WorldWideScience

Sample records for helical torsion springs

  1. A semi-analytical study on helical springs made of shape memory polymer

    International Nuclear Information System (INIS)

    Baghani, M; Naghdabadi, R; Arghavani, J

    2012-01-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load–deflection response. Some case studies are presented to show the validity of the presented analytical method. (paper)

  2. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2016-06-01

    Full Text Available This paper introduces an ultrasonic torsional mode based technique, configured in the form of a helicalspring-like” waveguide, for multi-level temperature measurement. The multiple sensing levels can be repositioned by stretching or collapsing the spring to provide simultaneous measurements at different desired spacing in a given area/volume. The transduction is performed using piezo-electric crystals that generate and receive T(0,1 mode in a pulse echo mode. The gage lengths and positions of measurements are based on machining multiple reflector notches in the waveguide at required positions. The time of fight (TOF measurements between the reflected signals from the notches provide local temperatures that compare well with co-located thermocouples.

  3. A Study of the Preload Force in Metal-Elastomer Torsion Springs

    Directory of Open Access Journals (Sweden)

    Sikora Wojciech

    2016-12-01

    Full Text Available Neidhart type suspension units composed of metal-elastomer torsion springs can be a good alternative to steel helical springs in applications such as vibration absorbers or vehicle suspension systems. Assembling this type of spring requires initial preload of the elastomeric working elements, which determines their operating properties. The results of experimental tests and numerical simulations concerning the preload of elastomeric working elements in Neidhart type suspension units are presented in the paper. The performed research made it possible to propose a new calculation model for determining the preload force value acting on the elastomeric cylindrical elements applied in this type of suspension unit. The results obtained using the proposed model exhibit good convergence with FEM simulation results within the range of the tested geometrical and material properties.

  4. Convective mass transfer in helical pipes: effect of curvature and torsion

    Energy Technology Data Exchange (ETDEWEB)

    Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)

    2006-03-01

    A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)

  5. Torsion effect on fully developed flow in a helical pipe

    Science.gov (United States)

    Kao, Hsiao C.

    1987-01-01

    Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.

  6. NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL RECTANGULAR CHANNELS

    Directory of Open Access Journals (Sweden)

    A. H. ELBATRAN

    2015-07-01

    Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.

  7. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  8. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  9. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power s...... spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever. © 2013 AIP Publishing LLC....

  10. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    International Nuclear Information System (INIS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-01-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  11. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyuan [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Shumin, E-mail: zhaosm@mail.xjtu.edu.cn [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Xia, Minggang [Department of Optical Information Science and Technology, School of Science, Xi' an Jiaotong University, 710049 (China); Laboratory of Nanostructure and Physics Properties, School of Science, Xi' an Jiaotong University, 710049 (China); He, Siyu [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Yang, Qifan [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China); Yan, Yuming [Department of Electrical Engineering and Automation, School of Electrical Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Hanqiao [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2017-02-19

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  12. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Science.gov (United States)

    Graf, Eveline S.; Wright, Ian C.; Stefanyshyn, Darren J.

    2012-01-01

    The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location. PMID:22666303

  13. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Directory of Open Access Journals (Sweden)

    Eveline S. Graf

    2012-01-01

    Full Text Available The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location.

  14. Experimental and numerical investigations of shape memory alloy helical springs

    International Nuclear Information System (INIS)

    Aguiar, Ricardo A A; Pacheco, Pedro M C L; Savi, Marcelo A

    2010-01-01

    Shape memory alloys (SMAs) belong to the class of smart materials and have been used in numerous applications. Solid phase transformations induced either by stress or temperature are behind the remarkable properties of SMAs that motivate the concept of innovative smart actuators for different purposes. The SMA element used in these actuators can assume different forms and a spring is an element usually employed for this aim. This contribution deals with the modeling, simulation and experimental analysis of SMA helical springs. Basically, a one-dimensional constitutive model is assumed to describe the SMA thermomechanical shear behavior and, afterwards, helical springs are modeled by considering a classical approach for linear-elastic springs. A numerical method based on the operator split technique is developed. SMA helical spring thermomechanical behavior is investigated through experimental tests performed with different thermomechanical loadings. Shape memory and pseudoelastic effects are treated. Numerical simulations show that the model results are in close agreement with those obtained by experimental tests, revealing that the proposed model captures the general thermomechanical behavior of SMA springs

  15. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  16. Passive base isolation with superelastic nitinol SMA helical springs

    International Nuclear Information System (INIS)

    Huang, Bin; Zhang, Haiyang; Wang, Han; Song, Gangbing

    2014-01-01

    Seismic isolation of structures such as multi-story buildings, nuclear reactors, bridges, and liquid storage tanks should be designed to preserve structural integrity. By implementing seismic isolation technology, the deformation of superstructures can be dramatically reduced, consequently helping to protect their safety as well. In this paper, an innovative type of passive base isolation system, which is mainly composed of superelastic nitinol SMA helical springs, is developed. In order to verify the effectiveness of the proposed system, a two-story experimental steel frame model is constructed, and two superelastic SMA helical springs are thermo-mechanically built in the laboratory. To describe the nonlinear mechanical properties of the superelastic SMA helical springs under reciprocating load, a phenomenological model is presented in terms of a series of tensile tests. Afterwards, a numerical model of the two-story frame with the suggested isolation system is set up to simulate the response of the isolated frame subjected to an earthquake. Both the experimental and the numerical simulation results indicate that the proposed base isolation system can remarkably suppress structural vibrations and has improved isolation effects when compared with a steel spring isolation system. Due to the capabilities of energy dissipation as well as fully re-centering, it is very applicable to utilize the suggested isolation system in base isolated structures to resist earthquakes. (paper)

  17. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  18. Mechanics of patterned helical Si springs on Si substrate.

    Science.gov (United States)

    Liu, D L; Ye, D X; Khan, F; Tang, F; Lim, B K; Picu, R C; Wang, G C; Lu, T M

    2003-12-01

    The elastic response, including the spring constant, of individual Si helical-shape submicron springs, was measured using a tip-cantilever assembly attached to a conventional atomic force microscope. The isolated, four-turn Si springs were fabricated using oblique angle deposition with substrate rotation, also known as the glancing angle deposition, on a templated Si substrate. The response of the structures was modeled using finite elements, and it was shown that the conventional formulae for the spring constant required modifications before they could be used for the loading scheme used in the present experiment.

  19. Evaluation of mechanical integrity for helical coil hold-down spring of PLUS7TM fuel

    International Nuclear Information System (INIS)

    Choi, Ki Sung; Kim, Yong Hwan; Kwon, Jung Tack; Kim, Kyu Tae

    2004-01-01

    Nuclear fuel assembly is subject to hydraulic forces generated by primary coolant flow during reactor operation. These forces may be sufficient to overcome the fuel assembly weight thereby allowing the fuel assembly to lift off of its support. To provide a positive hold-down margin against the upward coolant flow forces, helical coil springs or leaf springs are installed in the fuel assemblies. An advanced fuel for Korean Standard Nuclear Power Plants (KSNP), PLUS7 fuel has developed to get the thermal margin increase, failure free and high seismic resistance, etc. And the new designed helical coil hold-down spring was introduced into PLUS7 fuel assembly. The purpose of this paper is to evaluate the mechanical integrity for the helical coil hold-down spring of PLUS7 fuel assembly

  20. 76 FR 72722 - Helical Spring Lock Washers From China and Taiwan

    Science.gov (United States)

    2011-11-25

    ... Spring Lock Washers From China and Taiwan Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on helical spring lock washers from China and Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably...

  1. Design, Development and Scaling Analysis of a Variable Stiffness Magnetic Torsion Spring

    Directory of Open Access Journals (Sweden)

    Angelo Sudano

    2013-10-01

    Full Text Available In this paper we report on the design, modeling, experimental testing and scaling analysis of a novel MAgnetic Variable stiffnEess spRIng-Clutch (MAVERIC device, which may be used as the elastic element of Variable Stiffness Actuators (VSAs. The device, comprising two co-axial diametrically magnetized hollow cylinders, has two degrees of freedom: a rotation of the two cylinders around the common axis and a relative translation along the same axis. For small rotations, the torque arising from the magnetic interaction of the two cylinders is almost linearly proportional to their relative rotation, as in mechanical torsion springs. In addition, the stiffness of the equivalent spring can be varied continuously from a maximum value down to exactly zero by changing the axial overlap of the two cylinders. In this way the proposed device can be used both as a clutch (i.e., perfectly compliant element and as a variable stiffness torsion spring. A prototype, designed after magnetostatic FEM simulations, has been built and experimentally characterized. The developed MAVERIC has an experimentally determined maximum transmissible torque of 109.81mNm, while the calculated maximum stiffness is 110.2mNmrad−1. The amplitude of the torque-angle characteristic can be tuned linearly with a sensitivity of 12.63mNmmm−1 rad−1. Further simulations have been computed parameterizing the geometry and the number of pole pairs of the magnets. The maximum torque density reached for one pole pair is 47.21 · 103 Nm m−3, whereas for a fixed geometry similar to that of the developed prototype, the maximum torque is reached for seven pole pairs. Overall, compared to mechanical springs, MAVERIC has no fatigue or overloading issues. Compared to other magnetic couplers, torsion stiffness can be varied continuously from a maximum value down to exactly zero, when the device acts as a disengaged clutch, disconnecting the load from the actuator.

  2. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  3. Vibration of helical springs in cross water flow

    International Nuclear Information System (INIS)

    Axisa, F.; Brunet, G.

    1987-05-01

    The purpose of this paper is to present new experimental data on vortex-shedding induced vibration on helical springs subjected to cross-flows. Intense locked-in vibration were observed on the natural modes of axial displacement. A simplified model is tentatively proposed to interpret the experimental data which is based on an analogy with vortex-shedding as observed on straight tube rows

  4. Improved Riccati Transfer Matrix Method for Free Vibration of Non-Cylindrical Helical Springs Including Warping

    Directory of Open Access Journals (Sweden)

    A.M. Yu

    2012-01-01

    Full Text Available Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45 in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.

  5. Nonlinear Dynamics Modeling and Analysis of Torsional Spring-Loaded Antibacklash Gear with Time-Varying Meshing Stiffness and Friction

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2013-01-01

    Full Text Available Torsional spring-loaded antibacklash gear which can improve the transmission precision is widely used in many precision transmission fields. It is very important to investigate the dynamic characteristics of antibacklash gear. In the paper, applied force analysis is completed in detail. Then, defining the starting point of double-gear meshing as initial position, according to the meshing characteristic of antibacklash gear, single- or double-tooth meshing states of two gear pairs and the transformation relationship at any moment are determined. Based on this, a nonlinear model of antibacklash gear with time-varying friction and meshing stiffness is proposed. The influences of friction and variations of torsional spring stiffness, damping ratio and preload on dynamic transmission error (DTE are analyzed by numerical calculation and simulation, and the results show that antibacklash gear can increase the composite meshing stiffness; when the torsional spring stiffness is large enough, the oscillating components of the DTE (ODTE and the RMS of the DTE (RDTE trend to be a constant value; the variations of ODTE and RDTE are not significant, unless preload exceeds a certain value.

  6. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA

    Science.gov (United States)

    Manning, Gerald S.

    2015-09-01

    We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.

  7. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Gerald S., E-mail: jerrymanning@rcn.com [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087 (United States)

    2015-09-14

    We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.

  8. On the influence of curvature and torsion on turbulence in helically coiled pipes

    Science.gov (United States)

    Ciofalo, M.; Di Liberto, M.; Marotta, G.

    2014-04-01

    Turbulent flow and heat transfer in helically coiled pipes at Reτ=400 was investigated by DNS using finite volume grids with up to 2.36×107 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results showed that curvature affects the flow significantly. As it increases from 0.1 to 0.3 the friction coefficient and the Nusselt number increase and the secondary flow becomes stronger; axial velocity fluctuations decrease, but the main Reynolds shear stress increases. Torsion, at least at the moderate level tested (0.3), has only a minor effect on mean and turbulence quantities, yielding only a slight reduction of peak turbulence levels while leaving pressure drop and heat transfer almost unaffected.

  9. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness

    Science.gov (United States)

    Zheng, Yisheng; Zhang, Xinong; Luo, Yajun; Zhang, Yahong; Xie, Shilin

    2018-02-01

    By now, many translation quasi-zero stiffness (QZS) mechanisms have been proposed to overcome the restriction between the isolation frequency range and the load bearing capacity of linear isolators. The couplings of rotor systems undertake the functions of transmitting static driving torque and isolating disturbing torque simultaneously, which creates the demand of torsion QZS mechanisms. Hence a QZS coupling is presented in this paper, where a torsion magnetic spring (TMS) composed of two coaxial ring magnet arrangements in repulsive configuration is employed to produce negative torsion stiffness to counteract the positive stiffness of a rubber spring. In this paper, the expressions of magnetic torque and stiffness are given firstly and verified by finite element simulations; and the effect of geometric parameters of the TMS on its stiffness characteristic is analyzed in detail, which contributes to the optimal design of the TMS. Then dynamic analysis of the QZS coupling is performed and the analytical expression of the torque transmissibility is achieved based on the Harmonic Balance Method. Finally, simulation of the torque transmissibility is carried out to reveal how geometric parameters of the TMS affect the isolation performance.

  10. 76 FR 57075 - Helical Spring Lock Washers From China and Taiwan

    Science.gov (United States)

    2011-09-15

    ... Lock Washers From China and Taiwan Scheduling of expedited five-year reviews concerning the antidumping duty orders on helical spring lock washers from China and Taiwan. AGENCY: United States International... China and Taiwan would be likely to lead to continuation or recurrence of material injury within a...

  11. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    Science.gov (United States)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  12. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Liu, S; Martin, C; Livermore, C; Lashmore, D; Schauer, M

    2014-01-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems

  13. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    Science.gov (United States)

    Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.

    2014-11-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.

  14. Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, M. A.

    2016-01-01

    The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by Lagoudas and co-workers incorporating two modifications related t...

  15. Carbon nanotube torsional springs for regenerative braking systems

    Science.gov (United States)

    Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol

    2015-10-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1  ±  1.2 kJ kg-1 and 3.4 kJ kg-1  ±  0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.

  16. Carbon nanotube torsional springs for regenerative braking systems

    International Nuclear Information System (INIS)

    Liu, Sanwei; Martin, Corbin; Livermore, Carol; Lashmore, David; Schauer, Mark

    2015-01-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg −1   ±  1.2 kJ kg −1 and 3.4 kJ kg −1   ±  0.4 kJ kg −1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg −1 and 0.67 kW kg −1 , respectively, with maximum measured values of up to 4.7 kJ kg −1 and 1.2 kW kg −1 , respectively. A slightly lower energy density of up to 1.2 kJ kg −1 and a 0.29 kW kg −1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism. (paper)

  17. NRC Information No. 89-43: Permanent deformation of torque switch helical springs in Limitorque SMA-type motor operators

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Problems with the helical springs were discovered during a series of dynamic tests that were conducted with a motor-operated wedge-gate valve from the decommissioned Shippingport Atomic Power Station (Shippingport). The valve was installed in a portion of the piping system that had been modified to simulate the stiffness of a typical US piping system. The valve was 30 years old and had its original Limitorque SMA-type motor operator. One of the main objectives of these tests was to determine the operating capability of the valve when subjected to simultaneous internal hydraulic and seismic loadings. This was typically accomplished by operating the valve to achieve maximum hydraulic loading during maximum seismic loading. During testing, an operability problem with the valve motor operator occurred. The design of the SMA-type motor operator is such that the torque switch helical spring is in its most compressed condition when the valve is closed. Thus, a normally closed valve is more likely to experience permanent deformation of the helical torque spring. A review of the Shippingport records indicated that both of these valves had been used as normally closed valves at Shippingport. Thus, normally closed, safety-related valves with Limitorque SMA-type motor operators may not accomplish their intended safety-related function because the original torque switch setting may result in lower output torque caused by the permanent deformation of their torque switch helical springs

  18. 76 FR 75873 - Certain Helical Spring Lock Washers From Taiwan and the People's Republic of China: Continuation...

    Science.gov (United States)

    2011-12-05

    ... Spring Lock Washers From Taiwan and the People's Republic of China: Continuation of Antidumping Duty... on certain helical spring lock washers from Taiwan and the People's Republic of China (``PRC'') would be likely to lead to a continuation or recurrence of dumping and material injury to an industry in...

  19. 76 FR 61343 - Certain Helical Spring Lock Washers From Taiwan and the People's Republic of China: Final Results...

    Science.gov (United States)

    2011-10-04

    ... Spring Lock Washers From Taiwan and the People's Republic of China: Final Results of the Expedited Third Five-Year Sunset Reviews of the Antidumping Duty Orders AGENCY: Import Administration, International... duty orders on certain helical spring lock washers (``lock washers'') from Taiwan and the People's...

  20. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun

    2014-01-01

    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  1. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  2. Experimental Test Rig for Optimal Control of Flexible Space Robotic Arms

    Science.gov (United States)

    2016-12-01

    the test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to...test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to movement...Source: [4]. A challenge with space systems is that it costs a lot of money to put a satellite or spacecraft into space. Estimates to send one kilogram

  3. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  4. Spring Tire

    Science.gov (United States)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  5. Torsional tapping atomic force microscopy for molecular resolution imaging of soft matter

    Science.gov (United States)

    Hobbs, Jamie; Mullin, Nic

    2012-02-01

    Despite considerable advances in image resolution on challenging, soft systems, a method for obtaining molecular resolution on `real' samples with significant surface roughness has remained elusive. Here we will show that a relatively new technique, torsional tapping AFM (TTAFM), is capable of imaging with resolution down to 3.7 Angrstrom on the surface of `bulk' polymer films [1]. In TTAFM T-shaped cantilevers are driven into torsional oscillation. As the tip is offset from the rotation axis this provides a tapping motion. Due to the high frequency and Q of the oscillation and relatively small increase in spring constant, improved cantilever dynamics and force sensitivity are obtained. As the tip offset from the torsional axis is relatively small (typically 25 microns), the optical lever sensitivity is considerably improved compared to flexural oscillation. Combined these give a reduction in noise floor by a factor of 12 just by changing the cantilever geometry. The ensuing low noise allows the use of ultra-sharp `whisker' tips with minimal blunting. As the cantilevers remain soft in the flexural axis, the force when imaging with error is also reduced, further protecting the tip. We will show that this combination allows routine imaging of the molecular structure of semicrystalline polymer films, including chain folds, loose loops and tie-chains in polyethylene, and the helical conformation of polypropylene within the crystal, using a standard, commercial AFM. [4pt] [1] N Mullin, JK Hobbs, PRL 107, 197801 (2011)

  6. Experimental determination of limit angle of helical anisotropy in amorphous magnetic microwires

    International Nuclear Information System (INIS)

    Chizhik, A.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; Gawronski, P.

    2009-01-01

    The influence of the torsion stress on the surface magnetic structure in Co-rich amorphous glass covered microwires has been investigated. The limit angle of the surface helical anisotropy induced by the torsion stress has been determined in agreement with the model which considers the torsion stress as a interference of two tensile stresses of opposite signs directed at 45 deg. and 135 deg. relative to the longitudinal axis of the wire

  7. Torsional structural response from free-field ground motion

    International Nuclear Information System (INIS)

    Lam, P.C.; Scavuzzo, R.J.

    1979-01-01

    Torsional response of structures subjected to the action of both the free-field torsional inputs and external torque is investigated. By expanding the work of Scanlan, both lateral and torsional foundation inputs due to a travelling shear wave are derived from the free-field point motion. These free-field torsional motions are used as the basis of numerical studies. Response for different soil stiffness and structural characteristics are studied, as well as different dynamic models. In one dynamic model the structure is coupled to the soil using a compliance spring matrix and in the second model the structure coupled to an elastic half-space. Results of these two basic models are compared and found to be in good agreement. Finally, torsional structural response caused by torsional inputs is compared with lateral response caused by modified lateral inputs to determine the significance of torsional excitation on the seismic response of building structures. Numerical results show that these torsional seismic loads are as large or larger than those from modified lateral inputs. (orig.)

  8. Analysis of Helical Stainless Steel 08X18H10 Spring Relaxation at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available The object of this paper is to study a cylindrical helical spring to be applied at high temperatures. The aim of this work is to study the regularity of relaxation stresses in spring and evaluate its long-term stresses.The work allowed us to establish relaxation dependencies of springs under high temperatures. According to the results of creep tests at 600°, the theoretical equation of steel creep was defined concretely. It was then used for the analysis at 350°.The paper presents a created finite element model of spring relaxation. It is the stainless steel 08Х18Н10 spring to be used at the temperature of 350°.In this paper describes the basic theory of creep, considers the relationship between the creep speed and parameters. The changing compression force of springs is analyzed under fixed compression amount.The paper also analyzes the changing length of springs in the free state after various stages of high-temperature relaxation test. It determines the results of compression forces and free length under different amount of compression.The analysis to compare the theoretical calculation of the compression forces with the experimental results is conducted. Computer modeling is created in Abaqus for calculation. Spring relaxation experiments are carried out under fixed compression amount and at the temperature of 350°. It is shown that the simulation results, which are carried out in Abaqus coincide with experimental results. The study shows that it is possible to use the creep equation parameters, based on the experimental results at high temperatures, to predict creep and relaxation properties of springs, which work at less high temperatures. The work results can be used as a basis in designing the springs working at high temperatures.

  9. Full base isolation for earthquake protection by helical springs and viscodampers

    International Nuclear Information System (INIS)

    Hueffmann, G.K.

    1985-01-01

    GERB, a company specializing in vibration isolation has developed a new system for the three dimensional earthquake protection of whole structures, based on helical springs with definite linear flexibility of similar order in all three dimensions and velocity proportional viscodampers, also highly effective in all degrees of freedom. This system has already been successfully used for the installation of big diesel- and turbo-generators in seismic zones for quite a long time, where earthquake protection has been combined with conventional vibration control concepts. Tests on the shaking table of the Earthquake Research Institute at Skopje/Yugoslavia with a model of a 5-story-steel-frame-building comparing a fixed base and spring viscodamper supported installation have shown high stress relief in the structure at limited amplitudes. This system will give not only more protection for buildings and the people inside, but the extra cost equals the savings in the structure. Some unique advantages of this system are: no creep, deterioration or fatigue with time, easy inspection, simple replacement of elements if necessary and also simple modification of the system for example in case of load changes, static uncoupling from the subfoundation (independence of settlements) and low influence of travelling wave effects. (orig.)

  10. Experimental investigations of higher-order springing and whipping-WILS project

    Directory of Open Access Journals (Sweden)

    Hong Sa Young

    2014-12-01

    Full Text Available Springing and whipping are becoming increasingly important considerations in ship design as container ships increase in size. In this study, the springing and whipping characteristics of a large container ship were investigated through a series of systematic model tests in waves. A multi-segmented hull model with a backbone was adopted for measurement of springing and whipping signals. A conversion method for extracting torsion springing and whipping is described in this paper for the case of an open-section backbone. Higher-order springing, higher-mode torsion responses, and the effects of linear and nonlinear springing in irregular waves are highlighted in the discussion.

  11. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    Science.gov (United States)

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  12. Force and Strength Analysis of the Reel with Jaw of Torsion-bar Spring

    Science.gov (United States)

    Ma, Ke; Liu, Weiqi; Wang, Jiawei; Gu, Le

    2017-06-01

    Structure characteristics and working principle of the reel with jaw of torsion-bar spring are introduced. The reel can not only eliminate the leakage risks of hydraulic jaw, but also reduce the investment cost of enterprises and improve the surface quality of the products. The static analysis of mandrel, sector plate and oblique wedge were conducted, and the main data of stress distribution and deformation were obtained, which provide a reliable theoretical basis for the design and optimization of the reel. The research results show that the external support has a great effect on the stress and deformation of the mandrel. With the increase of the weight of steel stress increases, the drum deformation increases, but the analysis of the position of maximum stress, can be obtained to drum stress and deformation is the main reason of excessive bending moment caused by heavy steel rolls. The bending moment and deformation can be reduced significantly at the end of the steel coil, which can effectively improve the service life of the drum.

  13. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  14. Structure and dynamics of double helical DNA in torsion angle hyperspace: a molecular mechanics approach.

    Science.gov (United States)

    Borkar, Aditi; Ghosh, Indira; Bhattacharyya, Dhananjay

    2010-04-01

    Analysis of the conformational space populated by the torsion angles and the correlation between the conformational energy and the sequence of DNA are important for fully understanding DNA structure and function. Presence of seven variable torsion angles about single covalent bonds in DNA main chain puts a big challenge for such analysis. We have carried out restrained energy minimization studies for four representative dinucleosides, namely d(ApA):d(TpT), d(CpG):d(CpG), d(GpC):d(GpC) and d(CpA):d(TpG) to determine the energy hyperspace of DNA in context to the values of the torsion angles and the structural properties of the DNA conformations populating the favorable regions of this energy hyperspace. The torsion angles were manipulated by constraining their values at the reference points and then performing energy minimization. The energy minima obtained on the potential energy contour plots mostly correspond to the conformations populated in crystal structures of DNA. Some novel favorable conformations that are not present in crystal structure data are also found. The plots also suggest few low energy routes for conformational transitions or the associated energy barrier heights. Analyses of base pairing and stacking possibility reveal structural changes accompanying these transitions as well as the flexibility of different base steps towards variations in different torsion angles.

  15. Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.

    2014-01-01

    The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress

  16. Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A., E-mail: n_buznikov@mail.ru [Scientific-Research Institute of Natural Gases and Gas Technologies – GAZPROM VNIIGAZ, Razvilka, Leninsky District, Moscow Region 142717 (Russian Federation); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2014-04-15

    The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress.

  17. The efficacy of rotational control designs in promoting torsional stability of hip fracture fixation.

    Science.gov (United States)

    Gosiewski, J D; Holsgrove, T P; Gill, H S

    2017-05-01

    Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a bone substitute material. The substitute material used was Sawbones polyurethane foam of three different densities (0.08 g/cm 3 , 0.16 g/cm 3 and 0.24 g/cm 3 ). Each torsion test comprised a steady ramp of 1°/minute up to an angular displacement of 10°. The deployable crucifix design (X-Bolt), was more torsionally stable, compared to both the dynamic hip screw (DHS, p = 0.008) and helical blade (DHS Blade, p= 0.008) designs in bone substitute material representative of osteoporotic bone (0.16 g/cm 3 polyurethane foam). In 0.08 g/cm 3 density substrate, the crucifix design (X-Bolt) had a higher resistance to torsion than the screw (DHS, p = 0.008). There were no significant differences (p = 0.101) between the implants in 0.24 g/cm 3 density bone substitute. Our findings indicate that the clinical standard proximal fracture fixator design, the screw (DHS), was the least effective at resisting torsional load, and a novel crucifix design (X-Bolt), was the most effective design in resisting torsional load in bone substitute material with density representative of osteoporotic bone. At other densities the torsional stability was also higher for the X-Bolt, although not consistently significant by statistical analysis. Cite this article : J. D. Gosiewski, T. P. Holsgrove, H. S. Gill. The efficacy of rotational control designs in promoting torsional stability of hip fracture fixation. Bone Joint Res 2017;6:270-276. DOI: 10.1302/2046-3758.65.BJR-2017-0287.R1. © 2017 Gosiewski et al.

  18. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    Science.gov (United States)

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  19. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  20. Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m

    International Nuclear Information System (INIS)

    Cumpson, Peter J.; Hedley, John; Clifford, Charles A.; Chen Xinyong; Allen, Stephanie

    2004-01-01

    Calibration of atomic force microscope (AFM) cantilevers is necessary for the measurement of nano-newton and pico-newton forces, which are critical to analytical application of AFM in the analysis of polymer surfaces, biological structures and organic molecules. Previously we have described microfabricated array of reference spring (MARS) devices for AFM cantilever spring-constant calibration. Hitherto, these have been limited to the calibration of AFM cantilevers above 0.03 N/m, although they can be used to calibrate cantilevers of lower stiffness with reduced accuracy. Below this limit MARS devices similar to the designs hitherto described would be fragile and difficult to manufacture with reasonable yield. In this work we describe a device we call torsional MARS. This is a large-area torsional mechanical resonator, manufactured by bulk micromachining of a 'silicon-on-insulator' wafer. By measuring its torsional oscillation accurately in vacuum we can deduce its torsional spring constant. The torsional reference spring spans the range of spring constant (from 4 down to 0.01 N/m) that is important in biological AFM, allowing even the most compliant AFM cantilever to be calibrated easily and rapidly

  1. Simulations of Mechanical Response of Superelastic NiTi Helical Spring and its Relation to Fatigue Resistance

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Petr; Frost, Miroslav; Kruisová, Alena; Hiřmanová, Klára; Heller, Luděk; Šittner, Petr

    2014-01-01

    Roč. 23, č. 7 (2014), s. 2591-2598 ISSN 1059-9495 R&D Projects: GA ČR GA13-13616S; GA ČR GA14-15264S; GA ČR(CZ) GP14-28306P Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761203 Program:M Institutional support: RVO:61388998 ; RVO:68378271 Keywords : helical spring * non-proportional loading * numerical modeling * R-phase * shape memory alloys Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 0.998, year: 2014 http://link.springer.com/article/10.1007%2Fs11665-014-0906-y

  2. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Directory of Open Access Journals (Sweden)

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  3. Torsion of cracked nanorods using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J

    2014-01-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)

  4. Torsion Dependence of Domain Transition and MI Effect of Melt-Extracted Co68.15Fe4.35Si12.25B13.25Nb1Cu1 Microwires

    Directory of Open Access Journals (Sweden)

    Dawei Xing

    2015-01-01

    Full Text Available We present the torsional stress induced magnetoimpedance (MI effect and surface domain structure evolution of magnetostrictive melt-extracted Co68.15Fe4.35Si12.25B13.25Nb1Cu1 microwires. Experimental results indicate that the surface domain structures observed by magnetic force microscope (MFM transform from the weak circumferential domain of as-cast state to the helical domain under large torsional strain of 81.6 (2π rad/m. Domain wall movement distorts at torsional strain ξ=20.4 (2π rad/m and forms a helical anisotropy with an angle of around 30° versus axial direction of wire. At 15 MHz, the maximum of GMI ratio ΔZ/Z(% increases to 194.4% at ξ=20.4 (2π rad/m from 116.3% of the as-cast state and then decreases to 134.9% at ξ=102.0 (2π rad/m. The torsion magnetoimpedance (TMI ratio ΔZ/Zξ(% is up to 290%. Based on this large torsional strain and high MI ratio, the microwire can be as an referred candidate for high-performance TMI sensor application.

  5. Bio-inspired device: a novel smart MR spring featuring tendril structure

    International Nuclear Information System (INIS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration. (letter)

  6. Bio-inspired device: a novel smart MR spring featuring tendril structure

    Science.gov (United States)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  7. Step-edge calibration of torsional sensitivity for lateral force microscopy

    International Nuclear Information System (INIS)

    Sul, Onejae; Jang, Seongjin; Yang, Eui-Hyeok

    2009-01-01

    A novel calibration technique has been developed for lateral force microscopy (LFM). Typically, special preparation of the atomic force microscope (AFM) cantilever or a substrate is required for LFM calibration. The new calibration technique reported in this paper greatly reduces the required preparation processes by simply scanning over a rigid step and measuring the response of the AFM photodiode in the normal and lateral directions. When an AFM tip touches a step while scanning, the tip experiences a reaction force from the step edge, and the amount of torsion can be estimated based on the ratio of the normal and torsional spring constants of an AFM cantilever. Therefore, the torsion can be calibrated using the measured response of the photodiode from the lateral movement of the AFM tip. This new calibration technique has been tested and confirmed by measuring Young's modulus of a nickel (Ni) nanowire

  8. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.N., E-mail: ivanov@kph.tuwien.ac.at [Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien (Austria); Snow, W.M., E-mail: wsnow@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States)

    2017-01-10

    Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  9. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Directory of Open Access Journals (Sweden)

    A.N. Ivanov

    2017-01-01

    Full Text Available Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  10. Thermoelastic properties on Cu-Zn-Al shape memory springs

    Directory of Open Access Journals (Sweden)

    Carlos Augusto do Nascimento Oliveira

    2010-06-01

    Full Text Available This paper present a thermomechanical study of actuators in form of helical springs made from shape memory alloy wires that can work as actuator and/or as sensor. These abilities are due to the martensitic transformation. This transformation is a diffusionless phase transition that occurs by a cooperative atomic rearrange mechanism. In this work, helical spring actuators were manufactured from Cu-Zn-Al shape memory alloy wires. The springs were submitted to constant tensile loads and thermal cycles. This procedure allows to determine thermoelastic properties of the shape memory springs. Thermomechanical properties were analyzed during 50 thermal cycles in the temperature range from 20 to 130 °C. Results of variations in critical transformation temperatures, thermoelastic strain and thermal hysteresis are discussed based on defects rearrangement and martensitic transformation theory.

