 10{sup 4} stronger at the present epoch then its non-helical counterpart when generated during the electroweak epoch.

  9. Intravenous digital subtraction angiography and helical computed tomography in evaluation of living renal donors

    International Nuclear Information System (INIS)

    Watarai, Yoshihiko; Usuki, Tomoaki; Takeuchi, Ichiro; Nonomura, Katsuya; Koyanagi, Tomohiko; Kubo, Kozo; Hirano, Tetsuo; Togashi, Masaki; Ohashi, Nobuo

    2001-01-01

    The present study was carried out to evaluate the accuracy of helical computed tomography (CT) and intravenous digital subtraction angiography (IV-DSA) on anatomical assessment of renal vasculature for living renal donors. Forty-two healthy potential renal donors were prospectively evaluated and 35 subsequently underwent donor nephrectomy after helical CT and IV-DSA evaluation. The vascular and non-vascular findings were compared between the findings on helical CT, IV-DSA and surgery. Ten prehilar branches and five accessory renal arteries were found at nephrectomy. Overall, operative findings agreed with the findings by IV-DSA in 89% and by helical CT in 83%. In delineating accessory arteries, IV-DSA had a sensitivity of 60% and specificity of 97%, whereas helical CT had a sensitivity of 40% and specificity of 100%. In delineating prehilar branches, IV-DSA had a sensitivity of 90% and specificity of 100%, whereas helical CT had a sensitivity of 70% and specificity of 100%. Accessory arteries and prehilar branches that were not detected by helical CT or IV-DSA, were less than 2 mm in diameter and did not require vascular reconstruction. Renal veins were delineated in 63% by IV-DSA, whereas they were clearly imaged by helical CT in all cases, including a case with a circumaortic renal vein. Non-vascular findings were obtained in 64% by helical CT, including two renal tumors. None of these findings were obtained by IV-DSA. Helical CT and IV-DSA provide comparably sufficient information on renal artery vasculature. However, helical CT provides significantly more information on venous and non-vascular findings as a single-imaging modality. (author)

  10. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-11-01

    Full Text Available Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswimmers with the soft and deformable body are appropriate and highly adaptive in a confined environment. Thus, this paper presents a lotus-root-based helical microswimmer, which is fabricated by the fibers of lotus-root coated with magnetic nanoparticles to active under the magnetic fields. The helical microstructures are derived from the intrinsic biological structures of the fibers of the lotus-root. This paper aims to study the swimming characteristic of lotus-root-based microswimmers with deformable helical bodies. In the initial step under the uniform magnetic actuation, the helical microswimmers are bent lightly due to the heterogeneous distribution of the internal stress, and then they undergo a swimming motion which is a spindle-like rotation locomotion. Our experiments report that the microswimmers with soft bodies can locomote faster than those with rigid bodies. Moreover, we also find that the curvature of the shape decreases as a function of actuating field frequency which is related to the deformability of lotus-root fibers.

  11. Dosimetric verification of helical tomotherapy for total scalp irradiation

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Soisson, Emilie; Metcalfe, Peter; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2008-01-01

    Total scalp irradiation is a treatment technique used for a variety of superficial malignancies. Helical tomotherapy is an effective technique used for total scalp irradiation. Recent published work has shown the TomoTherapy planning system to overestimate the superficial dose. In this study, the superficial doses for a helical tomotherapy total scalp irradiation have been measured on an anthropomorphic phantom using radiochromic and radiographic film as well as a new skin dosimeter, the MOSkin. The superficial dose was found to be accurately calculated by the TomoTherapy planning system. This is in contrast to recent reports, probably due to a combination of the smaller dose grid resolution used in planning and this particular treatment primarily consisting of beamlets tangential to the scalp. The superficial dose was found to increase from 33.6 to 41.2 Gy and 36.0 to 42.0 Gy over the first 2 mm depth in the phantom in selected regions of the PTV, measured with radiochromic film. The prescription dose was 40 Gy. The superficial dose was at the prescription dose or higher in some regions due to the bolus effect of the thermoplastic head mask and the head rest used to aid treatment setup. It is suggested that to achieve the prescription dose at the surface (≤2 mm depth) bolus or a custom thermoplastic helmet is used.

  12. Manifestation of Spin Selection Rules on the Quantum Tunneling of Magnetization in a Single Molecule Magnet

    OpenAIRE

    Henderson, J. J.; Koo, C.; Feng, P. L.; del Barco, E.; Hill, S.; Tupitsyn, I. S.; Stamp, P. C. E.; Hendrickson, D. N.

    2009-01-01

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet (SMM) in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at elevated temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three: this is dictated by the C3 symmetry of the molecule, which forbids pure tunneling from the lowest metastable state. Resonances...

  13. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  14. Helical muon beam cooling channel engineering design

    International Nuclear Information System (INIS)

    Johnson, Rolland

    2015-01-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb 3 Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb 3 Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb 3 Sn solenoid as originally planned. Instead, a complementary project was approved by the

  15. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  16. Designing self-standing silicon-copper composite helices as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Polat, B.D.; Keles, O.

    2016-01-01

    In this study, we have fabricated helical thin films to be used as an anode material in lithium ion batteries (LIB). The thin films having various Cu−Si atomic ratios (30–70%, 20–80%, and 10–90%) are prepared by using ion-assisted glancing angle co-deposition. Cu plays a crucial role in holding the electrode together, minimizing overall capacity loss and enabling faster electron transfer thus, improving the electrochemical performances of the electrodes. Increasing the Cu/Si atomic ratio affects the structure of the helices and their alignment. Implementing ion assisted deposition at the beginning of the film deposition helps to improve film adhesion. The Si-20 at.% Cu anode delivers 1885 mAh g"−"1 initially with 98% coulombic efficiency and retains 77% of the capacity after 100 cycles at 100 mA g"−"1. - Highlights: • Highly adherent SiCu helices are deposited by ion assisted glancing angle deposition. • Cu content in the SiCu helices affects the helice' morphology and structure. • SiCu helices with different Cu contents have been used as anodes for LIB. • Helices being like microsprings, improve the mechanical resistance of the anode.

  17. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  18. Monte-Carlo calculation of perpendicular neutral-beam injection in helical systems

    International Nuclear Information System (INIS)

    Hanatani, K.; Wakatani, M.; Uo, K.

    1981-01-01

    The effect of a helical field ripple on the slowing-down process of the fast ions created by neutral injection is investigated numerically. For this purpose, the guiding-centre orbits are followed in a model magnetic field without plasma current, on the assumption that the slowing-down process is to be classical. Optimum injection angles in two types of helical magnetic traps are compared. One is the Heliotron-E configuration with a large rotational transform and deep helical ripple; the other one is the conventional stellarator field with a small rotational transform and shallow helical ripple. In contrast to the stellarator, the heating efficiency as calculated for Heliotron-E does not decrease monotonically when the injection angle is perpendicular to the toroidal direction; a heating efficiency of above 70% was obtained for perpendicular injection into a high-density plasma with negligible charge-exchange loss. The difference in heating efficiency versus injection angle between heliotron and conventional stellarator fields is explained by a difference in drift motion of the helically trapped fast ions. (author)

  19. Helicity-dependent reaction γd → π0d near the η-threshold and its contribution to the E-asymmetry and the GDH sum rule for the deuteron

    International Nuclear Information System (INIS)

    Darwish, Eed M.; Hemmdan, A.; El-Shamy, N.T.

    2015-01-01

    The helicity-dependent coherent π 0 -photoproduction in the reaction γd → π 0 d near the η-threshold is investigated. The calculations are performed within an approach which includes the reaction amplitudes of the impulse approximation (IA), two-step process with intermediate πN- and ηN-rescattering, and the higher order terms in the multiple scattering series for the intermediate ηNN interaction. The contribution of γd → π 0 d to the deuteron spin asymmetry is calculated and its contribution to the Gerasimov–Drell–Hearn (GDH) integral is explicitly evaluated by integration up to a photon energy of 900 MeV. In addition, the helicity E-asymmetry is calculated. The results revealed that the doubly polarized differential cross-sections and the helicity E-asymmetry are sensitive to the interference of rescattering effects, specially at photon energies 600–800 MeV and extreme backward pion angles. The sensitivity of the obtained results for the GDH integral to the choice of NN potential model governing the deuteron wave function is discussed. We find that the deviation among results obtained for the deuteron GDH integral using different deuteron wave functions is quite large. (author)

  20. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides

    Directory of Open Access Journals (Sweden)

    Kaushik Naveen K

    2012-08-01

    Full Text Available Abstract Background A lack of vaccine and rampant drug resistance demands new anti-malarials. Methods In vitro blood stage anti-plasmodial properties of several de novo-designed, chemically synthesized, cationic, amphipathic, helical, antibiotic peptides were examined against Plasmodium falciparum using SYBR Green assay. Mechanistic details of anti-plasmodial action were examined by optical/fluorescence microscopy and FACS analysis. Results Unlike the monomeric decapeptides {(Ac-GXRKXHKXWA-NH2 (X = F,ΔF (Fm, ΔFm IC50 >100 μM}, the lysine-branched,dimeric versions showed far greater potency {IC50 (μM Fd 1.5 , ΔFd 1.39}. The more helical and proteolytically stable ΔFd was studied for mechanistic details. ΔFq, a K-K2 dendrimer of ΔFm and (ΔFm2 a linear dimer of ΔFm showed IC50 (μM of 0.25 and 2.4 respectively. The healthy/infected red cell selectivity indices were >35 (ΔFd, >20 (ΔFm2 and 10 (ΔFq. FITC-ΔFd showed rapid and selective accumulation in parasitized red cells. Overlaying DAPI and FITC florescence suggested that ΔFd binds DNA. Trophozoites and schizonts incubated with ΔFd (2.5 μM egressed anomalously and Band-3 immunostaining revealed them not to be associated with RBC membrane. Prematurely egressed merozoites from peptide-treated cultures were found to be invasion incompetent. Conclusion Good selectivity (>35, good resistance index (1.1 and low cytotoxicity indicate the promise of ΔFd against malaria.

  1. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  2. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  3. Experimental study of selection rules following from the existence of two types of neutrinos

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    1963-05-01

    Interactions of high energy neutrinos with matter have been observed In the course of an experiment done in collaboration with G. Danby, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz and J. Steinberger at the Brookhaven AGS. The neutrinos were produced mainly in the decay π ± → μ ± + υ(υ-bar); the experiment leads to the conclusion that thee neutrinos are very likely different from the ones produced in beta decay reactions. We use the result of this experiment to study the selection rules applicable in the framework of a two neutrino theory. (author) [fr

  4. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  5. 6,6″-Dimethyl-2,2':6',2″-terpyridine revisited: new fluorescent silver(I) helicates with in vitro antiproliferative activity via selective nucleoli targeting.

    Science.gov (United States)

    Fik, Marta A; Gorczyński, Adam; Kubicki, Maciej; Hnatejko, Zbigniew; Fedoruk-Wyszomirska, Agnieszka; Wyszko, Eliza; Giel-Pietraszuk, Małgorzata; Patroniak, Violetta

    2014-10-30

    6,6″-Dimethyl-2,2':6',2″-terpyridine ligand (L) reacts in equimolar ratio with Ag(I) ions what results in formation of dinuclear double helicates, which differ in terms of framework and complexity in accordance to counterions and solvent applied. Obtained complexes were thoroughly studied in terms of their biological activity, with the positive antiproliferative outcome on three human cancer cell lines: human breast cancer (T47D), human cervical carcinoma (HeLa) and human lung cancer (A-549). Performed DNA binding experiments showed that given Ag(I) species specifically interact with DNA double helix via intercalation and were visualized by confocal microscopy to specifically bind to the nuclei. All newly synthesized helical systems exhibit promising antimicrobial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacterial strains. Spectrophotometric properties were described as fulfilment of structural studies of newly presented complexes confirming their helical structure in solution. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  7. Overview of results from the Large Helical Device

    International Nuclear Information System (INIS)

    Yamada, H.

    2010-11-01

    The physical understanding of net-current free helical plasmas has progressed in the Large Helical Device (LHD) since the last Fusion Energy Conference in Geneva, 2008. The experimental results from LHD have promoted detailed physical documentation of features specific to net-current-free 3-D helical plasmas as well as complementary to the tokamak approach. The primary heating source is NBI with a heating power of 23 MW, and ECH with 3.7 MW plays an important role in local heating and power modulation in transport studies. The maximum central density has reached 1.2 x 10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB) at the magnetic field of 2.5 T. The IDB has been maintained for 3 s by refueling with repetitive pellet injection. The plasma with a central ion temperature reaching 5.6 keV exhibits the formation of an Internal Transport Barrier (ITB). The ion thermal diffusivity decreases to the level predicted by neoclassical transport. This ITB is accompanied by spontaneous toroidal rotation and an Impurity Hole which generates an impurity-free core. Impurity Hole is due to a large outward convection of impurities in spite of the negative radial electric field. The magnitude of the Impurity Hole is enhanced in the magnetic configuration with larger helical ripple and for higher Z impurities. Another mechanism to suppress impurity contamination has been identified at the plasma edge with a stochastic magnetic field. A helical system shares common physics issues with tokamaks such as 3-D equilibria, transport in a stochastic magnetic field, plasma response to a Resonant Magnetic Perturbation (RMP), divertor physics, and the role of radial electric field and meso-scale structure. (author)

  8. Nonlinear behavior of multiple-helicity resistive interchange modes near marginally stable states

    International Nuclear Information System (INIS)

    Sugama, Hideo; Nakajima, Noriyoshi; Wakatani, Masahiro.

    1991-05-01

    Nonlinear behavior of resistive interchange modes near marginally stable states is theoretically studied under the multiple-helicity condition. Reduced fluid equations in the sheared slab configuration are used in order to treat a local transport problem. With the use of the invariance property of local reduced fluid model equations under a transformation between the modes with different rational surfaces, weakly nonlinear theories for single-helicity modes by Hamaguchi and Nakajima are extended to the multiple-helicity case and applied to the resistive interchange modes. We derive the nonlinear amplitude equations of the multiple-helicity modes, from which the convective transport in the saturated state is obtained. It is shown how the convective transport is enhanced by nonlinear interaction between modes with different rational surfaces compared with the single-helicity case. We confirm that theoretical results are in good agreement with direct numerical simulations. (author)

  9. Cosmic selection rule for the glueball dark matter relic density

    Science.gov (United States)

    Soni, Amarjit; Xiao, Huangyu; Zhang, Yue

    2017-10-01

    We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.

  10. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  11. Exerting control over the helical chirality in the main chain of sergeants-and-soldiers-type poly(quinoxaline-2,3-diyl)s by changing from random to block copolymerization protocols.

    Science.gov (United States)

    Nagata, Yuuya; Nishikawa, Tsuyoshi; Suginome, Michinori

    2015-04-01

    Chiral random poly(quinoxaline-2,3-diyl) polymers of the sergeants-and-soldiers-type (sergeant units bearing (S)-3-octyloxymethyl groups) adopt an M- or P-helical conformation in the presence of achiral units bearing propoxymethyl or butoxy groups (soldier units), respectively. Unusual bidirectional induction of the helical sense can be observed for a copolymer with butoxy soldier units upon changing the mole fraction of the sergeant units. In the presence of 16-20% of sergeant units, the selective induction of a P-helix was observed, while the selective induction of an M-helix was observed for a mole fraction of sergeant units of more than 60%. This phenomenon could be successfully employed to control the helical chirality of copolymers by applying either random or block copolymerization protocols. Random or block copolymerization of sergeant and soldier monomers in a 18:82 ratio resulted in the formation of 250mers with almost absolute P- or M-helical conformation, respectively (>99% ee). Incorporation of a small amount of coordination sites into the random and block copolymers resulted in chiral macromolecular ligands, which allowed the enantioselective synthesis of both enantiomers in the Pd-catalyzed asymmetric hydrosilylation of β-methylstyrene.

  12. Deceleration of arginine kinase refolding by induced helical structures.

    Science.gov (United States)

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  13. Signs of helicity in solar prominences and related features

    Science.gov (United States)

    Martin, S.

    This review illustrates several ways to identify the chirality (handedness) of solar prominences (filaments) from their structure and the structure of their surrounding magnetic fields in the chromosphere and corona. For prominences, these structural elements include the axial magnetic field direction, orientation of barbs, and direction of the prominence fine structure. The surrounding structures include the pattern of fibrils beneath the prominences and the pattern of coronal loops above the prominences. These ways of identifying chirality are then interpreted in terms of the formal definitions of helicity to yield a consistent set of one-to-one helicity relationships for all features. The helicity of some prominences can also be independently determined during their eruption by their fine structure, apparent crossings in the line-of-sight of different parts of the same prominence, and by large- scale twist of the prominence structure. Unlike observations of prominences (filaments) observed prior to eruption, in some cases evidence of both signs of helicity are found within the same erupting prominence. This indicates the continued application of forces on the prominences during the eruption process or the possible introduction of force(s) not present during earlier stages of their evolution.

  14. Recent helicity source and power supply improvements in CTX

    International Nuclear Information System (INIS)

    Henins, I.; Knox, S.O.; Jarboe, T.R.; Barnes, C.W.

    1985-01-01

    Since the last CT Symposium, two major changes in CTX have been the introduction of pulse forming networks (PFNs) to drive the coaxial electrode helicity source, and the very recent installation of a larger source with electrode diameters about twice of the previous ones. The power supplies used for CTX have ranged from the simple connection of the capacitor bank across the electrode collector plates (slow mode) to the more sophisticated PFNs, described here, which optimize the energy transfer from the capacitor bank to the magnetic fields of the spheromak. Using the PFNs, the formation and sustainment phase to peak toroidal plasma current lasts longer (approx. =0.7 ms) than in the slow mode (approx. =0.05 ms), thus lowering the peak current that must flow through the electrode surfaces. Also, by supplying the source electrodes with both a square pulse current waveform and a quasi-steady source flux, phi/sub g/, one can generate helicity at a constant source lambda/sub g/ parameter. The use of a larger diameter helicity source will improve the energy efficiency of helicity injection and allow higher source current for the same surface current density because of the larger electrode surface area

  15. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    Science.gov (United States)

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  16. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  17. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  18. Neutronics Design of Helical Type DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Sagara, A.; Goto, T.; Yanagi, N.; Masuzaki, S.; Tamura, H.; Miyazawa, J.; Muroga, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: Neutronics design study has been performed in a newly started conceptual design activity for a helical type DEMO reactor FFHR-d1. Features of the FFHR-d1 design are enlargement of the basic configurations of reactor components and extrapolation of plasma parameters from those of the helical type plasma experimental machine Large Helical Device (LHD) to achieve the highest feasibility. From the neutronics point of view, a blanket space of FFHR-d1 is severely limited at the inboard of the torus. This is due to the core plasma position shifting to the inboard side under the confinement condition extrapolated from LHD. The first step of the neutronics investigation using the MCNP code has been performed with a simple torus model simulating thin inboard blanket space. A Flibe+Be/Ferritic steel breeding blanket showed preferable performances for both tritium breeding and shielding, and has been adapted as a reference blanket system for FFHR-d1. The investigations indicate that a combination of a 15 cm thick breeding blanket, 55 cm thick WC+B4C shield, i.e., the blanket space of 70 cm, could suppress the fast neutron flux and nuclear heating in the helical coils to the design targets for the neutron wall loading of 1.5 MW/m{sup 2}. Since the outboard side can provide a large space for a 60 cm thick breeding blanket, a fully-covered tritium breeding ratio (TBR) of 1.31 has been obtained in the simple torus model. The neutronics design study has proceeded to the second step using a 3-D helical reactor model. The most important issue in the 3-D neutronics design is a compatibility with the helical divertor design. To achieve a higher TBR and shielding performance, the core plasma has to be covered by the breeding blanket layers as possible. However, the dimensions of the blanket layers are limited by magnetic field lines connecting an edge of the core plasma and divertor pumping ports. After repeating modification of the blanket configuration, the global TBR of 1

  19. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    International Nuclear Information System (INIS)

    Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng

    2011-01-01

    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  20. Symmetry and optical selection rules in graphene quantum dots

    Science.gov (United States)

    Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic

    2018-03-01

    Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.

  1. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  2. Evaluation of mixing rules for VLE calculations

    International Nuclear Information System (INIS)

    Adachi, Y.; Chung, W.K.; Lu, B.C.Y.; Yu, J.M.

    1983-01-01

    This chapter calculates vapor-liquid equilibrium (VLE) values for a number of binary systems of cryogenic interest, including hydrogen- and helium-containing mixtures, by means of several selected cubic equations of state using different sets of mixing rules. The aim is to test the capabilities of these equations for representing VLE values for the selected mixtures, and to identify and recommend the most suitable equation of state together with its compatible mixing rules for the desired data representation. It is determined that the conventional mixing rules together with the modified van der Waals equation, or the four-parameter equation, are suitable for calculating VLE values for the selected systems at cryogenic conditions. The Peng-Robinson and four-parameter equations may yield slightly better results for helium-containing systems

  3. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  4. Use of helicity methods in evaluating loop integrals: a QCD example

    International Nuclear Information System (INIS)

    Koerner, J.G.; Sieben, P.

    1991-01-01

    We discuss the use of helicity methods in evaluating loop diagrams by analyzing a specific example: the one-loop concentration to e + e - → qanti qg in massless QCD. By using covariant helicity representations for the spinor and vector wave functins we obtain the helicity amplitudes directly from the Feynman loop diagrams by covariant contraction. The necessary loop integrations are considerably simplified since one encounters only scalar loop integrals after contraction. We discuss crossing relations that allow one to obtain the corresponding one-loop helicity amplitudes for the crossed processes as e.g. qanti q → (W, Z, γ * ) + g including the real photon cases. As we treat the spin degrees of freedom in four dimensions and only continue momenta to n dimensions (dimensional reduction scheme) we explicate how our results are related to the usual dimensional regularization results. (orig.)

  5. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  6. Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study

    Science.gov (United States)

    Popov, Alexander P.; Pini, Maria Gloria

    2018-04-01

    We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.