  11. Numerical Analysis of Small Deformation of Flexible Helical Flagellum of Swimming Bacteria

    Science.gov (United States)

    Takano, Yasunari; Goto, Tomonobu

    Formulations are conducted to numerically analyze the effect of flexible flagellum of swimming bacteria. In the present model, a single-flagellate bacterium is assumed to consist of a rigid cell body of the prolate spheroidal shape and a flexible flagellum of the helical form. The resistive force theory is applied to estimate the force exerted on the flagellum. The torsional as well as the bending moments determine the curvature and the torsion of the deformed flagellum according to the Kirchhoff model for an elastic rod. The unit tangential vector along the deformed flagellum is calculated by applying evolution equations for space curves, and also a deformed shape of the flagellum is obtained.

  12. Influence of torsion and tensile stress on magnetoimpedance effect in Fe-rich amorphous microwires at high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain)]. E-mail: wubgagac@sc.ehu.es; Chizhik, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Zhukov, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Zhukova, V. [TAMAG Iberica S. L. Parque Tecnologico de Miramon, Paseo Mikeletegi 56, 1a Planta, 20009 San Sebastian (Spain); Gonzalez, J. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Blanco, J.M. [Dpto. Fisica Aplicada I. EUPDS, UPV/EHU, Plaza Europa 1, 20018 San Sebastian (Spain); Panina, L.V. [University of Plymouth, Drakes Circus, Plymouth (United Kingdom)

    2007-09-15

    In this work, we study the magnetoimpedance response under tensile and torsional stress of Fe{sub 76}B{sub 13}Si{sub 11} glass-coated amorphous microwires (with the metallic nucleus diameter of 17 {mu}m) prepared by Taylor-Ulitovski method. The impedance was evaluated using a Network Analyser in the frequency range of 10-500 MHz. In order to induce a helical magnetic anisotropy that modifies the magnetic domain structure and the magnetic response of the sample, the torsion stresses have been applied. The effect of such torsion on giant magnetoimpedance (GMI) has been studied in a Fe-rich amorphous microwire as a function of the driving current frequency. Unusual behaviour of the GMI with torsion has been observed up to 500 MHz: at this frequency, the change from double-peak to single-peak behaviour has been observed. It could be ascribed to changes on domain structures and surface anisotropy induced by applied torsion. For this frequency range, an abrupt decrease of the impedance with torsion has been observed. We have also studied the tensile-induced changes of GMI effect in a Fe-rich amorphous microwire. The GMI effect increases with applied tensile stress and with the frequency of AC current. Observed dependences could be attributed to the change of the overall magnetic anisotropy under applied torsion.

  13. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, George [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Casparay, Alfred H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-19

    In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

  14. Ozil IP torsional mode versus combined torsional/longitudinal microcoaxial phacoemulsification.

    Science.gov (United States)

    Helvacioglu, Firat; Tunc, Zeki; Yeter, Celal; Oguzhan, Hasan; Sencan, Sadik

    2012-01-01

    To compare the safety and efficacy of microcoaxial phacoemulsification surgeries performed with the Ozil Intelligent Phaco (IP) torsional mode and combined torsional/longitudinal ultrasound (US) mode using the Infiniti Vision System (Alcon Laboratories). In this prospective randomized comparative study, 60 eyes were assigned to 2.2-mm microcoaxial phacoemulsification using the Ozil IP torsional mode (group 1) or combined torsional/longitudinal US mode (group 2). The primary outcome measures were US time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound amplitudes, mean operation time, mean volume of balanced salt solution (BSS) used, and surgical complications. Both groups included 30 eyes. Mean UST, CDE, and longitudinal and torsional ultrasound amplitudes in group 1 were 1 minute 15±34.33 seconds, 8.74±5.64, 0.43±0.74, and 25.56±8.56, respectively, and these parameters in group 2 were 1 minute 40±51.44 seconds, 9.28±5.99, 3.64±1.55, and 3.71±1.34, respectively. UST and longitudinal amplitudes were found to be significantly low in group 1 (p<0.001, p<0.001), whereas torsional amplitude was found to be significantly high in this group (p=0.001). Mean volumes of BSS used in groups 1 and 2 were 63.30±18.00 cc and 84.50±28.65 cc, respectively (p=0.001). The Ozil IP torsional mode may provide more effective lens removal than the combined torsional/longitudinal US mode with a lower UST and volume of BSS used.

  15. Higher Franz-Reidemeister torsion

    CERN Document Server

    Igusa, Kiyoshi

    2002-01-01

    The book is devoted to the theory of topological higher Franz-Reidemeister torsion in K-theory. The author defines the higher Franz-Reidemeister torsion based on Volodin's K-theory and Borel's regulator map. He describes its properties and generalizations and studies the relation between the higher Franz-Reidemeister torsion and other torsions used in K-theory: Whitehead torsion and Ray-Singer torsion. He also presents methods of computing higher Franz-Reidemeister torsion, illustrates them with numerous examples, and describes various applications of higher Franz-Reidemeister torsion, particularly for the study of homology of mapping class groups. Packed with up-to-date information, the book provides a unique research and reference tool for specialists working in algebraic topology and K-theory.

  16. Appendicular Torsion

    Directory of Open Access Journals (Sweden)

    Siddharth Pramod Dubhashi

    2016-01-01

    Full Text Available Torsion of the vermiform appendix is a rare condition detectable only at operation. It can be primary or secondary. This is a case report of 52-year-old female with 180° anti-clockwise rotation of the appendix. Torsion can further leads to strangulation and infarction of the organ. Appendicular torsion could be included in the differential diagnosis of pain in right iliac fossa.

  17. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    Science.gov (United States)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to

  18. Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Khoei, A.R.; Ban, E.; Banihashemi, P.; Abdolhosseini Qomi, M.J.

    2011-01-01

    Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.

  19. Modeling of mechanical response of NiTi shape memory alloy subjected to combined thermal and non-proportional mechanical loading: A case study on helical spring actuator

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Sedlák, Petr; Kadeřávek, Lukáš; Heller, Luděk; Šittner, Petr

    2016-01-01

    Roč. 27, č. 14 (2016), s. 1927-1938 ISSN 1045-389X R&D Projects: GA ČR(CZ) GP14-28306P; GA ČR GA14-15264S; GA ČR GAP107/12/0800 Institutional support: RVO:61388998 ; RVO:68378271 Keywords : shape memory alloys * R-phase * modeling * elastic anisotropy * helical spring Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.255, year: 2016 http://jim.sagepub.com/content/27/14/1927.full.pdf

  20. Torsion in extra-dimensions

    International Nuclear Information System (INIS)

    Wali, Kameshwar C

    2010-01-01

    We consider a variant of the 5 dimensional Kaluza-Klein theory within the framework of Einstein-Cartan formalism. By imposing a set of constraints on torsion and Ricci rotation coefficients, we show that the torsion components are completely expressed in terms of the metric. and the Ricci tensor in 5D corresponds exactly to what one would obtain from torsion-free general relativity on a 4D hypersurface. The contributions of the scalar and vector fields of the standard K-K theory to the Ricci tensor and the affine connections are completely nullified by the contributions from the torsion. As a consequence, geodesic motions do not distinguish the torsion free 4D space-time from a hypersurface of 5D space-time with torsion satisfying the constraints. Since torsion is not an independent dynamical variable in this formalism, the modified Einstein equations are different from those in the general Einstein-Cartan theory. This leads to important cosmological consequences such as the emergence of cosmic acceleration.

  1. Combined process "helical rolling-pressing" and its effect on the microstructure of ferrous and non-ferrous materials

    Science.gov (United States)

    Naizabekov, Abdrakhman; Lezhnev, Sergey; Arbuz, Alexandr; Panin, Evgeniy

    2018-02-01

    Ultrafine-grained materials are one of the most promising structural and functional materials. However, the known methods of obtaining them are not enough powerful and technologically advanced for profitable industrial applications. Development of the combined process "helical rolling-pressing" is an attempt to bring technology to produce ultrafine-grained materials to the industry. The combination of intense processing of the surface by helical rolling and the entire cross section of workpiece in equal channel angular matrix, with intense deformation by torsion between rolls and matrix will increase the degree of deformation per pass and allows to mutually compensate disadvantages of these methods in the case of their separate use. This paper describes the development of a laboratory stand and study of influence of combined process "helical rolling-pressing"on the microstructure of tool steel, technical copper and high alloy stainless high-temperature steel.

  2. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  3. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Science.gov (United States)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  4. Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever

    International Nuclear Information System (INIS)

    Solares, Santiago D; Hoelscher, Hendrik

    2010-01-01

    A spectral analysis method has been recently introduced by Stark et al (2002 Proc. Natl Acad. Sci. USA 99 8473-8) and implemented by Sahin et al (2007 Nat. Nanotechnol. 2 507-14) using a T-shaped cantilever design, the torsional harmonic cantilever (THC), which is capable of performing simultaneous tapping-mode atomic force microscopy imaging and force spectroscopy. Here we report on numerical simulations of the THC system using a simple dual-mass flexural-torsional model, which is applied in combination with Fourier data processing software to illustrate the spectroscopy process for quality factors corresponding to liquid, air and vacuum environments. We also illustrate the acquisition of enhanced topographical images and deformed surface contours under the application of uniform forces, and compare the results to those obtained with a previously reported linear dual-spring-mass model.

  5. The incidence of isolated penile torsion in North India: A study of 5,018 male neonates.

    Science.gov (United States)

    Bhat, Amilal; Bhat, Mahakshit; Kumar, Vinay; Goyal, Suresh; Bhat, Akshita; Patni, Madhu

    2017-10-01

    Congenital penile torsion is a three-dimensional deformity with helical rotation of the distal corporal bodies with the penile crurae remaining fixed to the pubic rami. The first case of congenital penile torsion (hypospadias) was described in 1857. Isolated penile torsion is an under-reported anomaly. The reported incidence of isolated penile torsion is 1.7-27% and severe torsion is 0.7%. There are no studies available from Indian subcontinent on the incidence of isolated penile torque. The objective of this study was to determine the overall incidence of isolated penile torque in a north Indian population. A prospective study of deliveries of male children was conducted at our institute between April 2014 and June 2015. Penile torsion was measured using a small protractor either by the deviation of the median raphae or the direction of the meatus. Data were collected on the incidence of congenital isolated penile torsion, including the degree and direction (left or right) of torsion. Torsion was classified as mild (900). Statistical analysis was done using the chi-square test with variables of age and parity of the mother and weight of the child. There were 99 cases of isolated penile torque among 5018 male neonates assessed for penile torque. The incidence of isolated penile torque was 19.7 per 1000 births. The degree of torsion varied from 30 to 110° (average 51.46°). Seventy-nine percent (79%) of them had left side and 21% had right side torque (4:1). The degree of torsion was mild in 30%, with 20% having left side torque and 10% having right side torque (2:1). A moderate degree of torsion was seen in 69%: 84% of them had left torque and only 16% had right sided torque (5:1). Only one patient had severe left torque. The incidence of isolated congenital penile torsion was highest in the maternal age group of >30 years followed by the 26-30-year age group, and was lowest in 21-25 year age group. In multiparous women, the incidence of isolated congenital penile

  6. Re-torsion of the ovaries

    DEFF Research Database (Denmark)

    Hyttel, Trine E W; Bak, Geske S; Larsen, Solveig B

    2015-01-01

    The increasing use of de-torsion of the ovaries may result in re-torsion. This review addresses risk of re-torsion and describes preventive strategies to avoid re-torsion in pre-menarcheal girls, and fertile and pregnant women. We clinically reviewed PubMed, Embase, Trip and Cochrane databases. T...

  7. Computational Prediction of Atomic Structures of Helical Membrane Proteins Aided by EM Maps

    Science.gov (United States)

    Kovacs, Julio A.; Yeager, Mark; Abagyan, Ruben

    2007-01-01

    Integral membrane proteins pose a major challenge for protein-structure prediction because only ≈100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane α-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of α-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the α-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL. PMID:17496035

  8. Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Bender, Julia

    2012-12-17

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  9. ANALYSIS OF HOLLOW COIL HELICAL EXTENSION SPRING AND THE STUDY OF OPTIMIZING THE WEIGHT

    OpenAIRE

    Naman Gupta*1, Manas purohit2 & Deepika potghan3

    2017-01-01

    This paper shows the study which deals with the weight reduction for tensile extension spring by changing the solid spring to hollow one. The springs which are generally used are in solid form due to which the weight of entire body in which the spring is attached gets increased. The forces which can be act on spring may be linear push or linear pull or radial type. This spring deflect by pulling and regain its shape when pulling is neglect. The weight of tensile spring is reduced by changing ...

  10. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    Science.gov (United States)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  11. Passive Sun seeker/tracker and a thermally activated power module

    Science.gov (United States)

    Siebert, C. J.; Morris, F. A.

    1984-01-01

    Development and testing of two mechanisms using a shape memory alloy metal (NITINOL) as the power source are described. The two mechanisms developed are a passive Sun Seeker/Tracker and a generic type power module. These mechanisms use NITINOL wire initially strained in pure torsion which provides the greatest mechanical work capacity upon recovery, as compared to other deformation modes (i.e., tension, helical springs, and bending).

  12. Newton-Cartan gravity and torsion

    Science.gov (United States)

    Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan

    2017-10-01

    We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

  13. Study of the corrosion fatigue resistance of steel grades for automotive suspension springs

    Energy Technology Data Exchange (ETDEWEB)

    Mougin, J. [Ascometal CREAS, BP70045, F-57301 Hagondange Cedex (France); Mostacchi, A. [Ascometal Developpement, BP17, F-38570 Le Cheylas (France); Hersart, Y. [Allevard Rejna Autosuspensions CRDT, 201 Rue de Sin-le-Noble, BP629, F-59506 Douai Cedex (France)

    2004-07-01

    In order to reduce the total weight of vehicles for ecological and economical reasons, the car makers use down-sizing for several components of the cars. Concerning helical suspension springs, the size of the bar diameter and the number of spring coils are decreased, leading to an increase of the stress level applied on the spring. In this respect, steels with high mechanical properties are required, to achieve a good fatigue resistance of the springs. The corrosion resistance is also important for this application. Indeed, during service, the protective coating applied on the springs can be scratched by gravels, and bare underlying metal can be put in contact with the atmosphere, including humidity, drops of rain but also de-icing salts. Generally speaking, an increase of mechanical properties decreases the corrosion fatigue resistance of the steels. In this respect, a compromise needs to be found, that is why the study of corrosion fatigue resistance is very important. In order to study the corrosion fatigue resistance of spring steels, an original device and test procedure have been set up. Torsional fatigue on specimens is used to simulate the stress applied on each spring coil. The stress levels are chosen to be representative of the actual inservice loads. The specimens are shot-peened and coated in a same way as the actual springs. Scratching of the painting is performed, giving rise to small areas of bare metal. Three types of tests are performed: fatigue in air (taken as the reference level), fatigue on specimens which have been corroded previously (test similar to the spring-makers practice) and coupled corrosion fatigue. The mechanisms involved in corrosion fatigue have been studied. For all the specimens, crack initiated on corrosion pits. For the specimens corroded prior fatigue testing, the corrosion pits can be quite severe. In this case, these pits act as a surface defect which increases locally the stress concentration and accelerates the crack

  14. Intermittent Testicular Torsion

    African Journals Online (AJOL)

    2017-06-02

    Jun 2, 2017 ... had prior episodes of testicular pain, suggesting that they may have had intermittent torsion before .... None of the patients had antecedent history of sexual exposure, fever, or urinary tract infection .... torsion of the spermatic cord portends an increased risk of acute testicular infarction. J Urol 2008;180 4 ...

  15. Stability in quadratic torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2017-11-15

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  16. Stability in quadratic torsion theories

    International Nuclear Information System (INIS)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

    2017-01-01

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  17. Using torsion to manipulate spin currents

    Science.gov (United States)

    Fumeron, Sébastien; Berche, Bertrand; Medina, Ernesto; Santos, Fernando A. N.; Moraes, Fernando

    2017-02-01

    We address the problem of quantum particles moving on a manifold characterised by the presence of torsion along a preferential axis. In fact, such a torsion may be taylored by the presence of a single screw dislocation, whose Burgers vector measures the torsion amplitude. The problem, first treated in the relativistic limit describing fermions that couple minimally to torsion, is then analysed in the Pauli limit. We show that torsion induces a geometric potential and also that it couples generically to the phase of the wave function, giving rise to the possibility of using torsion to manipulate spin currents in the case of spinor wave functions. These results emerge as an alternative strategy for using screw dislocations in the design of spintronic-based devices.

  18. Oophoropexy for Recurrent Ovarian Torsion

    Directory of Open Access Journals (Sweden)

    Jennifer Hartley

    2018-01-01

    Full Text Available A 31-year-old nulliparous patient presents with a three-day history of right sided colicky abdominal pain and associated nausea. This patient has previously presented twice with right sided ovarian torsion with the background of polycystic ovaries in the last two consecutive years. Blood tests were normal. Due to previous history, there was a high index of clinical suspicion that this may be a further torsion. Therefore, the patient was taken to theatre for a diagnostic laparoscopy and a further right sided ovarian torsion was noted. At this time, oophoropexy was performed to the uterosacral ligament to prevent further torsion in order to preserve the patients’ fertility. In this article, we detail this case and also provide a discussion of ovarian torsion including risk factors, presentation, and current thoughts on management.

  19. Torsion in superstrings

    International Nuclear Information System (INIS)

    Bars, I.; Nemeschansky, D.; Yankielowicz, S.

    1986-01-01

    In this paper the authors discuss string theories on a background manifold with torsion. In the first part, candidate vacuum configurations for ten-dimensional superstrings are discussed. The authors compactify these on M/sub 4/xK, where M/sub 4/ is four-dimensional and K some compact six-dimensional manifold. In particular they are interested in investigating the existence of solutions with non-zero torsion on K. The compactification problem is approached both from the effective field theory point of view and directly using string considerations. The second part of the talk is devoted to the construction of string theories in curved space with torsion. The authors discuss both the Neveu-Schwarz-Ramond type string and the Green-Schwarz type string. Particular emphasis is put on the resulting constraints on space-time supersymmetry in the Green-Schwarz approach. This study uses two-dimensional non-linear sigma models to describe the propagation of strings in background geometries with torsion. The background field can be understood as arising from condensation of infinite number of strings

  20. Isolated penile torsion in newborns.

    Science.gov (United States)

    Eroglu, Egemen; Gundogdu, Gokhan

    2015-01-01

    We reported on the incidence of isolated penile torsion among our healthy children and our approach to this anomaly. Between 2011 and 2014, newborn babies with penile torsion were classified according to the angle of torsion. Surgical correction (penile degloving and reattachment for moderate cases and dorsal dartos flap technique in case of resistance) after 6 months was advised to the babies with rotations more than 45°. Among 1000 newborn babies, 200 isolated penile torsions were found, and among these, 43 had torsions more than 45°, and 4 of these had angles greater than 90°. The mean angle of the rotations was found 30.45° (median: 20°). In total, 8 children with 60° torsions were previously circumcised. Surgery was performed on 19 patients, with a mean patient age of 12 ± 2 months. Of these 19, 13 babies were corrected with degloving and reattachment. This technique was not enough on the remaining 6 patients; therefore, derotational dorsal dartos flap was added to correct the torsion. After a mean of 15.6 ± 9.8 months, residual penile rotation, less than 15°, was found only in 2 children. The incidence of isolated penile torsion is 20% in newborns. However, rotation more than 45° angles are seen in 4.3% of male babies. Correction is not necessary in mild degrees, and penile degloving with reattachment is enough in most cases. If the initial correction is insufficient, dorsal dartos flap rotation is easy and effective. Prior circumcision neither disturbs the operative procedure nor affects the outcomes.

  1. Development of a simple computerized torsion test to quantify subjective ocular torsion.

    Science.gov (United States)

    Kim, Y D; Yang, H K; Hwang, J-M

    2017-11-01

    PurposeThe double Maddox-rod test (DMRT) and Lancaster red-green test (LRGT) are the most widely used tests worldwide to assess subjective ocular torsion. However, these tests require equipment and the quantified results of ocular torsion are only provided in rough values. Here we developed a novel computerized torsion test (CTT) for individual assessment of subjective ocular torsion and validated the reliability and accuracy of the test compared with those of the DMRT and LRGT.MethodsA total of 30 patients with cyclovertical strabismus and 30 controls were recruited. The CTT was designed using Microsoft Office PowerPoint. Subjects wore red-green filter spectacles and viewed gradually tilted red and cyan lines on an LCD monitor and pressed the keyboard to go through the slides, until both lines seemed parallel. All subjects underwent the CTT, DMRT, and LRGT. Intraclass correlation coefficients and Bland-Altman plots were analyzed to assess the acceptability of the CTT compared with that of the DMRT.ResultsBoth the DMRT and CTT showed no significant test-retest differences in the strabismus and control groups. The DMRT and CTT results demonstrated an acceptable agreement. The reliability of the CTT was better than that of the DMRT. The LRGT showed low sensitivity for the detection of ocular torsion compared with the DMRT (40.0%) and CTT (39.1%).ConclusionOur results suggest that the assessment of subjective ocular torsion using the CTT based on PowerPoint software is simple, reproducible, and accurate and can be applied in clinical practice.

  2. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    Science.gov (United States)

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  3. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  4. TORSION OF THE VERMIFORM APPENDIX: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Dr. Imtiaz Wani

    2009-07-01

    Full Text Available Torsion of the vermiform appendix is a rare condition with few cases reported in the literature. Various factors predispose to torsion. Various factors predispose to torsion. We report a case of primary torsion of the vermiform appendix. The clinical presentation was indistinguishable from acute appendicitis and the diagnosis was made at operation. Appendix was preileal in position and the direction of torsion was anticlockwise. There was intrinsic torsion with no obvious factor for torsion identified. Appendectomy was performed.

  5. Torsion testing of bed joints

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg; Pedersen, Carsten Mørk

    2008-01-01

    This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....

  6. The odd side of torsion geometry

    DEFF Research Database (Denmark)

    Conti, Diego; Madsen, Thomas Bruun

    2014-01-01

    We introduce and study a notion of `Sasaki with torsion structure' (ST) as an odd-dimensional analogue of Kähler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion. Any odd-dimensional compact Lie group is sho...

  7. High-Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs

    NARCIS (Netherlands)

    Aßhoff, Sarah J.; Lancia, Federico; Iamsaard, S.; Matt, B.D.; Kudernac, Tibor; Fletcher, Stephen P.; Katsonis, Nathalie

    2017-01-01

    Motion in plants often relies on dynamic helical systems as seen in coiling tendrils, spasmoneme springs, and the opening of chiral seedpods. Developing nanotechnology that would allow molecular-level phenomena to drive such movements in artificial systems remains a scientific challenge. Herein, we

  8. Induced quantum torsion

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1985-07-01

    We study pregeometry in the framework of a Poincare gauge field theory. The Riemann-Cartan space-time is shown to be an ''effective geometry'' for this model in the low energy limit. By using Heat Kernel techniques we find the induced action for curvature and torsion. We obtain in this way the usual Einstein-Hilbert action plus an axial Maxwell term describing the propagation of a massless, axial vector torsion field. (author)

  9. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  10. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract.

    Science.gov (United States)

    Fakhry, Mohamed A; El Shazly, Malak I

    2011-01-01

    To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used.

  11. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  12. Tibiotalar torsion: bioengineering paradigm.

    Science.gov (United States)

    Michele, A A; Nielsen, P M

    1976-10-01

    1. Medial tibiotalar torsion is the most common disorder peculiar to mankind. 2. The pathogonomic findings are (a) an axial medially rotated and adducted distal third of the shaft of the tibia, (b) the plafond of the tibia with its mortise containing the "track-bound" talus, which is deflected strongly toward the tibial side, (c) an exaggerated midtarsal equinus, (d) ostensible restriction of dorsiflexion of the hindfoot against the tibia, (e) mild separation of the distal tibiofibular articulation, and (f) forward displacement of the gravitational axis to the naviculocunei-form joint. 3. Faulty leg crossing in utero resulting in an abnormal pelvofemoral-tibial design is discussed and its important consequences in the vulnerable 40 per cent of the population are emphasized. 4. The kinesiomechanics of the leg, ankle and foot is reviewed. 5. The radiographic parameters of medial tibiotalar torsion are presented, as well as the multiple facets of the clinical examination. 6. Methods of treatment depending on age and severity of the disorder are recommended. Surgery, detortional casts, and corrective footwear are discussed. Shoes presently available are inadequate for tibiotalar torsion and therefore engineering principles must be applied in the design and construction of all footwear, including sneakers and sportswear. This can be done only if the pathological biomechanics of this group of disorders is recognized. Biplane proximal tibial osteotomy is recommended in refractory cases, especially when tibiotalar torsion is demonstrated. 7. After 30 years of experience, the author finds that results with these patients have been uniformly good to excellent, depending on age and mode of treatment. 8. In medial tibiotalar torsion, the consequent adaptive changes are readily observed, but rarely are they recognized as the inevitable sequelae of medial tibiotalar torsion. 9. Adaptive compensating disorders are identified and their mechanism described. 10. The management of

  13. Optically probing torsional superelasticity in spider silks

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P. [Department of Physical Sciences, IISER Mohali, Sector 81, Manauli, Mohali 140306 (India)

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  14. Optically probing torsional superelasticity in spider silks

    International Nuclear Information System (INIS)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-01-01

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10 2−3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices

  15. Dirac operators and Killing spinors with torsion

    International Nuclear Information System (INIS)

    Becker-Bender, Julia

    2012-01-01

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  16. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract

    Directory of Open Access Journals (Sweden)

    Fakhry MA

    2011-07-01

    Full Text Available Mohamed A Fakhry1,2, Malak I El Shazly11Department of Ophthalmology, Kasr El Aini Hospital, Cairo University, Cairo, Egypt; 2Cataract and Refractive Consultant, International Eye Hospital, Cairo, EgyptPurpose: To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium.Settings: Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt.Methodology: Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III. Two groups were included, each having an equal number of eyes (49. The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA, intraocular pressure (IOP, slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD and central corneal thickness (CCT were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon intraocular lens (IOL. The main phaco outcome parameters included the mean ultrasound time (UST, the mean cumulative dissipated energy (CDE, and the percent of average torsional amplitude in position 3 (%TUSiP3.Results: Improvement in BCVA was statistically significant in both groups (P < 0.001. Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE. As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01. All changes of CCT, and ECD

  17. Torsional Optomechanics of a Levitated Nonspherical Nanoparticle

    Science.gov (United States)

    Hoang, Thai M.; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F.; Yin, Zhang-Qi; Li, Tongcang

    2016-09-01

    An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be 1 order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. We propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale torsion balance with a torque detection sensitivity on the order of 10-29 N m /√{Hz } under realistic conditions.

  18. Pediatric ovarian torsion: an uncommon clinical entity

    OpenAIRE

    Rajwani, Kapil M; Mahomed, Anies

    2014-01-01

    Key Clinical Message Pediatric ovarian torsion is an infrequent diagnosis and it often mimics acute appendicitis. Most cases are due to underlying ovarian pathology and if left untreated, ovarian torsion may eventually cause peritonitis. Emergency exploratory laparoscopy represents a valuable diagnostic and therapeutic tool in suspected ovarian torsion.

  19. Torsional heterotic geometries

    International Nuclear Information System (INIS)

    Becker, Katrin; Sethi, Savdeep

    2009-01-01

    We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

  20. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  1. Torsional Rigidity of Minimal Submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, Vicente

    2006-01-01

    We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...

  2. Torsion (volvulus) of the lung

    International Nuclear Information System (INIS)

    Felson, B.

    1986-01-01

    Torsion or volvulus of the lung is a relatively rare but serious condition that can often be recognized or at least suspected radiographically. It occurs under three different sets of circumstances: spontaneously, usually in association with some other pulmonary abnormality; with traumatic pneumothorax; and as a complication of thoracic surgery. The author studied nine cases of torsion of the lung, including examples from each of these categories. The radiographic signs of torsion are as follows: a collapsed or consolidated lobe that occupies an unusual position, hilar displacement in a direction inappropriate for an apparently collapsed lobe, alteration of the normal position and sweep of the pulmonary vasculature, raid opacification of an ipsilateral lobe after trauma or lobectomy, marked change in position of an opacified lobe on sequential films, bronchial cutoff with no evidence of a mass, abnormal position of an affected lobe (shown on CT, angiography, or bronchography), and lobar air trapping. Mortality is high if the torsion goes unrecognized and operation is delayed

  3. A novel tri-axis MEMS gyroscope with in-plane tetra-pendulum proof masses and enhanced sensitive springs

    International Nuclear Information System (INIS)

    Wang, M C; Jiao, J W; Yan, P L; Mi, B W; Qin, S

    2014-01-01

    This paper presents a tri-axis MEMS gyroscope design with novel tetra-pendulum proof masses for X-, Y-axis and regular proof masses for Z-axis rate sensing, which are all coupled with and embedded in a conventional tuning fork driving frame. The four pendulum proof masses are suspended via the torsional springs to a common center anchor and can be driven to swing around the anchor via the tilted transforming springs as the driving frame is oscillated in an anti-phase mode. As an X-, Y-axis angular rate is applied, the tetra-pendulum proof masses will rotate around the torsional springs in pairs for X- and Y-axis differential sensing, respectively. In particular, we investigated the relationship between the tilting angle of the transforming spring and its transforming efficiency, i.e. the amplitude ratio of the pendulum's swing to the driving oscillation, which shows a straight impact on the sensitivity. By theoretical analysis and Ansys simulation, we achieved an optimal tilting angle of 22.5°, which extends along the angular bisector of the pendulum's and driving mass’ moving direction and demonstrates a significant increase in transforming efficiency by about 40%, compared with the trivial tilting angle of 45°. By employing an SOI-based bulk micromachining process, the prototype device with the optimal design of the transforming spring (type I) and that with the trivial design (type II) for reference have been successfully fabricated. As expected, the testing results indicate an increase of more than 20% in the X- and Y- sensitivities, which is mainly from the enhanced sensitive transforming springs. (paper)

  4. Association of Torsion With Testicular Cancer: A Retrospective Study.

    Science.gov (United States)

    Uguz, Sami; Yilmaz, Sercan; Guragac, Ali; Topuz, Bahadır; Aydur, Emin

    2016-02-01

    Testicular torsion is a medical emergency that usually requires surgical exploration. However, testicular malignancy has been anecdotally reported with the association of torsion in surgical specimens, and the published data remain scant on the association of torsion with testicular tumors. By retrospective medical record review, we identified 32 patients who had been diagnosed with testicular torsion, 20 of whom had undergone orchiectomy. Of these 20 patients, 2 were diagnosed with a malignancy. Our study, the largest case series to date, has shown an association between testicular torsion and testicular cancer of 6.4%. Testicular torsion is a medical emergency that usually requires surgical exploration. However, testicular malignancy has been anecdotally reported in association with torsion in surgical specimens. However, the published data remain scant on the association between torsion and the presence of testicular tumors. The present retrospective study explored the association between torsion and testicular cancer in patients with testicular torsion undergoing orchiectomy during scrotal exploration. A medical record review was performed of patients who had had a diagnosis of testicular torsion from January 2003 to February 2015. The clinicopathologic characteristics of the patients were recorded. A total of 32 patients were identified. Their mean age was 21.1 years (range, 7-39 years). All the patients had unilateral testicular torsion, which affected the left side in 17 and the right side in 15. Manual detorsion was successful in 6 patients, and 26 patients underwent emergency surgery with testicular detorsion (6 fixation surgery and 20 orchiectomy). The type of incision was scrotal in 6, inguinal in 10, and unspecified in 4. Pathologic examination of the orchiectomy specimens showed malignancy in 2 cases (seminoma and malign mixed germ cell tumor). To the best of our knowledge, the present single-center case series is the largest case series to date of

  5. Experiments with a cryogenic torsion balance

    International Nuclear Information System (INIS)

    Newman, R.D.

    1983-01-01

    The torsion balance is a remarkably capable instrument for the measurement of slowly varying exceedingly small forces; indeed its potential abilities are still largely untapped. The author outlines some of the virtues (and limitations) of the torsion balance, and presents a menu of gravitation-related experiments to which it may be applied. He discusses plans for developing torsion balances operating at cryogenic temperatures, and describes an experiment to search for anomalous long-range interactions associated with intrinsic spin. (Auth.)

  6. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  7. Hematosalpinx torsion in an adolescent

    Directory of Open Access Journals (Sweden)

    Inês Vaz

    2016-02-01

    Full Text Available Introduction: Isolated fallopian tube torsion is an uncommon cause of acute lower abdominal pain. Ectopic pregnancy, hydro or hematosalpinx, endometriosis, adnexal masses and other causes of adnexal disease are predisposing factors. The diagnosis is difficult and often delayed due to the lack of pathognomonic symptoms, characteristic physical signs, and specific imaging and laboratory studies. Defi nitive diagnosis requires a surgical approach. Case report: The authors present a case of hematosalpinx and its tubal torsion in a virgin teenager with no prior predisposing factors. Discussion: This rare case may highlight a new insight into pathophysiology of tubal torsion and recalls hematosalpinx as a differential diagnosis.