  7. Helical tomotherapy. Experiences of the first 150 patients in Heidelberg

    Energy Technology Data Exchange (ETDEWEB)

    Sterzing, F.; Schubert, K.; Sroka-Perez, G.; Kalz, J.; Debus, J.; Herfarth, K. [Dept. of Radiation Oncology, Univ. of Heidelberg (Germany)

    2008-01-15

    Background and purpose: helical tomotherapy was introduced into clinical routine at the Department of Radiation Oncology, University Hospital of Heidelberg, Germany, in July 2006. This report is intended to describe the experience with the first 150 patients treated with helical tomotherapy. Patient selection, time effort, handling of daily image guidance with megavoltage (MV) CT, and quality of radiation plans shall be assessed. Patients and methods: between July 2006 and May 2007, 150 patients were treated with helical tomotherapy in the University Hospital of Heidelberg. Mean age was 60 years with a minimum of 30 years and a maximum of 85 years. 79 of these patients received radiotherapy as a part of multimodal treatment pre- or postoperatively, 17 patients received treatment as a combined radiochemotherapy. 76% were treated with curative intent. Radiotherapy sites were central nervous system (n = 7), head and neck (n = 28), thoracic (n = 37), abdominal (n = 58) and skeletal system (n = 20). Most common tumor entities were prostate cancer (n = 28), breast cancer (n = 17), gastrointestinal tumors (n = 19), pharyngeal carcinoma (n = 14), lymphoma (n = 13), metastatic disease (bone n = 14, liver n = 6, lung n = 4, lymph node n = 2), sarcoma (n = 8), malignant pleural mesothelioma (n = 5), ovarian cancer treated with whole abdominal irradiation (n = 4), lung cancer (n = 3), skin malignancies (n = 3), chordoma (n = 2), meningioma (n = 2), one ependymoma and one medulloblastoma treated with craniospinal axis irradiation (n = 2), and others (n = 4). Nine patients were treated with single-fraction radiosurgery, nine with image-guided spinal reirradiation, and twelve patients were treated at multiple targets simultaneously. A pretreatment MV-CT scan was performed in 98.2% of the 3,026 fractions applied. After matching with the kilovoltage planning CT, corrections for translations and rotation around longitudinal axis (roll) were done. Results: mean time on table was 24

  8. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  9. Helical CT in acute lower gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Ernst, Olivier; Leroy, Christophe; Sergent, Geraldine; Bulois, Philippe; Saint-Drenant, Sophie; Paris, Jean-Claude

    2003-01-01

    The purpose of this study was to assess the usefulness of helical CT in depicting the location of acute lower gastrointestinal bleeding. A three-phase helical CT of the abdomen was performed in 24 patients referred for acute lower gastrointestinal bleeding. The diagnosis of the bleeding site was established by CT when there was at least one of the following criteria: spontaneous hyperdensity of the peribowel fat; contrast enhancement of the bowel wall; vascular extravasation of the contrast medium; thickening of the bowel wall; polyp or tumor; or vascular dilation. Diverticula alone were not enough to locate the bleeding site. The results of CT were compared with the diagnosis obtained by colonoscopy, enteroscopy, or surgery. A definite diagnosis was made in 19 patients. The bleeding site was located in the small bowel in 5 patients and the colon in 14 patients. The CT correctly located 4 small bowel hemorrhages and 11 colonic hemorrhages. Diagnosis of the primary lesion responsible for the bleeding was made in 10 patients. Our results suggest that helical CT could be a good diagnostic tool in acute lower gastrointestinal bleeding to help the physician to diagnose the bleeding site. (orig.)

  10. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  11. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    Science.gov (United States)

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  12. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  13. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  14. Comparison between helical computed tomography angiography and intraoperative findings

    Directory of Open Access Journals (Sweden)

    Abijit Shetty

    2014-01-01

    Conclusions: Helical CT is important in delineating the arterial, venous, and ureteral anatomy and can show the important incidental findings. Left renal donors and males have more variations in their renal anatomy. Technically challenging laparoscopic nephrectomy on the multiple-vessel-side donor is possible with the aid of helical CT. The importance of the CT in evaluating donor renal anatomy for a technically challenging laparoscopic donor nephrectomy is commendable.

  15. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  16. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  17. Generation of helical gears with new surfaces topology by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.; Hsiao, C. L.; Handschuh, Robert F.

    1993-01-01

    Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment that leads to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding of the helical gears with the new topology are proposed. A TCA (tooth contact analysis) program for simulation of meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

  18. The calculation of the quark distribution amplitudes of decuplet baryons by means of QCD sum rules

    International Nuclear Information System (INIS)

    Bonekamp, J.

    1994-11-01

    Using the QCD sum rule technique, we derive the quark distribution amplitudes of the decuplet memebers Δ(1232), Σ * (1385), Ξ * (1530) and Ω(1672). Generalizing the treatment of the Bethe-Salpeter amplitude, we can distinguish spin- and orbital- angular momentum parts of the quark distributions and establish separate sum rules for the contributions. Projecting out the angular momentum 1/2 contributions, we obtain sum rules which are saturated by the lowest resonance in the given iso spin channel, thus resolving deficiencies of the standard approach. We find that for helicity 1/2 the spin part of the quark distributions is asymmetric. Also the orbital angular momentum contributions are extremely asymmetric and tend to decrease the asymmetry of the spin part. As a result of SU(3) symmetry breaking, configuration mixing occurs and the decuplet baryons Σ * and Ξ * receive octet contributions. The antisymmetric part of these octet contributions is calculated. (orig.)

  19. Two exciton states in discrete and continuum alpha-helical proteins

    International Nuclear Information System (INIS)

    Latha, M.M.; Merlin, G.

    2012-01-01

    The dynamics of alpha-helical proteins is described by proposing a model Hamiltonian representing two exciton bound states. The dynamics is studied by constructing the equations of motion using a two exciton eigen-function in the discrete level. A numerical analysis shows the existence of two excitons in alpha-helical proteins and its propagation as solitons along the hydrogen bonding spines. The lattice model is also treated in the continuum limit which is a valid approximation in the low temperature, long wavelength limit. The resulting equation is studied using the multiple scale perturbation analysis which also shows the transfer of two exciton energy through alpha-helical proteins in the form of solitons with no change in velocity and amplitude. -- Highlights: ► The dynamics of alpha-helical proteins with two exciton states is studied. ► The dynamics is studied both in the discrete and continuum levels. ► The resulting equations are solved numerically and analytically. ► The solution supports the propagation of the energy in the form of solitons.

  20. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  1. What Helicity Can Tell Us about Solar Magnetic Fields Alexei A ...

    Indian Academy of Sciences (India)

    Concept of magnetic/current helicity was introduced to solar physics about 15 ... represented by a thin flux tube model with flux , one can show that magnetic helicity,. Hm = (2π). −1 2 ... For example, spiral pattern of filaments forming sunspot ...

  2. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules

    International Nuclear Information System (INIS)

    Aebersold, M.

    2008-01-01

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  3. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    Science.gov (United States)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  4. The management of helical rim keloids with excision, split thickness skin graft and intralesional triamcinolone acetonide

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdul Rasheed

    2014-01-01

    Full Text Available Keloids of the helical rim are disfiguring. A cosmetically acceptable reconstruction is difficult especially in moderate to large sized lesions because the helical rim is a 3-dimensional structure with curved and thin cartilage. We report our experience in the management of moderate (4-10 cm and large (>10 cm helical rim keloids in five patients. Six helical rim keloids were reconstructed. There were four moderate (4-10 cm and two large (>10 cm helical rim keloids. Four were on the right helix and two on the left helix. One patient had bilateral helical rim keloids. The follow-up period ranged from 6 months to 4 years. No secondary surgical revision was required to improve the contour of the reconstructed helical rim. The aesthetic results were satisfactory in all the patients.

  5. Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    1996-01-01

    A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)

  6. Self-Interest and the Design of Rules.

    Science.gov (United States)

    Singh, Manvir; Wrangham, Richard; Glowacki, Luke

    2017-12-01

    Rules regulating social behavior raise challenging questions about cultural evolution in part because they frequently confer group-level benefits. Current multilevel selection theories contend that between-group processes interact with within-group processes to produce norms and institutions, but within-group processes have remained underspecified, leading to a recent emphasis on cultural group selection as the primary driver of cultural design. Here we present the self-interested enforcement (SIE) hypothesis, which proposes that the design of rules importantly reflects the relative enforcement capacities of competing parties. We show that, in addition to explaining patterns in cultural change and stability, SIE can account for the emergence of much group-functional culture. We outline how this process can stifle or accelerate cultural group selection, depending on various social conditions. Self-interested enforcement has important bearings on the emergence, stability, and change of rules.

  7. Point contacts and localization in generic helical liquids

    Science.gov (United States)

    Orth, Christoph P.; Strübi, Grégory; Schmidt, Thomas L.

    2013-10-01

    We consider two helical liquids on opposite edges of a two-dimensional topological insulator, which are connected by one or several local tunnel junctions. In the presence of spatially inhomogeneous Rashba spin-orbit coupling, the spin of the helical edge states is momentum dependent, and this spin texture can be different on opposite edges. We demonstrate that this has a strong impact on the electron transport between the edges. In particular, in the case of many random tunnel contacts, the localization length depends strongly on the spin textures of the edge states.

  8. A generalization of Hamilton's rule--love others how much?

    Science.gov (United States)

    Alger, Ingela; Weibull, Jörgen W

    2012-04-21

    According to Hamilton's (1964a, b) rule, a costly action will be undertaken if its fitness cost to the actor falls short of the discounted benefit to the recipient, where the discount factor is Wright's index of relatedness between the two. We propose a generalization of this rule, and show that if evolution operates at the level of behavior rules, rather than directly at the level of actions, evolution will select behavior rules that induce a degree of cooperation that may differ from that predicted by Hamilton's rule as applied to actions. In social dilemmas there will be less (more) cooperation than under Hamilton's rule if the actions are strategic substitutes (complements). Our approach is based on natural selection, defined in terms of personal (direct) fitness, and applies to a wide range of pairwise interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  10. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  11. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  12. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  13. Robust integer and fractional helical modes in the quantum Hall effect

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  14. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  15. A semi-analytical study on helical springs made of shape memory polymer

    International Nuclear Information System (INIS)

    Baghani, M; Naghdabadi, R; Arghavani, J

    2012-01-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load–deflection response. Some case studies are presented to show the validity of the presented analytical method. (paper)

  16. Extracting 3D parametric curves from 2D images of helical objects.

    OpenAIRE

    Willcocks, Chris; Jackson, Philip T.G.; Nelson, Carl J.; Obara, Boguslaw

    2016-01-01

    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and...

  17. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J; Bernard, D; Liao, Y; Templeton, A; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcs with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.

  18. Heat transfer from two-side heated helical channels

    International Nuclear Information System (INIS)

    Shimonis, V.; Ragaishis, V.; Poshkas, P.

    1995-01-01

    Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs

  19. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  20. Total scalp irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Orton, Nigel; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-01-01

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  1. Effect of loss cone on confinement in toroidal helical device

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.

    1988-12-01

    Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)

  2. Efficiency in Rule- vs. Plan-Based Movements Is Modulated by Action-Mode.

    Science.gov (United States)

    Scheib, Jean P P; Stoll, Sarah; Thürmer, J Lukas; Randerath, Jennifer

    2018-01-01

    The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous

  3. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    International Nuclear Information System (INIS)

    Parker, William; Brodeur, Marylene; Roberge, David; Freeman, Carolyn

    2010-01-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as part of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.

  4. Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods

    KAUST Repository

    Prior, Christopher

    2014-03-11

    © 2014, Springer Science+Business Media Dordrecht. We consider a geometrically accurate model for a helically wound rope constructed from two intertwined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various relevant physical scenarios. This discussion also extends to the boundary and how this composite system can be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients of this effective rod.

  5. Extracting 3D Parametric Curves from 2D Images of Helical Objects.

    Science.gov (United States)

    Willcocks, Chris G; Jackson, Philip T G; Nelson, Carl J; Obara, Boguslaw

    2017-09-01

    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively.