  8. Primary splenic torsion in a Boston terrier

    International Nuclear Information System (INIS)

    Ohta, H.; Takagi, S.; Murakami, M.; Sasaki, N.; Yoshikawa, M.; Nakamura, K.; Hwang, S.J.; Yamasaki, M.; Takiguchi, M.

    2009-01-01

    A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed

  9. Primary splenic torsion in a Boston terrier.

    Science.gov (United States)

    OHTA, Hiroshi; TAKAGI, Satoshi; MURAKAMI, Masahiro; SASAKI, Noboru; YOSHIKAWA, Muneyoshi; NAKAMURA, Kensuke; HWANG, Shiang-Jyi; YAMASAKI, Masahiro; TAKIGUCHI, Mitsuyoshi

    2009-11-01

    A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed.

  10. Isolated Penile Torsion in Brothers: A Case Report

    Directory of Open Access Journals (Sweden)

    Metin Gunduz

    2012-04-01

    Full Text Available Penile torsion can be congenital and associated with hypospadias and chordee, or can be acquired after circumcision. The incidence of isolated neonatal penile torsion was 1.7 to 27% in the literature. The majority were between 10 and deg; and 20 and deg;. Generally, torsion was to the left in cases. The techniques for correction of penile torsion described in the literature are penile de-gloving and reattaching of skin, resection of Buck's fascia incising the base of the penis and removing angular ellipses of corporeal tissue with subsequent plication of tunica, and dorsal dartos flap rotation in severe cases. In conclusion, penile torsion may be familial. Therefore, brothers should be examined carefully. The degloving and realignment technique is successful in isolated penile torsion. [Arch Clin Exp Surg 2012; 1(2.000: 122-124

  11. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  12. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    Science.gov (United States)

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  13. Torsional carbon nanotube artificial muscles.

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H

    2011-10-28

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  14. Attentional Modulation of Eye Torsion Responses

    Science.gov (United States)

    Stevenson, Scott B.; Mahadevan, Madhumitha S.; Mulligan, Jeffrey B.

    2016-01-01

    Eye movements generally have both reflexive and voluntary aspects, but torsional eye movements are usually thought of as a reflexive response to image rotation around the line of sight (torsional OKN) or to head roll (torsional VOR). In this study we asked whether torsional responses could be modulated by attention in a case where two stimuli rotated independently, and whether attention would influence the latency of responses. The display consisted of rear-projected radial "pinwheel" gratings, with an inner annulus segment extending from the center to 22 degrees eccentricity, and an outer annulus segment extending from 22 degrees out to 45 degrees eccentricity. The two segments rotated around the center in independent random walks, stepping randomly 4 degrees clockwise or counterclockwise at 60 Hz. Subjects were asked to attend to one or the other while keeping fixation steady at the center of the display. To encourage attention on one or the other segment of the display, subjects were asked to move a joystick in synchrony with the back and forth rotations of one part of the image while ignoring the other. Eye torsion was recorded with the scleral search coil technique, sampled at 500 Hz. All four subjects showed roughly 50% stronger torsion responses to the attended compared to unattended segments. Latency varied from 100 to 150 msec across subjects and was unchanged by attention. These findings suggest that attention can influence eye movement responses that are not typically under voluntary control.

  15. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Science.gov (United States)

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.

  16. Secondary Torsion of Vermiform Appendix with Mucinous Cystadenoma

    Directory of Open Access Journals (Sweden)

    Maki Kitagawa

    2007-06-01

    Full Text Available Torsion of the vermiform appendix is a rare disorder, which causes abdominal symptoms indistinguishable from acute appendicitis. We report a case (a 34-year-old male of secondary torsion of the vermiform appendix with mucinous cystadenoma. This case was characterized by mild inflammatory responses, pentazocine-resistant abdominal pain, and appendiceal tumor, which was not enhanced by the contrast medium on computed tomography presumably because of reduced blood flow by the torsion. These findings may be helpful for the preoperative diagnosis of secondary appendiceal torsion.

  17. Peculiar torsion dynamical response of spider dragline silk

    Science.gov (United States)

    Liu, Dabiao; Yu, Longteng; He, Yuming; Peng, Kai; Liu, Jie; Guan, Juan; Dunstan, D. J.

    2017-07-01

    The torsional properties of spider dragline silks from Nephila edulis and Nephila pilipes spiders are investigated by using a torsion pendulum technique. A permanent torsional deformation is observed after even small torsional strain. This behaviour is quite different from that of the other materials tested here, i.e., carbon fiber, thin metallic wires, Kevlar fiber, and human hair. The spider dragline thus displays a strong energy dissipation upon the initial excitation (around 75% for small strains and more for a larger strain), which correspondingly reduces the amplitude of subsequent oscillations around the new equilibrium position. The variation of torsional stiffness in relaxation dynamics of spider draglines for different excitations is also determined. The experimental result is interpreted in the light of the hierarchical structure of dragline silk.

  18. Structural Modifications for Torsional Vibration Control of Shafting Systems Based on Torsional Receptances

    Directory of Open Access Journals (Sweden)

    Zihao Liu

    2016-01-01

    Full Text Available Torsional vibration of shafts is a very important problem in engineering, in particular in ship engines and aeroengines. Due to their high levels of integration and complexity, it is hard to get their accurate structural data or accurate modal data. This lack of data is unhelpful to vibration control in the form of structural modifications. Besides, many parts in shaft systems are not allowed to be modified such as rotary inertia of a pump or an engine, which is designed for achieving certain functions. This paper presents a strategy for torsional vibration control of shaft systems in the form of structural modifications based on receptances, which does not need analytical or modal models of the systems under investigation. It only needs the torsional receptances of the system, which can be obtained by testing simple auxiliary structure attached to relevant locations of the shaft system and using the finite element model (FEM of the simple structure. An optimization problem is constructed to determine the required structural modifications, based on the actual requirements of modal frequencies and mode shapes. A numerical experiment is set up and the influence of several system parameters is analysed. Several scenarios of constraints in practice are considered. The numerical simulation results demonstrate the effectiveness of this method and its feasibility in solving torsional vibration problems in practice.

  19. Ultrasonographic features of prenatal testicular torsion: Case report

    Directory of Open Access Journals (Sweden)

    Elif Ağaçayak

    2013-01-01

    Full Text Available Although prenatal testicular torsion (PNTT is rarely observed,it is an important condition that can cause bilateralvanishing testis. Generally, PNTT cases observed asextravaginal torsion and treatment is emergency surgicalop-eration. In this article, 39 week presented a case diagnosedin the prenatal testicular torsion. PNTT diagnosiswas confirmed by Doppler ultrasonography and emergencysurgery was performed. Extravaginal left testiculartorsion gangrene and necrosis of the testis was observedin the operation. Left orchiectomy was performed andintrauter-ine ultrasonographic diagnosis was found to becorrect.Key words: Testicular torsion, prenatal diagnosis, features,ultrasonography

  20. Top Nozzle Holddown Spring Optimization of KSNP Fuel Assembly

    International Nuclear Information System (INIS)

    Lee, Seong Ki; Park, Nam Kyu; Kim, Hyeong Koo; Lee, Joon Ro; Kim, Jae Won

    2002-01-01

    Nuclear fuel assembly for Korea Standard Nuclear Power (KSNP) Plant has 4 helical compression springs at the upper end of it. The springs, in conjunction with the fuel assembly weight, apply a holddown force against excess of buoyancy forces and the upward hydraulic forces due to the reactor coolant flow. Thus the holddown spring is to be designed such that the positive net downward force will be maintained for all normal and anticipated transient flow and temperature conditions in the nuclear reactor. With satisfying these in-reactor requirements of the fuel assembly holddown spring. Under the assumption that spring density is constant, the volume nozzle holddown spring. Under the assumption that spring density is constant, the volume minimization is executed by using the design variables, viz., wire diameter, mean coil diameter, minimization is executed by using the design variables, viz., wire diameter, mean coil diameter are within the compatible range of the fuel assembly structural components. Based on these conditions, the optimum design of the holddown spring is obtained considering the reactor operating condition and by using ANSYS code. The optimized spring has the properties that are a decreased volume and increased stiffness, compared with the existing one even if the absolute values are very similar each other. The holddown spring design features and the algorithm developed in this study could be directly applicable to the current commercial production. Therefore, it could be used to enhance the design efficiency and the functional performance of the spring, and to reduce a material cost a little

  1. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  2. Torsion limits from t t macr production at the LHC

    Science.gov (United States)

    de Almeida, F. M. L.; de Andrade, F. R.; do Vale, M. A. B.; Nepomuceno, A. A.

    2018-04-01

    Torsion models constitute a well-known class of extended quantum gravity models. In this work, one investigates the phenomenological consequences of a torsion field interacting with top quarks at the LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top antitop pair. The latest ATLAS t t ¯ production results from LHC 13 TeV data are used to set limits on torsion parameters. The integrated luminosity needed to observe torsion resonance at the next LHC upgrades are also evaluated, considering different values for the torsion mass and its couplings to Standard Model fermions. Finally, prospects for torsion exclusion at the future LHC phases II and III are obtained using fast detector simulations.

  3. Torsion of the vermiform appendix: A case report | Wani | Internet ...

    African Journals Online (AJOL)

    Torsion of the vermiform appendix is a rare condition with few cases reported in the literature. Various factors predispose to torsion. Various factors predispose to torsion. We report a case of primary torsion of the vermiform appendix. The clinical presentation was indistinguishable from acute appendicitis and the diagnosis ...

  4. Gallbladder torsion. Case report

    DEFF Research Database (Denmark)

    Brasso, K; Rasmussen, O V

    1991-01-01

    Gallbladder torsion is a rare surgical emergency occurring primarily in elderly women. The anatomical background is a variation in the attachment of the gallbladder to the inferior margin of the liver. Increasing life span will probably lead to an increasing number of cases, and gallbladder torsion...... must be kept in mind in patients with sudden onset of pain in the upper right quadrant, nausea, vomiting, and a palpable mass. None of the laboratory routines or non-invasive examinations enables one to make the right preoperative diagnosis. Treatment is cholecystectomy. Promptly treated, the prognosis...

  5. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  6. Krukenberg Tumor: A Rare Cause of Ovarian Torsion

    Directory of Open Access Journals (Sweden)

    Sameer Sandhu

    2012-01-01

    Full Text Available Ovarian torsion is the fifth most common gynecological surgical emergency. Ovarian torsion is usually associated with a cyst or a tumor, which is typically benign. The most common is mature cystic teratoma. We report the case of a 43-year-old woman who came to the Emergency Department with rare acute presentation of bilateral Krukenberg tumors, due to unilateral ovarian torsion. In this case report, we highlight the specific computed tomography (CT features of ovarian torsion and demonstrate the unique radiological findings on CT imaging. Metastasis to the ovary is not rare and 5 to 10% of all ovarian malignancies are metastatic. The stomach is the common primary site in most Krukenberg tumors (70%; an acute presentation of metastatic Krukenberg tumors with ovarian torsion is rare and not previously reported in radiology literature.

  7. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    Science.gov (United States)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  8. Hydroxyl free radical production during torsional phacoemulsification.

    Science.gov (United States)

    Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon

    2010-12-01

    To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Heat production: Longitudinal versus torsional phacoemulsification.

    Science.gov (United States)

    Han, Young Keun; Miller, Kevin M

    2009-10-01

    To compare the heat production of longitudinal versus torsional phacoemulsification under strict laboratory test conditions. Department of Ophthalmology, David Geffen School of Medicine at UCLA, and Jules Stein Eye Institute, Los Angeles, California, USA. Two Infiniti phacoemulsification handpieces were inserted into silicone test chambers filled with a balanced salt solution and imaged serially using a thermal camera. Incision compression was simulated by suspending 25.3 g weights from the silicone chambers. To simulate occlusion of the phacoemulsification tip, the aspiration line was clamped. Peak temperatures were measured 0, 10, 30, 60, and 120 seconds after the commencement of continuous ultrasound power. The 2 handpieces, operating exclusively in longitudinal or torsional modes, were compared 3 ways: (1) using the same power displayed on the instrument console, (2) using identical stroke lengths, and (3) using the same applied energy, a product of stroke length and frequency. For all 3 comparisons, torsional phacoemulsification resulted in lower temperatures at each time point. At the same displayed power setting, the scenario most familiar to cataract surgeons, longitudinal phacoemulsification elevated temperatures up to 41.5 degrees C more than torsional phacoemulsification. Torsional phacoemulsification generated less heat than longitudinal phacoemulsification in all 3 comparison tests. Lower operating temperatures indicate lower heat generation within the same volume of fluid, and this may provide additional thermal protection during cataract surgery.

  10. Cα chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  11. Comparison of torsional and longitudinal modes using phacoemulsification parameters.

    Science.gov (United States)

    Rekas, Marek; Montés-Micó, Robert; Krix-Jachym, Karolina; Kluś, Adam; Stankiewicz, Andrzej; Ferrer-Blasco, Teresa

    2009-10-01

    To compare phacoemulsification parameters of torsional and longitudinal ultrasound modes. Ophthalmology Department, Military Health Service Institute, Warsaw, Poland. This prospective study evaluated eyes 1, 7, and 30 days after phacoemulsification with an Infiniti Vision System using the torsional or longitudinal ultrasound (US) mode. Cataract classification was according to the Lens Opacities Classification System II. Nucleus fragmentation was by the phaco-chop and quick-chop methods. Primary outcome measures were phaco time, mean phaco power, mean torsional amplitude, and aspiration time. Total energy, defined as cumulative dissipated energy (CDE) x aspiration time, and the effective coefficient, defined as aspiration time/phaco time, were also calculated. Four hundred eyes were evaluated. The CDE was statistically significantly lower in the torsional mode for nucleus grades I, II, and III (P.05). Aspiration time was statistically significantly shorter in the torsional mode than in the longitudinal mode for nucleus grades III and IV (P<.05). Total energy was significantly lower in the torsional mode for all nucleus densities (P<.05). The effective coefficient was significantly lower in the longitudinal mode except for nucleus grade I (P<.05). Torsional phacoemulsification was more effective than longitudinal phacoemulsification in the amount of applied fluid and the quantity of US energy expended. With the torsional method, it was possible to maintain a constant ratio of amount of fluid flow to quantity of US energy used, regardless of nucleus density.

  12. Ultimate Strength of Ship Hulls under Torsion

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Thayamballi, Anil K.; Pedersen, Preben Terndrup

    2001-01-01

    For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characte......For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength...... characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections...... subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical...

  13. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-05-17

    Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.

  14. Wet-Spun Biofiber for Torsional Artificial Muscles.

    Science.gov (United States)

    Mirabedini, Azadeh; Aziz, Shazed; Spinks, Geoffrey M; Foroughi, Javad

    2017-12-01

    The demands for new types of artificial muscles continue to grow and novel approaches are being enabled by the advent of new materials and novel fabrication strategies. Self-powered actuators have attracted significant attention due to their ability to be driven by elements in the ambient environment such as moisture. In this study, we demonstrate the use of twisted and coiled wet-spun hygroscopic chitosan fibers to achieve a novel torsional artificial muscle. The coiled fibers exhibited significant torsional actuation where the free end of the coiled fiber rotated up to 1155 degrees per mm of coil length when hydrated. This value is 96%, 362%, and 2210% higher than twisted graphene fiber, carbon nanotube torsional actuators, and coiled nylon muscles, respectively. A model based on a single helix was used to evaluate the torsional actuation behavior of these coiled chitosan fibers.

  15. Appendicular Torsion

    African Journals Online (AJOL)

    A‑2/103, Shivranjan Towers, Someshwarwadi, Pashan, Pune ‑ 411 008,. Maharashtra, India. E‑mail: spdubhashi@gmail.com. INTRODUCTION. Acute appendicitis presents with pain in right iliac fossa. Torsion of the vermiform appendix, though rare, also presents in a similar fashion, and it is detectable only at operation.[1].

  16. Measurement of tibial torsion by computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jend, H.H.; Heller, M.; Dallek, M.; Schoettle, H. (Hamburg Univ. (Germany, F.R.))

    1981-01-01

    A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40/sup 0/+-9/sup 0/. In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint.

  17. Torsion of wandering spleen and distal pancreas

    International Nuclear Information System (INIS)

    Sheflin, J.R.; Lee, C.M.; Kretchmar, K.A.

    1984-01-01

    Wandering spleen is the term applied to the condition in which a long pedicle allows the spleen to lie in an abnormal location. Torsion of a wandering spleen is an unusual cause of an acute abdomen and is rarely diagnosed preoperatively. Associated torsion of the distal pancreas is even more uncommon. The authors describe a patient with torsion of a wandering spleen and distal pancreas, who was correctly diagnosed, and define the merits of the imaging methods used. The initial examination should be 99 /sup m/Tc-sulfur colloid liner-spleen scanning

  18. Measurement of tibial torsion by computer tomography

    International Nuclear Information System (INIS)

    Jend, H.-H.; Heller, M.; Dallek, M.; Schoettle, H.

    1981-01-01

    A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40 0 +-9 0 . In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint. (Auth.)

  19. Comparison of various spring analogy related mesh deformation techniques in two-dimensional airfoil design optimization

    Science.gov (United States)

    Yang, Y.; Özgen, S.

    2017-06-01

    During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the most widely used techniques is the Spring Analogy. There are numerous spring analogy related techniques reported in the literature: linear spring analogy, torsional spring analogy, semitorsional spring analogy, and ball vertex spring analogy. This paper gives the explanation of linear spring analogy method and angle inclusion in the spring analogy method. In the latter case, two di¨erent solution methods are proposed. The best feasible method will later be used for two-dimensional (2D) Airfoil Design Optimization with objective function being to minimize sectional drag for a required lift coe©cient at di¨erent speeds. Design variables used in the optimization include camber and thickness distribution of the airfoil. SU2 CFD is chosen as the §ow solver during the optimization procedure. The optimization is done by using Phoenix ModelCenter Optimization Tool.

  20. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions

    Science.gov (United States)

    Elshazly, K. M.; Sakr, R. Y.; Ali, R. K.; Salem, M. R.

    2017-06-01

    This work investigated experimentally the thermal performance of shell and coil heat exchanger with different coil torsions (λ) for γ-Al2O3/water nanofluid flow. Five helically coiled tube (HCT) with 0.0442 ≤ λ ≤ 0.1348 were tested within turbulent flow regime. The average size of γ-Al2O3 particles is 40 nm and volume concentration (φ) is varied from 0 to 2%. Results showed that reducing coil torsion enhances the heat transfer rate and increases HCT-friction factor (fc). Also, it is noticed that HCT average Nusselt number (Nut) and fc of nanofluids increase with increasing γ-Al2O3 volume concentration. The thermal performance index, TPI = (ht,nf/ht,bf)/(ΔPc,nf/ΔPc,bf). increases with increasing nanoparticles concentration, coil torsion, HCT-side inlet temperature and nanofluid flow rate. Over the studied range of HCT-Reynolds number, the average value of TPI is of 1.34 and 2.24 at φ = 0.5% and φ = 2%, respectively. The average value of TPI is of 1.64 at λ = 0.0442 while its average value at λ = 0.1348 is of 2.01. One of the main contributions is to provide heat equipments designers with Nut and fc correlations for practical configurations shell and coil heat exchangers with a wide range of nanofluid concentration.

  1. Torsional malalignment, how much significant in the trochanteric fractures?

    Science.gov (United States)

    Kim, Tae Young; Lee, Yong Beom; Chang, Jun Dong; Lee, Sang Soo; Yoo, Jae Hyun; Chung, Kook Jin; Hwang, Ji Hyo

    2015-11-01

    The rotational alignment is definitely important in the long bones such as tibias and femurs. We also predict the importance of rotational alignment in the trochanteric fractures. So we measured torsional malalignment in trochanteric fracture and anlaysed their risk factors and their clinical significance. A total of 109 inpatients who had undergone internal fixation following trochanteric fracture and a postoperative pelvic CT scan between 2008 and 2013, with at least one year follow-up, were selected. Factors that affect torsional malalignment, such as age, gender, fracture stability, injured area, operative time, time of surgery after admission, and ASA status, were investigated. Factors that affect the patients' clinical results in malrotation, including ambulation time after surgery, postoperative complication rates, pain assessment of VAS one year postoperatively and Koval score, were also investigated. Of the 109 subjects, torsional malalignment was observed in 28 (25.7%) subjects with a mean torsional malalignment angle of 20.7° (range: -31.2° to 27.1°). Torsional malalignment risk factors were fracture stability (p=0.021) and operative time (p=0.043). In terms of the time to ambulation after surgery, the postoperative complication rates, and the VAS and Koval scores at one year postoperatively, no statistically significant difference was observed between the torsional malalignment patients and the non-deformity patients. In this study, 25.7% of the patients who had undergone internal fixation following trochanteric fracture experienced torsional malalignment. Major factors of the torsional malalignment were an unstable fracture and the consequent delay in the operative time. But the torsional malalignment was deemed to have no effect on clinical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Simultaneous acute appendicitis with right testicular torsion

    Directory of Open Access Journals (Sweden)

    Tanveer Akhtar

    2012-01-01

    Full Text Available We present a child with both acute appendicitis and torsion of the right testis presenting at the same time. Testicular torsion possibly occurring due to vomiting in acute appendicitis so far has not been reported in the literature.

  3. Some torsion potentials

    Energy Technology Data Exchange (ETDEWEB)

    Grundberg, J; Lindstrom, U

    1986-10-01

    Using the notion of torsion potentials, the duality between antisymmetric tensor fields and scalar fields is discussed. First-order actions with these fields, the connection and the metric as independent variables are presented.

  4. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  5. A new hybrid longitudinal–torsional magnetostrictive ultrasonic transducer

    International Nuclear Information System (INIS)

    Karafi, Mohammad Reza; Hojjat, Yousef; Sassani, Farrokh

    2013-01-01

    In this paper, a novel hybrid longitudinal–torsional magnetostrictive ultrasonic transducer (HL–TMUT) is introduced. The transducer is composed of a magnetostrictive exponential horn and a stainless steel tail mass. In this transducer a spiral magnetic field made up of longitudinal and circumferential magnetic fields is applied to the magnetostrictive horn. As a result, the magnetostrictive horn oscillates simultaneously both longitudinally and torsionally in accordance with the Joule and Wiedemann effects. The magnetostrictive exponential horn is designed in such a manner that it has the same longitudinal and torsional resonant frequency. It is made up of ‘2V Permendur’, which has isotropic magnetic properties. The differential equations of the torsional and longitudinal vibration of the horn are derived, and a HL–TMUT is designed with a resonant frequency of 20 573 Hz. The natural frequency and mode shapes of the transducer are considered theoretically and numerically. The experimental results show that this transducer resonates torsionally and longitudinally with frequencies of 20 610 Hz and 20 830 Hz respectively. The maximum torsional displacement is 1.5 mrad m −1 and the maximum longitudinal displacement is 0.6 μm. These are promising features for industrial applications. (paper)

  6. Appendicular Torsion | Dubhashi | Nigerian Journal of Surgery

    African Journals Online (AJOL)

    . It can be primary or secondary. This is a case report of 52-year-old female with 180° anti-clockwise rotation of the appendix. Torsion can further leads to strangulation and infarction of the organ. Appendicular torsion could be included in the ...

  7. Pseudotopological quasilocal energy of torsion gravity

    Science.gov (United States)

    Ko, Sheng-Lan; Lin, Feng-Li; Ning, Bo

    2017-08-01

    Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In this paper we adopt Wald's covariant method of calculating the Noether charge to construct the quasilocal energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent of the coupling constant between the torsion and axial current. This seemingly topological nature is unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and find agreement with the holographic relative entropy obtained before. This shows the equivalence of these two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum. The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also discussed.

  8. Right paratesticular abscess mimicking neonatal testicular torsion ...

    African Journals Online (AJOL)

    U.O. Ezomike

    Abstract. The clinical presentation of neonatal paratesticular abscess may closely resemble that of, neonatal testicular torsion and the use of scrotal ultrasonography to differentiate the two has low, sensitivity. We propose early operative treatment of suspected neonatal testicular torsion to salvage, the testicle in cases of ...

  9. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  10. Adnexal torsion in 6 years old girl

    International Nuclear Information System (INIS)

    Plachkov, I.; Tzvetankov, K.; Dimova, M.; Dobreva, Tz.; Hadjidekov, G.

    2012-01-01

    MRI and US findings in Ovarian torsion in a premenarcheal girl are described. Adnexal torsion is an uncommon cause of severe lower abdominal pain in young women (mean age is 10-11), and in 50% of cases such symptoms are observed in pre-menarchal females. However, adnexal torsion should be considered in all premenarcheal girls admitted with acute abdominal pain and evidence of an ovarian mass. Accurate imaging is crucial after onset of early clinical symptoms to confirm the diagnosis and to preserve the viability of the affected ovary. A pelvic ovoid mass was visualised on ultrasound, suggesting several hypothesis -cystic mass, ovarian torsion, dermoid. Magnetic resonance imaging visualized edematous ovary enlargement and the presence of multiple follicules at the periphery due to congestion from the twisted vascular pedicule. Smooth wail thickening of the partially necrotic. Twisted ovary was seen in the subacute phase, which has been confirmed during laparoscopy. CT was not considered in this 6 years old girl due to ionizing radiation. (authors)

  11. Torsion and geometrostasis in covariant superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.

  12. Torsion and geometrostasis in covariant superstrings

    International Nuclear Information System (INIS)

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs

  13. experimental and analytical comparison of torsion, bending moment

    African Journals Online (AJOL)

    HOD

    In structural analysis and design, the effects of torsion are usually neglected ... bending and torsion, using these codes and experimental work; and validates the ..... [7] Kharagpur, I. Structural Analysis: Civil Engineering. Course Material (Vol.

  14. A study on mechanical properties and flow-induced vibrations of coil-shaped holddown spring

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2010-01-01

    The fuel assemblies used in the OPR1000s in Korea employ four coil-shaped hold-down springs to exert compressive load at the top of fuel assembly so that the assemblies may not be damaged by preventing its hydraulic-induced lifting-off from its lower seating surface. However, the coolant flow generates the flow-induced vibration at the coil-shaped hold-down springs which may cause wear on the spring surfaces. A hold-own spring may be fractured if torsional stress acting on its worn area exceeds a stress limit, resulting in the loss of hold-down spring force of the fuel assembly. In this paper, flow-induced vibration tests were performed for standard and improved coil type hold-down springs to investigate the effects of these two hold-down spring designs on flow-induced vibration wear. In parallel, a wide spectrum of mechanical tests was performed to obtain vibration-related characteristics of these two hold-down springs, which can be used as input data for the fuel assembly static and dynamic analysis. It is found that the improved hold-down spring design is better against flow-induced vibration wear than the standard one. With the use of the three-dimensional Solidwork model, the stress-related design lifetime of the improved hold-down spring was estimated by extrapolating its wear data measured from the flow-induced vibration tests, which indicates that the improved HD spring design will maintain integrity during the fuel design lifetime in OPR1000s in Korea.

  15. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    This thesis describes the design and development of an automated pre-production particle size distribution analyser for particles in the 20 - 2000 μm size range. This work is follow up to the vibro-spring particle sizer reported by Shaeri. In its most basic form, the instrument comprises a horizontally held closed coil helical spring that is partly filled with the test powder and sinusoidally vibrated in the transverse direction. Particle size distribution data are obtained by stretching the spring to known lengths and measuring the mass of the powder discharged from the spring's coils. The size of the particles on the other hand is determined from the spring 'intercoil' distance. The instrument developed by Shaeri had limited use due to its inability to measure sample mass directly. For the device reported here, modifications are made to the original configurations to establish means of direct sample mass measurement. The feasibility of techniques for measuring the mass of powder retained within the spring are investigated in detail. Initially, the measurement of mass is executed in-situ from the vibration characteristics based on the spring's first harmonic resonant frequency. This method is often erratic and unreliable due to the particle-particle-spring wall interactions and the spring bending. An much more successful alternative is found from a more complicated arrangement in which the spring forms part of a stiff cantilever system pivoted along its main axis. Here, the sample mass is determined in the 'static mode' by monitoring the cantilever beam's deflection following the wanton termination of vibration. The system performance has been optimised through the variations of the mechanical design of the key components and the operating procedure as well as taking into account the effect of changes in the ambient temperature on the system's response. The thesis also describes the design and development of the ancillary mechanisms. These include the pneumatic

  16. Muscular Basis of Whisker Torsion in Mice and Rats.

    Science.gov (United States)

    Haidarliu, Sebastian; Bagdasarian, Knarik; Shinde, Namrata; Ahissar, Ehud

    2017-09-01

    Whisking mammals move their whiskers in the rostrocaudal and dorsoventral directions with simultaneous rolling about their long axes (torsion). Whereas muscular control of the first two types of whisker movement was already established, the anatomic muscular substrate of the whisker torsion remains unclear. Specifically, it was not clear whether torsion is induced by asymmetrical operation of known muscles or by other largely unknown muscles. Here, we report that mystacial pads of newborn and adult rats and mice contain oblique intrinsic muscles (OMs) that connect diagonally adjacent vibrissa follicles. Each of the OMs is supplied by a cluster of motor end plates. In rows A and B, OMs connect the ventral part of the rostral follicle with the dorsal part of the caudal follicle. In rows C-E, in contrast, OMs connect the dorsal part of the rostral follicle to the ventral part of the caudal follicle. This inverse architecture is consistent with previous behavioral observations [Knutsen et al.: Neuron 59 (2008) 35-42]. In newborn mice, torsion occurred in irregular single twitches. In adult anesthetized rats, microelectrode mediated electrical stimulation of an individual OM that is coupled with two adjacent whiskers was sufficient to induce a unidirectional torsion of both whiskers. Torsional movement was associated with protracting movement, indicating that in the vibrissal system, like in the ocular system, torsional movement is mechanically coupled to horizontal and vertical movements. This study shows that torsional whisker rotation is mediated by specific OMs whose morphology and attachment sites determine rotation direction and mechanical coupling, and motor innervation determines rotation dynamics. Anat Rec, 300:1643-1653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Teenage testicular torsion. | Onuigbo | International Journal of ...

    African Journals Online (AJOL)

    Aim: To study testicular torsion in teenagers in the Igbo community. Method: A retrospective study was carried out as regards requests for pathological examination of specimens received at a Regional Reference Laboratory based in Enugu. Results: Over a period of 30 years, 28 surgical specimens of testicular torsion in ...

  18. Dynamics of continuous medium in space with torsion

    International Nuclear Information System (INIS)

    Krechet, V.G.

    1985-01-01

    In frames of Einstein-Cartan gravitation theory general properties of continuous media dynamics using description formalism of continuous medium steam-line congruence geometry are investigated. Raichaudhuri type equations in space with torsion applied to study the problem of singularities in gravitation theory are derived. It is shown that space-time torsion tensor trace may immediately affect volumetric autoparallel divergence and torsion pseudo trace - rotation of continuous medium steam-line congruences. Using formalism considered metrics of homogeneous rotation nonstationary cosmological model is determined and investigated

  19. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    Science.gov (United States)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  20. Unusual cause of acute abdominal pain in a postmenopausal woman: adnexal torsion

    Directory of Open Access Journals (Sweden)

    Alper Biler

    2016-03-01

    Full Text Available Adnexal torsion is an infrequent but significant cause of acute lower abdominal pain in women. While adnexal torsion is generally considered in premenopausal women presenting with acute abdominal pain and a pelvic mass, it is a rare cause of acute abdominal pain during postmenopausal period. The diagnosis of adnexal torsion is often challenging due to nonspesific clinical, laboratory and physical examination findings. Causes of adnexal torsion is also different in premenopausal and postmenopausal women. While a simple functional cyst is often the cause of torsion in premenopausal women, it is more rarely the cause in postmenopausal women. Adnexal torsion is a surgical emergency. The surgery of adnexal torsion is performed either via conventional exploratory laparotomy or laparoscopic surgery. Adnexal torsion in postmenopausal women should be considered not only in the setting of sudden onset pain, but also in long-term abdominal discomfort. In this article, we presented a case with adnexal torsion that rarely cause acute abdominal pain in postmenopausal women. [Cukurova Med J 2016; 41(1.000: 167-170

  1. Use of spring-roll EAP actuator applied as end-effector of a hyper-redundant robot

    Science.gov (United States)

    Errico, Gianmarco; Fava, Victor; Resta, Ferruccio; Ripamonti, Francesco

    2015-04-01

    This paper presents a hyper-redundant continuous robot used to perform work in places which humans can not reach. This type of robot is generally a bio-inspired solution, it is composed by a lot of flexible segments driven by multiple actuators and its dynamics is described by a lot degrees of freedom. In this paper a model composed of some rigid links connected to each other by revolution joint is presented. In each link a torsional spring is added in order to simulate the resistant torque between the links and the interactions among the cables and the robot during the relative rotation. Moreover a type of EAP actuator, called spring roll, is used as the end-effector of the robot. Through a suitable sensor, such as a camera, the spring roll allows to track a target and it closes the control loop on the robot to follow it.

  2. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  3. Testicular torsion repair

    Science.gov (United States)

    ... the Procedure is Performed Testicular torsion is an emergency. In most cases, surgery is needed right away to relieve pain ... RM, Hockberger RS, Gausche-Hill M, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice . 9th ed. Philadelphia, PA: Elsevier; 2018:chap ...