  6. Comparative analysis of business rules and business process modeling languages

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2013-03-01

    Full Text Available During developing an information system is important to create clear models and choose suitable modeling languages. The article analyzes the SRML, SBVR, PRR, SWRL, OCL rules specifying language and UML, DFD, CPN, EPC and IDEF3 BPMN business process modeling language. The article presents business rules and business process modeling languages theoretical comparison. The article according to selected modeling aspects of the comparison between different business process modeling languages ​​and business rules representation languages sets. Also, it is selected the best fit of language set for three layer framework for business rule based software modeling.

  7. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  8. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  9. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  10. Seismic analysis of a helical coil type heat exchanger

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Baba, O.; Yatabe, H.

    1984-01-01

    The intermediate heat exchanger (IHX) which forms the reactor coolant pressure boundary is one of the most important components of the Multi-purpose Experimental Very High Temperature Gas-cooled Reactor (ex. VHTR) under development at Japan Atomic Energy Research Institute. This paper presents the results of the finite element modeling, eigenvalue analysis and dynamic response analysis of the IHX. For the modeling, the structure of the IHX was separated into a helical tube bundle, inner and outer vessels, and a center pipe. The eigenvalue analysis was made for each structure with a detailed three-dimensional finite element model. Then the simplified model of the whole structure of the IHX was constructed using the result of the eigenvalue analysis. A dynamic response analysis was made for the simplified model with and without stoppers of the helical tube bundle supports and the center pipe. The effect of stoppers on the behavior of the center pipe, the helical tube, and the connecting tube is discussed. (author)

  11. Geometric scalings for the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  12. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis 91460 (France)

    2016-03-15

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  13. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.

    Science.gov (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A

    2012-08-15

    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  14. The Cu2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR

    Science.gov (United States)

    Ghosh, Shreya; Lawless, Matthew J.; Rule, Gordon S.; Saxena, Sunil

    2018-01-01

    Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.

  15. Finite-temperature effects in helical quantum turbulence

    Science.gov (United States)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  16. Rules and routines in organizations and the management of safety rules

    Energy Technology Data Exchange (ETDEWEB)

    Weichbrodt, J. Ch.

    2013-07-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  17. Rules and routines in organizations and the management of safety rules

    International Nuclear Information System (INIS)

    Weichbrodt, J. Ch.

    2013-01-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  18. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  19. Adenocarcinoma of the pancreatic head: preoperative helical CT. Criteria of resectability

    International Nuclear Information System (INIS)

    Kozima, Shigeru; Szelagowski, Carlos; Tisserand, Guy L.; Ocampo, Carlos; Zandalazini, Hugo; Silva, Walter; Oria, Alejandro; Vidovic, Gustavo; Varas, Pablo

    2001-01-01

    Objective: The purpose of this study is to determine the accuracy of biphasic helical CT scanning in predicting resectability of adenocarcinoma of the head of the pancreas by staying tumor involvement of the portal and superior mesenteric veins. Material and methods: 46 patients with proven adenocarcinoma of the head of the pancreas who underwent curative or palliative surgery were studied with preoperative biphasic helical CT scanning. Tumor involvement of the portal and mesenteric veins was graduated on a 1-3 scale based on circumferential contiguity of the tumor vessel. Grade 1: without contact; grade 2: tumor involvement of less than 50% of the vessel; grade 3: tumor involvement of more than 50%. Results: The total number of vessels evaluated was 92. In our series the preoperative biphasic helical CT was accurate in 77% for resectability and unresectability. Conclusion: Our experience of staging in 3 grades with biphasic helical CT, vessel involvement the portal and superior mesenteric veins of adenocarcinoma of the head of the pancreas is highly specific for unresectable tumor in patients who were graded 2 and 3. (author)

  20. Helical polyurethane-attapulgite nanocomposite: Preparation, characterization and study of optical activity

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Sun Yanqing; Fan Kai; Guo Xingxing; Jiang Xiaolei

    2009-01-01

    Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) composite was prepared after the surface modification of attapulgite (ATT). BM-ATT was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HTEM) and vibrational circular dichroism (VCD) spectroscopy. FT-IR and XRD analyses indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. BM-ATT exhibits the rod-like structure by SEM, TEM, and HTEM photographs. BM-ATT displays obvious Cotton effect for some absorbance in VCD spectrum, and its optical activity results from the singlehanded conformation of helical polyurethane. - Graphical Abstract: Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) nanocomposite was prepared after surface modification of attapulgite (ATT). This rod-like composite is coated by the optically active polyurethane shell on the surfaces.

  1. Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1996-08-01

    A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).

  2. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    . Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission......Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner...

  3. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  4. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  5. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  6. Moreau's hydrodynamic helicity and the life of vortex knots and links

    Science.gov (United States)

    Irvine, William T. M.

    2018-03-01

    This contribution to an issue of Comptes rendus Mécanique, commemorating the scientific work of Jean-Jacques Moreau (1923-2014), is intended to give a brief overview of recent developments in the study of helicity dynamics in real fluids and an outlook on the growing legacy of Moreau's work. Moreau's discovery of the conservation of hydrodynamic helicity, presented in an article in the Comptes rendus de l'Académie des sciences in 1961, was not recognized until long after it was published. This seminal contribution is gaining a new life now that modern developments allow the study of helicity and topology in fields and is having a growing impact on diverse areas of physics.

  7. Investigation of Accelerated Partial Breast Patient Alignment and Treatment With Helical Tomotherapy Unit

    International Nuclear Information System (INIS)

    Langen, Katja M.; Buchholz, Daniel J.; Burch, Doug R. C.; Burkavage, Rob C.; Limaye, Arti U.; Meeks, Sanford L.; Kupelian, Patrick A.; Ruchala, Kenneth J.; Haimerl, Jason; Henderson, Doug; Olivera, Gustavo H.

    2008-01-01

    Purpose: To determine the precision of megavoltage computed tomography (MVCT)-based alignment of the seroma cavity for patients undergoing partial breast irradiation; and to determine whether accelerated partial breast irradiation (APBI) plans can be generated for TomoTherapy deliveries that meet the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group (RTOG) 0413 protocol guidelines for target coverage and normal tissue dose limitations. Methods and Materials: We obtained 50 MVCT images from 10 patients. An interuser study was designed to assess the alignment precision. Using a standard helical and a fixed beam prototype ('topotherapy') optimizer, two APBI plans for each patient were developed. Results: The precision of the MVCT-based seroma cavity alignment was better than 2 mm if averaged over the patient population. Both treatment techniques could be used to generate acceptable APBI plans for patients that fulfilled the recommended NSABP B-39/RTOG-0413 selection criteria. For plans of comparable treatment time, the conformation of the prescription dose to the target was greater for helical deliveries, while the ipsilateral lung dose was significantly reduced for the topotherapy plans. Conclusions: The inherent volumetric imaging capabilities of a TomoTherapy Hi-Art unit allow for alignment of patients undergoing partial breast irradiation that is determined from the visibility of the seroma cavity on the MVCT image. The precision of the MVCT-based alignment was better than 2 mm (± standard deviation) when averaged over the patient population. Using the NSABP B-39/RTOG-0413 guidelines, acceptable APBI treatment plans can be generated using helical- or topotherapy-based delivery techniques

  8. Helically symmetric experiment, (HSX) goals, design and status

    International Nuclear Information System (INIS)

    Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.

    1995-01-01

    HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab

  9. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  10. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  11. Experimental investigation of transverse mixing in porous media under helical flow conditions

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2016-01-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume...

  12. Hamiltonian theory of vacuum helical torus lines of magnetic force

    International Nuclear Information System (INIS)

    Gnudi, Giovanni; Hatori, Tadatsugu

    1994-01-01

    For making plasma into equilibrium state, the lines of magnetic force must have magnetic surfaces. However in a helical system, space is divided into the region having magnetic surface structure and the region that does not have it. Accordingly, it is an important basic research for the plasma confinement in a helical system to examine where is the boundary of both regions and how is the large area structure of the lines of magnetic force in the boundary region. The lines of magnetic force can be treated as a Hamilton mechanics system, and it has been proved that the Hamiltonian for the lines of magnetic force can be expressed by a set of canonical variables and the function of time. In this research, the Hamiltonian that describes the lines of magnetic force of helical system torus coordination in vacuum was successfully determined concretely. Next, the development of new linear symplectic integration method was carried out. The important supports for the theory of determining Hamiltonian are Lie transformation and paraxial expansion. The procedure is explained. In Appendix, Lie transformation, Hamiltonian for the lines of magnetic force, magnetic potential, Taylor expansion of the potential, cylindrical limit approximation, helical toroidal potential and integrable model are described. (K.I.)

  13. Topology and transport in the edge region of RFX-mod helical regimes

    International Nuclear Information System (INIS)

    Scarin, P.; Vianello, N.; Agostini, M.; Spizzo, G.; Spolaore, M.; Zuin, M.; Cappello, S.; Carraro, L.; Cavazzana, R.; De Masi, G.; Martines, E.; Moresco, M.; Munaretto, S.; Puiatti, M. E.; Valisa, M.

    2011-01-01

    New edge diagnostics and detailed analysis of magnetic topology have significantly improved the comprehension of the processes developing at the boundary of a reversed-field pinch (RFP) plasma in RFX-mod (a = 0.46 m, R = 2 m). An upper critical density n C ∼ 0.4 n G (n G Greenwald density) is found to limit the operational space for the improved quasi-single helical (QSH) regime: magnetic topology reconstructions and diagnostic observations suggest that this limit is due to a helical plasma-wall interaction which determines toroidally and poloidally localized edge density accumulation and cooling. The experimental evidence is provided by a variety of diagnostics: the magnetic boundary as reconstructed from equilibrium codes reveals a helical deformation, which is well correlated with the modulation of edge pressure profile as reconstructed from the thermal helium beam diagnostic. Correlations with the helical deformation are also observed on the space- and time-resolved patterns of the floating potential measured at the wall, and with the edge plasma flow, obtained from different diagnostics. The relevance of these findings is that understanding the mechanisms that limit the operational space of QSH is decisive in achieving the goal of high-density stationary helical RFP equilibrium.

  14. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  15. Pulmonary artery aneurysm in Bechcet's disease: helical computed tomography study

    International Nuclear Information System (INIS)

    Munoz, J.; Caballero, P.; Olivera, M. J.; Cajal, M. L.; Caniego, J. L.

    2000-01-01

    Behcet's disease is a vasculitis of unknown etiology that affects arteries and veins of different sizes and can be associated with pulmonary artery aneurysms. We report the case of a patient with Behcet's disease and a pulmonary artery aneurysm who was studied by means of plain chest X ray, helical computed tomography and pulmonary arteriography. Helical computed tomography is a reliable technique for the diagnosis and follow-up of these patients. (Author) 9 refs

  16. Modeling and Swimming Property Characterizations of Scaled-Up Helical Microswimmers.

    OpenAIRE

    Xu , Tiantian; Hwang , Gilgueng; Andreff , Nicolas; Régnier , Stéphane

    2014-01-01

    International audience; Micro- and nanorobots capable of controlled propulsion at low Reynolds number are foreseen to change many aspects of medicine by enabling targeted diagnosis and therapy, and minimally invasive surgery. Several kinds of helical swimmers with different heads actuated by a rotating magnetic field have been proposed in prior works. Beyond these proofs of concepts, this paper aims to obtain an optimized design of the helical swimmers adapted to low Reynolds numbers. For thi...