  4. Direct torsional actuation of microcantilevers using magnetic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Exarhos, Annemarie L.; Kikkawa, James M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-09-01

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  5. Torsional Newton–Cartan geometry from Galilean gauge theory

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Mukherjee, Pradip

    2016-01-01

    Using the recently advanced Galilean gauge theory (GGT) we give a comprehensive construction of torsional Newton–Cartan (NC) geometry. The coupling of a Galilean symmetric model with background NC geometry following GGT is illustrated by a free nonrelativistic scalar field theory. The issue of spatial diffeomorphism (Son and Wingate 2006 Ann. Phys. 321 197–224; Banerjee et al 2015 Phys. Rev. D 91 084021) is focussed from a new angle. The expression of the torsionful connection is worked out, which is in complete parallel with the relativistic theory. Also, smooth transition of the connection to its well known torsionless expression is demonstrated. A complete (implicit) expression of the torsion tensor for the NC spacetime is provided where the first-order variables occur in a suggestive way. The well known result for the temporal part of torsion is reproduced from our expression. (paper)

  6. Relativistic particles with rigidity and torsion in D = 3 spacetimes

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Javaloyes, Miguel Angel; Lucas, Pascual

    2005-01-01

    Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem

  7. Mechanical origins of rightward torsion in early chick brain development

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  8. f(R) gravity, torsion and non-metricity

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P

    2009-01-01

    For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the outcome in both cases is the same theory, which is dynamically equivalent with an ω 0 = -3/2 Brans-Dicke theory. It is shown here that even for the most general case of an independent connection with both non-metricity and torsion, one arrives at exactly the same theory as in the more restricted cases. This generalizes the previous results and explains why assuming that either the torsion or the non-metricity vanishing ultimately leads to the same theory. It also demonstrates that f(R) actions cannot support an independent connection which carries dynamical degrees of freedom, irrespective of how general this connection is, at least as long as there is no connection-matter coupling. (fast track communication)

  9. Resolution of torsional vibration issue for large turbine generators

    International Nuclear Information System (INIS)

    Evans, D.G.; Giesecke, H.D.; Willman, E.C.; Moffitt, S.P.

    1995-01-01

    The excitation of turbine generator torsional natural frequencies in the region near 120 Hz by electrical transients in the power system has resulted in blade failures for several large 1,800 rpm nuclear turbines. At Cleveland Electric's Perry Nuclear Power plant a combination of advanced measurement techniques and analyses were used to identify and resolve a potential torsional vibration problem without adverse impact on the plant availability. The Perry turbine generator consists of a high pressure turbine, three low pressure turbines with 43 inch last stage blades, and a 1,250 MWe four pole generator operating at 1,800 rpm. Torsional vibration measurements obtained from random vibration during operation were acquired just prior to the 1994 refueling outage. The measurements indicated that the 26th torsional mode of vibration was just under 120 Hz and within the range of frequencies for which the manufacturer recommends modifying the unit to shift the problem torsional natural frequency. Extensive analytical modeling was used to design a modification to shift the torsional natural frequencies away from 120 Hertz and the modification was implemented during the refueling outage without affecting outage critical path. An off-line ramp test and additional on-line monitoring performed at the conclusion of the outage confirmed that the on-line method provided accurate measurements of the torsional natural frequencies and demonstrated that, with the modification, the torsional natural frequencies were sufficiently removed from 120 Hertz to allow turbine generator operation. The modification, which involved brazing of the tie wires on all last stage blades, also significantly reduces the stress on the last stage blades that result from negative sequence currents, further increasing the operating margin of the turbine generator with respect to electrical transients and faults

  10. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  11. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  12. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  13. Torsional osteotomies of the tibia in patellofemoral dysbalance.

    Science.gov (United States)

    Dickschas, Jörg; Tassika, Aliki; Lutter, Christoph; Harrer, Jörg; Strecker, Wolf

    2017-02-01

    Anterior knee pain or patellofemoral instability is common symptom of patellofemoral dysbalance or maltracking. Tibial torsional deformities can be the reason of this pathology. After appropriate diagnostic investigation, the treatment of choice is a torsional osteotomy. This study addresses the diagnostic investigation, treatment, and the outcome of torsional osteotomies of the tibia. Does this treatment result in patellofemoral stability and provide pain relief? Forty-nine tibial torsional osteotomies were included. The major symptoms were patellofemoral instability in 19 cases and anterior knee pain in 42 cases. In addition to clinical and radiographic analysis, a torsional angle CT scan was performed pre-operatively. A visual analog scale (VAS), the Japanese Knee Society score, the Tegner activity score, and the Lysholm score were assessed pre-operatively and at the 42-month follow-up. Mean tibial external torsion was 47.4° (SD 5.41; range 37°-66°; standard value 34°). Surgical treatment consisted of an acute supratuberositary tibial internal torsional osteotomy (mean 10.8°; SD 3.01°; range 5°-18°). At the follow-up investigation, the Tegner activity score was increased 0.4 points (p value 0.014) from 3.9 (SD 1.33; range 2-7) to 4.3 (SD 1.25; range 0-7). The Lysholm score increased 26 points (SD 16.32; p value 0.001) from 66 (SD 14.94; range 32-94) to 92 (SD 9.29; range 70-100) and the Japanese Knee Society score increased 18 points (SD 14.70; p value 0.001) from 72 (SD 13.72, range 49-100) to 90 (SD 9.85, range 60-100). VAS was reduced 3.4 points (SD 2.89; p value 0.001) from 5.7 (SD 2.78; range 0-10) to 2.3 (SD 1.83; range 0-7). As regards patellofemoral instability, no redislocation occurred in the follow-up period. The results of this study show that in cases of tibial maltorsion, a torsional osteotomy can lead to patellofemoral stability and pain relief, and should be considered as a treatment option. The improved clinical scores in the present

  14. Painless inter epididymal testicular torsion of the spermatic cord

    OpenAIRE

    Salomon V. Romano; Haime S. Hernan; Norberto Fredotovich

    2007-01-01

    Inter epididymal testicular torsion of the spermatic cord is extremely rare and usually diagnosed at surgery. We present an unusual case of spermatic cord torsion in a 14-year-old male patient. It is important to highlight that the torsion occurred only on the distal half of the epididymis leaving the head untwisted and edematous. In addition, the fact that this condition was painless made this case extremely rare and motivated our presentation.

  15. Testicular torsion and weather conditions: analysis of 21,289 cases in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Korkes

    2012-04-01

    Full Text Available PURPOSE: The hypothesis of association between testicular torsion and hyperactive cremasteric reflex, worsened by cold weather, has not been proved. Thirteen studies in the literature evaluated this issue, with inconclusive results. The aim of the present study was to evaluate the seasonality of testicular torsion in a large subset of patients surgically treated in Brazil, and additionally to estimate the incidence of testicular torsion. MATERIALS AND METHODS: Brazilian Public Health System Database was assessed from 1992-2010 to evaluate hospital admissions associated with treatment of testicular torsion. Average monthly temperature between 1992-2010 was calculated for each region. RESULTS: We identified 21,289 hospital admissions for treatment of testicular torsion. There was a higher number of testicular torsions during colder months (p = 0.002. To estimate the incidence of testicular torsion, we have related our findings to data from the last Brazilian census (2010. In 2010, testicular torsion occurred in 1.4:100,000 men in Brazil. CONCLUSIONS:Testicular torsion occurred at an annual incidence of approximately 1.4:100,000 men in Brazil in 2010. Seasonal variations do occur, with a significant increase of events during winter. Our findings support the theory of etiological role of cold weather to the occurrence of testicular torsion. Strategies to prevent these events can be based on these findings.

  16. Humeral torsion revisited: a functional and ontogenetic model for populational variation.

    Science.gov (United States)

    Cowgill, Libby W

    2007-12-01

    Anthropological interest in humeral torsion has a long history, and several functional explanations for observed variation in the orientation of the humeral head have been proposed. Recent clinical studies have revived this topic by linking patterns of humeral torsion to habitual activities such as overhand throwing. However, the precise functional implications and ontogenetic history of humeral torsion remain unclear. This study examines the ontogeny of humeral torsion in a large sample of primarily immature remains from six different skeletal collections (n = 407). The results of this research confirm that humeral torsion displays consistent developmental variation within all populations of growing children; neonates display relatively posteriorly oriented humeral heads, and the level of torsion declines steadily into adulthood. As in adults, variation in the angle of humeral torsion in immature individuals varies by population, and these differences arise early in development. However, when examined in the context of the developing muscles of the shoulder complex, it becomes apparent that variation in the angle of humeral torsion is not necessarily related to specific habitual activities. Variability in this feature is more likely caused by a generalized functional imbalance between muscles of medial and lateral rotation that can be produced by a wide variety of upper limb activity patterns during growth. (c) 2007 Wiley-Liss, Inc.

  17. Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?

    Science.gov (United States)

    Bilger, Rhonda; Chereson, Rasma; Salama, Noha Nabil

    2017-06-01

    Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists' perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college.

  18. ESTIMATING TORSION OF DIGITAL CURVES USING 3D IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Christoph Blankenburg

    2016-04-01

    Full Text Available Curvature and torsion of three-dimensional curves are important quantities in fields like material science or biomedical engineering. Torsion has an exact definition in the continuous domain. However, in the discrete case most of the existing torsion evaluation methods lead to inaccurate values, especially for low resolution data. In this contribution we use the discrete points of space curves to determine the Fourier series coefficients which allow for representing the underlying continuous curve with Cesàro’s mean. This representation of the curve suits for the estimation of curvature and torsion values with their classical continuous definition. In comparison with the literature, one major advantage of this approach is that no a priori knowledge about the shape of the cyclic curve parts approximating the discrete curves is required. Synthetic data, i.e. curves with known curvature and torsion, are used to quantify the inherent algorithm accuracy for torsion and curvature estimation. The algorithm is also tested on tomographic data of fiber structures and open foams, where discrete curves are extracted from the pore spaces.

  19. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  20. Failure analysis of a helical compression spring for a heavy vehicle's suspension system

    Directory of Open Access Journals (Sweden)

    Youli Zhu

    2014-10-01

    Full Text Available This paper analyzed why a compression coil spring fractured at the transition position from the bearing coil to the first active coil in service, while the nominal stress here should always be much less than that at the inside coil position of a fully active coil. Visual observations indicated that a wear scar was formed on the first active coil and the fracture surface showed radiating ridges emanating from the wear scar. Scanning electron microscopy examination showed crescent shaped region and beach marks, typical of fatigue failure. ZnCaph phosphate layer and painting around the contact zone were worn out due to contact and friction and resulted in corrosion and corrosion pits induced local stress concentration. Stress analysis indicated severe stress singularities at the edges of the contact zone, which facilitated cycle slip and fatigue crack nucleation. Recommendations were also made for improving the fatigue performance of the suspension springs.

  1. Painless inter epididymal testicular torsion of the spermatic cord

    Directory of Open Access Journals (Sweden)

    Salomon V. Romano

    2007-02-01

    Full Text Available Inter epididymal testicular torsion of the spermatic cord is extremely rare and usually diagnosed at surgery. We present an unusual case of spermatic cord torsion in a 14-year-old male patient. It is important to highlight that the torsion occurred only on the distal half of the epididymis leaving the head untwisted and edematous. In addition, the fact that this condition was painless made this case extremely rare and motivated our presentation.

  2. Ultrafine grained Cu processed by compression with oscillatory torsion

    OpenAIRE

    K. Rodak

    2007-01-01

    Purpose: The aim of this work is a study of Cu microstructure after severe plastic deformation process by usingcompression with oscillatory torsion test.Design/methodology/approach: Cu samples were deformed at torsion frequency (f) changed from 0 Hz(compression) to 1.8 Hz under a constant torsion angle (α) ≈8° and compression speed (v)=0.1mm/s. Structuralinvestigations were conducted by using light microscopy (LM) and transmission electron microscopy (TEM).Findings: The structural analysis ma...

  3. Physics of detecting torsion and placing limits on its effects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1985-01-01

    The essential principles of torsion-detection physics are presented, and an evaluation is conducted of several conceivable types of experiments and observations for actually detecting torsion fields, reemphasizing also the evident impossibility of successfully searching for its manifestations among cosmological relics. In particular, a polarized body, with net intrinsic (fundamental-particle) spin, is essential for detecting a torsion field. One which possesses only orbital angular momentum - rotation - or an unpolarized intrinsic spin density will not feel torsion. The fundamental problem in searching for such fields is the extremely small basic unit of the coupling or interaction energy between the torsion field and spin. The best way of maximizing the total interaction energy is to increase the spin density of the source sigma-s and at the same time the spin number SD of the detector. 15 references

  4. Dynamic Bending and Torsion Stiffness Derivation from Modal Curvatures and Torsion Rates

    Science.gov (United States)

    MAECK, J.; DE ROECK, G.

    1999-08-01

    In order to maintain the reliability of civil engineering structures, considerable effort is currently spent on developing a non-destructive vibration testing method for monitoring the structural integrity of constructions. The technique must be able to observe damage, secondly to localize the damage; and finally to give an idea of the severity of the damage. Within the framework of relating changes of measured modal parameters to changes in the integrity of the structure, it is important to be able to determine the dynamic stiffness in each section of the structure from measured modal characteristics.A damaged structure results in a dynamic stiffness reduction of the cracked sections. The dynamic stiffnesses provide directly an indication of the extension of the cracked zones in the structure. The dynamic stiffness reduction can also be associated with a degree of cracking in a particular zone.In an experimental programme, a concrete beam of 6 m length is subjected to an increasing static load to produce cracks. After each static perload, the beam is tested dynamically in a free-free set-up. The change in modal parameters is then related to damage in the beam.The technique that will be presented in the paper to predict the damage location and intensity is a direct stiffness derivation from measured modal displacement derivatives. Using the bending modes, the dynamic bending stiffness can be derived from modal curvatures. Using the torsional modes, the dynamic torsion stiffness can be derived from modal torsion rates.

  5. Torsion of abdominal appendages presenting with acute abdominal pain

    International Nuclear Information System (INIS)

    Al-Jaberi, Tareq M.; Gharabeih, Kamal I.; Yaghan, Rami J.

    2000-01-01

    Diseases of abnormal appendages are rare causes of abdominal pain in all age groups. Nine patients with torsion and infraction of abdominal appendages were retrospectively reviewed. Four patients had torsion and infarction of the appendices epiploicae, four patients had torsion and infarction of the falciform ligament. The patient with falciform ligament disease represents the first reported case of primary torsion and infarction of the falciform ligament, and the patient with the transverse colon epiplocia represents the first reported case of vibration-induced appendix epiplocia torsion and infarction. The patient with the falciform ligament disease presented with a tender upper abdominal mass and the remaining patients were operated upon with the preoperative diagnosis of acute appendicitis. The presence of normal appendix with free serosanguinous fluid in the peritoneal cavity should raise the possibility of a disease and calls for further evaluation of the intra-abdominal organs. If the diagnosis is suspected preoperatively, CT scan and ultrasound may lead to a correct diagnosis and possibly conservative management. Laparoscopy is playing an increasing diagnostic and therapeutic role in such situations. (author)

  6. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  7. Study on reinforced lightweight coconut shell concrete beam behavior under torsion

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Ramasubramani, R.; Annadurai, R.; Prakash Chandar, S.

    2014-01-01

    Highlights: • Use of coconut shell as aggregate in concrete production. • Behavior of coconut shell concrete under torsion. • Pre and post cracking behavior and analysis. • Torsional reinforcement and ductility. • Crack width and stiffness. - Abstract: This research investigates and evaluates the results of coconut shell concrete beams subjected to torsion and compared with conventional concrete beams. Eight beams, four with coconut shell concrete and four with conventional concrete were fabricated and tested. Study includes the general cracking characteristics, pre cracking behavior and analysis, post cracking behavior and analysis, minimum torsional reinforcement, torsional reinforcement, ductility, crack width and stiffness. It was observed that the torsional behavior of coconut shell concrete is comparable to that of conventional concrete. Compare to ACI prediction, equation suggested by Macgregor is more conservative in calculating cracking torsional resistance. But for the calculation of ultimate torque strength ACI prediction is more conservative compared to the equation suggested by Macgregor. Indian standard is also conservative in this regard, but it was under estimated compared to ACI and Macgregor equations. Minimum torsional reinforcement in beams is necessary to ensure that the beam do not fail at cracking. Compared to conventional concrete specimens, coconut shell concrete specimens have more ductility. Crack width at initial cracking torque for both conventional and coconut shell concrete with corresponding reinforcement ratios is almost similar

  8. Concept and development of measurement method of time sensitivity profile (TSP) in X-ray CT. Comparison of non-helical, single-slice helical, and multi-slice helical scans

    International Nuclear Information System (INIS)

    Tsujioka, Katsumi; Ida, Yoshihiro; Ohtsubo, Hironori; Takahashi, Yasukata; Niwa, Masayoshi

    2000-01-01

    We focused on the time element contained in a single CT image, and devised the concept of a time-sensitivity profile (TSP) describing how the time element is translated into an image. We calculated the data collection time range when the helical pitch is changed in non helical scans, single slice helical scans, and multi slice helical scans. We then calculated the time sensitivity profile (TSP) from the weighting applied when the data collection time range is translated into an image. TSP was also measured for each scanning method using our self-made moving phantom. TSPs obtained from the calculation and the experiments were very close. TSP showed interesting characteristics with each scanning method, especially in the case of multi slice helical scanning, in which TSP became shorter as helical pitch increased. We referred to the TSP's FWHM as the effective scanning time. When we conducted multi slice helical scanning at helical pitch 3, the effective scanning time increased to about 24% longer than that of a non helical scan. When we conducted multi slice helical scanning at helical pitch 5 or 6, the effective scanning time was about half that of a non helical scan. The time sensitivity profile (TSP) is a totally new concept that we consider an important element in discussing the time resolution of a CT scanner. The results of this review will provide significant data in determining the scanning parameters when scanning a moving object. (author)

  9. Experimental study on pure titanium during the positive-torsion and positive-negative-torsion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Zhao, Zhen; Zhou, Shunshun; Wan, Qiong

    2016-09-30

    The results of the mechanical properties, microstructure and fracture analysis of the pure titanium deformed by positive-torsion (PT) and positive-negative-torsion (PNT) are investigated by uniaxial tensile (UT) test, micro-indentation (MI) test, optical microscope (OM), transmission electron microscope (TEM) and scanning electron microscope (SEM). The UT test indicates that the strength increases obviously with the increase of torsion radian during PT. However, the strength firstly increases quickly, and then tends to steady with the increase of deformation during PNT. The similar phenomena are also shown through MI hardness analysis. The results from geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs) indicate that the dislocation density varies differently with the increase of deformation during PT and PNT. OM observation shows the grains are elongated and large numbers of deformation twins are observed during PT while the equiaxial grains are always presented during PNT. The variations of dislocation density during PT and PNT are verified by TEM. Besides, quantities of subgrains (SGs) are observed owing to the accumulated larger plastic strain during PNT while large numbers of deformation twins intersect with each other during PT. The fracture analysis indicates that large numbers of micro-voids distribute non-uniformly on fracture surface of sample twisted by PNT. However, the characteristics of ductile and brittle fracture are observed on fracture surface of sample twisted by PT.

  10. Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion

    OpenAIRE

    Jeong, Byeong-Woo

    2012-01-01

    Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a m...

  11. Perinatal testicular torsion: literature review and local experience ...

    African Journals Online (AJOL)

    The prognosis in TUDT is guarded and contralateral fixation was not practiced, except in a 5-week-old infant. Early orchiopexy at 3–6 months is recommended. Cooperation between surgeons, neonatologists, and parents is mandatory to avoid time delay. Keywords: intrauterine testicular torsion, postnatal testicular torsion, ...

  12. Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion

    Directory of Open Access Journals (Sweden)

    Byeong-Woo Jeong

    2012-01-01

    Full Text Available Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a multitude of failure modes (tensile failure and torsional buckling, and the failure consequently exhibits the feature of transitional failure envelopes. In addition, the safe region of double-walled carbon nanotubes is significantly larger than that of single-walled carbon nanotubes due to the differences in the onset of torsional buckling.

  13. New curvature-torsion relations through decomposition of the Bianchi identities

    International Nuclear Information System (INIS)

    Davies, J.B.

    1988-01-01

    The Bianchi Identities relating asymmetric curvature to torsion are obtained as a new set of equations governing second-order curvature tensors. The usual contribution of symmetric curvature to the gravitational field is found to be a subset of these identities though with an added contribution due to torsion gradients. The antisymmetric curvature two-tensor is shown to be related to the divergence of the torsion. Using a model of particle-antiparticle pair production, identification of certain torsion components with electroweak fields is proposed. These components obey equations, similar to Maxwell's that are subsets of these linear Bianchi identities. These results are shown to be consistent with gauge and other previous analyses

  14. The influence of the preliminary garter spring spacer simulator clamping force in the pressure tube spacer -calandria tube hook-up simulator aging behaviour

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Deloreanu, G.; Puiu, D.; Corbescu, B.; Anghel, N.; Dinu, E.

    2016-01-01

    The garter spring spacer is a specially constructed torsion spring used to fit-out the CANDU 6 fuel channel. The pressure tube ageing decreases the gap to the calandria tube. Continuous gap decrease directly affects the garter spring spacers behavior during fuel channel assembly operation. The preliminary clamping force value of the garter spring spacer assembly is important for its ageing behavior. This paper briefly describes the experimental technological facilities used for conducted the experiments and highlights some of the important moments during an experiment carried out in laboratory conditions, without using pressurized boiled water and irradiation working conditions. The results analysis and some conclusions are outlined at the end, pointing out that a garter spring spacer preliminary clamping force increase reduces the vibration response signal amplitude, and does not lead to its relaxation. The paper is dedicated to specialists working in research and technological engineering. (authors)

  15. Severe congenital penile torsion with anterior urethral diverticulum: A case report

    Directory of Open Access Journals (Sweden)

    Amilal Bhat

    2018-03-01

    Full Text Available Introduction: We present a rare case of severe penile torsion of 180° along with giant congenital anterior urethral diverticula. Presentation of these two rare anomalies together is extremely rare and has not been reported yet. The extreme rarity of the case and its management warrants this presentation. Observation: A 5 years old boy presented to us as a case of epispadias with post-void dribbling and wetting of the underwears. On examination, he was found to be a case of severe congenital penile torsion with diversion and rotation of median raphae in a counterclockwise fashion upto the midline dorsally confirming 180° torsion. During voiding, there was appearance of a swelling in distal penile region with passage of urinary drops while compressing it. Micturating cystourethrogram showed diverticula in penile and bulbar urethra. Torsion was completely corrected by penile de-gloving in a plane between two layers of buck fascia and mobilization of the urethra along with spongiosum proximally upto the penoscrotal junction and distally upto the glans. Diverticula was laid open and underwent urethroplasty along with double breasting of thickened diverticular tissue. Torsion was completely corrected after surgery. Post-operative recovery was uneventful. Urine culture was sterile and uroflowmetry showed maximal urinary flow of 12 ml/s at 3 months postoperatively. Conclusions: Penile de-gloving and adequate urethral mobilization corrects the severe penile torsion of 180°. Correction of severe torsion and urethroplasty is feasible in a single stage with good results. Keywords: Penile torsion, Urethral diverticula, Congenital anomalies, Mobilization of urethra, Urethroplasty, Double Breasting, Correction of penile torsion

  16. On the properties of torsions in Riemann-Cartan space-times

    International Nuclear Information System (INIS)

    Baker, W.M.; Atkins, W.K.; Davis, W.R.

    1978-01-01

    This paper is the first paper in a series of three papers dealing with the physical properties of torsions in Riemann-Cartan space-times (U 4 ). Paper one deals with the particular types of torsion that can be associated with the U 4 reinterpretation of a special class of null electromagnetic solutions of the standard form of Einstein's equations. In particular, for plane null electromagnetic solutions, three types of torsion solutions are associated with this type of reinterpretation. Two of these solutions, the trivector and semi-symmetric torsions, although rather special, serve as examples of what could be done to find the associated torsions in terms of simple requirements on identities in U 4 . The third class is obtained by relating the contorsion to the Lanczos ''spin'' tensor. Paper two, dealing with gravitational radiation, provides the proper background relating to the physical significance of the Lanczos tensor. This series of papers is primarily concerned with the question of the possible physical role of all types of torsion, compatible with an extension or an U 4 reinterpretation of Einstein's theory, consistent with the broadest possible interpretation of the present form of the Einstein-Cartan-Sciama-Kibble theory. However, in paper three some consideration will be given on theories with simpler metrical generalizations of U 4 and the related types of torsion. We emphasize that the content of paper one and two should be viewed mainly as special formal results that introduce the more general considerations of paper three

  17. Severe congenital penile torsion with anterior urethral diverticulum ...

    African Journals Online (AJOL)

    On examination, he was found to be a case of severe congenital penile torsion with diversion and rotation of median raphae in a counterclockwise fashion upto the midline dorsally confirming 180◦ torsion. During voiding, there was appearance of a swelling in distal penile region with passage of urinary drops while ...

  18. Torsion of wandering spleen in patient with horseshoe kidney

    International Nuclear Information System (INIS)

    Molski, St.; Zurada, A.; Meder, G.; Lasek, W.

    2005-01-01

    Wandering spleen is rare pathology, mostly occurring in young women. Disease may be congenital or acquired. Absence or laxity of ligaments leads to spleen pathologic mobility and may cause torsion of its pedicle, resulting in ischemia or infarct even haemorrhagic shock and patients death. We report a case of young woman previously diagnosed (and treated nonoperative) with wandering spleen who presented acute abdomen after minor blunt trauma. She was evaluated with abdominal ultrasound (US) and spiral computed tomography (CT). Torsion of splenic pedicle and splenic rupture was diagnosed and a horseshoe kidney as well. Laparotomy followed by splenectomy confirmed the existence of an intrapelvic torsioned wandering spleen. The only definitive treatment of wandering spleen is operative since nonoperative treatment is associated with high complication rate. Earlier diagnosis of wandering spleen in asymptomatic patients lets to direct diagnosis when patient starts to present with acute abdomen. CT and abdominal US play most important role in diagnosing splenic pedicle torsion. To our knowledge this is a first case of torsion of splenic pedicle in patient with horseshoe kidney. We consider this coincidence to be a congenital defect as both conditions may develop in second month gestation. (author)

  19. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  20. Standardized education and parental awareness are lacking for testicular torsion.

    Science.gov (United States)

    Friedman, Ariella A; Ahmed, Haris; Gitlin, Jordan S; Palmer, Lane S

    2016-06-01

    Testicular torsion leads to orchiectomy in 30-50% of cases, which may cause psychological upset and parental guilt over a potentially avertable outcome. Presentation delay is an important modifiable cause of orchiectomy; yet, families are not routinely educated about torsion or its urgency. The present study assessed parental knowledge regarding acute scrotal pain. An anonymous survey was distributed to parents in Urology and ENT offices, asking about their children's gender and scrotal pain history, urgency of response to a child's acute scrotal pain, and familiarity with testicular torsion. Surveys of 479 urology and 59 ENT parents were analyzed. The results between the two were not statistically different. Among the urology parents, 34% had heard of testicular twisting/torsion, most commonly through friends, relatives or knowing someone with torsion (35%); only 17% were informed by pediatricians (Summary Figure). Parents presenting for a child's scrotal pain were significantly more likely to have heard of torsion (69%) than those presenting for other reasons (30%, OR 5.24, P parents of boys had spoken with their children about torsion. Roughly three quarters of them would seek emergent medical attention - by day (75%) or night (82%) - for acute scrotal pain. However, urgency was no more likely among those who knew about torsion. This was the first study to assess parental knowledge of the emergent nature of acute scrotal pain in a non-urgent setting, and most closely approximating their level of knowledge at the time of pain onset. It also assessed parents' hypothetical responses to the scenario, which was markedly different than documented presentation times, highlighting a potential area for improvement in presentation times. Potential limitations included lack of respondent demographic data, potential sampling bias of a population with greater healthcare knowledge or involvement, and assessment of parents only. Parental knowledge of testicular torsion was

  1. Testicular Torsion (For Parents)

    Science.gov (United States)

    ... Parents Kids Teens Hernias Ultrasound: Scrotum Undescended Testicles Male Reproductive System PQ: I have a lump on one of ... to Do a Testicular Self-Exam (Slideshow) Varicocele Male Reproductive System Testicular Torsion View more About Us Contact Us ...

  2. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  3. Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane

    Science.gov (United States)

    MacPhail, Richard A.; Monroe, Frances C.

    1991-04-01

    We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.

  4. Torsion of the gallbladder: a case report

    Directory of Open Access Journals (Sweden)

    Ijaz Samia

    2008-07-01

    Full Text Available Abstract Introduction Torsion of the gallbladder is a rare condition that most commonly affects the elderly. Pre-operative diagnosis is the exception rather than the rule. Any delay in treatment can be fatal as the gallbladder may rupture, leading to biliary peritonitis. Case presentation We present the case of an 80-year-old woman who was admitted with right upper quadrant pain initially thought to be secondary to acute cholecystitis. Subsequent ultrasound and computed tomography scans of the abdomen revealed signs suggestive of acute cholecystitis but neither modality detected any gallstones. As the patient's symptoms failed to resolve on conservative management, she was taken to theatre for an open cholecystectomy. Intra-operatively, the gallbladder had undergone complete torsion and appeared gangrenous. A routine cholecystectomy followed and she recovered from the operation without incident. Conclusion It is rare to diagnose torsion of the gallbladder pre-operatively despite advances in diagnostic imaging. However, this differential diagnosis should be borne in mind particularly in the elderly patient, without proven gallstones, who fails to improve on conservative management. An emergency cholecystectomy is indicated in the event of diagnosing torsion of the gallbladder to avert the potentially lethal sequelae of biliary peritonitis.

  5. Ultrasonographic diagnosis of torsion of testicular appendages

    International Nuclear Information System (INIS)

    Esparza, J.; Gonzalez, A.; Cordero, J. L.

    2000-01-01

    To determine the efficacy of ultrasound in boys presenting torsion of a testicular appendage. A series of 30 boys with acute scrotal pain due to torsion of a testicular appendage was studied. Nine patients underwent surgery. The clinical findings and course in the remaining 21 suggested the presence of this abnormality. All of them underwent conventional and color Doppler ultrasound using a 7.5 MHz transducer. In 15 boys, ultrasound images depicted the affected appendage as a mass between the epididymal head and the testicle. In 13 cases, only signs of a inflammatory reaction, with enlargement of the epididymal head and tunicas presenting hyperflow and hydrocele, mimicking acute epididymities. In two cases, the images were normal. There is no definitive, distinguishing ultrasound image corresponding to testicular appendage torsion. Therefore, this diagnostic technique should be accompanied by clinical assessment. (Author) 14 refs

  6. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Science.gov (United States)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  7. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  8. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines

    CERN Document Server

    Aoyagi, H; Kitamura, H

    2001-01-01

    The X-ray beam position monitors had been designed and installed for SPring-8 insertion device beamlines. These monitors are being utilized for photon beam diagnostics. The beam from the standard undulator in SPring-8 has the total power of 11 kW and the power density of 470 kW/mrad sup 2 , typically. Each monitor has four CVD diamond blades coated with metal for detector heads. We have already introduced three styles of monitors to match various insertion devices in SPring-8. A standard style, or a fixed-blade style, is used mainly for a standard in-vacuum undulator beamlines. A horizontal-blade-drive style and a four-blade-drive style are used for beamlines of a wiggler and a twin helical undulator that have wide power distributions, and for figure-8 undulators that have asymmetric power distributions, respectively. This report describes the design and the structure of these monitors and the beam-tests for the photon beam diagnostics in detail.

  9. Review of the helicity formalism

    International Nuclear Information System (INIS)

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  10. Torsional stresses in the transverse fillet weld tubular joints

    NARCIS (Netherlands)

    Gunay, D.; Aydemir, A.; Özer, H.

    1996-01-01

    Torsional stresses, 'tre and tel , in tbe transverse fillet tubular weld joint subjected to torsional load have been analyzed by the finite element method using triangular and quadrilateral izoparametric axisymmetric fourier type torus finite elements. There is an axisymmetry with respect to

  11. Isolated Fallopian Tube Torsion in Adolescents

    Directory of Open Access Journals (Sweden)

    S. Rajaram

    2013-01-01

    Full Text Available Background. Fallopian tube torsion is a rare cause of acute abdomen, occurring commonly in females of reproductive age. It lacks pathognomonic symptoms, signs, or imaging features, thus causing delay in surgical intervention. Case. We report two cases of isolated fallopian tube torsion in adolescent girls. In the first case a 19-year-old patient presented with acute pain in the left iliac region associated with episodes of vomiting for one day and mild tenderness on examination. Laparoscopy revealed left sided twisted fallopian tube associated with hemorrhagic cyst of ovary. The tube was untwisted and salvaged. In another case an 18-year-old virgin girl presented with similar complaints since one week, associated with mild tenderness in the lower abdomen and tender cystic mass on per rectal examination. On laparoscopy right twisted fallopian tube associated with a paratubal cyst was found. Salpingectomy was done as the tube was gangrenous. Conclusion. Fallopian tube torsion, though rare, should be considered in women of reproductive age with unilateral pelvic pain. Early diagnostic laparoscopy is important for an accurate diagnosis and could salvage the tube.