  17. Unsteady Helical Flows of a Size-Dependent Couple-Stress Fluid

    OpenAIRE

    Rubbab, Qammar; Mirza, Itrat Abbas; Siddique, Imran; Irshad, Saadia

    2017-01-01

    The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral transform method, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force...

  18. Effect of the helically-trapped energetic-ion-driven resistive interchange modes on energetic ion confinement in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.

  19. Helical axial injection concept for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical.

  20. Helical axial injection concept for cyclotrons

    International Nuclear Information System (INIS)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical

  1. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  2. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  3. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    Science.gov (United States)

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Helical CT of congenital ossicular anomalies

    International Nuclear Information System (INIS)

    Osada, Hisato; Machida, Kikuo; Honda, Norinari

    2001-01-01

    Since January 1996 to December 2000, 26 cases of congenital ossicular anomaly could be diagnosed with helical CT. All cases were unilateral. In 8 patients with malformation of the external ear, CT showed malleoincudal fixation (n=5), malleoincudal fixation and deformed incuts long process (n=1), deformed incus long process (n=1), and partial fusion of malleus neck and incus long process (n=1). In 18 patients with normal external ear, CT showed defect of the incus long process (n=5), defect of both the incus long process and stapes superstructure (n=8, 2 patients with congenital cholesteatoma, 1 with hypoplastic oval window), defect of the stapes superstructure (n=2, 1 patient with oval window absence), defect of the malleus manubrium (n=1), ossification of the stampede's tendon (n=1), and monopod stapes (n=1). Helical CT can evaluate the auditory ossicular chain in detail and is useful for diagnosing congenital ossicular anomaly. (author)

  5. Neutrino helicity reversal and fundamental symmetries

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2014-01-01

    A rather elusive helicity reversal occurs in a gedanken experiment in which a massive left-handed Dirac neutrino, traveling at a velocity u < c, is overtaken on a highway by a speeding vehicle (traveling at velocity v with u < v < c). Namely, after passing the neutrino, looking back, one would see a right-handed neutrino (which has never been observed in nature). The Lorentz-invariant mass of the right-handed neutrino is still the same as before the passing. The gedanken experiment thus implies the existence of right-handed, light neutrinos, which are not completely sterile. Furthermore, overtaking a bunch of massive right-handed Dirac neutrinos leads to gradual de-sterilization. We discuss the helicity reversal and the concomitant sterilization and de-sterilization mechanisms by way of an illustrative example calculation, with a special emphasis on massive Dirac and Majorana neutrinos. We contrast the formalism with a modified Dirac neutrino described by a Dirac equation with a pseudoscalar mass term proportional to the fifth current. (paper)

  6. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.

    Science.gov (United States)

    Sanchez-Yamagishi, Javier D; Luo, Jason Y; Young, Andrea F; Hunt, Benjamin M; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  7. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  8. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    International Nuclear Information System (INIS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-01-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  9. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    Science.gov (United States)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  10. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    Science.gov (United States)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  11. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyuan [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Shumin, E-mail: zhaosm@mail.xjtu.edu.cn [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Xia, Minggang [Department of Optical Information Science and Technology, School of Science, Xi' an Jiaotong University, 710049 (China); Laboratory of Nanostructure and Physics Properties, School of Science, Xi' an Jiaotong University, 710049 (China); He, Siyu [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Yang, Qifan [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China); Yan, Yuming [Department of Electrical Engineering and Automation, School of Electrical Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Hanqiao [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2017-02-19

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  12. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  13. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  14. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  15. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  16. Diagnostic value of triphasic incremental helical CT in early and progressive gastric carcinoma

    International Nuclear Information System (INIS)

    Gao Jianbo; Yan Xuehua; Li Mengtai; Guo Hua; Chen Xuejun; Guan Sheng; Zhang Xiefu; Li Shuxin; Yang Xiaopeng

    2001-01-01

    Objective: To investigate helical CT enhancement characteristics of gastric carcinoma, and the diagnostic value and preoperative staging of gastric carcinoma with triphasic incremental helical CT of the stomach with water-filling method. Methods: Both double-contrast barium examination and triphasic incremental helical CT of the stomach with water-filling method were performed in 46 patients with gastric carcinoma. Results: (1) Among these patients, normal gastric wall exhibited one layered structure in 18 patients, two or three layered structure in 28 patients in the arterial and portal venous phase. (2) Two cases of early stomach cancer showed marked enhancement in the arterial and portal venous phase and obvious attenuation of enhancement in the equilibrium phase. On the contrary, 32 of the 44 advanced gastric carcinoma was showed marked enhancement in the venous phase compared with the arterial phase ( t = 4.226, P < 0.05). (3) The total accuracy of triphasic incremental helical CT in determining TNM-staging was 81.0%. Conclusion: Different types of gastric carcinoma have different enhancement features. Triphases incremental helical CT is more accurate than conventional CT in the preoperative staging of gastric carcinoma

  17. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...

  18. Cellular automata with voting rule

    International Nuclear Information System (INIS)

    Makowiec, D.

    1996-01-01

    The chosen local interaction - the voting (majority) rule applied to the square lattice is known to cause the non ergodic cellular automata behaviour. Presented computer simulation results verify two cases of non ergodicity. The first one is implicated by the noise introduced to the local interactions and the second one follows properties of the initial lattice configuration selected at random. For the simplified voting rule - non symmetric voting, the critical behaviour has been explained rigorously. (author)

  19. Triple helical DNA in a duplex context and base pair opening

    Science.gov (United States)

    Esguerra, Mauricio; Nilsson, Lennart; Villa, Alessandra

    2014-01-01

    It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region. PMID:25228466

  20. The INCOTERMS rules and their importance

    Directory of Open Access Journals (Sweden)

    Anca LAZĂR

    2011-06-01

    Full Text Available The content INCOTERMS are a set of rules that determine the rights and obligations of the international sales contract, selecting a rule of interpretation of commercial terms INCOTERMS, progress is the result of negotiation between the parties and expresses the ratio of these economic forces. In relation to the obligations of the parties to an international sales contract are several different types of contracts covered by the clause. To define the main rules INCOTERMS was considered as a starting point delivery of goods, establishment of the seller and the buyer2, the rules concerning the obligations of each party that are grouped into ten items with identical titles for all the rules. Due to significant developments in international trade, for making available to retailers in the interpretation of the rules commonly used trade terms in international trade, the International Chamber of Commerce in Paris draw a set of delivery conditions for their interpretation in international sales, rules that were in international trade practice some habits, but who were not of equal significance to traders in different countries.

  1. Chiral charge erasure via thermal fluctuations of magnetic helicity

    International Nuclear Information System (INIS)

    Long, Andrew J.; Sabancilar, Eray

    2016-01-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  2. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  3. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  4. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  5. An electromagnetic helical undulator for polarized X-rays

    International Nuclear Information System (INIS)

    Gluskin, E.; Vinokurov, N.; Tcheskidov, V.; Medvedko, A.; Evtushenko, Y.; Kolomogorov, V.; Vobly, P.; Antokhin, E.; Ivanov, P.; Vasserman, I. B.; Trakhtenberg, E. M.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-01-01

    Linearly and circularly polarized x-rays have been very successfully applied to the study of the properties of materials. Many applications can benefit from the availability of energy-turnable, high-brilliance x-ray beams with adjustable polarization properties. A helical undulator that can generate beams of variable (linear to circular) polarization has been designed and built by the Budker Institute of Nuclear Physics and the Advanced Photon Source. The first harmonic of this 12.8-cm-period device will cover the energy range from 0.4 keV to 3.5 keV. An important feature of this fully electromagnetic device is that it will allow one to generate 100% horizontally (K x =O)or vertically (K y =O) plane-polarized radiation, which will enable many experiments otherwise not technically feasible. With symmetric deflection parameters (K x =K y ), the on-axis radiation will be circularly polarized, with a user-selectable handedness. The polarization can be changed at rates up to 10 Hz

  6. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  7. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    OpenAIRE

    Petrie, G. J. D.

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex tha...

  8. Clinical application of the helical CT in patients who are unable to hold their breath

    International Nuclear Information System (INIS)

    Toyama, Yoshihiro; Kimura, Naruhide; Ohkawa, Motoomi; Tanabe, Masatada.

    1997-01-01

    We performed helical CT in eighteen patients who were unable to hold their breath for 10 chest and 8 abdominal regions. Although there were respiratory artifacts in three cases, we could obtain the useful clinical information in all cases. In our experimental examinations, CT value of the phantom by helical scan was lower than that by conventional scan without movement of the phantom. With movement of it, the CT value was further lowered by either scan method, but the lowered rate was smaller by helical scan as the movement becomes faster. We consider that helical CT can be applied to patients who were unable to hold their breath. (author)

  9. Adaptive radiotherapy using helical tomotherapy system

    International Nuclear Information System (INIS)

    Jeswani, Sam; Ruchala, Kenneth; Olivera, Gustavo; Mackie, T.R.

    2008-01-01

    As commonly known in the field, adaptive radiation therapy (ART) is the use of feedback to modify a radiotherapy treatment. There are numerous ways in which this feedback can be received and used, and this presentation will discuss some of the implementations of ART being investigated with a helical TomoTherapy system

  10. Comparison of AMI-25 enhanced MRI and helical dynamic CT in the detection of hepatic lesions

    International Nuclear Information System (INIS)

    Saitou, Kazuhiro; Matsuda, Hiromichi; Fukushima, Hiroaki; Kanzaki, Hiroshi; Hirose, Takashi; Karizaki, Dai; Abe, Kimihiko; Amino, Saburou

    1994-01-01

    We performed AMI-25 enhanced MRI and helical dynamic CT in 12 cases of hepatic lesions. Nine of these were hepatocellular carcinomas. Two cases were metastatic liver tumors (the primary lesion was gastric in one and the other was gallbladder cancer). One case was suspected to be adenomatous hyperplasia. Thirty-two lesions were detected in T2-weighted SE images before AMI-25 administration, while 46 lesions were detected in AMI-25 enhanced MRI images. In particular, AMI-25 enhanced MRI was superior to plain MRI in lesions less than 10 mm in size. A total of 48 lesions were detected in helical dynamic CT. Although AMI-25 enhanced MRI almost equaled helical dynamic CT in the detection of liver tumors, helical dynamic CT was slightly superior to AMI-25 enhanced MRI in the detection of subphrenic lesions. It was possible to know the hemodynamics in each hepatic lesion by helical dynamic CT. AMI-25 enhanced MRI was useful to know the inclusion of reticuloendothelial system, and that yielded different diagnoses in adenomatous hyperplasia and well differentiated hepatocellular carcinoma. Helical dynamic CT was useful for qualitative diagnosis. Both AMI-25 enhanced MRI and helical dynamic CT contributed to the detection of liver tumor and qualitative diagnosis. (author)

  11. Propulsion Characteristics and Visual Servo Control of Scaled-up Helical Microswimmers

    OpenAIRE

    Xu, Tiantian

    2014-01-01

    Helical microswimmers capable of propulsion at low Reynolds numbers have been proposed for numerous applications, ranging from in vitro tasks on labon-a-chip (e.g. transporting and sorting micro objects; mechanical components micro assembly...) to in vivo applications for minimally invasive medicine (e.g. targeted drug delivery; brachytherapy; hyperthermia...), due to their micro sizes and accessibility to tiny and clustered environments. Several kinds of magnetically actuated helical swimmer...

  12. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  13. Optimization of a stellarator design including modulation of the helical winding geometry

    International Nuclear Information System (INIS)

    Sharp, L.E.; Petersen, L.F.; Blamey, J.W.

    1979-06-01

    The optimization of the helical winding geometry of the next generation of high performance stellarators is of critical importance as the current in the helical conductors must be kept to a minimum to reduce the very large electromechanical forces on the conductors. Using a modified version of the Culham computer code MAGBAT, steps towards optimization are described

  14. The evaluation study of helical CT for hepatocellular carcinoma with microwave coagulation treatment

    International Nuclear Information System (INIS)

    Zheng Keguo; Xu Dasheng; Xie Xiaoyan; Peng Zhenpeng

    2002-01-01

    Objective: To study the helical CT signs of the hepatocellular carcinoma (HCC) after percutaneous microwave coagulation therapy (PMCT) and to evaluate the correlation between the helical CT signs and the therapeutic effect of HCC. Methods: The helical CT signs were analyzed in 22 cases with 26 lesions of the hepatocellular carcinoma that were treated with PMCT under ultrasonic guidance. Results: In 21 lesions, no enhancement was detected in the lesion border or inside the lesion at hepatic arterial phase (HAP) and portal venous phase (PVP). In 7 lesions, the slight or marked patchy enhancement was revealed in the surrounding liver of the lesions in HAP. In 5 lesions, nodular enhancement was found in the lesion border or inside the lesion in HAP. Conclusion: The dual-phase helical CT might be accurate in judging the therapeutic effect of HCC after PMCT. If no enhancement was showed in the lesions in the dual-phase helical CT, it indicated that no tumor survived. If slight or marked patchy pattern enhancement was revealed in the surrounding liver of the lesions in HAP, it was a normal reaction after PMCT. If nodular enhancement was found in the lesion border or inside the lesion in HAP, it indicated that the tumor partially survived

  15. Beam-helicity and beam-charge asymmetries associated with deeply virtual Compton scattering on the unpolarised proton

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2012-03-15

    Beam-helicity and beam-charge asymmetries in the hard exclusive leptoproduction of real photons from an unpolarised hydrogen target by a 27.6 GeV lepton beam are extracted from the HERMES data set of 2006-2007 using a missing-mass event selection technique. The asymmetry amplitudes extracted from this data set are more precise than those extracted from the earlier data set of 1996-2005 previously analysed in the same manner by HERMES. The results from the two data sets are compatible with each other. Results from these combined data sets are extracted and constitute the most precise asymmetry amplitude measurements made in the HERMES kinematic region using a missing-mass event selection technique. (orig.)

  16. Magnetic field-induced modification of selection rules for Rb D 2 line monitored by selective reflection from a vapor nanocell

    Science.gov (United States)

    Klinger, Emmanuel; Sargsyan, Armen; Tonoyan, Ara; Hakhumyan, Grant; Papoyan, Aram; Leroy, Claude; Sarkisyan, David

    2017-08-01

    Magnetic field-induced giant modification of the probabilities of five transitions of 5S1 / 2,Fg = 2 → 5P3 / 2,Fe = 4 of 85Rb and three transitions of 5S1 / 2,Fg = 1 → 5P3 / 2,Fe = 3 of 87Rb forbidden by selection rules for zero magnetic field has been observed experimentally and described theoretically for the first time. For the case of excitation with circularly-polarized (σ+) laser radiation, the probability of Fg = 2,mF = - 2 → Fe = 4,mF = - 1 transition becomes the largest among the seventeen transitions of 85Rb Fg = 2 → Fe = 1,2,3,4 group, and the probability of Fg = 1, mF = - 1 → Fe = 3,mF = 0 transition becomes the largest among the nine transitions of 87Rb Fg = 1 → Fe = 0,1,2,3 group, in a wide range of magnetic field 200-1000 G. Complete frequency separation of individual Zeeman components was obtained by implementation of derivative selective reflection technique with a 300 nm-thick nanocell filled with Rb, allowing formation of narrow optical resonances. Possible applications are addressed. The theoretical model is well consistent with the experimental results.

  17. Partial volume and aliasing artefacts in helical cone-beam CT

    International Nuclear Information System (INIS)

    Zou Yu; Sidky, Emil Y; Pan, Xiaochuan

    2004-01-01

    A generalization of the quasi-exact algorithms of Kudo et al (2000 IEEE Trans. Med. Imaging 19 902-21) is developed that allows for data acquisition in a 'practical' frame for clinical diagnostic helical, cone-beam computed tomography (CT). The algorithm is investigated using data that model nonlinear partial volume averaging. This investigation leads to an understanding of aliasing artefacts in helical, cone-beam CT image reconstruction. An ad hoc scheme is proposed to mitigate artefacts due to the nonlinear partial volume and aliasing artefacts

  18. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    International Nuclear Information System (INIS)

    Vindigni, Alessandro; Pini, Maria Gloria

    2009-01-01

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  19. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch

    2009-06-10

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  20. Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet.

    Science.gov (United States)

    Henderson, J J; Koo, C; Feng, P L; del Barco, E; Hill, S; Tupitsyn, I S; Stamp, P C E; Hendrickson, D N

    2009-07-03

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.

  1. Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod

    International Nuclear Information System (INIS)

    Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B

    2011-01-01

    A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.

  2. Helical patterns of magnetization and magnetic charge density in iron whiskers

    Science.gov (United States)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  3. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  4. QA for helical tomotherapy: Report of the AAPM Task Group 148

    Energy Technology Data Exchange (ETDEWEB)

    Langen, Katja M.; Papanikolaou, Niko; Balog, John; Crilly, Richard; Followill, David; Goddu, S. Murty; Grant, Walter III; Olivera, Gustavo; Ramsey, Chester R.; Shi Chengyu [Department of Radiation Oncology, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Radiation Oncology, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Mohawk Valley Medical Physics, Rome, New York 13440 (United States); Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon 97239 (United States); Section of Outreach Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Department of Radiology/Section of Radiation Oncology, Baylor College of Medicine, Methodist Hospital, Houston, Texas 77030 (United States); TomoTherapy, Inc., Madison, Wisconsin 53717 and Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Thompson Cancer Survival Center, Knoxville, Tennessee 37916 (United States); Department of Radiation Oncology, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-09-15

    Helical tomotherapy is a relatively new modality with integrated treatment planning and delivery hardware for radiation therapy treatments. In view of the uniqueness of the hardware design of the helical tomotherapy unit and its implications in routine quality assurance, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 148 to review this modality and make recommendations for quality assurance related methodologies. The specific objectives of this Task Group are: (a) To discuss quality assurance techniques, frequencies, and tolerances and (b) discuss dosimetric verification techniques applicable to this unit. This report summarizes the findings of the Task Group and aims to provide the practicing clinical medical physicist with the insight into the technology that is necessary to establish an independent and comprehensive quality assurance program for a helical tomotherapy unit. The emphasis of the report is to describe the rationale for the proposed QA program and to provide example tests that can be performed, drawing from the collective experience of the task group members and the published literature. It is expected that as technology continues to evolve, so will the test procedures that may be used in the future to perform comprehensive quality assurance for helical tomotherapy units.

  5. Perspectives on confinement in helical systems

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1989-01-01

    A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs

  6. Experiments on helical modes in magnetized thin foil-plasmas

    Science.gov (United States)

    Yager-Elorriaga, David

    2017-10-01

    This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories

  7. Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia

    International Nuclear Information System (INIS)

    Benghanem, M.; Daffallah, K.O.; Joraid, A.A.; Alamri, S.N.; Jaber, A.

    2013-01-01

    Highlights: ► The best performance of helical pump has been reached for a deep well. ► Very high potential of solar energy at Saudi Arabia. ► Performance of solar water pumping system for a deep well of 120 m. ► We get the best efficiency of helical pump for the head of 80 m. ► The best configuration of PV generator (24 panels) has been obtained. - Abstract: The photovoltaic water pumping systems (PVWPS) constitute a potential option to draw down water in the remote desert locations for domestic usage and livestock watering. However, the widespread of this technique requires accurate information and experiences in such system sizing and installation. The aim of this work is to determine an optimum photovoltaic (PV) array configuration, adequate to supply a DC Helical pump with an optimum energy amount, under the outdoor conditions of Madinah site. Four different PV array configurations have been tested (6S × 3P, 6S × 4P, 8S × 3P and 12S × 2P). The tests have been carried for a head of 80 m, under sunny daylight hours, in a real well at a farm in Madinah site. The best results have been obtained for two PV array configurations (6S × 4P) and (8S × 3P) which are suitable to provide the optimum energy. Powered by the selected PV array configurations, the helical pump (SQF2.5-2) delivered a maximum daily average volume of water needed (22 m 3 /day).

  8. Helical CT scan for emergent patients with cerebrovascular diseases

    International Nuclear Information System (INIS)

    Matsumoto, Masato; Sato, Naoki; Nakano, Masayuki; Watanabe, Youichi; Kodama, Namio

    1995-01-01

    We studied 44 emergent patients with cerebrovascular diseases (18 cases of subarachnoid hemorrhage, 15 of occlusive lesions, 7 of intracerebral hematoma and 4 of suspected subarachnoid hemorrhage) using helical CT scan. The helical CT scan was performed with contrast medium at a rate of 3 ml/sec with a delay of 20 sec, and was carried out before conventional angiography. The reconstruction time of 3D-CTA was within 10 min. We were able to obtain findings for the lesion on 3D-CTA before those on conventional angiography. The 3D-CTA yielded excellent images of the vascular structures and anatomical relationships of the aneurysm, its neck and parent artery, and surrounding arteries. However, it proved difficult to visualize vessels of less than 1 mm in diameter, especially the perforating arteries. In occlusive diseases, the degree of stenosis depended on the changes in CT number threshold: at present, evaluations of the lesions should be made by conventional angiography. 3D-CTA using helical CT scan can thus be applied for emergent patients with cerebrovascular diseases. Surgical simulation images of 3D-CTA were especially useful at the time of operation. (author)

  9. Helical CT scan for emergent patients with cerebrovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Masato; Sato, Naoki; Nakano, Masayuki; Watanabe, Youichi; Kodama, Namio [Fukushima Medical Coll. (Japan)

    1995-08-01

    We studied 44 emergent patients with cerebrovascular diseases (18 cases of subarachnoid hemorrhage, 15 of occlusive lesions, 7 of intracerebral hematoma and 4 of suspected subarachnoid hemorrhage) using helical CT scan. The helical CT scan was performed with contrast medium at a rate of 3 ml/sec with a delay of 20 sec, and was carried out before conventional angiography. The reconstruction time of 3D-CTA was within 10 min. We were able to obtain findings for the lesion on 3D-CTA before those on conventional angiography. The 3D-CTA yielded excellent images of the vascular structures and anatomical relationships of the aneurysm, its neck and parent artery, and surrounding arteries. However, it proved difficult to visualize vessels of less than 1 mm in diameter, especially the perforating arteries. In occlusive diseases, the degree of stenosis depended on the changes in CT number threshold: at present, evaluations of the lesions should be made by conventional angiography. 3D-CTA using helical CT scan can thus be applied for emergent patients with cerebrovascular diseases. Surgical simulation images of 3D-CTA were especially useful at the time of operation. (author).