  12. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  13. The physics of detecting torsion and placing limits on its effects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1985-01-01

    The essential principles of torsion-detection physics are presented and several conceivable types of experiments and observations for actually detecting torsion fields are evaluated reemphasizing also the evident impossibility of successfully searching for its manifestations among cosmological relics. In particular, a polarized body, with net intrinsic (fundamental-particle) spin, is essential for detecting a torsion field. One which possesses only orbital angular momentum-rotation-or an unpolarized intrinsic spin density will not feel torsion. The fundamental problem in searching for such fields is the extremely small basic unit of the coupling or interaction energy between the torsion field and spin, epsilonapprox.(8πG'/c 2 )(h 2 /4). The best way of maximizing the total interaction energy is to increase the spin density of the source σ 5 and, at the same time the ''spin number'' Ssub(D) of the detector. (author)

  14. Effect of Various Excitation Conditions on Vibrational Energy in a Multi-Degree-of-Freedom Torsional System with Piecewise-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Jong-Yun Yoon

    2015-09-01

    Full Text Available Dynamic behaviors in practical driveline systems for wind turbines or vehicles are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. However, various excitation conditions with different levels of magnitudes also show strong relationships to the dynamic behaviors when system responses are examined in both frequency and time domains. This study investigated the nonlinear responses of torsional systems under various excitations by using the harmonic balance method and numerical analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational energy with different excitations, the nonlinear responses were investigated with various comparisons. First, two different jumping phenomena with frequency up- and down-sweeping conditions were determined under severe excitation levels. Second, practical system analysis using the phase plane and Poincaré map was conducted in various ways. When the system responses were composed of quasi-periodic components, Poincaré map analysis clearly revealed the nonlinear dynamic characteristics and thus it is suggested to investigate complicated nonlinear dynamic responses in practical driveline systems.

  15. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  16. Testicular torsion

    DEFF Research Database (Denmark)

    Brasso, K; Andersen, L; Kay, L

    1993-01-01

    Thirty-five patients were examined 6-11 years after operation for torsion of the testis. Loss of testicular tissue was significantly associated with long preoperative duration of symptoms and with low postoperative sperm counts. The sex hormones were normal in the majority of patients...... to the sperm count and concentration. Measurement of carnitine levels in seminal plasma, as a sign of vas deferens obstruction or dysfunction of epididymis, and of autoantibodies against spermatozoa revealed no significant findings....

  17. Gastric dilatation-volvulus after splenic torsion in two dogs.

    Science.gov (United States)

    Millis, D L; Nemzek, J; Riggs, C; Walshaw, R

    1995-08-01

    Two dogs developed gastric dilatation-volvulus 2 and 17 months, respectively, after splenectomy for treatment of splenic torsion. Splenic displacement and torsion may stretch the gastric ligaments, allowing increased mobility of the stomach. After splenectomy, an anatomic void may be created in the cranioventral part of the abdomen, contributing to the mobility of the stomach. Veterinarians treating dogs with isolated splenic torsion may wish to consider prophylactic gastropexy at splenectomy, to reduce the chance of future gastric dilatation-volvulus. Prophylactic gastropexy should be done only if the dog's hemodynamic status is stable enough to allow for performance of the additional surgery.

  18. [Torsion of wandering spleen in a teenager: about a case].

    Science.gov (United States)

    Dème, Hamidou; Akpo, Léra Géraud; Fall, Seynabou; Badji, Nfally; Ka, Ibrahima; Guèye, Mohamadou Lamine; Touré, Mouhamed Hamine; Niang, El Hadj

    2016-01-01

    Wandering or migrating spleen is a rare anomaly which is usually described in children. Complications, which include pedicle torsion, are common and can be life-threatening. We report the case of a 17 year-old patient with a long past medical history of epigastric pain suffering from wandering spleen with chronic torsion of the pedicle. The clinical picture was marked by spontaneously painful epigastric mass, evolved over the past 48 hours. Abdominal ultrasound objectified heterogeneous hypertrophied ectopic spleen in epigastric position and a subcapsular hematoma. Doppler showed a torsion of splenic pedicle which was untwisted 2 turns and a small blood stream on the splenic artery. Abdominal CT scan with contrast injection showed a lack of parenchymal enhancement of large epigastric ectopic spleen and a subcapsular hematoma. The diagnosis of wandering spleen with chronic torsion of the pedicle complicated by necrosis and subcapsular hematoma was confirmed. The patient underwent splenectomy. The postoperative course was uneventful. We here discuss the contribution of ultrasound and CT scan in the diagnosis of wandering spleen with chronic torsion of the pedicle.

  19. Dynamic Analysis of Helical Planetary Gear Sets under Combined Force and Moment Loading

    Directory of Open Access Journals (Sweden)

    Yanfang Liu

    2017-01-01

    Full Text Available The dynamic behavior of a single-stage planetary gear set with helical gears of multishaft automotive automatic transmissions has been studied, in which one component of the planetary gear set is imposed by additional external vertical and axial loading from countershaft gear pair in addition to the moment. Under these combined loading conditions, the contributions of the deflections of the ring gear and the carrier cannot be neglected. A three-dimensional nonlinear time-variant dynamic model considering not only the transverse, torsional, axial, and rotational motions of the gears but also the elasticity of the mounted shafts has been developed by combining the lumped parameter method with finite element method. The natural modes and the forced vibration responses due to static transmission errors have been obtained. The proposed dynamic model is employed to describe the effects of the combined external loading condition and positioning on the dynamic behavior of a four-planet system.

  20. Torsion of the fallopian tube--a late complication of sterilisation.

    Science.gov (United States)

    Sivanesaratnam, V

    1986-02-01

    Torsion of an intact fallopian tube, unaccompanied by torsion of the ipsilateral ovary, was noted as a complication of bilateral tubal occlusion by the Pomeroy method in a 45-year old Indian woman. The sterilization was performed 5 years previously, at the time of Cesarean section delivery. The patient presented with a history of pain in the right iliac fossa. Laparotomy showed that the distal segment of the right fallopian tube was twisted 3 times on the distal mesosalpinx and appeared tense and gangrenous. The right ovary was normal and a 2 cm gap was noted between the proximal and distal segments of the tube. As a rare complication of the Pomeroy method, the gap in the tube can allow the distal mesosalpinx to act as a pedicle, and with a long mesosalpinx, the fimbriated segment of the tube lies free and may swing and twist to produce torsion. The occurrence of torsion is further promoted by a vascular disturbance leading to venous congestion, edema, and increased weight of the free fimbrial end of the tube. In those patients with a history of sterilization, torsion of the fallopian tube should be considered in the differential diagnosis of acute lower abdominal pain. Torsion of the fallopian tube has also been reported following other methods of tubal occlusion, including cautery and clips.

  1. Aerodynamic stability of long span suspension bridges with low torsional natural frequencies

    DEFF Research Database (Denmark)

    Andersen, Michael Styrk; Johansson, Jens; Brandt, Anders

    2016-01-01

    tests where the torsional frequency was lower than the vertical. But too low torsional stiffness caused large static displacements of the girder at medium–high wind speeds and steady state oscillations driven by a combination of torsional divergence and stalling behavior at the critical wind seed...

  2. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  3. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods.

    Science.gov (United States)

    Nakazawa, Yasumoto; Asakura, Tetsuo

    2003-06-18

    Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.

  4. Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance

    Science.gov (United States)

    Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.

    2017-01-01

    Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026

  5. [The functional sport shoe parameter "torsion" within running shoe research--a literature review].

    Science.gov (United States)

    Michel, F I; Kälin, X; Metzger, A; Westphal, K; Schweizer, F; Campe, S; Segesser, B

    2009-12-01

    Within the sport shoe area torsion is described as the twisting and decoupling of the rear-, mid- and forefoot along the longitudinal axis of the foot. Studies have shown that running shoes restrict the torsion of the foot and thus they increase the pronation of the foot. Based on the findings, it is recommended to design running shoes, which allow the natural freedom of movement of the foot. The market introduction of the first torsion concept through adidas(R) took place in 1989. Independently of the first market introduction, only one epidemiological study was conducted in the running shoe area. The study should investigate the occurrence of Achilles tendon problems of the athletes running in the new "adidas Torsion(R) shoes". However, further studies quantifying the optimal region of torsionability concerning the reduction of injury incidence are still missing. Newer studies reveal that the criterion torsion only plays a secondary roll regarding the buying decision. Moreover, athletes are not able to perceive torsionability as a discrete functional parameter. It is to register, that several workgroups are dealing intensively with the detailed analysis of the foot movement based on kinematic multi-segment-models. However, scientific as well as popular scientific contributions display that the original idea of the torsion concept is still not completely understood. Hence, the "inverse" characteristic is postulated. The present literature review leads to the deduction that the functional characteristics of the torsion concept are not fully implemented within the running shoe area. This implies the necessity of scientific studies, which investigate the relevance of a functional torsion concept regarding injury prevention based on basic and applied research. Besides, biomechanical studies should analyse systematically the mechanism and the effects of torsion relevant technologies and systems.

  6. Acute torsion and ischemia of the appendix in a young child

    Directory of Open Access Journals (Sweden)

    Dhruvin H. Hirpara

    2018-04-01

    Full Text Available Torsion of the vermiform appendix is a rare diagnosis; its clinical and radiographic presentation can mimic that of acute appendicitis. We report the case of a two-year-old boy presenting with a one day history of lower abdominal pain and serial ultrasound examinations suspicious for atypical acute appendicitis. Operative findings revealed a necrotic and engorged appendix with a 720° clockwise torsion at its base. Final pathology was consistent with ischemic necrosis in the setting of lymphoid hyperplasia. A brief update on the current body of literature regarding pediatric torsion of the vermiform appendix is provided. Keywords: Appendicitis, Volvulus, Torsion

  7. Incidence and predictive factors of isolated neonatal penile glanular torsion.

    Science.gov (United States)

    Sarkis, Pierrot E; Sadasivam, Muthurajan

    2007-12-01

    To determine the incidence of isolated neonatal penile glanular torsion, describe the basic characteristics, and explore the relationship between foreskin and glans torsion. A prospective survey was conducted of all male newborns admitted to nursery after delivery, or neonates less than 3 months presenting for circumcision. Cases with associated genital malformations were excluded. The incidence of isolated neonatal penile torsion was 27% (95% CI: 22.2%-31.84%), to the left in 99% of cases. In 3.5% of cases, the penis had an angle 20 degrees. Using Spearman's correlational coefficient, deviation of penile raphe from the midline at the foreskin tip had a better correlation with glans torsion than deviation of raphe at the coronal sulcus (0.727 vs 0.570; both significant at pscope of the study.

  8. Torsional Properties of TiNi Shape Memory Alloy Tape for Rotary Actuator

    Science.gov (United States)

    Takeda, K.; Tobushi, H.; Mitsui, K.; Nishimura, Y.; Miyamoto, K.

    2012-12-01

    In order to develop novel shape memory actuators, the torsional deformation of a shape memory alloy (SMA) tape and the actuator models driven by the tape were investigated. The results obtained can be summarized as follows. In the SMA tape subjected to torsion, the martensitic transformation appears along both edges of the tape due to elongation of these elements and grows to the central part. The fatigue life in both the pulsating torsion and alternating torsion is expressed by the unified relationship of the dissipated work in each cycle. Based on an opening and closing door model and a solar-powered active blind model, the two-way rotary driving actuator with a small and simple mechanism can be developed by using torsion of the SMA tape.

  9. Torsion of the Spermatic Cord: Is Bilateral Orchidopexy Really ...

    African Journals Online (AJOL)

    Aim: To evaluate the rationale for bilateral orchidopexy as treatment for unilateral torsion of the testis, by determining how frequently the contralateral testis shows an abnormal pathology in unilateral testicular torsion. Patients and Methods:This is a retrospective study using adult urology patients treated for both acute and ...

  10. Plastic Behavior and Fracture of Aluminum and Copper in Torsion Tests

    International Nuclear Information System (INIS)

    Bressan, Jose Divo

    2007-01-01

    Present work investigates the plastic behavior, work hardening and the beginning of plastic instabilities, of cylindrical specimens deformed by high speed cold plastic torsion tests and at low speed tensile test. The tests were carried out in a laboratory torsion test equipment and an universal tensile test machine. The tensile tests were performed at room temperature in an universal testing machine at low strain rate of 0.034/s. Experimental torsion tests were carried out at constant angular speed that imposed a constant shear strain rate to the specimen. In the tests, the rotation speed were set to 62 rpm and 200 rpm which imposed high strain rates of about 2/s and 6.5/s respectively. The torsion tests performed at room temperature on annealed commercial pure copper and aluminum. Two types of torsion specimen for aluminum were used: solid and tubular. The solid aluminum specimen curves presented various points of maximum torque. The tubular copper specimens showed two points of maximum. Shear bands or shear strain localization at specimen were possibly the mechanism of maximum torque points formation. The work hardening coefficient n and the strain rate sensitivity parameter m were evaluated from the equivalent stress versus strain curve from tensile and torsion tests. The n-value remained constant whereas the m-value increased ten folds for aluminum specimens: from tensile test m= 0.027 and torsion test m= 0.27. However, the hardening curves were sigmoidal

  11. Rotor-bearing system integrated with shape memory alloy springs for ensuring adaptable dynamics and damping enhancement-Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    nonlinear coupled dynamics of the rotor-bearing system. The nonlinear forces from the thermomechanical shape memory alloy springs and from the passive magnetic bearings are coupled to the rotor and bearing housing dynamics. The equations of motion describing rotor tilt and bearing housing lateral motion......Helical pseudoelastic shape memory alloy (SMA) springs are integrated into a dynamic system consisting of a rigid rotor supported by passive magnetic bearings. The aim is to determine the utility of SMAs for vibration attenuation via their mechanical hysteresis, and for adaptation of the dynamic...

  12. 5D Lovelock gravity: New exact solutions with torsion

    Science.gov (United States)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  13. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  14. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    Science.gov (United States)

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Bicavitary effusion secondary to liver lobe torsion in a dog

    Directory of Open Access Journals (Sweden)

    Khan Z

    2016-04-01

    Full Text Available Zaheda Khan,1 Kathryn Gates,2 Stephen A Simpson,31Emergency and Critical Care, Animal Specialty and Emergency Center, Los Angeles, CA, 2Emergency and Critical Care, Advanced Critical Care, Emergency and Specialty Services, Culver City, CA 3Emergency and Critical Care, Southern California Veterinary Specialty Hospital, Irvine, CA, USA Abstract: We described the diagnosis and successful treatment of pleural and peritoneal effusion secondary to liver lobe torsion in a dog. A 12-year-old female spayed Borzoi dog was referred for heart failure. Emergency room thoracic and abdominal ultrasound showed a large volume of pleural effusion with mild peritoneal effusion and an abdominal mass. Pleural fluid analysis classified the effusion as exudative. A complete ultrasound revealed mild peritoneal effusion and decreased blood flow to the right liver lobe. Other causes of bicavitary effusion were ruled out based on blood work, ultrasound, echocardiogram, and computed tomography. The patient was taken to surgery and diagnosed with caudate liver lobe torsion and had a liver lobectomy. At the 2-week postoperative recheck, the patient was doing well and there was complete resolution of the pleural effusion. Liver lobe torsion is a rare occurrence in dogs and can be difficult to diagnose. Clinical signs are nonspecific for liver lobe torsion and patients may present in respiratory distress with significant pleural fluid accumulation. When assessing patients with pleural and peritoneal effusion, liver lobe torsion should be considered as a differential diagnosis.Keywords: pleural effusion, peritoneal effusion, hepatic torsion

  16. Gauge fields in a torsion field

    International Nuclear Information System (INIS)

    Rosu, Ion

    2004-01-01

    In this paper we analyse the motion and the field equations in a non-null curvature and torsion space. In this 4-n dimensional space, the connection coefficients are γ bc a = 1/2S bc a + 1/2T bc a, where S bc a is the symmetrical part and T bc a are the components of the torsion tensor. We will consider that all the fields depend on x = x α , α = 1,2,3,4 and do not depend on y = y k , k=1,2,...,n. The factor S bc a depends on the components of the metric tensor g αβ (x) and on the gauge fields A ν s 0 (x) and the components of the torsion depend only on the gauge fields A ν s 0 (x). We take into consideration the particular case for which the geodesic equations coincide with the motion equations in the presence of the gravitational and the gauge fields. In this case the field equations are Einstein equations in a 4-n dimensional space. We show that both the geodesic equations and the field equations can be obtained from a variational principle. (author)

  17. Postoperative influences of the torsional phacoemulsification on foveal thickness and corneal edema

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-05-01

    Full Text Available AIM: To report the influences onfoveal thickness and corneal edema after torsional phacoemulsification.METHODS: Totally 52 patients(52 eyeswith age-related cataract were randomly assigned to phacoemulsification using torsional mode(26 eyesor conventional ultrasound mode(26 eyes. The foveal thickness examined by optical coherence tomography(OCTafter surgery at 1, 4 and 12wk and corneal edema was examined by slit lamp after surgery at 1d.RESULTS: The postoperative averagefoveal thickness datas of the two groups, comparing with corresponding preoperative datas, were significantly augmented at 1, 4 and 12wk(PPP>0.05. The effects of corneal edema in torsional group were slighter(PCONCLUSION: The postoperative influences onfoveal thickness and corneal edema with torsional mode are slighter than that with ultrasound mode, and the postoperative reactions with torsional mode are efficiently reduced.

  18. Theoretical model for the mechanical behavior of prestressed beams under torsion

    Directory of Open Access Journals (Sweden)

    Sérgio M.R. Lopes

    2014-12-01

    Full Text Available In this article, a global theoretical model previously developed and validated by the authors for reinforced concrete beams under torsion is reviewed and corrected in order to predict the global behavior of beams under torsion with uniform longitudinal prestress. These corrections are based on the introduction of prestress factors and on the modification of the equilibrium equations in order to incorporate the contribution of the prestressing reinforcement. The theoretical results obtained with the new model are compared with some available results of prestressed concrete (PC beams under torsion found in the literature. The results obtained in this study validate the proposed computing procedure to predict the overall behavior of PC beams under torsion.

  19. On the geometrization of electromagnetism by torsion

    International Nuclear Information System (INIS)

    Fonseca Neto, J.B. da.

    1984-01-01

    The possibility of electromagnetism geometrization using an four dimension Cartan geometry is investigated. The Lagrangian density which presents dual invariance for dyons electrodynamics formulated in term of two potentials is constructed. This theory by association of two potentials with track and with torsion pseudo-track and of the field with torsion covariant divergent is described. The minimum coupling of particle gravitational field of scalar and spinorial fields with dyon geometry theory by the minimum coupling of these fields with Cartan geometry was obtained. (author)

  20. Additivity for parametrized topological Euler characteristic and Reidemeister torsion

    OpenAIRE

    Badzioch, Bernard; Dorabiala, Wojciech

    2005-01-01

    Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.

  1. Tibial torsion in non-arthritic Indian adults: A computer tomography study of 100 limbs

    Directory of Open Access Journals (Sweden)

    Mullaji Arun

    2008-01-01

    Full Text Available Background: Knowledge of normal tibial torsion is mandatory during total knee replacement (TKR, deformity correction and fracture management of tibia. Different values of tibial torsion have been found in different races due to biological and mechanical factors. Value of normal tibial torsion in Indian limbs is not known, hence this study to determine the norm of tibial torsional value in normal Indian population. Materials and Methods: Computer tomography (CT scans were performed in 100 non-arthritic limbs of 50 Indian adults (42 males, eight females; age 26-40 years. Value of tibial torsion was measured using dorsal tangent to tibial condyles proximally and bimalleolar axis distally. Results: Normal tibial torsion was found to be 21.6 ± 7.6 (range 4.8 to 39.5 with none of the values in internal rotation. Right tibia was externally rotated by 2 degrees as compared to the left side ( P 0.029. No significant difference was found in male and female subjects. Value of tibial torsion was less than in Caucasian limbs, but was comparable to Japanese limbs when studies using similar measurement technique were compared. Conclusions: Indian limbs have less tibial torsion than Caucasian limbs but the value of tibial torsion is comparable to Japanese limbs.

  2. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  3. Effect of Torsional and Fatigue Preloading on HyFlex EDM Files.

    Science.gov (United States)

    Shen, Ya; Tra, Charles; Hieawy, Ahmed; Wang, Zhejun; Haapasalo, Markus

    2018-04-01

    The purpose of this study was to evaluate the effect of a low amount of torsional preloading on the fatigue life and different degrees of cyclic fatigue on torsional failure of HyFlex EDM (EDM; Coltene-Whaledent, Allstetten, Switzerland) and HyFlex CM (CM; Coltene-Whaledent) instruments. EDM and CM files were used. The fatigue resistance was examined in a 5-mm radius and 60° single curve, and the mean number of cycles to failure (N f ) was recorded. The torque and rotation angles at failure of the instruments were measured according to ISO 3630-1. New files were precycled to 0%, 50%, and 75% of the N f , and torsional tests were then performed. Other new files were preloaded at 5%, 15%, 25%, and 50% of the mean rotation angles before the fatigue test. The fracture surfaces of the fragments were examined under a scanning electron microscope. The fatigue resistance of EDM instruments was higher than that of CM instruments (P EDM at 15% preloading (P EDM files even with 50% torsional preloading was significantly higher than unused CM files (P EDM files. Moderate precycling (50%) of EDM files increased their torsional resistance. The fractographic patterns corresponded to the pattern defined by the last stage test. A low amount (15%) of torsional preloading reduced the fatigue resistance of EDM files, whereas even extensive (75%) precyclic fatigue was not detrimental to their torsional resistance. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Brans-Dicke theory in general space-time with torsion

    International Nuclear Information System (INIS)

    Kim, S.

    1986-01-01

    The Brans-Dicke theory in the general space-time endowed with torsion is investigated. Since the gradient of the scalar field as well as the intrinsic spin generate the torsion field, the interaction term of the spin-scalar field appears in the wave equation. The equations of motion are satisfied with the conservation laws

  5. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  6. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  7. Primary decomposition of torsion R[X]-modules

    Directory of Open Access Journals (Sweden)

    William A. Adkins

    1994-01-01

    Full Text Available This paper is concerned with studying hereditary properties of primary decompositions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if an R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M determines a primary decomposition of the submodule. This is a generalization of the classical fact from linear algebra that a diagonalizable linear transformation on a vector space restricts to a diagonalizable linear transformation of any invariant subspace. Additionally, primary decompositions are considered under direct sums and tensor product.

  8. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    Science.gov (United States)

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  9. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  10. Dismal salvage of testicular torsion: A call to action! | Maranya ...

    African Journals Online (AJOL)

    ... were not subjected to orchidopexy. There was no occurrence of torsion after orchidopexy. Conclusion: Testicular torsions were associated with low salvage rates. Increased public awareness coupled with clinician, parental, teacher, teenage and adult male education with respect to the consequences of acute scrotal pain ...

  11. Torsion of the fallopian the mimicking appendicitis in a pregnant woman; Torsion de la trompa de Falopio en una mujer gestante simulando apendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Tapia-Vine, M.; Pedrosa, I.; Escribano, N. [Hospital Clinico San Carlos (Spain)

    2000-07-01

    Isolated torsion of the fallopian tube is an uncommon entity. Given the difficulties involved in the preoperative diagnosis, the ultrasound findings characteristic of this anomaly are not widely known. We present a case of tubal torsion associated with a cyst, describing the ultrasound images in our case and those reported in the literature. (Author) 18 refs.

  12. Torsion as a dynamic degree of freedom of quantum gravity

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Pak, D G

    2008-01-01

    The gauge approach to gravity based on the local Lorentz group with a general independent affine connection A μcd is developed. We consider SO(1, 3) gauge theory with a Lagrangian quadratic in curvature as a simple model of quantum gravity. The torsion is proposed to represent a dynamic degree of freedom of quantum gravity at scales above the Planckian energy. The Einstein-Hilbert theory is induced as an effective theory due to quantum corrections of torsion via generating a stable gravito-magnetic condensate. We conjecture that torsion possesses an intrinsic quantum nature and can be confined

  13. Inferior oblique weakening surgery on ocular torsion in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Jinho Lee

    2015-06-01

    Full Text Available AIM:To investigate changes in fundus excyclotorsion after inferior oblique myectomy or myotomy.METHODS:The records of 21 patients undergoing strabismus surgery by a single surgeon between 2009 and 2012 were examined. Only patients who had undergone an inferior oblique myectomy or myotomy, with or without horizontal rectus muscle surgery, were evaluated. Digital fundus photographs were obtained, and the angle formed by a horizontal line passing through the optic disc center and a reference line connecting the foveola and optic disc center was measured. Associated clinical factors examined include age at the time of surgery, presence or absence of a head tilt, degree of preoperative vertical deviation, torsional angle, inferior oblique muscle overaction/superior oblique muscle underaction, and surgery laterality. Whether the procedure was performed alone or in combination with a horizontal rectus muscle surgery was also examined.RESULTS:Mean preoperative torsional angle was 12.0±6.4°, which decreased to 6.9±5.7° after surgery (P<0.001, paired t-test. Torsional angle also decreased from 15.1±7.0° to 6.2±4.3° in the myectomy group (P<0.001, paired t-test but there were no significant changes in the myotomy group (P=0.093, Wilcoxon signed rank test. Multivariable linear regression analysis showed that preoperative torsional angle, degree of inferior oblique overaction, and age at surgery independently and significantly affected postoperative torsional angle.CONCLUSION:Mean torsional angle decreased after inferior oblique myectomy. Degree of preoperative torsional angle, inferior oblique overaction, and age at surgery influence postoperative torsional angle.

  14. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Brand, P. C.; Drews, A. R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Roč. 367, 1-2 (2004), s. 306-311 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z2043910 Keywords : residual stress, automotive springs, neutron diffraction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.445, year: 2004

  15. Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation

    Science.gov (United States)

    Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo

    2018-07-01

    Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.

  16. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  17. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  18. Torsional, tensile and structural properties of acrylonitrile–butadiene–styrene clay nanocomposites

    International Nuclear Information System (INIS)

    Singh, Priyanka; Ghosh, Anup K.

    2014-01-01

    Highlights: • Torsional behaviour of ABS and its nanocomposites is established. • Rheology is used as a tool to investigate the structure development of ABS nanocomposites. • Effect of nanoclay on resilience, toughness and ductility of ABS nanoclay is quantified. • ABS clay nanocomposites is correlated with rheological, mechanical and torsional behaviour. - Abstract: Torsional and tensile behaviour of acrylonitrile–butadiene–styrene (ABS)-clay nano-composites have been investigated and correlated with morphological and rheological characterisations. Nano-composites of ABS are prepared by melt compounding with different loading levels of nanoclay (Cloisite 30B) in a twin screw extruder and have been characterised in terms of torsional, axial and impact behaviour for their application in external orthotic devices. Tensile stress strain curve of nanocomposites are investigated to quantify resilience, toughness and ductility. Torque values of the nanocomposites are observed under torsion (10°–90°) and compared with that of neat ABS. Performance of ABS under torsional load improved by addition of nanoclay. Both modulus of elasticity and rigidity are found to improve in presence of nanoclay. State of dispersion in nano-composites is investigated using conventional methods such as transmission electron microscopy (TEM), X-ray diffraction (XRD), as well as by parallel plate rheometry. Addition of clay exhibits shear thinning effect and results in increase in storage modulus as well as complex viscosity of the nanocomposites. Zero shear viscosity rises tenfold with 1–2% addition of nanoclay, indicating the formation of structural network. It is found that state of dispersion of nanoclay governs the torsional and mechanical properties in ABS-clay nanocomposites

  19. Isolated torsion of fallopian tube during pregnancy; report of two cases.

    Science.gov (United States)

    Yalcin, O T; Hassa, H; Zeytinoglu, S; Isiksoy, S

    1997-08-01

    Isolated torsion of fallopian tube is very uncommon during pregnancy. Predisposing factors for torsion are hydrosalpinx, prior tubal operation, pelvic congestion, ovarian and paraovarian masses and trauma. Although the most important clinical symptom is abdominal pain in lower quadrants, the diagnosis is usually established during the operation performed for acute abdomen and salpingectomy is almost always necessary. Two cases of torsion of fallopian tube during pregnancy, one with hydrosalpinx, the other with paratubal cyst are presented and symptoms and predisposing factors are discussed.

  20. TORSION TESTIS : ROLE OF COLOR DOPPLER : A STUDY OF 50 CASES

    Directory of Open Access Journals (Sweden)

    Anand

    2015-09-01

    Full Text Available BACKGROUND: T orsion testis is one of the catast r ophic conditions in children and young a d u lts. Traditionally the diagnosis was made clinical presentation and suspicion. Critical decision making is essential to save the testis . OBJECTIVE: To study the usefu lness and efficacy of Doppler ultrasound in correctly diagnosing acute scrotal conditions in children and young adults to save the testis and to avoid negative explorations. METHODS: Over a period of two years 50 patients with acute scrotum were admitted i n general surgery department who underwent Doppler ultrasound scrotum and its efficacy in correctly diagnosing the pathology was analysed. RESULTS: 50 patients with age group <25 years were included in study. Scrotal pain was the most frequent presenting s ymptom of acute scrotum (98% followed by Swelling of the hemiscrolum on the involved side present in 86% of the patients. Doppler ultrasound showed torsion of testis in 18 patients. On Scrotal exploration, torsion of spermatic cord was confirmed in 16 pat ients, one patient had torsion of appendix of testis and the other had Epididymo - orchitis. Thus the sensitivity and specificity of Doppler ultrasonography for testicular torsion was 86.9% and 92.6% respectively. 2 patients with equivocal Doppler findings, but strong clinical suspicion of testicular torsion were explored, and testis was found to be torsed in both two patients. Doppler ultrasonography showed Epididymo - orchitis in 22 patients, torsion of testicular appendage in 2 patients, Idiopathic scrotal edema in one, and in 5 pts no significant pathology found. All twenty patients of epididymo - orchitis, two patients of torsion of testicular appendage, and one patient of idiopathic scrotal edema were managed conservatively. At three weeks follow up, all th e patients were free of symptoms. The sensitivity and specificity of Doppler ultrasonography for epididymo - orchitis was 95% and 100% respectively. CONCLUSIONS: color

  1. Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments

    OpenAIRE

    Kumar, Vinod; Takkar, Brijesh

    2016-01-01

    Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up...

  2. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  3. EOS analysis of lower extremity segmental torsion in children and young adults.

    Science.gov (United States)

    Gaumétou, E; Quijano, S; Ilharreborde, B; Presedo, A; Thoreux, P; Mazda, K; Skalli, W

    2014-02-01

    Lower limb torsion varies substantially among healthy children during growth. Values reported in the literature to date have been obtained using semi-quantitative clinical or 2D measurement methods. Quantitative 3D measurement would help determine the physiological range of lower limb torsion. Low-dose stereoradiography with 3D reconstruction provides a good alternative. Its use increases in pediatrics because of radiation minimization. Previous studies have shown accurate and reproducible results of lower limbs reconstruction in adults and children but the torsional parameters haven't been measured yet. The present study reports the values of lower limb segmental torsion and its course during growth in a cohort of healthy children and young adults using the EOS low-dose biplanar X-ray. EOS 3D reconstruction is an accurate and reproducible method to measure the torsional parameters in children. Femoral torsion (FT) and tibial torsion (TT) were studied on 114 volunteers (228 lower limbs) from 6 to 30 years of age divided by age into 5 groups. The EOS™ acquisitions were obtained in subjects standing with their feet offset. Mean FT decreased during growth, passing from 21.6° to 18°, whereas mean TT increased from 26.8° to 34.7°. There was a statistically significant difference between the 2 extreme age groups, but no difference was found between any other age groups. The ICC for intra-observer reproducibility was 0.96 and 0.95 for FT and TT for the first operator, and 0.79 and 0.83 for the second operator respectively. The ICC for inter-observer reproducibility was 0.84 and 0.82 respectively. The course of lower limb segmental torsion observed was consistent with literature reports based upon clinical and 2D measurements. 3D reconstruction of EOS low-dose biplanar imaging appears to be a safe and reliable tool for lower limbs measurements, especially for investigating lower limb segmental torsion in children and adults. Level IV. Copyright © 2013. Published by

  4. Outcomes of Surgery for Posterior Polar Cataract Using Torsional Ultrasound

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2013-10-01

    Full Text Available Purpose: The aim of this study is to report outcomes of surgery for posterior polar cataract using torsional ultrasound. Material and Method: Medical records of 26 eyes of 21 consecutive patients with posterior polar cataract who had cataract surgery using the torsional phacoemulsification were evaluated retrospectively. The surgical procedure used, phacoemulsification parameters, intraoperative complications, and postoperative visual outcome were recorded. Results: Of the 26 eyes, 24 (92.3% had small to medium posterior polar opacity. Two eyes had large opacity. All surgeries were performed using the torsional handpiece. Posterior capsule rupture occurred in 4 (15.3% eyes. The mean visual acuity improved significantly after surgery (p<0.001. The postoperative visual acuity was worse than 20/20 in 5 eyes. The cause of the low acuity was amblyopia. Discussion: Successful surgical results and good visual outcome can be achieved with phacoemulsification using the torsional handpiece. (Turk J Ophthalmol 2013; 43: 345-7

  5. Tire

    Science.gov (United States)

    Benzing, II, James Alfred (Inventor); Kish, James Christopher (Inventor); Asnani, Vivake Manohar (Inventor)

    2012-01-01

    A tire includes a plurality of helical springs. Each helical spring includes a first end portion, a second end portion, and an arching middle portion. Each helical spring is interlaced with at least one other helical spring thereby forming a laced toroidal structure extending about an entire circumference of the tire.