  10. SUPERCONDUCTING HELICAL SNAKE MAGNETS: CONSTRUCTION AND MEASUREMENTS

    International Nuclear Information System (INIS)

    Mackay, W.W.; Anerella, M.; Courant, E.

    1999-01-01

    In order to collide polarized protons, the RHIC project will have two snakes in each ring and four rotators around each of two interaction regions. Two snakes on opposite sides of each ring can minimize depolarization during acceleration by keeping the spin tune at a half. Since the spin direction is normally along the vertical direction in a flat ring, spin rotators must be used around an interaction point to have longitudinal polarization in a collider experiment. Each snake or rotator will be composed of four helical dipoles to provide the required rotation of spin with minimal transverse orbit excursions in a compact length of 10m. The basic helical dipole is a superconducting magnet producing a transverse dipole field which is twisted about the magnet axis through 360 o in a length of 2.4 m. The design and construction of the magnets is described in this paper

  11. Feature selection for portfolio optimization

    DEFF Research Database (Denmark)

    Bjerring, Thomas Trier; Ross, Omri; Weissensteiner, Alex

    2016-01-01

    Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major....... While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative...

  12. Demonstration of a helical armature for a superconducting generator

    International Nuclear Information System (INIS)

    Conley, P.L.; Kirtley, J.L. Jr.; Hagman, W.H.; Ula, A.H.M.S.

    1979-01-01

    This is a report on the design, construction and testing of an experimental helical armature for a superconducting geneator. Rated at 60 kVA, this armature was built to be operated in conjunction with the rotor of the first experimental superconducting machine built at MIT. It incorporates, in addition to the helical winding form, a high density edge-brazed end turn geometry, molded bar groups, and silicone fluid coolant and insulation impregnant. Tests showed that the thermal performance of the armature was within reasonable limits, magnetic analyses leading to the computation of reactance and voltage geneation were approximately correct. No abnormal cheating was observed. 9 refs

  13. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  14. Properties of the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r safety factor q0(r ) just above the pitch of the electrodes m /n =1 in the interior, where the plasma is nearly force-free. However, at the edge the current density has a component perpendicular to the magnetic field B. This perpendicular current density drives nearly Alfvénic helical plasma flows, a notable feature of these states. This state is being studied for its possible application in DC electrical transformers. We present results on several issues of importance for these applications: the transient leading to the steady state; the twist and writhe of the field lines and their relation with the current density; the properties of the current density streamlines and length of the current density lines connected to the electrodes; the sensitivity to changes in the velocity boundary conditions; the effect of varying the radial resistivity profile; and the effects of a concentrated electrode potential.

  15. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210023 (China); Pariat, E.; Moraitis, K. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Valori, G. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Anfinogentov, S. [Institute of Solar-Terrestrial Physics SB RAS 664033, Irkutsk, P.O. box 291, Lermontov Street, 126a (Russian Federation); Chen, F. [Max-Plank-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany); Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4 Soranou Efesiou Street, 11527 Athens (Greece); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Thalmann, J. K. [Institute of Physics, Univeristy of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Yang, S., E-mail: guoyang@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-05-01

    We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.

  16. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  17. Helicity formalism and spin effects

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Piovano, U.

    1990-01-01

    The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)

  18. Three-dimensional printing of freeform helical microstructures: a review.

    Science.gov (United States)

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  19. Right-Handed Helical Foldamers Consisting of De Novo d -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Peng; Ma, Ning; Cerrato, Darrell Cole; She, Fengyu; Odom, Timothy; Wang, Xiang; Ming, Li-June; van der Vaart, Arjan; Wojtas, Lukasz; Xu, Hai; Cai, Jianfeng

    2017-05-16

    New types of foldamer scaffolds are formidably challenging to design and synthesize, yet highly desirable as structural mimics of peptides/proteins with a wide repertoire of functions. In particular, the development of peptidomimetic helical foldamers holds promise for new biomaterials, catalysts, and drug molecules. Unnatural l-sulfono-γ-AApeptides were recently developed and shown to have potential applications in both biomedical and material sciences. However, d-sulfono-γ-AApeptides, the enantiomers of l-sulfono-γ-AApeptides, have never been studied due to the lack of high-resolution three-dimensional structures to guide structure-based design. Herein, we report the first synthesis and X-ray crystal structures of a series of 2:1 l-amino acid/d-sulfono-γ-AApeptide hybrid foldamers, and elucidate their folded conformation at the atomic level. Single-crystal X-ray crystallography indicates that this class of oligomers folds into well-defined right-handed helices with unique helical parameters. The helical structures were consistent with data obtained from solution 2D NMR, CD studies, and molecular dynamics simulations. Our findings are expected to inspire the structure-based design of this type of unique folding biopolymers for biomaterials and biomedical applications.

  20. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    Science.gov (United States)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  1. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    Science.gov (United States)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  2. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  3. Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment

    Science.gov (United States)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2013-10-01

    Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  5. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  6. THE EFFECT OF ELECTRON THERMAL PRESSURE ON THE OBSERVED MAGNETIC HELICITY IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Markovskii, S. A.; Vasquez, Bernard J.; Smith, Charles W., E-mail: sergei.markovskii@unh.edu, E-mail: bernie.vasquez@unh.edu, E-mail: charles.smith@unh.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-12-20

    Statistical analysis of magnetic helicity spectra in the solar wind at 1 au is carried out. A large database of the solar wind intervals assembled from Wind spacecraft magnetic and plasma data is used. The effect of the electron thermal pressure on the wavenumber position of the helicity signature, i.e., the peak of the spectrum, is studied. The position shows a statistically significant dependence on both the electron and proton pressures. However, the strongest dependence is seen when the two pressures are summed. These findings confirm that the generation of the magnetic helicity is associated with an increasing compressibility of the turbulent fluctuations at smaller kinetic scales. It is argued that instrumental artifacts do not contribute to the helicity signature.

  7. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  8. Kinetic simulations of neoclassical and anomalous transport processes in helical systems

    International Nuclear Information System (INIS)

    Sugama, Hideo; Watanabe, Tomohiko; Nunami, Masanori; Satake, Shinsuke; Matsuoka, Seikichi; Tanaka, Kenji

    2012-01-01

    Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The δf Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the reduction of the turbulent heat diffusivity χ i due to the ion temperature gradient (ITG) turbulence. Comparisons between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X code show that the χ i profile and the poloidal wave number spectrum of the density fluctuation obtained from the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field E r can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is linked to the neoclassical transport through E r which is determined from the ambipolar condition for neoclassical particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order to investigate the E r effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube bundle model is proposed as a new method for multiscale gyrokinetic simulations. (author)

  9. Small-x Asymptotics of the Quark Helicity Distribution.

    Science.gov (United States)

    Kovchegov, Yuri V; Pitonyak, Daniel; Sievert, Matthew D

    2017-02-03

    We construct a numerical solution of the small-x evolution equations derived in our recent work [J. High Energy Phys. 01 (2016) 072.JHEPFG1029-847910.1007/JHEP01(2016)072] for the (anti)quark transverse momentum dependent helicity TMDs and parton distribution functions (PDFs) as well as the g_{1} structure function. We focus on the case of large N_{c}, where one finds a closed set of equations. Employing the extracted intercept, we are able to predict directly from theory the behavior of the quark helicity PDFs at small x, which should have important phenomenological consequences. We also give an estimate of how much of the proton's spin carried by the quarks may be at small x and what impact this has on the spin puzzle.

  10. Experimental and numerical investigations of shape memory alloy helical springs

    International Nuclear Information System (INIS)

    Aguiar, Ricardo A A; Pacheco, Pedro M C L; Savi, Marcelo A

    2010-01-01

    Shape memory alloys (SMAs) belong to the class of smart materials and have been used in numerous applications. Solid phase transformations induced either by stress or temperature are behind the remarkable properties of SMAs that motivate the concept of innovative smart actuators for different purposes. The SMA element used in these actuators can assume different forms and a spring is an element usually employed for this aim. This contribution deals with the modeling, simulation and experimental analysis of SMA helical springs. Basically, a one-dimensional constitutive model is assumed to describe the SMA thermomechanical shear behavior and, afterwards, helical springs are modeled by considering a classical approach for linear-elastic springs. A numerical method based on the operator split technique is developed. SMA helical spring thermomechanical behavior is investigated through experimental tests performed with different thermomechanical loadings. Shape memory and pseudoelastic effects are treated. Numerical simulations show that the model results are in close agreement with those obtained by experimental tests, revealing that the proposed model captures the general thermomechanical behavior of SMA springs

  11. From plasma crystals and helical structures towards inorganic living matter

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E; Fortov, V E; Gusein-Zade, N G; Klumov, B A; Vladimirov, S V

    2007-01-01

    Complex plasmas may naturally self-organize themselves into stable interacting helical structures that exhibit features normally attributed to organic living matter. The self-organization is based on non-trivial physical mechanisms of plasma interactions involving over-screening of plasma polarization. As a result, each helical string composed of solid microparticles is topologically and dynamically controlled by plasma fluxes leading to particle charging and over-screening, the latter providing attraction even among helical strings of the same charge sign. These interacting complex structures exhibit thermodynamic and evolutionary features thought to be peculiar only to living matter such as bifurcations that serve as 'memory marks', self-duplication, metabolic rates in a thermodynamically open system, and non-Hamiltonian dynamics. We examine the salient features of this new complex 'state of soft matter' in light of the autonomy, evolution, progenity and autopoiesis principles used to define life. It is concluded that complex self-organized plasma structures exhibit all the necessary properties to qualify them as candidates for inorganic living matter that may exist in space provided certain conditions allow them to evolve naturally

  12. Determining How Magnetic Helicity Injection Really Works

    International Nuclear Information System (INIS)

    Paul M Bellan

    2001-01-01

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments

  13. Usefulness of unenhanced helical CT in patients with suspected ureteral colic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Nam Kung, Sook; Kim, Heung Cheol; Hwang, Woo Chul; Lee, In Sun; Hwang, Im Kyung; Kim, Ho Chul; Bae, Sang Hoon; Lee, Sang Kon; Lee, Seong Ho [College of Medicine, Hallym Univ., Chunchon (Korea, Republic of)

    2002-07-01

    To determine the usefulness of unenhanced helical CT in patients with suspected renal colic. One hundred and fourteen patients with suspected ureteral colic, referred by physicians, underwent unenhanced helical CT. Two radiologists prospectively interpreted the results, determining the presence or absence of ureter stone and other diseases the arise outside the urinary tract. In cases of ureteral stone, we retrospectively sought secondary signs of hydronephrosis, perinephric fat stranding, thickening of renal fascia, renal enlargement, and the tissue rim sign. Among the 114 patients, 57 were confirmed as having ureter stones. Unenhanced helical CT depicted 57 of 58 stones in 57 patients, producing one false-negative and one false-positive result. Overall, the results showed 98% sensitivity, 95% specificity, 98% positive predictive value, 95% negative predictive value, and 97% accuracy. The frequencies of secondary signs were as follows: hydronephrosis, 95%(54/57); perinephric fat stranding, 81% (46/57); thickening of renal fascia, 77% (44/57); renal enlargement , 65%(37/57); and the tissure rim sign 72%(21/29). In 20 patients, the diagnoses were not related to stone disease and included one false-negative diagnosis of pyonephrosis. Unenhanced helical CT provides information which is valuable in the accurate diagnosis of ureteral stone as well as other diseases that arise outside the urinary tract in patients with suspected renal colic.