  6. A Rare Cause of Scrotal Mass in a Newborn: Antenatal Intravaginal Testicular Torsion

    Directory of Open Access Journals (Sweden)

    Ahmet Ali Tuncer

    2018-04-01

    Full Text Available Intravaginal testicular torsion is a very rare pathology in the neonatal period. However, it is the most common type of torsion in puberty. In this article, we present a male patient with testicular hyperemia and a mass in the testis. Ultrasonography revealed intravaginal testicular torsion and absence of testicular blood flow. This paper aims to draw attention to the importance of neonatal examination for the presence of testicular torsion which is a rare pathology in newborns with scrotal colour change or presence of an abnormal mass.

  7. Numerical Analysis on Variation of Dynamic Response of Girder Bridges with Torsional Reinforcement Panels

    Directory of Open Access Journals (Sweden)

    Kang Jae-Yoon

    2015-01-01

    Full Text Available The dynamic flexural behaviour of the railway bridge is influenced by its torsional behaviour. Especially, in the case of girder railway bridges, the dynamic response tends to amplify when the natural frequency in flexure (1st vibration mode is close to that in torsion (2nd vibration mode. In order to prevent such situation, it is necessary to adopt a flexural-to-torsional natural frequency ratio larger than 120%. This study proposes a solution shifting the natural frequency in torsion to high frequency range and restraining torsion by installing concrete panels on the bottom flange of the girder so as to prevent the superposition of the responses in the girder bridge. The applicability of this solution is examined by finite element analysis of the shift of the torsional natural frequency and change in the dynamic response according to the installation of the concrete panels. The analytical results for a 30 m-span girder railway bridge indicate that installing the concrete panels increases the natural frequency in torsion by restraining the torsional behaviour and reduces also the overall dynamic response. It is seen that the installation of 100 mm-thick concrete panels along a section of 4 m at both extremities of the girder can reduce the dynamic response by more than 30%.

  8. A Patient Presenting with Concurrent Testis Torsion and Epididymal Leiomyoma

    Directory of Open Access Journals (Sweden)

    E. Arpali

    2013-01-01

    Full Text Available Leiomyomas are the second most common tumors of epididymis. Patients with leiomyomas are sometimes misdiagnosed with testicular tumors. A Case of a patient with a scrotal mass presenting with testicular torsion is reported. Concurrent occurrence of testicular torsion and epididymal leiomyoma is an extremely rare condition.

  9. Substructural evolution during cyclic torsion of drawn low carbon steel bars

    International Nuclear Information System (INIS)

    Correa, E.C.S.; Aguilar, M.T.P.; Monteiro, W.A.; Cetlin, P.R.

    2006-01-01

    Strain softening effects have been previously observed in drawn low carbon steel bars as a result of cyclic torsion experiments. In this paper, the substructural aspects related to the phenomenon have been investigated. Single pass drawn bars were subjected to a quarter, to a half, to a full torsion cycle and to 10 such cycles. Transmission electron microscopy revealed the development of extended microbands crossing the former dislocation arrangement of the drawn metal, which evolves to a rectangular shaped subgrains structure as torsion deformation is conducted

  10. Generalised discrete torsion and mirror symmetry for G2 manifolds

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Kaste, Peter

    2004-01-01

    A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)

  11. Torsion of the greater omentum: A rare preoperative diagnosis

    International Nuclear Information System (INIS)

    Tandon, Ankit Anil; Lim, Kian Soon

    2010-01-01

    Torsion of the greater omentum is a rare acute abdominal condition that is seldom diagnosed preoperatively. We report the characteristic computed tomography (CT) scan findings and the clinical implications of this unusual diagnosis in a 41-year-old man, who also had longstanding right inguinal hernia. Awareness of omental torsion as a differential diagnosis in the acute abdomen setting is necessary for correct patient management

  12. Development of a method for measuring femoral torsion using real-time ultrasound

    International Nuclear Information System (INIS)

    Hafiz, Eliza; Hiller, Claire E; Nightingale, E Jean; Eisenhuth, John P; Refshauge, Kathryn M; Nicholson, Leslie L; Clarke, Jillian L; Grimaldi, Alison

    2014-01-01

    Excessive femoral torsion has been associated with various musculoskeletal and neurological problems. To explore this relationship, it is essential to be able to measure femoral torsion in the clinic accurately. Computerized tomography (CT) and magnetic resonance imaging (MRI) are thought to provide the most accurate measurements but CT involves significant radiation exposure and MRI is expensive. The aim of this study was to design a method for measuring femoral torsion in the clinic, and to determine the reliability of this method. Details of design process, including construction of a jig, the protocol developed and the reliability of the method are presented. The protocol developed used ultrasound to image a ridge on the greater trochanter, and a customized jig placed on the femoral condyles as reference points. An inclinometer attached to the customized jig allowed quantification of the degree of femoral torsion. Measurements taken with this protocol had excellent intra- and inter-rater reliability (ICC 2,1  = 0.98 and 0.97, respectively). This method of measuring femoral torsion also permitted measurement of femoral torsion with a high degree of accuracy. This method is applicable to the research setting and, with minor adjustments, will be applicable to the clinical setting. (paper)

  13. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    Science.gov (United States)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  14. On unified field theories, dynamical torsion and geometrical models: II

    International Nuclear Information System (INIS)

    Cirilo-Lombardo, D.J.

    2011-01-01

    We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion

  15. Torsion as a dark matter candidate from the Higgs portal

    Science.gov (United States)

    Belyaev, Alexander S.; Thomas, Marc C.; Shapiro, Ilya L.

    2017-05-01

    Torsion is a metric-independent component of gravitation, which may provide a more general geometry than the one taking place within general relativity. On the other hand, torsion could lead to interesting phenomenology in both particle physics and cosmology. In the present work it is shown that a torsion field interacting with the SM Higgs doublet and having a negligible coupling to standard model (SM) fermions is protected from decaying by a Z2 symmetry, and therefore becomes a promising dark matter (DM) candidate. This model provides a good motivation for Higgs portal vector DM scenario. We evaluate the DM relic density and explore direct DM detection and collider constraints on this model to understand its consistency with experimental data and establish the most up-to-date limits on its parameter space. We have found in the model when the Higgs boson is only partly responsible for the generation of torsion mass, there is a region of parameter space where torsion contributes 100% to the DM budget of the Universe. Furthermore, we present the first results on the potential of the LHC to probe the parameter space of minimal scenario with Higgs portal vector DM using mono-jet searches and have found that LHC at high luminosity will be sensitive to the substantial part of model parameter space which cannot be probed by other experiments.

  16. Crack path in aeronautical titanium alloy under ultrasonic torsion loading

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2016-01-01

    Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.

  17. Experimental evaluation of torsional fatigue strength of welded bellows and application to design of fusion device

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.

    1984-01-01

    Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)

  18. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  19. Numerical Investigation of Damping of Torsional Beam Vibrations by Viscous Bimoments

    DEFF Research Database (Denmark)

    Hoffmeyer, David; Høgsberg, Jan Becker

    2017-01-01

    Damping of torsional beam vibrations of slender beam–structures with thin–walled cross–sections is investigated. Analytical results from solving the differential equation governing torsion with viscous bimoments imposed at the boundary, are compared with a numerical approach with three...

  20. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  1. The accuracy of serum interleukin-6 and tumour necrosis factor as markers for ovarian torsion.

    Science.gov (United States)

    Cohen, S B; Wattiez, A; Stockheim, D; Seidman, D S; Lidor, A L; Mashiach, S; Goldenberg, M

    2001-10-01

    The aim of this study was to investigate a possible role for interleukin-6 (IL-6) and tumour necrosis factor (TNF-alpha) as pre-operative markers for the diagnosis of ovarian torsion. Twenty consecutive patients admitted to the gynaecological emergency room with suspected clinical diagnosis of ovarian torsion were prospectively assigned to the study. Blood samples were drawn pre-operatively and examined for serum concentrations of IL-6 and TNF-alpha. Surgeons were blinded to laboratory results prior to laparoscopy. The pre-operative diagnosis of ovarian torsion was confirmed during an urgent diagnostic laparoscopy in 8 (40%) patients. The surgical diagnosis among the remaining 12 patients was a large ovarian cyst not in torsion. In six out of eight (75.0%) patients with ovarian torsion serum IL-6 concentrations were elevated. None of the 12 patients without torsion had elevated serum IL-6 concentrations. This difference was statistically significant (P < 0.001). There was no significant difference in the proportion of women with elevated serum TNF-alpha concentrations, two of eight (25.0%) patients with torsion and four of 12 (33.3%) control cases. Elevated serum IL-6 concentrations, but not serum TNF-alpha concentrations, were significantly associated with the occurrence of ovarian torsion. In patients with vague clinical signs of ovarian torsion, serum IL-6 might help to distinguish which patients should undergo diagnostic laparoscopy.

  2. Elastic torsional buckling of thin-walled composite cylinders

    Science.gov (United States)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  3. Quantum gravity effect in torsion driven inflation and CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, 1, Homi Bhabha Road, Mumbai 400005 (India); Pal, Barun Kumar [Inter-University Centre for Astronomy and Astrophysics,Ganeshkhind, Pune 411007 (India); Netaji Nagar College for Women,Regent Estate, Kolkata 700092 (India); Basu, Banasri; Bandyopadhyay, Pratul [Physics and Applied Mathematics Unit, Indian Statistical Institute,203 B.T. Road, Kolkata 700 108 (India)

    2015-10-28

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10{sup −10})<θ

  4. Quantum gravity effect in torsion driven inflation and CP violation

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Barun Kumar; Basu, Banasri; Bandyopadhyay, Pratul

    2015-01-01

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10"−"1"0)<θ< O(10"−"9) has been obtained, using Planck+WMAP9 best fit cosmological parameters.

  5. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  6. A 55-Year-Old Man with Right Testicular Pain: Too Old for Torsion?

    Science.gov (United States)

    Tang, Yu Ho; Yeung, Victor Hip Wo; Chu, Peggy Sau Kwan; Man, Chi Wai

    2017-02-01

    Testicular torsion is predominantly a disease of adolescence, but age itself should not be an exclusion criterion for the diagnosis. A lack of suspicion for testicular torsion in older patients may result in a missed or delayed diagnosis which jeopardizes the chance of testicular salvage. In this article, we report a case of testicular torsion in a 55-year-old Chinese man.

  7. Unilateral testicular torsion following ejaculation by manual sexual stimulation in an adolescent: A case report

    Directory of Open Access Journals (Sweden)

    Omer Faruk Yagli

    2018-05-01

    Full Text Available Testicular torsion is one of the most common causes of acute scrotum in children and adolescents. The bell-clapper deformity, which detected in 12% of males, is the most important reason that leads to testicular torsion. In our case, a 14 years old male admitted to our clinic due to testicular torsion developed after ejaculation with manual sexual stimulation of the penis. The most important criteria in determining the loss of testis is the degree and duration of torsion. Here, we discussed the rare cause of testicular torsion along with diagnostic and therapeutic characteristics.

  8. Topological invariants and the dynamics of an axial vector torsion field

    International Nuclear Information System (INIS)

    Drechsler, W.

    1983-01-01

    A generalized throry of gravitation is discussed which is based on a Riemann-Cartan space-time, U 4 , with an axial vector torsion field. Besides Einstein's equations determining the metric of the U 4 a system of nonlinear field equations is established coupling an axial vector source current to the axial vector torsion field. The properties of the solutions of these equations are discussed assuming a London-type condition relating the axial current and torsion field. To characterize the solutions use is made of the Euler and Pontrjagin forms and the associated quadratic curvature invariants for the U 4 space-time. It is found that there exists for a Riemann-Cartan space-time a relation between the zeros of the axial vector torsion field and the singularities of the Pontrjagin invariant, which is analogous to the well-known Hopf relation between the zeros of vector fields and the Euler characteristic. (author)

  9. Constraints on torsion from the bosonic sector of Lorentz violation and magnetogenesis data

    International Nuclear Information System (INIS)

    Garcia de Andrade, L.C.

    2011-01-01

    A. Kostelecky et al. [Phys. Rev. Lett. 100 (2008) 111102], have shown that there is an exceptional sensitivity of spacetime torsion components by coupling it to fermions and constraining it to Lorentz violation. They obtain new constraints on torsion components down to the level of 10 -31 GeV. Yet more recently, L.C. Garcia de Andrade [Phys. Lett. B 468 (2011) 28] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear non-standard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. In this paper bounds are placed on torsion based on the magnetogenesis or the origin of magnetic fields in the universe. On a coherence scale of 10 kpc, galactic magnetic fields of the order of some μG yield a torsion primordial field of the order of K 0 ∼10 -48 GeV. Just to give an idea of how tiny it is we mention that torsion limit in the Early universe yield K 0 ∼10 -31 GeV had been obtained by V. de Sabbata and C. Sivaram. Good limits were also obtained by B.R. Heckel et al. [Phys. Rev. D 78 (2008) 092006]. In our case the advantage from astro-particle physics point of view, is that a very small seed torsion field is enough to seed galactic dynamo. C. Sivaram limit is obtained from a massive photon electrodynamics [L.C. Garcia de Andrade, C. Sivaram, Ap. Space Sci. 209 (1993) 109] where a gauge invariant electrodynamics is used. Dynamo stars data are able to raise this value of torsion up to 10 -34 GeV at magnetar atmosphere. From these estimates one notices that they coincide with the ones obtained by A. Kostelecky et al., the difference being basically in the method. The ones here were obtained from magnetogenesis data while theirs were obtained from the Earth laboratory data from polarised electrons. Besides here one used the torsion derivatives while A. Kostelecky et al. uses the constant axial torsion tensor. Another fundamental distinction is that we use bosonic sector of the Lagrangian while

  10. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  11. Intraoperative performance and postoperative outcome comparison of longitudinal, torsional, and transversal phacoemulsification machines.

    Science.gov (United States)

    Christakis, Panos G; Braga-Mele, Rosa M

    2012-02-01

    To compare the intraoperative performance and postoperative outcomes of 3 phacoemulsification machines that use different modes. Kensington Eye Institute, Toronto, Ontario, Canada. Comparative case series. This chart and video review comprised consecutive eligible patients who had phacoemulsification by the same surgeon using a Whitestar Signature Ellips-FX (transversal), Infiniti-Ozil-IP (torsional), or Stellaris (longitudinal) machine. The review included 98 patients. Baseline characteristics in the groups were similar; the mean nuclear sclerosis grade was 2.0 ± 0.8. There were no significant intraoperative complications. The torsional machine averaged less phacoemulsification needle time (83 ± 33 seconds) than the transversal (99 ± 40 seconds; P=.21) or longitudinal (110 ± 45 seconds; P=.02) machines; the difference was accentuated in cases with high-grade nuclear sclerosis. The torsional machine had less chatter and better followability than the transversal or longitudinal machines (P<.001). The torsional and longitudinal machines had better anterior chamber stability than the transversal machine (P<.001). Postoperatively, the torsional machine yielded less central corneal edema than the transversal (P<.001) and longitudinal (P=.04) machines, corresponding to a smaller increase in mean corneal thickness (torsional 5%, transversal 10%, longitudinal 12%; P=.04). Also, the torsional machine had better 1-day postoperative visual acuities (P<.001). All 3 phacoemulsification machines were effective with no significant intraoperative complications. The torsional machine outperformed the transversal and longitudinal machines, with a lower mean needle time, less chatter, and improved followability. This corresponded to less corneal edema 1 day postoperatively and better visual acuity. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Unusual cause of acute abdomen in a child--torsion of greater omentum: report of two cases.

    Science.gov (United States)

    Pogorelić, Zenon; Katić, Josip; Gudelj, Karla; Mrklić, Ivana; Vilović, Katarina; Perko, Zdravko

    2015-08-01

    Torsion of the omentum is twisting along its long axis and a rare cause of acute abdomen. Depending on associated conditions, it is classified as primary and secondary. It may mimic different pathologies presenting as acute abdomen, most common of them being acute appendicitis. Current choice for management of omental torsion is laparoscopic surgery. We present two cases of omental torsion of two boys who presented with abdominal pain, nausea and vomiting and underwent emergency laparoscopy. Omental torsion is very rare, and its diagnosis is usually made only after surgery. At laparoscopy, omental torsion is suspected when the appendix is normal and the symptoms and findings of torsion are present. Laparoscopy is a safe and effective approach for the diagnosis and management of omental torsion, with the advantages of reduced postoperative pain and hospital stay. © The Author(s) 2015.

  13. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  14. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    Science.gov (United States)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  15. Flexural-torsional buckling analysis of angle-bar stiffened plates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.

  16. Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia; Fabbri, Luca; Vignolo, Stefano

    2012-01-01

    The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that the torsion tensor gives rise to interactions having the structure of the weak forces, while the intrinsic non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional f(R) gravity naturally generates both structure and strength of the electroweak interactions among leptons. This implies that the weak interactions among the lepton fields could be addressed as a geometric effect due to the interactions among spinors induced by the presence of torsion in the most general f(R) gravity. Phenomenological considerations are given. (orig.)

  17. Isolated torsion of fallopian tube in a post-menopausal patient: a case report.

    Science.gov (United States)

    Ozgun, Mahmut Tuncay; Batukan, Cem; Turkyilmaz, Cagdas; Serin, Ibrahim Serdar

    2007-07-20

    Isolated fallopian tube torsion after menopause is a rare condition. Here we report the second case of isolated fallopian tube torsion in a post-menopausal woman. A 55-year-old post-menopausal woman presented with right lower abdominal pain. Sonography depicted a simple cystic mass adjacent to the right uterine border. Laparatomy revealed torsion of the right fallopian tube together with a paraovarian cyst. Total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed. Histopathological examination revealed a simple paraovarian cyst with severe congestion, necrosis and hemorrhage. Tubal torsion should be considered in the differential diagnosis of acute lower abdominal pain, even in post-menopausal women.

  18. Contribution of the otoliths to the human torsional vestibulo-ocular reflex

    NARCIS (Netherlands)

    Groen, Eric; Bos, Jelte E.; De Graaf, Bernd

    1999-01-01

    The dynamic contribution of the otolith organs to the human ocular torsion response was examined during passive sinusoidal body roll about an earth-horizontal axis (varying otolith inputs) and about an earth-vertical axis (invariant otolith inputs). Torsional eye movements were registered in 5

  19. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    Science.gov (United States)

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  20. Existence of Torsional Solitons in a Beam Model of Suspension Bridge

    Science.gov (United States)

    Benci, Vieri; Fortunato, Donato; Gazzola, Filippo

    2017-11-01

    This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

  1. Residual torsional properties of composite shafts subjected to impact loadings

    International Nuclear Information System (INIS)

    Sevkat, Ercan; Tumer, Hikmet

    2013-01-01

    Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved

  2. Prune belly syndrome, splenic torsion, and malrotation: a case report.

    Science.gov (United States)

    Tran, Sifrance; Grossman, Eric; Barsness, Katherine A

    2013-02-01

    An 18 year old male with a history of prune belly syndrome (PBS) presented with acute abdominal pain and palpable left upper quadrant mass. Computed tomography (CT) of the abdomen revealed a medialized spleen with a "whirl sign" in the splenic vessels, consistent with splenic torsion. Coincidentally, the small bowel was also noted to be on the right side of the abdomen, while the colon was located on the left, indicative of malrotation. Emergent diagnostic laparoscopy confirmed splenic torsion and intestinal malrotation. Successful laparoscopic reduction of the splenic torsion was achieved, however, conversion to an open procedure by a vertical midline incision was necessary owing to the patient's unique anatomy. Open splenopexy with a mesh sling and Ladd's procedure were subsequently performed. Malrotation and wandering spleen are known, rare associated anomalies in PBS; however, both have not been reported concurrently in a patient with PBS in the literature. In patients with PBS, acute abdominal pain, and an abdominal mass, high clinical suspicion for gastrointestinal malformations and prompt attention can result in spleen preservation and appropriate malrotation management. We present a case of a teenager who presented with a history of PBS, acute abdominal pain, and a palpable abdominal mass. The patient was found to have splenic torsion and intestinal malrotation. The clinical findings, diagnostic imaging, and surgical treatment options of splenic torsion are reviewed. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Hollow-Core FRP–Concrete–Steel Bridge Columns under Torsional Loading

    Directory of Open Access Journals (Sweden)

    Sujith Anumolu

    2017-11-01

    Full Text Available This paper presents the behavior of hollow-core fiber-reinforced polymer–concrete–steel (HC-FCS columns under cyclic torsional loading combined with constant axial load. The HC-FCS consists of an outer fiber-reinforced polymer (FRP tube and an inner steel tube, with a concrete shell sandwiched between the two tubes. The FRP tube was stopped at the surface of the footing, and provided confinement to the concrete shell from the outer direction. The steel tube was embedded into the footing to a length of 1.8 times the diameter of the steel tube. The longitudinal and transversal reinforcements of the column were provided by the steel tube only. A large-scale HC-FCS column with a diameter of 24 in. (610 mm and applied load height of 96 in. (2438 mm with an aspect ratio of four was investigated during this study. The study revealed that the torsional behavior of the HC-FCS column mainly depended on the stiffness of the steel tube and the interactions among the column components (concrete shell, steel tube, and FRP tube. A brief comparison of torsional behavior was made between the conventional reinforced concrete columns and the HC-FCS column. The comparison illustrated that both column types showed high initial stiffness under torsional loading. However, the HC-FCS column maintained the torsion strength until a high twist angle, while the conventional reinforced concrete column did not.

  4. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  5. Spontaneous compactification and Ricci-flat manifolds with torsion

    International Nuclear Information System (INIS)

    McInnes, B.

    1985-06-01

    The Freund-Rubin mechanism is based on the equation Rsub(ik)=lambdagsub(ik) (where lambda>0), which, via Myers' Theorem, implies ''spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and lambda set equal to zero, but then compactification ''by hand'' is necessary, since the equation Rsub(ik)=0 can be satisfied both on compact and on non-compact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ''spontaneity'' of the compactification. (author)

  6. Dynamics and deformability of α-, 310- and π-helices

    Directory of Open Access Journals (Sweden)

    Narwani Tarun Jairaj

    2018-01-01

    Full Text Available Protein structures are often represented as seen in crystals as (i rigid macromolecules (ii with helices, sheets and coils. However, both definitions are partial because (i proteins are highly dynamic macromolecules and (ii the description of protein structures could be more precise. With regard to these two points, we analyzed and quantified the stability of helices by considering α-helices as well as 310- and π-helices. Molecular dynamic (MD simulations were performed on a large set of 169 representative protein domains. The local protein conformations were followed during each simulation and analyzed. The classical flexibility index (B-factor was confronted with the MD root mean square flexibility (RMSF index. Helical regions were classified according to their level of helicity from high to none. For the first time, a precise quantification showed the percentage of rigid and flexible helices that underlie unexpected behaviors. Only 76.4% of the residues associated with α-helices retain the conformation, while this tendency drops to 40.5% for 310-helices and is never observed for π-helices. α-helix residues that do not remain as an α-helix have a higher tendency to assume β-turn conformations than 310- or π-helices. The 310-helices that switch to the α-helix conformation have a higher B-factor and RMSF values than the average 310-helix but are associated with a lower accessibility. Rare π-helices assume a β-turn, bend and coil conformations, but not α- or 310-helices. The view on π-helices drastically changes with the new DSSP (Dictionary of Secondary Structure of Proteins assignment approach, leading to behavior similar to 310-helices, thus underlining the importance of secondary structure assignment methods.

  7. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  8. Open string fluctuations in AdS space with and without torsion

    DEFF Research Database (Denmark)

    Larsen, A.L.; Lomholt, Michael Andersen

    2003-01-01

    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated...

  9. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  10. Spring in the Arab Spring

    NARCIS (Netherlands)

    Borg, G.J.A.

    2011-01-01

    Column Gert Borg | Spring in the Arab Spring door dr. Gert Borg, onderzoeker bij Islam en Arabisch aan de Radboud Universiteit Nijmegen en voormalig directeur van het Nederlands-Vlaams Instituut Caïro Spring If, in Google, you type "Arab Spring" and hit the button, you get more than

  11. General architecture of the alpha-helical globule.

    Science.gov (United States)

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  12. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  13. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    Science.gov (United States)

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. A Case of Torsion of Gravid Uterus Caused by Leiomyoma

    Directory of Open Access Journals (Sweden)

    Gururaj Deshpande

    2011-01-01

    Full Text Available Uterine torsion during pregnancy is only sporadically reported in the literature. Here we present a case of leiomyoma causing uterine torsion in pregnancy and review the literature on etiology, diagnosis, and management. A 25-years-old primigravida with leiomyoma complicating pregnancy was admitted in our hospital with abdominal pain and uterine tenderness. She underwent emergency LSCS (lower segment cesarean section for fetal bradycardia. Intraoperatively, the uterus was rotated 180 degrees left to right. Inadvertent incision on the posterior wall was avoided by proper delineation of anatomy. Torsion was corrected by exteriorization of leiomyoma and uterus, and lower segment cesarean was carried out safely. Prompt recognition and management of this condition is necessary for better maternal and fetal outcome.

  15. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  16. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  17. Doubly graded sigma model with torsion

    International Nuclear Information System (INIS)

    Kowalski-Glikman, J.

    1986-08-01

    Using the Hull-Witten construction we show how to introduce torsion to the doubly graded sigma model. This construction enables us to find a link between this model and the ten-dimensional supergravity theory in superspace. (Auth.)

  18. Saccular impact on ocular torsion

    NARCIS (Netherlands)

    Graaf, B. de; Bos, J.E.; Groen, E.L.

    1996-01-01

    When someone is tilted laterally the sheer force on the maculae of the utriculus and the sacculus is described by the sine and the cosine of the angle of tilt, respectively. So both the sacculus and the utriculus are stimulated, but in the litera-ture ocular torsion is normally attributed to

  19. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca [Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); McKay, Mairi; Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh (United Kingdom)

    2017-02-10

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  20. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  1. Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallen, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-31

    This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed and generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.

  2. Torsion of the Vermiform Appendix: A Case Report and Review of Literature

    Science.gov (United States)

    Hassan, Wan Amir Wan; Tay, Yeng Kwang; Ghadiri, Marjan

    2018-01-01

    Patient: Male, 30 Final Diagnosis: Torsion of appendix Symptoms: Abdominal pain • anorexia • nausea Medication: — Clinical Procedure: Laparoscopic appendicectomy Specialty: Surgery Objective: Rare disease Background: Torsion of the vermiform appendix is a rare condition that presents with symptoms analogous to those of common acute appendicitis; therefore, it is often diagnosed during surgery. It was first described by Payne et al. in 1918. Since then, there has been wide recognition of a primary and a secondary form of the condition, affecting both the pediatric and adult populations. We present a case of an adult patient and conducted a literature review in the adult demographic. Case Report: We report the case of a 30-year-old man who presented with clinically acute appendicitis. Laparoscopically, we diagnosed a torsion of the vermiform appendix secondary to a mucocele process. Histology confirmed a low-grade mucinous cystoadenoma, with a hemorrhagic necrosis of the wall, in keeping with torsion. Conclusions: Torsion of the vermiform appendix is a rare condition that presents similar to acute appendicitis, and therefore is often diagnosed intraoperatively. Since first described, 33 cases in adults were identified in the English literature, and recognition of a primary or secondary form has emerged. Preoperative radiological imaging is rarely useful in diagnosis. To the best of our knowledge, this is the eighth reported case in the English literature of a torsion of the vermiform appendix secondary to a mucinous cystoadenoma. PMID:29588439

  3. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  4. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  5. Self-assembly of a double-helical complex of sodium.

    Science.gov (United States)

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  6. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  7. Success of torsional correction surgery after failed surgeries for patellofemoral pain and instability

    OpenAIRE

    Stevens, Peter M.; Gililland, Jeremy M.; Anderson, Lucas A.; Mickelson, Jennifer B.; Nielson, Jenifer; Klatt, Joshua W.

    2013-01-01

    Torsional deformities of the femur and/or tibia often go unrecognized in adolescents and adults who present with anterior knee pain, and patellar maltracking or instability. While open and arthroscopic surgical techniques have evolved to address these problems, unrecognized torsion may compromise the outcomes of these procedures. We collected a group of 16 consecutive patients (23 knees), with mean age of 17, who had undergone knee surgery before torsion was recognized and subsequently treate...

  8. Some exact solutions with torsion in 5D Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Canfora, F.; Giacomini, A.; Willison, S.

    2007-01-01

    Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order to have solutions with nontrivial torsion. This relation is not the Chern-Simons combination. One of the solutions has an AdS 2 xS 3 structure and is so the purely gravitational analogue of the Bertotti-Robinson space-time where the torsion can be seen as the dual of the covariantly constant electromagnetic field

  9. Lung lobe torsion in dogs: 22 cases (1981-1999).

    Science.gov (United States)

    Neath, P J; Brockman, D J; King, L G

    2000-10-01

    To identify breed disposition, postoperative complications, and outcome in dogs with lung lobe torsion. Retrospective study. 22 client-owned dogs. Information on signalment; history; clinical findings; results of clinicopathologic testing, diagnostic imaging, and pleural fluid analysis; surgical treatment; intra- and postoperative complications; histologic findings; and outcome were obtained from medical records. All 22 dogs had pleural effusion; dyspnea was the most common reason for examination. Fifteen dogs were large deep-chested breeds; 5 were toy breeds. Afghan Hounds were overrepresented, compared with the hospital population. One dog was euthanatized without treatment; the remaining dogs underwent exploratory thoracotomy and lung lobectomy. Eleven dogs recovered from surgery without complications, but 3 of these later died of thoracic disease. Four dogs survived to discharge but had clinically important complications within 2 months, including chylothorax, mediastinal mesothelioma, gastric dilatation, and a second lung lobe torsion. Six dogs died or were euthanatized within 2 weeks after surgery because of acute respiratory distress syndrome, pneumonia, septic shock, pneumothorax, or chylothorax. Chylothorax was diagnosed in 8 of the 22 dogs, including 4 Afghan Hounds. Results suggest that lung lobe torsion is rare in dogs and develops most frequently in large deep-chested dogs, particularly Afghan Hounds. Other predisposing causes were not identified, but an association with chylothorax was evident, especially in Afghan Hounds. Prognosis for dogs with lung lobe torsion was fair to guarded.

  10. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments.

    Science.gov (United States)

    Pedullà, E; Lo Savio, F; Boninelli, S; Plotino, G; Grande, N M; Rapisarda, E; La Rosa, G

    2015-11-01

    To evaluate the effect of different torsional preloads on cyclic fatigue resistance of endodontic rotary instruments constructed from conventional nickel-titanium (NiTi), M-Wire or CM-Wire. Eighty new size 25, 0.06 taper Mtwo instruments (Sweden & Martina), size 25, 0.06 taper HyFlex CM (Coltene/Whaledent, Inc) and X2 ProTaper Next (Dentsply Maillefer) were used. The Torque and distortion angles at failure of new instruments (n = 10) were measured, and 0% (n = 10), 25%, 50% and 75% (n = 20) of the mean ultimate torsional strength as preloading condition were applied according to ISO 3630-1 for each brand. The twenty files tested for every extent of preload were subjected to 20 or 40 torsional cycles (n = 10). After torsional preloading, the number of cycles to failure was evaluated in a simulated canal with 60° angle of curvature and 5 mm of radius of curvature. Data were analysed using two-way analysis of variance. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). Data were analysed by two-way analyses of variance. Preload repetitions did not influence the cyclic fatigue of the three brands; however, the 25%, 50% and 75% torsional preloading significantly reduced the fatigue resistance of all instruments tested (P 0.05). Torsional preloads reduced the cyclic fatigue resistance of conventional and treated (M-wire and CM-wire) NiTi rotary instruments except for size 25, 0.06 taper HyFlex CM instruments with a 25% of torsional preloading. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Post-surgery lung torsion and haemorrhagic infarction - a case report

    International Nuclear Information System (INIS)

    Noemayr, A.; Schmitt, R.; Wichert, C.; Bautz, W.; Rupprecht, H.

    1998-01-01

    Lung or lobe torsion may occur after thoracic surgery, chest trauma, pneumothorax, pneumonia, or even spontaneously. Lung infarction is a possible complication. The characteristic radiological signs on plain radiographs are opacification and/or displacement of lobes and hilus structures. CT-signs of haemorrhagic infarction are opacification and multiple punctate gas accumulations. The bronchus could be interrupted at the level of the torsion (''bronchus cutoff''). (orig.) [de

  12. Non-relativistic correspondence of Dirac equation with external electromagnetic field and space-time torsion

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Dias Junior, Mario Marcio

    2013-01-01

    Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S μ . The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S 0 is constant and is the unique non-vanishing term of S μ . This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)

  13. Torsion, supersymmetry, and the heterotic string

    International Nuclear Information System (INIS)

    Curtright, T.

    1985-01-01

    The dynamical effects of torsion are summarized for bosonic and supersymmetric sigma models in two spacetime dimensions. Analogous structure for the heterotic superstring is discussed, including the presence of nonlinear realizations of supersymmetry on the world-sheet. 27 refs

  14. Massless fermions and Kaluza--Klein theory with torsion

    International Nuclear Information System (INIS)

    Wu, Y.; Zee, A.

    1984-01-01

    A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail

  15. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  16. Singularities and n-dimensional black holes in torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Valcarcel, J. Gigante; Torralba, F.J. Maldonado, E-mail: cembra@fis.ucm.es, E-mail: jorgegigante@ucm.es, E-mail: fmaldo01@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-04-01

    In this work we have studied the singular behaviour of gravitational theories with non symmetric connections. For this purpose we introduce a new criteria for the appearance of singularities based on the existence of black/white hole regions of arbitrary codimension defined inside a spacetime of arbitrary dimension. We discuss this prescription by increasing the complexity of the particular torsion theory under study. In this sense, we start with Teleparallel Gravity, then we analyse Einstein-Cartan theory, and finally dynamical torsion models.

  17. Simple currents versus orbifolds with discrete torsion -- a complete classification

    CERN Document Server

    Kreuzer, M

    1994-01-01

    We give a complete classification of all simple current modular invariants, extending previous results for $(\\Zbf_p)^k$ to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility.

  18. Simple currents versus orbifolds with discrete torsion - a complete classification

    International Nuclear Information System (INIS)

    Kreuzer, M.; Schellekens, A.N.

    1993-01-01

    We give a complete classification of all simple current modular invariants, extending previous results for (Z p ) k to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility. (orig.)

  19. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  20. Torsional Topological Invariants (and their relevance for real life)

    CERN Document Server

    Chandia, O; Chandia, Osvaldo; Zanelli, Jorge

    1997-01-01

    The existence of topological invariants analogous to Chern/Pontryagin classes for a standard $SO(D)$ or SU(N) connection, but constructed out of the torsion tensor, is discussed. These invariants exhibit many of the features of the Chern/Pontryagin invariants: they can be expressed as integrals over the manifold of local densities and take integer values on compact spaces without boundary; their spectrum is determined by the homotopy groups determined by the connection bundle but depend also on the bundle of local orthonormal frames on the tangent space of the manifold. It is shown that in spacetimes with nonvanishing torsion there can occur topologically stable configurations associated with the frame bundle which are independent of the curvature. Explicit examples of topologically stable configurations carrying nonvanishing instanton number in four and eight dimensions are given, and they can be conjectured to exist in dimension $4k$. It is also shown that the chiral anomaly in a spacetime with torsion rece...

  1. Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments.

    Science.gov (United States)

    Kumar, Vinod; Takkar, Brijesh

    2016-01-01

    To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up for a minimum of six months to evaluate the visual outcomes and complications. The preoperative best-corrected visual acuity (BCVA) ranged from light perception to 0.3. No complications such as thermal burns of the scleral wound, retinal damage due to flying lens fragments, or difficult lens aspiration occurred during intravitreal phacoemulsification. Mean post-operative BCVA at the final follow-up was 0.5. Two eyes developed cystoid macular edema, which was managed medically. No retinal detachment was noted. Intravitreal phacoemulsification using torsional hand piece is a safe and effective alternative to conventional longitudinal phacofragmentation.

  2. Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments

    Science.gov (United States)

    Kumar, Vinod; Takkar, Brijesh

    2016-01-01

    Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up for a minimum of six months to evaluate the visual outcomes and complications. Results: The preoperative best-corrected visual acuity (BCVA) ranged from light perception to 0.3. No complications such as thermal burns of the scleral wound, retinal damage due to flying lens fragments, or difficult lens aspiration occurred during intravitreal phacoemulsification. Mean post-operative BCVA at the final follow-up was 0.5. Two eyes developed cystoid macular edema, which was managed medically. No retinal detachment was noted. Conclusion: Intravitreal phacoemulsification using torsional hand piece is a safe and effective alternative to conventional longitudinal phacofragmentation. PMID:27621783

  3. A real-scale helical coil winding trial of the Large Helical Device

    International Nuclear Information System (INIS)

    Senba, T.; Yamamoto, T.; Tamaki, T.; Asano, K.; Suzuki, S.; Yamauchi, T.; Uchida, K.; Nakanishi, K.; Yamagiwa, T.; Suzuki, S.; Miyoshi, R.; Sasa, H.; Watanabe, S.; Tatemura, M.; Hatada, N.; Yamaguchi, S.; Imagawa, S.; Yanagi, N.; Satow, T.; Yamamoto, J.; Motojima, O.

    1995-01-01

    A real-scale helical coil winding trial of the Large Helical Device (LHD) has been conducted for a study of coil winding configuration and winding methods and for exhibiting the state of the art. It includes construction and test run of a specifically designed winding machine and development of various manufacturing methods for accurate coil winding. It has been carried out in Hitachi Works before in situ winding, and has provided much needed engineering data for construction of the LHD. (orig.)

  4. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  5. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide

    Science.gov (United States)

    Cui, Chang-Xing; Kertesz, Miklos

    1990-06-01

    A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.

  6. Sequence-dependent response of DNA to torsional stress: a potential biological regulation mechanism.

    Science.gov (United States)

    Reymer, Anna; Zakrzewska, Krystyna; Lavery, Richard

    2018-02-28

    Torsional restraints on DNA change in time and space during the life of the cell and are an integral part of processes such as gene expression, DNA repair and packaging. The mechanical behavior of DNA under torsional stress has been studied on a mesoscopic scale, but little is known concerning its response at the level of individual base pairs and the effects of base pair composition. To answer this question, we have developed a geometrical restraint that can accurately control the total twist of a DNA segment during all-atom molecular dynamics simulations. By applying this restraint to four different DNA oligomers, we are able to show that DNA responds to both under- and overtwisting in a very heterogeneous manner. Certain base pair steps, in specific sequence environments, are able to absorb most of the torsional stress, leaving other steps close to their relaxed conformation. This heterogeneity also affects the local torsional modulus of DNA. These findings suggest that modifying torsional stress on DNA could act as a modulator for protein binding via the heterogeneous changes in local DNA structure.

  7. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    International Nuclear Information System (INIS)

    Chang, Lay Nam; Soo Chopin

    2003-01-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions

  8. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lay Nam [Department of Physics, Virginia Tech., Blacksburg, VA 24061-0435 (United States); Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2003-04-07

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.

  9. Helicity-flip in particle production on nuclei

    International Nuclear Information System (INIS)

    Faeldt, G.

    1977-01-01

    Coherent nuclear production processes are generally analyzed assuming helicity conserving production amplitudes. In view of the uncertainties of the actual helicity structure this could be a dangerous assumption. It is shown that helicity-flip contributions might be part of the explanation of the small effective (pππ)-nucleon cross sections observed in coherent production. (Auth.)

  10. Added value of using a CT coronal reformation to diagnose adnexal torsion

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Il; Park, Hee Sun; Yim, Young Hee; Jeon, Hae Jeong; Yu, Mi Hye; Kim, Young Jun [Dept. of Radiology, Konkuk University School of Medicine, Research Institute of Medical Science, Seoul (Korea, Republic of); Jeong, Kyung Ah [Dept. of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2015-08-15

    To evaluate the increased value of using coronal reformation of a transverse computed tomography (CT) scan for detecting adnexal torsion. This study included 106 woman suspected of having adnexal torsion who underwent CT with coronal reformations and subsequent surgical exploration. Two readers independently recorded the CT findings, such as the thickening of a fallopian tube, twisting of the adnexal pedicle, eccentric smooth wall thickening of the torsed adnexal mass, eccentric septal thickening of the torsed adnexal mass, eccentric poor enhancement of the torsed adnexal mass, uterine deviation to the twisted side, ascites or infiltration of pelvic fat, and the overall impression of adnexal torsion with a transverse scan alone or combined with coronal reformation and a transverse scan. The areas under the receiver operating characteristic curves (AUCs), sensitivity, specificity, and positive predictive value were used to compare diagnostic performance. Fifty-two patients were confirmed to have adnexal torsion. The addition of coronal reformations to the transverse scan improved AUCs for readers 1 and 2 from 0.74 and 0.75 to 0.92 and 0.87, respectively, for detecting adnexal torsion (p < 0.001 and p = 0.004, respectively). Sensitivity of CT for detecting twisting of the adnexal pedicle increased significantly for readers 1 and 2 from 0.27 and 0.29 with a transverse scan alone to 0.79 and 0.77 with a combined coronal reformation and a transverse scan, respectively (p < 0.001 and p < 0.001, respectively). Use of a coronal reformation with transverse CT images improves detection of adnexal torsion.

  11. Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification.

    Science.gov (United States)

    Reuschel, Anna; Bogatsch, Holger; Barth, Thomas; Wiedemann, Renate

    2010-11-01

    To compare the intraoperative and postoperative outcomes of conventional longitudinal phacoemulsification and torsional phacoemulsification. Department of Ophthalmology, University of Leipzig, Germany. Randomized single-center clinical trial. Eyes with senile cataract were randomized to have phacoemulsification using the Infiniti Vision System and the torsional mode (OZil) or conventional longitudinal mode. Primary outcomes were corrected distance visual acuity (CDVA) and central endothelial cell density (ECD), calculated according to the Conference on Harmonisation-E9 Guidelines in which missing values were substituted by the median in each group (primary analysis) and the loss was then calculated using actual data (secondary analysis). Secondary outcomes were ultrasound (US) time, cumulative dissipated energy (CDE), and percentage total equivalent power in position 3. Postoperative follow-up was at 3 months. The mean preoperative CDVA was 0.41 logMAR in the torsional group and 0.38 logMAR in the longitudinal group, improving to 0.07 logMAR postoperatively in both groups. The mean ECD loss was 7.2% ± 4.6% in the torsional group (72 patients) and 7.1% ± 4.4% in the longitudinal group (76 patients), with no statistically significant differences in the primary analysis (P = .342) or secondary analysis (P = .906). The mean US time, CDE, and percentage total equivalent power in position 3 were statistically significantly lower in the torsional group (98 patients) than in the longitudinal group (94 patients) (P<.001). The torsional mode was as safe as the longitudinal mode in phacoemulsification for age-related cataract. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Electronic transport in torsional strained Weyl semimetals

    Science.gov (United States)

    Soto-Garrido, Rodrigo; Muñoz, Enrique

    2018-05-01

    In a recent paper (Muñoz and Soto-Garrido 2017 J. Phys.: Condens. Matter 29 445302) we have studied the effects of mechanical strain and magnetic field on the electronic transport properties in graphene. In this article we extended our work to Weyl semimetals (WSM). We show that although the WSM are 3D materials, most of the analysis done for graphene (2D material) can be carried out. In particular, we studied the electronic transport through a cylindrical region submitted to torsional strain and external magnetic field. We provide exact analytical expressions for the scattering cross section and the transmitted electronic current. In addition, we show the node-polarization effect on the current and propose a recipe to measure the torsion angle from transmission experiments.

  13. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor.

    Science.gov (United States)

    Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars

    2013-03-01

    Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.

  14. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  15. Torsion of the fallopian the mimicking appendicitis in a pregnant woman

    International Nuclear Information System (INIS)

    Tapia-Vine, M.; Pedrosa, I.; Escribano, N.

    2000-01-01

    Isolated torsion of the fallopian tube is an uncommon entity. Given the difficulties involved in the preoperative diagnosis, the ultrasound findings characteristic of this anomaly are not widely known. We present a case of tubal torsion associated with a cyst, describing the ultrasound images in our case and those reported in the literature. (Author) 18 refs

  16. Uterine Torsion in a West African Dwarf Ewe in Ibadan, Nigeria ...

    African Journals Online (AJOL)

    Keywords: Uterine torsion, West African Dwarf Ewe, Ibadan A case of uterine torsion in a 21/2 year old pluriparous West Africa Dwarf (WAD) ewe raised semi intensively with adequate veterinary care before the death of the dam and the lamb is presented. The dam had been off feed for 3 days and was found straining a night ...

  17. Spring performance tester for miniature extension springs

    Science.gov (United States)

    Salzbrenner, Bradley; Boyce, Brad

    2017-05-16

    A spring performance tester and method of testing a spring are disclosed that has improved accuracy and precision over prior art spring testers. The tester can perform static and cyclic testing. The spring tester can provide validation for product acceptance as well as test for cyclic degradation of springs, such as the change in the spring rate and fatigue failure.

  18. Coupled lateral-torsional response of equipment mounted in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Ishac, M.F.; Heidebrecht, A.C.

    1979-01-01

    In this paper, a coupled lateral torsional model (CLTM) is developed as a modification of the uncoupled lateral torsional model (ULTM) by including the torsional degree of freedom for each mass point and taking into consideration the effect of eccentricities between the centers of mass and rigidity at each floor level. The lateral and rotational time-histories at each floor level are characterized by lateral and rotational floor response spectra at the mass centroid. These time-histories are also combined to determine the lateral floor response spectra at the extreme edges of each floor mass. (orig.)

  19. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-02-23

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.

  20. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  1. Human tibial torsion - Morphometric assessment and clinical relevance

    Directory of Open Access Journals (Sweden)

    Swati Gandhi

    2014-02-01

    Full Text Available Background: Tibial torsion is an important anatomical parameter in clinical practice and displays variability among individuals. These variations are extremely significant in view of alignment guides such as those related to rotational landmarks of tibia in total knee arthroplasty. Further, precise knowledge and information pertaining to angle of tibial torsion also helps in correction of traumatic malunion or congenital maltorsion of tibia. Methods: The present study was carried out to determine the angle of tibial torsion in 100 adult dry tibia bones in the Department of Anatomy, Government Medical College, Amritsar. The study group comprised 50 males and 50 females with equal number of right- and left-sided bones. The measurements were meticulously recorded and the data were subjected to statistical analysis. The results were analyzed and discussed in the light of existing literature. Results: On the right side, it was found to be 29.84° ± 4.86°° (range = 22.00° -38.00° in males and 28.92° ± 5.10°° (range = 15.00°-38.00° in females. On the left side, it was found to be 28.00° ± 4.94°° (range = 20.00°-40.00°° in males and 28.12° ± 4.28°° (range = 20.00°-37.00°° in females. Conclusion: The present study is an endeavor to provide baseline data with reference to the angle of tibial torsion in the Indian population. The results of the study assume special importance in view of the technical advancements in reconstructive surgical procedures in orthopedic practice.

  2. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  3. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  4. Gastrointestinal torsions and intussusception in northern koalas (Phascolarctos cinereus) at San Diego Zoo (1976-2012).

    Science.gov (United States)

    Joyce-Zuniga, Nicole M; Roesler, Jennifer; Andrus, Chris Hamlin; Sutherland-Smith, Meg; Rideout, Bruce A; Pye, Geoffrey W

    2014-03-01

    The recent classification as threatened status of the northern koala (Phascolarctos cinereus) by the Australian Government highlights the importance of the conservation and health management of this iconic Australian marsupial. This case series describes gastrointestinal torsion and intussusception in six northern koalas (three males, three females, 2-11 yr old) at the San Diego Zoo from 1976 to 2012. Two koalas died shortly after presentation. Diagnoses of ileocecal intussusception, resulting from enteritis in one case and cecal torsion in the other, were made at postmortem examination. One koala died 4 days after an exploratory laparotomy, with negative findings, and an acute double colonic intussusception was diagnosed at postmortem examination. Two small intestinal mesenteric torsion and one proximal colon mesenteric torsion cases were successfully corrected surgically. In the case of colonic mesenteric torsion, the koala had recurrent clinical signs 2 wk later, and a second surgery requiring resection and anastomosis of ischemic jejunum was performed, with the koala dying shortly afterward. One koala with small intestinal torsion had a recurrence of torsion 22 mo later and subsequently died. The koala with the second case of small intestinal torsion remains alive 14 mo postsurgical correction. All six koalas presented with signs of colic that included anorexia, lethargy, depression, acute abdominal distension, abdominal stretching, decreased fecal output, open-mouth gasping, or a combination of symptoms. Abdominal radiographs may show stacked gastrointestinal linear gas patterns and contrast stasis. Prevalence of torsion and intussusception is low at this institution (2%), although recurrence in individuals is common (50%) and overall survival is poor (83%), which emphasizes the importance of timely recognition, surgical correction, and postoperative management. While inciting etiologies were unable to be determined in these cases, monitoring generalized

  5. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  6. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  7. Effect of bilateral superior oblique split lengthening on torsion

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2015-01-01

    Full Text Available Introduction: Superior oblique split lengthening (SOSL is done for weakening of superior oblique. It corrects the superior oblique overaction (SOOA and A pattern. Its effect on the torsion of the eye is not known. We present our data on the effect of this particular procedure on torsion. Materials and Methods: We did a study of 16 patients (32 eyes who underwent bilateral SOSL and compared the disc foveal angle (DFA preoperatively and postoperatively. The split lengthening was done from 4 mm to 7 mm depending upon the overaction of superior oblique. Results: The mean age was 15.3 ± 8.4 years. Mean preoperative DFA in the right eye (RE was −3.9° and in the left eye (LE was −2.9°. Mean postoperative DFA in RE was 0.2° and in LE was 0.9°. The mean change in the DFA for RE was 4.1° ± 1.3° and for LE was 3.8° ± 1.2°. All the patients were aligned horizontally within 6 prism diopter and no pattern and no diplopia postoperatively. The A pattern was corrected in all the patient postsurgery. For each mm of surgery, an improvement of 0.8° was seen in the DFA. Conclusion: We report the effect of SOSL on torsion. The SOSL reduces intorsion postsurgery and is, therefore, a valuable procedure in SOOA where both pattern and in torsion needs to be corrected.

  8. Generalized helicity and Beltrami fields

    International Nuclear Information System (INIS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  9. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  10. Vertical bending strength and torsional rigidity analysis of formula student car chassis

    Science.gov (United States)

    Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian

    2018-02-01

    Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.

  11. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  12. Torsional surface waves in an inhomogeneous layer over a gravitating anisotropic porous half-space

    International Nuclear Information System (INIS)

    Gupta, Shishir; Pramanik, Abhijit

    2015-01-01

    The present work aims to deal with the propagation of torsional surface wave in an inhomogeneous layer over a gravitating anisotropic porous half space. The inhomogeneous layer exhibits the inhomogeneity of quadratic type. In order to show the effect of gravity the equation for the velocity of torsional wave has been obtained. It is also observed that for a layer over a homogeneous half space without gravity, the torsional surface wave does not propagate. An attempt is also made to assess the possible propagation of torsional surface waves in that medium in the absence of the upper layer. The effects of inhomogeneity factors and porosity on the phase velocity are depicted by means of graphs. (paper)

  13. Torsion tensor and covector in a unified field theory

    International Nuclear Information System (INIS)

    Chernikov, N.A.

    1976-01-01

    The Einstein unified field theory is used to solve a tensor equation to provide the unambiguous definition of affine connectedness. In the process of solving the Einstein equation limitations imposed by symmetry on the tensor and the torsion covector as well as on affine connectedness are elucidated. It is demonstrated that in a symmetric case the connectedness is unambiguously determined by the Einstein equation. By means of the Riemann geometry a formula for the torsion covector is derived. The equivalence of Einstein equations to those of the nonlinear Born-Infeld electrodynamics is proved

  14. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  15. Exploiting Stretchable Metallic Springs as Compliant Electrodes for Cylindrical Dielectric Elastomer Actuators (DEAs

    Directory of Open Access Journals (Sweden)

    Chien-Hao Liu

    2017-11-01

    Full Text Available In recent years, dielectric elastomer actuators (DEAs have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and stretch/contraction motions under the application of high external voltages. Most compliant electrodes are made of carbon powders or thin metallic films. In situations involving large deformations or improper fabrication, the electrodes are susceptible to breakage and increased resistivity. The worst cases result in a loss of conductivity and functional failure. In this study, we developed a method by which to exploit stretchable metallic springs as compliant electrodes for cylindrical DEAs. This design was inspired by the extensibility of mechanical springs. The main advantage of this approach is the fact that the metallic spring-like compliant electrodes remain conductive and do not increase the stiffness as the tube-like DEAs elongate in the axial direction. This can be attributed to a reduction in thickness in the radial direction. The proposed cylindrical structure is composed of highly-stretchable VHB 4905 film folded within a hollow tube and then sandwiched between copper springs (inside and outside to allow for stretching and contraction in the axial direction under the application of high DC voltages. We fabricated a prototype and evaluated the mechanical and electromechanical properties of the device experimentally using a high-voltage source of 9.9 kV. This device demonstrated a non-linear increase in axial stretching with an increase in applied voltage, reaching a maximum extension of 0.63 mm (axial strain of 2.35% at applied voltage of 9.9 kV. Further miniaturization and the incorporation of compressive springs are expected to allow the implementation of the proposed method in soft micro-robots and bio-mimetic applications.

  16. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  17. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  18. Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

    Science.gov (United States)

    Balázs, Ivan; Melcher, Jindřich; Pešek, Ondřej

    2017-10-01

    The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

  19. Success of torsional correction surgery after failed surgeries for patellofemoral pain and instability.

    Science.gov (United States)

    Stevens, Peter M; Gililland, Jeremy M; Anderson, Lucas A; Mickelson, Jennifer B; Nielson, Jenifer; Klatt, Joshua W

    2014-04-01

    Torsional deformities of the femur and/or tibia often go unrecognized in adolescents and adults who present with anterior knee pain, and patellar maltracking or instability. While open and arthroscopic surgical techniques have evolved to address these problems, unrecognized torsion may compromise the outcomes of these procedures. We collected a group of 16 consecutive patients (23 knees), with mean age of 17, who had undergone knee surgery before torsion was recognized and subsequently treated by means of rotational osteotomy of the tibia and/or femur. By follow-up questionnaire, we sought to determine the role of rotational correction at mean 59-month follow-up. We reasoned that, by correcting torsional alignment, we might be able to optimize long-term outcomes and avert repeated knee surgery. Knee pain was significantly improved after torsional treatment (mean 8.6 pre-op vs. 3.3 post-op, p instability, and 57 % could trust their knee after surgery. Activity level remained the same or increased in 78 % of patients after torsional treatment. Excluding planned rod removal, subsequent knee surgery for continued anterior knee pain was undertaken on only 3 knees in 2 patients. We believe that malrotation of the lower limb not only raises the propensity for anterior knee symptoms, but is also a under-recognized etiology in the failure of surgeries for anterior knee pain and patellar instability. Addressing rotational abnormalities in the index surgery yields better clinical outcomes than osteotomies performed after other prior knee surgeries.

  20. Isolated torsion of fallopian tube. Radiological findings

    International Nuclear Information System (INIS)

    Tomas Fanjul, L.; Aldea Martinez, J.; Fernandez Matia, G.; Rodrigo Verguizas, J.; Fernandez Alvarez, G.; Galindo Vicente, M.C.

    1993-01-01

    Isolated tubal torsion is a very uncommon disorder that is rarely diagnosed preoperatively. We present a case and review the literature, which only provides ultrasonographic findings in 5 cases reported to date. 11 refs

  1. Torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Kerrigan, Shannon M; Kapatkin, Amy S; Garcia, Tanya C; Robinson, Duane A; Guzman, David Sanchez-Migallon; Stover, Susan M

    2018-04-01

    OBJECTIVE To describe the torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis). SAMPLE 16 cadaveric tibiotarsal bones from 8 red-tailed hawks. PROCEDURES 1 tibiotarsal bone from each bird was randomly assigned to be tested in torsion, and the contralateral bone was tested in axial compression. Intact bones were monotonically loaded in either torsion (n = 8) or axial compression (8) to failure. Mechanical variables were derived from load-deformation curves. Fracture configurations were described. Effects of sex, limb side, and bone dimensions on mechanical properties were assessed with a mixed-model ANOVA. Correlations between equivalent torsional and compressive properties were determined. RESULTS Limb side and bone dimensions were not associated with any mechanical property. During compression tests, mean ultimate cumulative energy and postyield energy for female bones were significantly greater than those for male bones. All 8 bones developed a spiral diaphyseal fracture and a metaphyseal fissure or fracture during torsional tests. During compression tests, all bones developed a crushed metaphysis and a fissure or comminuted fracture of the diaphysis. Positive correlations were apparent between most yield and ultimate torsional and compressive properties. CONCLUSIONS AND CLINICAL RELEVANCE The torsional and axial compressive properties of tibiotarsal bones described in this study can be used as a reference for investigations into fixation methods for tibiotarsal fractures in red-tailed hawks. Although the comminuted and spiral diaphyseal fractures induced in this study were consistent with those observed in clinical practice, the metaphyseal disruption observed was not and warrants further research.

  2. Transverse vs torsional ultrasound: prospective randomized contralaterally controlled study comparing two phacoemulsification-system handpieces.

    Science.gov (United States)

    Assil, Kerry K; Harris, Lindsay; Cecka, Jeannie

    2015-01-01

    To compare surgical efficiency and multiple early clinical outcome variables in eyes undergoing phacoemulsification using either transversal or torsional ultrasound systems. Assil Eye Institute, Beverly Hills, CA, USA. Prospective, randomized, clinician-masked, contralaterally controlled single-center evaluation. Patients seeking cataract removal in both eyes with implantation of multifocal intraocular lenses were randomly assigned to one of two treatment rooms for phacoemulsification with either a transverse ultrasound system or torsional handpiece system. The contralateral eye was treated at a later date with the alternate device. A total of 54 eyes of 27 patients having similar degrees of cataract, astigmatism, and visual potential were included. All operative data were collected for analysis, and patients were followed for 3 months after surgery. Similar visual acuity was reported at all postoperative visits between the two groups. Mean phacoemulsification time and total power required were both significantly lower with the transverse system than with the torsional technique (Ptransverse system vs torsional (Ptransverse vs torsional. Macular swelling was less at 1 week, 1 month, and 3 months with transverse vs torsional, although the difference did not achieve significance (P=0.1) at any single time point. Clinically detectable corneal edema was reported less frequently at all postoperative time points with the transverse system. The transverse ultrasound system was found to be possibly associated with less balanced salt-solution use, less phacoemulsification time, and less power required than the torsional phaco system. Postoperative data suggested that improved phaco efficiency may translate to a better overall safety profile for the patient.

  3. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Vedran Budinski

    2017-02-01

    Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper

  4. Development of a Meso-Scale Fiberoptic Rotation Sensor for a Torsion Actuator.

    Science.gov (United States)

    Sheng, Jun; Desai, Jaydev P

    2018-01-01

    This paper presents the development of a meso-scale fiberoptic rotation sensor for a shape memory alloy (SMA) torsion actuator for neurosurgical applications. Within the sensor, a rotary head with a reflecting surface is capable of modulating the light intensity collected by optical fibers when the rotary head is coupled to the torsion actuator. The mechanism of light intensity modulation is modeled, followed by experimental model verification. Meanwhile, working performances for different rotary head designs, optical fibers, and fabrication materials are compared. After the calibration of the fiberoptic rotation sensor, the sensor is capable of precisely measuring rotary motion and controlling the SMA torsion actuator with feedback control.

  5. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES

    2011-06-01

    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  6. Standing torsional waves in a fully saturated, porous, circular cylinder

    CERN Document Server

    Solorza, S; 10.1111/j.1365-246X.2004.02198.x

    2004-01-01

    For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.

  7. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  8. Lorentz violation bounds from torsion trace fermion sector and galaxy M51 data and chiral dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Andrade, L.C. [IF-UERJ, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2017-06-15

    Earlier we have computed a Lorentz violation (LV) bound for torsion terms via galactic dynamos and found bounds similar to the one obtained by Kostelecky et al. (Phys Rev Lett 100:111102, 2008) which is of the order of 10{sup -31} GeV. Their result was found making use of the axial torsion vector in terms of Dirac spinors and minimal torsion coupling in flat space-time of fermions. In this paper, a torsion dynamo equation obtained using the variation of the torsion trace and galaxy M51 data of 500 pc are used to place an upper bound of 10{sup -26} GeV in LV, which agrees with the one by Kostelecky and his group using an astrophysical framework background. Their lowest bound was obtained in earth laboratory using dual masers. One of the purposes of this paper is to apply the Faraday self-induction magnetic equation, recently extended to torsioned space-time, by the author to show that it lends support to physics in Riemann-Cartan space-time, in several distinct physical backgrounds. Backreaction magnetic effects are used to obtain the LV bounds. Previously Bamba et al. (JCAP 10:058, 2012) have used the torsion trace in their teleparallel investigation of the IGMF, with the argument that the torsion trace leads to less weaker effects than the other irreducible components of the torsion tensor. LV is computed in terms of a chiral-torsion-like current in the new dynamo equation analogous to the Dvornikov and Semikoz dynamo equation with chiral magnetic currents. Making use of the chiral-torsion dynamo equation we estimate the LV bounds in the early universe to be of the order of 10{sup -24} GeV, which was the order of the charged-lepton sector. Our main result is that it is possible to obtain more stringent bounds than the ones found in the fermion sector of astrophysics in the new revised 2017 data table for CPT and Lorentz violation by Kostelecky and Mewes. They found in several astrophysical backgrounds, orders of magnitude such as 10{sup -24} and 10{sup -23} Ge

  9. Torsional, Vibrational and Vibration-Torsional Levels in the S_{1} and Ground Cationic D_{0}^{+} States of Para-Fluorotoluene

    Science.gov (United States)

    Gardner, Adrian M.; Tuttle, William Duncan; Whalley, Laura E.; Claydon, Andrew; Carter, Joseph H.; Wright, Timothy G.

    2017-06-01

    The S_{1} electronic state and ground state of the cation of para-fluorotoluene (pFT) have been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy. Here we focus on the low wavenumber region where a number of "pure" torsional, fundamental vibrational and vibration-torsional levels are expected; assignments of observed transitions are discussed, which are compared to results of published work on toluene (methylbenzene) from the Lawrance group. The similarity in the activity observed in the excitation spectrum of the two molecules is striking. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). J. R. Gascooke, E. A. Virgo, and W. D. Lawrance J. Chem. Phys., 143, 044313 (2015).

  10. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  11. Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling

    International Nuclear Information System (INIS)

    Li, C.; Ru, C.Q.; Mioduchowski, A.

    2006-01-01

    Inspired by recent interest in torsion of the central pair microtubules in eukaryotic flagella, a novel thin-walled elastic beam model is suggested to study critical condition under which uniform bending of a flagellum will cause lateral/torsional buckling of the central pair. The model is directed to the central pair itself and the role of all surrounding cross-linkings inside the flagellum is modeled as an equivalent surrounding elastic medium. The model predicts that bending-driven torsion of the central pair does occur when the radius of curvature of the bent flagellum reduces to a moderate critical value typically of tens of microns. In particular, this critical value is almost independent of the flagellum length, and more sensitive to the parameters defining the surrounding elastic medium than the shear modulus of microtubules. The predicted wavelengths of the torsional buckling mode are insensitive to the flagellum length and comparable to some known related experimental data. These results indicate that torsion of the central pair microtubules in flagella is inevitable as a result of bending-driven lateral buckling. This offers an entirely new insight into the ongoing research on the mechanism of the central pair torsion

  12. Torsion of a nongravid uterus with a large ovarian cyst: usefulness of contrast MR image.

    Science.gov (United States)

    Matsumoto, Hiroki; Ohta, Tsuyoshi; Nakahara, Kenji; Kojimahara, Takanobu; Kurachi, Hirohisa

    2007-01-01

    Torsion of a nongravid uterus is extremely rare. Most cases of uterine torsion occur during pregnancy. Here we report a case of nongravid uterus torsion with a large adnexal mass. A 73-year-old woman presented at the emergency room with acute abdominal pain. A preoperative diagnosis of torsion of an ovarian cyst was made and laparotomy was performed. The left ovary was twisted 360 degrees in a clockwise rotation, and the uterine corpus had also undergone a 360 degrees rotation. Total abdominal hysterectomy and bilateral salpingo-oophorectomy were carried out. Although a preoperative diagnosis of uterine torsion was not possible, it is noteworthy that in the contrast-enhanced magnetic resonance images the uterine cervix was intensely enhanced, while the uterine corpus was not. This is the first report to show the magnetic resonance imaging findings of a twisted uterus. Copyright (c) 2007 S. Karger AG, Basel.

  13. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  14. Weakly dynamic dark energy via metric-scalar couplings with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi, 110 007 (India)

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.

  15. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  16. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  17. Toward laboratory torsional spine magnetic reconnection

    Science.gov (United States)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  18. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  19. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  20. Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system

    Science.gov (United States)

    Zhang, X.; Yu, S. D.