  14. Helical Tomotherapy Quality Assurance

    International Nuclear Information System (INIS)

    Balog, John; Soisson, Emilie

    2008-01-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed

  15. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    International Nuclear Information System (INIS)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-01-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  16. Production of linear polarization by segmentation of helical undulator

    International Nuclear Information System (INIS)

    Tanaka, T.; Kitamura, H.

    2002-01-01

    A simple scheme to obtain linearly polarized radiation (LPR) with a segmented undulator is proposed. The undulator is composed of several segments each of which forms a helical undulator and has helicity opposite to those of adjacent segments. Due to coherent sum of radiation, the circularly polarized component is canceled out resulting in production of LPR without any higher harmonics. The radiation from the proposed device is investigated analytically, which shows that a high degree of linear polarization is obtained in spite of a finite beam emittance and angular acceptance of optics, if a sufficiently large number of segments and an adequate photon energy are chosen. Results of calculation to investigate practical performances of the proposed device are presented

  17. A rotating helical sealing joint capable of partially melting

    International Nuclear Information System (INIS)

    Martin, Jean; Ollier, J.-L.; Petit, Paul.

    1973-01-01

    A coagulated rotating helical joint providing gas and liquid tightness along a rotating shaft, comprising: a metal sleeve connected to the wall through which passes the rotating sleeve, an intermediate sleeve made of a fusible material, inert with respect to the fluid to be sealingly retained, and finally the rotating shaft provided with an engraved helical thread in register with the intermediate sleeve. Means are provided for regulating the intermediate sleeve temperature so that a thin melted film is formed on said intermediate sleeve when in contact with the rotating threaded shaft. This can be applied in the nuclear industry, including cases when the intermediate sleeve is constituted by the fluid itself, then in the solid state [fr

  18. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    Science.gov (United States)

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  19. Chronic intestinal pseudo-obstruction in adult patients: multidetector row helical CT features

    International Nuclear Information System (INIS)

    Merlin, Aurelie; Soyer, Philippe; Boudiaf, Mourad; Hamzi, Lounis; Rymer, Roland

    2008-01-01

    Chronic intestinal pseudo-obstruction (CIPO) is a rare condition due to severe gastrointestinal motility disorder. Adult patients with CIPO experience symptoms of mechanical obstruction, but reliable clinical signs that may help distinguish between actual mechanical obstruction and CIPO are lacking. Additionally, abdominal plain films that commonly show bowel dilatation with air-fluid levels do not reach acceptable degrees of specificity to exclude actual obstruction. Therefore, most adult patients with CIPO usually undergo multiple and often fruitless surgery, often leading to repeated bowel resections before diagnosis is made. In these patients who present with abdominal signs mimicking symptoms that would warrant surgical exploration, multidetector-row helical CT (MDCT) is helpful to resolve this diagnostic dilemma. MDCT shows a diffusely distended bowel and helps to rule out a mechanical cause of obstruction, thus suggesting CIPO and obviating the need for unnecessary laparotomy. In adult patients with CIPO, MDCT may show pneumatosis intestinalis, pneumoperitoneum or intussusception. However, these conditions generally do not require surgery in patients with CIPO. This pictorial essay presents the more and less common MDCT features of CIPO in adult patients, to make the reader more familiar with this disease. (orig.)

  20. Development of a helical-coil double wall tube steam generator for 4S reactor

    International Nuclear Information System (INIS)

    Kitajima, Yuko; Maruyama, Shigeki; Jimbo, Noboru; Hino, Takehisa; Sato, Katsuhiko

    2011-01-01

    The 4S, Super-Safe Small and Simple, is a small-sized sodium-cooled fast reactor. A fast reactor usually uses sodium as a coolant to transfer heat from core to turbine/generator system. The heat of the intermediate heat transport system and that of the water stream systems are exchanged by the steam generator (SG) tubes. If the tube failure occurs, a sodium/water reaction could be occurred. To prevent the reaction and enhance safety, a helical-coil-type double wall tube with wire mesh interlayer and continuous monitoring systems of tube failure are applied to the SG of the 4S. The development and general features of this type double wall tube were described in Ref. 1) and Ref. 2). Those paper summarized following results; The tubes studied in these references were straight type. To establish this SG, development of manufacturing method of helical-coil-type double wall tube and validation of the tube failure monitoring system are needed. In this study, three demonstration tests have been performed; welding test of the double wall tube to manufacture the tubes with 70-80m length, assembling test of the helical-coil tube, and confirmation test of the tube processing system using the fabricated helical-coil tubes. As a result, following technologies have been successfully established. (1) Development of the welding techniques for manufacturing of the helical-coil-type double wall tube with wire mesh interlayer. (2) The confirmation test for manufacturing the helical coil tube of the SG. (author)

  1. Cooperation and charity in spatial public goods game under different strategy update rules

    Science.gov (United States)

    Li, Yixiao; Jin, Xiaogang; Su, Xianchuang; Kong, Fansheng; Peng, Chengbin

    2010-03-01

    Human cooperation can be influenced by other human behaviors and recent years have witnessed the flourishing of studying the coevolution of cooperation and punishment, yet the common behavior of charity is seldom considered in game-theoretical models. In this article, we investigate the coevolution of altruistic cooperation and egalitarian charity in spatial public goods game, by considering charity as the behavior of reducing inter-individual payoff differences. Our model is that, in each generation of the evolution, individuals play games first and accumulate payoff benefits, and then each egalitarian makes a charity donation by payoff transfer in its neighborhood. To study the individual-level evolutionary dynamics, we adopt different strategy update rules and investigate their effects on charity and cooperation. These rules can be classified into two global rules: random selection rule in which individuals randomly update strategies, and threshold selection rule where only those with payoffs below a threshold update strategies. Simulation results show that random selection enhances the cooperation level, while threshold selection lowers the threshold of the multiplication factor to maintain cooperation. When charity is considered, it is incapable in promoting cooperation under random selection, whereas it promotes cooperation under threshold selection. Interestingly, the evolution of charity strongly depends on the dispersion of payoff acquisitions of the population, which agrees with previous results. Our work may shed light on understanding human egalitarianism.

  2. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    Science.gov (United States)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  3. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  4. Turbulence induced Fretting-wear characteristics of steam generator helical tubes

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Kim, Hho Jung; Yune, Young Gill; Yu, Seon Oh

    2005-01-01

    This study addresses safety assessment of the potential for fretting-wear damages on steam generator helical tubes due to turbulence-induced vibration in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are put on the effects of coil diameter and the number of turns on the modal and fretting wear characteristics of tubes. Also, investigated are the effects of external pressure on the tube modal characteristics as well as the effects of turbulence induced vibration on the fretting-wear characteristics of tubes

  5. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Kinetic and magnetic helicities do not affect the renormalized parameters, ... Generation of magnetic field in plasma, usually referred to as 'dynamo', is one of the ..... energy fluxes for the inertial-range wave numbers where the same power.

  6. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Nobu, Masaki; Hirao, Toshikazu

    2017-09-18

    Controlling helical chirality and creating protein secondary structures in cyclic/acyclic ferrocene-dipeptide bioorganometallic conjugates were achieved by adjusting the conformational flexibility of the dipeptide chains. In systems reported to date, the helical chirality of a conjugate was determined by the absolute configuration of the adjacent amino acid reside. In contrast, it was possible to induce both M- and P-helical chirality, even when the configuration of the adjacent amino acid was the same. It is particularly interesting to note that M-helical chirality was produced in a cyclic ferrocene-dipeptide conjugate composed of the l-Ala-d-Pro-cystamine-d-Pro-l-Ala dipeptide sequence (1), in which a type II β-turn-like secondary structure was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    Science.gov (United States)

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  9. Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program

    Science.gov (United States)

    Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason

    2011-01-01

    U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.

  10. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  11. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    Science.gov (United States)

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  12. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  13. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  14. Nomenclature and spelling rules of chemistry in Hungary Pt. 1 Nomenclature of elements and inorganic compounds

    International Nuclear Information System (INIS)

    Fodorne Csanyi, P.

    1982-01-01

    The part of the updated edition of 'Nomenclature and spelling rules of chemistry in Hungary' (Budapest, 1972), referring to the isotopically modified inorganic compounds is presented. The rules are based on the proposals of IUPAC (1981). Spelling rules concerning the isotopically substituted, isotopically labelled, specifically labelled, selectively and non-selectively labelled compounds, and the positional and numbering rules of nuclides are treated. (Sz.J.)

  15. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  16. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  17. Field-theoretic calculation of kinetic helicity flux

    Indian Academy of Sciences (India)

    Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...

  18. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    Science.gov (United States)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  19. Increasing the thermal stability of cellulase C using rules learned from thermophilic proteins: a pilot study.

    Science.gov (United States)

    Németh, Attila; Kamondi, Szilárd; Szilágyi, András; Magyar, Csaba; Kovári, Zoltán; Závodszky, Péter

    2002-05-02

    Some structural features underlying the increased thermostability of enzymes from thermophilic organisms relative to their homologues from mesophiles are known from earlier studies. We used cellulase C from Clostridium thermocellum to test whether thermostability can be increased by mutations designed using rules learned from thermophilic proteins. Cellulase C has a TIM barrel fold with an additional helical subdomain. We designed and produced a number of mutants with the aim to increase its thermostability. Five mutants were designed to create new electrostatic interactions. They all retained catalytic activity but exhibited decreased thermostability relative to the wild-type enzyme. Here, the stabilizing contributions are obviously smaller than the destabilization caused by the introduction of the new side chains. In another mutant, the small helical subdomain was deleted. This mutant lost activity but its melting point was only 3 degrees C lower than that of the wild-type enzyme, which suggests that the subdomain is an independent folding unit and is important for catalytic function. A double mutant was designed to introduce a new disulfide bridge into the enzyme. This mutant is active and has an increased stability (deltaT(m)=3 degrees C, delta(deltaG(u))=1.73 kcal/mol) relative to the wild-type enzyme. Reduction of the disulfide bridge results in destabilization and an altered thermal denaturation behavior. We conclude that rules learned from thermophilic proteins cannot be used in a straightforward way to increase the thermostability of a protein. Creating a crosslink such as a disulfide bond is a relatively sure-fire method but the stabilization may be smaller than calculated due to coupled destabilizing effects.

  20. The evaluation of gallbladder contractibility for volume measurement by helical 3D-CT-cholangiography

    International Nuclear Information System (INIS)

    Hanaguri, Katsuro; Kimura, Hideaki; Kayashima, Yasuyo; Suemoto, Kouichiro; Makihata, Hiroshi; Maruhashi, Akira; Ohya, Toshihide; Ito, Katsuhide; Shen, Yun.

    1997-01-01

    As a new application of helical (spiral) scan, volume measurement has received a significant interest. Although it is important to evaluate gallbladder contractibility to decide on a treatment plan for a gallbladder lesion, qualitative analysis of gallbladder contractibility is very difficult owing to the fact that the volume of gallbladder can not be measured using usual DIC examination (plain X-P and tomography). In this study, the accuracy of volume measurement of helical CT was checked firstly by gallbladder phantom experiments. Then 128 cases of volume measurement of helical 3D CT Cholangiography (DIC-CT) were performed. Under the conditions of optimized scan technique (3 mm TH, 3 mm/s, 1 mm recon interval, Hispeed, GEMS), the difference of contractibility was obtained between clinical cases with and without thick wall. The experiment has shown that helical 3D CT volume measurement is very simple and highly accurate method which is useful for the evaluation of gallbladder contractibility. (author)