    2009-01-01

    Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.

  1. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  2. [Posttraumatic torsional deformities of the forearm : Methods of measurement and decision guidelines for correction].

    Science.gov (United States)

    Blossey, R D; Krettek, C; Liodakis, E

    2018-03-01

    Forearm fractures are common in all age groups. Even if the adjacent joints are not directly involved, these fractures have an intra-articular character. One of the most common complications of these injuries is a painful limitation of the range of motion and especially of pronation and supination. This is often due to an underdiagnosed torsional deformity; however, in recent years new methods have been developed to make these torsional differences visible and quantifiable through the use of sectional imaging. The principle of measurement corresponds to that of the torsion measurement of the lower limbs. Computed tomography (CT) or magnetic resonance imaging (MRI) scans are created at defined heights. By searching for certain landmarks, torsional angles are measured in relation to a defined reference line. A new alternative is the use of 3D reformation models. The presence of a torsional deformity, especial of the radius, leads to an impairment of the pronation and supination of the forearm. In the presence of torsional deformities, radiological measurements can help to decide if an operation is needed or not. Unlike the lower limbs, there are still no uniform cut-off values as to when a correction is indicated. Decisions must be made together with the patient by taking the clinical and radiological results into account.

  3. Dynamics of the central phenylene ring torsional motion in halogenated phenylene ethynylene oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Pejov, Ljupco [Institute of Chemistry, Department of Physical Chemistry, SS. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje(Macedonia, The Former Yugoslav Republic of)], E-mail: ljupcop@iunona.pmf.ukim.edu.mk; La Rosa, Manuela [PST Group- M6, STMicroelectronics, Stradale Primosole 50, 95121 Catania (Italy); Kocarev, Ljupco [Institute for Nonlinear Science, University of California, San Diego 9500 Gilman, Drive, La Jolla, CA 92093-0402 (United States); Macedonian Academy of Sciences and Arts, bul. Krste Misirkov 2, P.O. Box 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2007-11-09

    The dynamics of intramolecular torsional motion of central phenylene ring in a series of phenylene ethynylene oligomer derivatives was investigated. On the basis of calculated hindered rotational potentials corresponding to this motion, the torsional energy levels were obtained by solving the torsional Schroedinger equation. Subsequently, the torsional correlation time and transition probability was computed within the Bloembergen-Purcell-Pound (BPP) formalism, considering both the classical and quantum mechanical tunneling contributions to the intramolecular rotation. The results were interpreted in the context of molecular conductivity switching behavior of the considered series of compounds. Also some other parameters relevant to molecular admittance were calculated, such as the HOMO-LUMO energy difference and the spatial extent of the frontier molecular orbitals. Classical electrostatic arguments were applied to understand the physical basis of the conformational stability differences in the studied compounds. It was found that halogenation of the central phenylene ring may be used for fine-tuning of molecular conduction behavior, in the sense of modulating the HOMO-LUMO energy difference, the spatial extent of frontier MOs, as well as the barrier height to torsional motion of the central phenylene ring. The time scale of the temperature induced stochastic conformational switching between the 'on' and 'off' states, along with the corresponding transition probability could be varied by an order of magnitude upon halogenation of the central phenylene ring. The tunneling contributions to the torsional correlation time were found to be of minor importance in this context, and this quantity may be quite correctly estimated with the classical BPP approach.

  4. Dynamics of the central phenylene ring torsional motion in halogenated phenylene ethynylene oligomers

    International Nuclear Information System (INIS)

    Pejov, Ljupco; La Rosa, Manuela; Kocarev, Ljupco

    2007-01-01

    The dynamics of intramolecular torsional motion of central phenylene ring in a series of phenylene ethynylene oligomer derivatives was investigated. On the basis of calculated hindered rotational potentials corresponding to this motion, the torsional energy levels were obtained by solving the torsional Schroedinger equation. Subsequently, the torsional correlation time and transition probability was computed within the Bloembergen-Purcell-Pound (BPP) formalism, considering both the classical and quantum mechanical tunneling contributions to the intramolecular rotation. The results were interpreted in the context of molecular conductivity switching behavior of the considered series of compounds. Also some other parameters relevant to molecular admittance were calculated, such as the HOMO-LUMO energy difference and the spatial extent of the frontier molecular orbitals. Classical electrostatic arguments were applied to understand the physical basis of the conformational stability differences in the studied compounds. It was found that halogenation of the central phenylene ring may be used for fine-tuning of molecular conduction behavior, in the sense of modulating the HOMO-LUMO energy difference, the spatial extent of frontier MOs, as well as the barrier height to torsional motion of the central phenylene ring. The time scale of the temperature induced stochastic conformational switching between the 'on' and 'off' states, along with the corresponding transition probability could be varied by an order of magnitude upon halogenation of the central phenylene ring. The tunneling contributions to the torsional correlation time were found to be of minor importance in this context, and this quantity may be quite correctly estimated with the classical BPP approach

  5. MAGNETIC HELICITY FLUX IN THE PRESENCE OF SHEAR

    International Nuclear Information System (INIS)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac and Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  6. Magnetic Helicity Flux in the Presence of Shear

    Science.gov (United States)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  7. Spacetime thermodynamics in the presence of torsion

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-12-01

    It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.

  8. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular

  9. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    Science.gov (United States)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  10. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  11. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  12. All-solid-state carbon nanotube torsional and tensile artificial muscles.

    Science.gov (United States)

    Lee, Jae Ah; Kim, Youn Tae; Spinks, Geoffrey M; Suh, Dongseok; Lepró, Xavier; Lima, Mácio D; Baughman, Ray H; Kim, Seon Jeong

    2014-05-14

    We report electrochemically powered, all-solid-state torsional and tensile artificial yarn muscles using a spinnable carbon nanotube (CNT) sheet that provides attractive performance. Large torsional muscle stroke (53°/mm) with minor hysteresis loop was obtained for a low applied voltage (5 V) without the use of a relatively complex three-electrode electromechanical setup, liquid electrolyte, or packaging. Useful tensile muscle strokes were obtained (1.3% at 2.5 V and 0.52% at 1 V) when lifting loads that are ∼25 times heavier than can be lifted by the same diameter human skeletal muscle. Also, the tensile actuator maintained its contraction following charging and subsequent disconnection from the power supply because of its own supercapacitor property at the same time. Possible eventual applications for the individual tensile and torsional muscles are in micromechanical devices, such as for controlling valves and stirring liquids in microfluidic circuits, and in medical catheters.

  13. Review of gastric torsion in eight guinea pigs (Cavia porcellus).

    Science.gov (United States)

    Nógrádi, Anna Linda; Cope, Iain; Balogh, Márton; Gál, János

    2017-12-01

    The authors present eight cases of gastric dilatation and volvulus (GDV) in guinea pigs from the Department and Clinic of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary between 2012 and 2016. Seven animals were operated on and two survived. Gastric torsion has been noted in many mammalian species. Gastric volvulus has a high morbidity and high mortality rate with a guarded to poor prognosis in all of these species. How GDV develops is still not widely understood. Postmortem examinations, in both our cases and previously reported cases, have failed to reveal the exact causes of the gastric torsions. The aetiology of gastric torsion in guinea pigs is probably multifactorial. Feeding fewer meals per day, eating rapidly, decreased food particle size, exercise, stress after a meal, competition, age, and an aggressive or fearful temperament, are all likely and potential risk factors for GDV development in a similar fashion to dogs. Sex, breeding, dental diseases, anatomical abnormalities, pain and pregnancy may also be contributing factors.

  14. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  15. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †

    Science.gov (United States)

    Budinski, Vedran; Donlagic, Denis

    2017-01-01

    Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510

  16. Torsion pendulum for the performance test of the inertial sensor for ASTROD-I

    International Nuclear Information System (INIS)

    Zhou, Z B; Gao, S W; Luo, J

    2005-01-01

    A torsion pendulum facility for a ground-based performance test of the inertial sensor for ASTROD-1 has been constructed. The twist motion of the test mass is monitored and servo-controlled. The sensitivity of the electrostatic servo-controlled actuator is calibrated based on the elastic torque of the torsion fibre, and the torque resolution of the servo-controlled torsion pendulum comes to 2 x 10 -11 N m Hz -1/2 from 1 mHz to 0.1 Hz, which is likely limited by the seismic noise, electronic noise and the cross coupling between the translation and twist modes

  17. Proposal for quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond

    Science.gov (United States)

    Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi

    2017-08-01

    Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.

  18. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

    Science.gov (United States)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.

    2016-10-01

    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  19. Torsion zero-cycles and the Abel-Jacobi map over the real numbers

    NARCIS (Netherlands)

    Hamel, J. van

    1999-01-01

    This is a study of the torsion in the Chow group of zero-cycles on a variety over the real numbers. The first section recalls important results from the literature. The rest of the paper is devoted to the study of the Abel–Jacobi map a: A0XAlbXR restricted to torsion subgroups. Using Roitman’s

  20. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    Science.gov (United States)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  1. A STUDY ON TIBIAL TORSION IN ADULT DRY TIBIA OF EAST AND SOUTH INDIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Jami Sagar Prusti

    2017-05-01

    Full Text Available BACKGROUND Rotational deformities of the lower limbs are very common. There is increasing evidence that abnormal torsion in the tibia is associated with severe knee and ankle arthritis. Primary knee osteoarthritis is a leading cause of disability in older persons. Varus or valgus alignment increases the risk of osteoarthritis. Coexistence of tibial torsional deformity may increase the risk further. Variability in the tibial torsion has been reported and is due to the torsional forces applied on tibia during development. The aim of the study is to estimate the angle of tibial torsion on both sides and both sexes. The present study was an attempt to provide baseline data of tibial torsion in the East and South Indian population. MATERIALS AND METHODS The study was conducted mechanically on 100 dry adult unpaired human tibia, i.e. 50 male and 50 female bones. The measurements were recorded and statistically analysed using Student’s unpaired t-test using GraphPad Prism 5.0 (free trial version. RESULTS Out of the 100 tibia undertaken, mean value of tibial torsion angle obtained is 25.8°. In males, it is 23.68° and in females it is about 27.86°. Statistical analysis revealed significant greater average angle of tibial torsion in female bones. The angle of the right-sided bones was more and this was statistically significant. CONCLUSION The gender variation for the angle could be the result of the difference in lifestyle in day-to-day activities. The knowledge of the angle in a population could be helpful in understanding the incidence of pathogenesis related to gait and knee osteoarthritis and in view of reconstructive surgeries in orthopaedic practice.

  2. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    LENUS (Irish Health Repository)

    Kimmich, Okka

    2012-02-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects <50 years of age; 22 subjects >50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige\\'s syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1\\/61 (2%) control subjects, 27\\/32 (84%) patients with adult-onset primary torsion dystonia and 32\\/73 (44%) unaffected relatives [siblings (20\\/36; 56%), offspring (11\\/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  3. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    Science.gov (United States)

    Kimmich, Okka; Bradley, David; Whelan, Robert; Mulrooney, Nicola; Reilly, Richard B; Hutchinson, Siobhan; O'Riordan, Sean; Hutchinson, Michael

    2011-09-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects 50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige's syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1/61 (2%) control subjects, 27/32 (84%) patients with adult-onset primary torsion dystonia and 32/73 (44%) unaffected relatives [siblings (20/36; 56%), offspring (11/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  4. Exact interior solutions for static spheres in the Einstein-Cartan theory with two sources of torsion

    CERN Document Server

    Gallakhmetov, A M

    2002-01-01

    In the framework of the problem of existence of exact interior solutions for static spherically symmetric configurations in the Einstein-Cartan theory (ECT), the distributions of perfect fluid and non-minimally coupled scalar field are considered. The exact solutions in the one-torsion ECT and two-torsion one are obtained. Some consequences of two sources of torsion are discussed.

  5. Aberrant femoral torsion presenting with frog-leg squatting mimicking gluteal muscle contracture.

    Science.gov (United States)

    Chiang, Chia-Ling; Tsai, Meng-Yuan; Chang, Wei-Ning; Chen, Clement Kuen-Huang

    2012-04-01

    Patients with frog-leg squatting have restricted internal rotation and adduction of the affected hips during sitting or squatting. In the surgical literature, the cause generally has been presumed to arise from and be pathognomonic for gluteal muscle contracture. However, we have encountered patients with frog-leg squatting but without gluteal muscle contracture. We therefore raised the following questions: What are the imaging features of patients with frog-leg squatting? Do conditions other than gluteal muscle contracture manifest frog-leg squatting? We retrospectively reviewed the MR images of 67 patients presenting with frog-leg squatting from April 1998 to July 2010. There were four females and 63 males; their mean age was 22.2 years (range, 4-50 years). During MRI readout, we observed aberrant axes of some femoral necks and obtained additional CT to measure femoral torsion angles in 59 of the 67 patients. MR images of 27 (40%) patients had signs of gluteal muscle contracture. Twenty-two (33%) patients (40 femora) had aberrant femoral torsion, including diminished anteversion (range, 6°-0°; average, 3.9°) in 11 femora of eight patients and femoral retroversion (range, muscle contracture or aberrant femoral torsion. The observation of aberrant femoral torsion was not anticipated before imaging studies. In addition to gluteal muscle contracture, aberrant femoral torsion can be a cause of frog-leg squatting. Level II, diagnostic study. See the guidelines for Authors for a complete description of levels of evidence.

  6. Torsional strength of computer-aided design/computer-aided manufacturing-fabricated esthetic orthodontic brackets.

    Science.gov (United States)

    Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell

    2017-01-01

    To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.

  7. Nonmetricity and torsion: Facts and fancies in gauge approaches to gravity

    International Nuclear Information System (INIS)

    Baekler, P.; Hehl, F.W.; Mielke, E.W.

    1986-04-01

    In general relativity, the Riemannian connection of spacetime is symmetric and metric-compatible. If we relax at first the symmetry, we arrive at a Riemann-Cartan spacetime U 4 with torsion. If we relax, additionally, the metric-compatibility, then we are led to a metric-affine spacetime (L 4 ,g) with nonmetricity and torsion. In Part 1 we turn to the (L 4 ,g) spacetime and review an appropriate framework for corresponding gravitational model theories. They can be understood as gauge approaches to the 4-dimensional affine group GL(4,R)xR 4 . They embody, in addition to the ordinary ''weak'' gravitational field, a ''strong'' piece, which is mediated by the connection and coupled to the hypermomentum current. In Part 2, by putting the nonmetricity to zero, we turn to the subcase of the Poincare gauge theory. We show in some detail, how this dynamic torsion theory can look effectively Einsteinian from a macroscopic point of view. This applies also to the Einstein-Cartan theory, which is a special case of the Poincare gauge theory for ''frozen'' torsion. In Part 3 we present new exact solutions of the Poincare gauge theory with mass, electric charge, and NUT-parameter. The properties of the new solutions are discussed. (author)

  8. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  9. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  10. A torsional artificial muscle from twisted nitinol microwire

    Science.gov (United States)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2017-04-01

    Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.

  11. Computational study on the effect of a conical spring on handling of buses at low speed

    Directory of Open Access Journals (Sweden)

    Rajagopalan Aravind

    2018-01-01

    Full Text Available Handling and ride characteristic are dependent to a large extent on the characteristic of a vehicle’s suspension system. This work explores the effect of the use of conical spring in place of conventional cylindrical profiled helical spring design in the handling of a bus at low speeds through full vehicle multi-body simulations. The bus was modelled using standard template available in ADAMSTM software package. The vehicle inertial properties were verified against properties in literature. The conventional spring characteristic (L from ADAMSTM database was taken as reference and compared it with a non-linear characteristic (NL based on literature data. The planned maneuover was to execute a right turn based on standard road dimension inputs from IRC 86:1983 at a constant speed of 30 km/hour with acceleration controlled by software module. Chassis displacements, displacements of spring were tracked to understand handling and ride quality. The variation of chassis displacements showed a significant improvement in ride characteristic of vehicle with most vibrations being damped in NL at time lower than the L characteristic suspension. All through the study, lateral acceleration was well within the rollover threshold and tire interaction forces did not exhibit any significant changes.

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Science.gov (United States)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  14. Determining optimal torsional ultrasound power for cataract surgery with automatic longitudinal pulses at maximum vacuum ex vivo.

    Science.gov (United States)

    Ronquillo, Cecinio C; Zaugg, Brian; Stagg, Brian; Kirk, Kevin R; Gupta, Isha; Barlow, William R; Pettey, Jeff H; Olson, Randall J

    2014-12-01

    To determine the optimal longitudinal power settings for Infiniti OZil Intelligent Phaco (IP) at varying torsional amplitude settings; and to test the hypothesis that increasing longitudinal power is more important at lower torsional amplitudes to achieve efficient phacoemulsification. Laboratory investigation. setting: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah. procedure: Individual porcine nuclei were fixed in formalin, then cut into 2.0 mm cubes. Lens cube phacoemulsification was done using OZil IP at 60%, 80%, and 100% torsional amplitude with 0%, 10%, 20%, 30%, 50%, 75%, or 100% longitudinal power. All experiments were done using a 20 gauge 0.9 mm bent reverse bevel phaco tip at constant vacuum (550 mm Hg), aspiration rate (40 mL/min), and bottle height (50 cm). main outcome measure: Complete lens particle phacoemulsification (efficiency). Linear regression analysis showed a significant increase in efficiency with increasing longitudinal power at 60% torsional amplitude (R(2) = 0.7269, P = .01) and 80% torsional amplitude (R(2) = 0.6995, P = .02) but not at 100% amplitude (R(2) = 0.3053, P = .2). Baseline comparison of 60% or 80% vs 100% torsional amplitude without longitudinal power showed increased efficiency at 100% (P = .0004). Increasing longitudinal power to 20% abolished the efficiency difference between 80% vs 100% amplitudes. In contrast, 75% longitudinal power abolished the efficiency difference between 60% vs 100% torsional amplitudes. Results suggest that longitudinal power becomes more critical at increasing phacoemulsification efficiencies at torsional amplitudes less than 100%. Increasing longitudinal power does not further increase efficiency at maximal torsional amplitudes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  16. On the energy-momentum tensor in non-linear σ-models with torsion

    International Nuclear Information System (INIS)

    Dorn, H.; Otto, H.J.

    1987-10-01

    We study the renormalization properties of the energy-momentum tensor in a σ-model with torsion. Our normal product version contains besides the classical expression and the trace anomaly an off diagonal term proportional to the squared torsion. Specialized to a group manifold this term is crucial to reproduce the correct perturbative expansion of the energy-momentum tensor in Sugawara form. (orig.)

  17. Torsions of 3-dimensional manifolds

    CERN Document Server

    Wurzbacher, T

    2002-01-01

    From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." ―Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. …Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." ―Mathematical Reviews

  18. Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column

    Science.gov (United States)

    Wang, Debin; Fan, Guoxi

    2017-11-01

    The purpose of this paper is to study the effect of torsional effect and loading rate on the flexural capacity of RC members. Based on the fiber model of finite element software ABAQUS, a model has been established with the consideration of the strain rate sensitivity of steel and concrete. The model is used to reflect the influence of the rotational component of ground motion by applying the initial angular displacement. The mechanical properties of RC columns under monotonic loads are simulated. The simulation results show that there has been a decrease in the carrying capacity and initial stiffness of RC columns for high initial torsion angle. With the increase of initial torsion angle, the influence of loading rate on RC columns gradually increases.

  19. Torsional Oscillations of the Earths's Core

    Science.gov (United States)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  20. Stress analysis and torsional buckling analysis of U-shaped bellows

    International Nuclear Information System (INIS)

    Watanabe, Osamu; Ohtsubo, Hideomi.

    1986-01-01

    This paper presents analysis of elastic stress and torsional buckling of U-shaped bellows using ring elements. The expansion joint is considered to be composed of the two toroidal sections and inner-connecting annular plates. The general thin shell theory is employed to derive strain-displacement relations of shells and plates, valid for any loadings. Numerical examples under internal pressure or axial loading are described and compared with the results of existing appropriate analysis. The fundamental aspects of torsional buckling, which have not been studied previously, will also be investigated. (author)

  1. The Reidemeister torsion of 3-manifolds

    CERN Document Server

    Nicolaescu, Liviu I

    2003-01-01

    This is a state-of-the-art introduction to the work of Franz Reidemeister, Meng Taubes, Turaev, and the author on the concept of torsion and its generalizations. Torsion is the oldest topological (but not with respect to homotopy) invariant that in its almost eight decades of existence has been at the center of many important and surprising discoveries. During the past decade, in the work of Vladimir Turaev, new points of view have emerged, which turned out to be the "right ones" as far as gauge theory is concerned. The book features mostly the new aspects of this venerable concept. The theoretical foundations of this subject are presented in a style accessible to those, who wish to learn and understand the main ideas of the theory. Particular emphasis is upon the many and rather diverse concrete examples and techniques which capture the subleties of the theory better than any abstract general result. Many of these examples and techniques never appeared in print before, and their choice is often justified by ...

  2. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  3. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  4. ADDITIVE SELF-HELICITY AS A KINK MODE THRESHOLD

    International Nuclear Information System (INIS)

    Malanushenko, A.; Longcope, D. W.; Fan, Y.; Gibson, S. E.

    2009-01-01

    In this paper, we propose that additive self-helicity, introduced by Longcope and Malanushenko, plays a role in the kink instability for complex equilibria, similar to twist helicity for thin flux tubes. We support this hypothesis by a calculation of additive self-helicity of a twisted flux tube from the simulation of Fan and Gibson. As more twist gets introduced, the additive self-helicity increases, and the kink instability of the tube coincides with the drop of additive self-helicity, after the latter reaches the value of H A /Φ 2 ∼ 1.5 (where Φ is the flux of the tube and H A is the additive self-helicity). We compare the additive self-helicity to twist for a thin subportion of the tube to illustrate that H A /Φ 2 is equal to the twist number, studied by Berger and Field, when the thin flux tube approximation is applicable. We suggest that the quantity H A /Φ 2 could be treated as a generalization of a twist number, when the thin flux tube approximation is not applicable. A threshold on a generalized twist number might prove extremely useful studying complex equilibria, just as the twist number itself has proven useful studying idealized thin flux tubes. We explicitly describe a numerical method for calculating additive self-helicity, which includes an algorithm for identifying a domain occupied by a flux bundle and a method of calculating potential magnetic field confined to this domain. We also describe a numerical method to calculate twist of a thin flux tube, using a frame parallelly transported along the axis of the tube.

  5. Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

    Science.gov (United States)

    Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.

    2018-01-01

    The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors

  6. Clinical application of helical CT colonography

    International Nuclear Information System (INIS)

    Zeng Huiliang; Zhu Xinjin; Liang Rujian; Liang Jianhao; Ou Weiqian; Wen Haomao

    2009-01-01

    Objective: To investigate the clinical value of 16-slice helical CT colonography in the diagnosis of colon tumor and polypus. Methods: 16-slice helical CT volumetric scanning was performed in 18 patients with colonic disease, including colonic tumor (n=16) and colonic polypus (n=2). 3D images, virtual endoscopy and multiplanar reformation were obtained in the AW4.1 workstation. CT appearances were compared with operation and fiberoptic colonoscopy. Results: Satisfied results were achieved from 18 patients, no difference found in results between CT colonography and operation in 16 patients with colonic tumor. Conclusion: 16-slice helical CT colonography is of great value in preoperative staging of colonic tumor and have a high value in clinical application. (authors)

  7. Neutrino's helicity in a gravitational field

    International Nuclear Information System (INIS)

    Pansart, J.P.

    1996-01-01

    By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)

  8. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  9. Plant-based torsional actuator with memory

    Science.gov (United States)

    Nayomi Plaza; Samuel L. Zelinka; Don S. Stone; Joseph E. Jakes

    2013-01-01

    A bundle of a few loblolly pine (Pinus taeda) cells are moisture-activated torsional actuators that twist multiple revolutions per cm length in direct proportion to moisture content. The bundles generate 10 N m kg􀀀1 specific torque during both twisting and untwisting, which is higher than an electric motor. Additionally, the bundles exhibit a moisture-...

  10. Harvesting electrical energy from torsional thermal actuation driven by natural convection.

    Science.gov (United States)

    Kim, Shi Hyeong; Sim, Hyeon Jun; Hyeon, Jae Sang; Suh, Dongseok; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong

    2018-06-07

    The development of practical, cost-effective systems for the conversion of low-grade waste heat to electrical energy is an important area of renewable energy research. We here demonstrate a thermal energy harvester that is driven by the small temperature fluctuations provided by natural convection. This harvester uses coiled yarn artificial muscles, comprising well-aligned shape memory polyurethane (SMPU) microfibers, to convert thermal energy to torsional mechanical energy, which is then electromagnetically converted to electrical energy. Temperature fluctuations in a yarn muscle, having a maximum hot-to-cold temperature difference of about 13 °C, were used to spin a magnetic rotor to a peak torsional rotation speed of 3,000 rpm. The electromagnetic energy generator converted the torsional energy to electrical energy, thereby producing an oscillating output voltage of up to 0.81 V and peak power of 4 W/kg, based on SMPU mass.

  11. Measurement of torsion angles of long finger bones using computed tomography

    International Nuclear Information System (INIS)

    Berthold, L.D.; Ishaque, N.; Mauermann, F.; Klose, K.J.; Boehringer, G.

    2001-01-01

    Objective: Rotational dislocation at the fracture site is a complication of long finger bone fractures of the metacarpals and phalanges. To evaluate such deformities, we performed CT of the articular surfaces of these bones to demonstrate the torsion angles. Design: We evaluated 10 pairs of cadaver hands. These were placed flat, with the bones of interest perpendicular to the gantry to acquire axial images. The torsion of the long bone axes was defined as the angle between a tangent positioned parallel to the proximal articular surface and a tangent parallel to the distal articular surface of individual bones. Results: The maximum difference between repeated measurements was 4 . Intraobserver differences measured between right and left hands are less than 3 . Conclusion: Side differences in torsion angles exceeding 3 are strongly suspicious of a malrotation after fracture. These measurements might help to plan derotational osteotomy and assess the results of therapy. (orig.)

  12. Torsion of a normal adnexa in a premenarcheal girl: MRI findings

    International Nuclear Information System (INIS)

    Bader, T.; Ranner, G.; Haberlik, A.

    1996-01-01

    Torsion of the adnexa can be the cause of abdominal pain. An immediate diagnosis is very important because early surgical intervention is the only way to save the ovary from necrosis. Torsion of a normal adnexa is rare, but occurs more frequently than is generally appreciated. If US findings are equivocal, MRI can provide additional information. In our case the MRI findings leading to the diagnosis of ovarian torsion were: (a) A medial ovarian mass existed with dislocation of the uterus to the affected side with hyperintense, cystic lesions on T2-weighted images at the periphery of the ovary. (b) Beaked protrusion of the mass continuing in a band-like structure connecting it with the uterus obviously represented the Fallopian tube. (c) Low and inhomogeneous signal intensity of the stroma on T1- and T2-weighted images and lack of gadolinium uptake were indicative of infarction. (orig.)

  13. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  14. Helicity amplitudes for matter-coupled gravity

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Novaes, S.F.; Spehler, D.

    1992-07-01

    The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)

  15. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  16. Transabdominal color doppler ultrasonography: A relevant approach for assessment of effects of uterine torsion in buffaloes

    Directory of Open Access Journals (Sweden)

    Devender

    2016-08-01

    Full Text Available Aim: The present study was conducted on advanced pregnant buffaloes suffering from uterine torsion to assess the status of fetus and uterus by transabdominal ultrasonography, and the findings were compared with normal advanced pregnant buffaloes. Materials and Methods: The study was conducted on 20 clinical cases of uterine torsion and 20 normal advanced pregnant buffaloes (control group. The lower ventral area just lateral to linea alba (on both sides of the udder in standing animals was scanned transabdominally by the two-dimensional convex transducer for various ultrasonographic findings. The data collected were statistically analyzed by “one-way ANOVA” and “independent sample t-test” using computerized SPSS 16.0 software program. Results: Transabdominal ultrasonography revealed dead fetus in 95% uterine torsion cases and proved useful in imaging internal structures of fetuses while no dead fetus was reported in the control group. Size of umbilicus was found significantly decreased (p0.05 in uterine torsion group. Average thickness of the uterine wall and mean pixel values of fetal fluids (echogenicity were found significantly increased (p<0.05 in uterine torsion affected buffaloes in comparison to control group. Conclusion: Status of fetus (whether live or dead, internal status of uterus, and its contents could be determined by transabdominal ultrasonography in uterine torsion cases and thus determining the prognosis of the uterine torsion cases before going for further manipulations. This will also help in taking all the precautions to avoid death of the fetus.

  17. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    Science.gov (United States)

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  18. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  19. Moduli space of torsional manifolds

    International Nuclear Information System (INIS)

    Becker, Melanie; Tseng, L.-S.; Yau, S.-T.

    2007-01-01

    We characterize the geometric moduli of non-Kaehler manifolds with torsion. Heterotic supersymmetric flux compactifications require that the six-dimensional internal manifold be balanced, the gauge bundle be Hermitian Yang-Mills, and also the anomaly cancellation be satisfied. We perform the linearized variation of these constraints to derive the defining equations for the local moduli. We explicitly determine the metric deformations of the smooth flux solution corresponding to a torus bundle over K3

  20. In vitro transcription of a torsionally constrained template

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Peter E

    2002-01-01

    RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....

  1. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  2. Torsion of normal adnexa in a 31-year-old woman: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Nao Wakui

    2018-01-01

    Full Text Available It is known that a large ovarian cyst will likely cause torsion. However, normal adnexal torsion is rare and occurs in premenarchal girls in most cases. This is a case of a reproductive woman. A 31-year-old woman suffering from acute abdominal pain in the lower and right side consulted her gynecologist. The next day she had a computed tomography performed and was suspected of ovarian torsion. She did not have fever, nausea, or leukocytosis, but her abdominal pain persisted. Diagnostic laparoscopy was performed and showed torsion of the right fallopian tube, which was swollen and looked like a hydrosalpinx with a normal ovary. We did detorsion and excision of the right tube. However, pathological findings showed that the right tube was not a hydrosalpinx but was swollen due to blood stasis. We determined that this case was torsion of normal adnexa. In such cases, diagnostic laparoscopy is very effective.

  3. Design windows and cost analysis on helical reactors

    International Nuclear Information System (INIS)

    Kozaki, Y.; Imagawa, S.; Sagara, A.

    2007-01-01

    The LHD type helical reactors are characterized by a large major radius but slender helical coil, which give us different approaches for power plants from tokamak reactors. For searching design windows of helical reactors and discussing their potential as power plants, we have developed a mass-cost estimating model linked with system design code (HeliCos), thorough studying the relationships between major plasma parameters and reactor parameters, and weight of major components. In regard to cost data we have much experience through preparing ITER construction. To compare the weight and cost of magnet systems between tokamak and helical reactors, we broke down magnet systems and cost factors, such as weights of super conducting strands, conduits, support structures, and winding unit costs, through estimating ITER cost data basis. Based on FFHR2m1 deign we considered a typical 3 GWth helical plant (LHD type) with the same magnet size, coil major radius Rc 14 m, magnetic energy 120 GJ, but increasing plasma densities. We evaluated the weight and cost of magnet systems of 3 GWth helical plant, the total magnet weights of 16,000ton and costs of 210 BYen, which are similar values of tokamak reactors (10,200 ton, 110 BYen in ITER 2002 report, and 21,900 ton, 275 BYen in ITER FDR1999). The costs of strands and winding occupy 70% of total magnet costs, and influence entire power plants economics. The design windows analysis and comparative economics studies to optimize the main reactor parameters have been carried out. Economics studies show that it is misunderstanding to consider helical coils are too large and too expensive to achieve power plants. But we should notice that the helical reactor design windows and economics are very sensitive to allowable blanket space (depend on ergodic layer conditions) and diverter configuration for decreasing heat loads. (orig.)

  4. 78 FR 60248 - Foreign-Trade Zone (FTZ) 183-Austin, Texas; Notification of Proposed Production Activity...

    Science.gov (United States)

    2013-10-01

    ... shroud assemblies; mechanism bases; storage; busbars; button dim links; electromagnetic interference fans...; connector brackets; frames; holders; insulators; link torsion; manifold exhausts; stiffeners; subassemblies; thermal pads; insert mold torsion bars; torsion springs; vapor chambers; power supplies; housing magnets...

  5. Refractive variation under accommodative demand: curvital and scaled torsional variances and covariance across the meridians of the eye.

    Science.gov (United States)

    van Gool, R D; Harris, W F

    1997-06-01

    Autorefractor measurements were taken on the right eye of 10 students with an external target at vergences -1.00 and -3.00 D. The refractive errors in the form of sphere, cylinder, and axis were converted to vectors h and variance-covariance matrices calculated for different reference meridians. Scatter plots are drawn in symmetric dioptric power space. The profiles of curvital and scaled torsional variances, the scaled torsional fraction, and the scaled torsional-curvital correlation are shown using a polar representation. This form of representation provides a meridional pattern of variation under accommodative demand. The profile for scaled torsional variance is characteristically in the form of a pair of rabbit ears. At both target vergences curvital variance is larger than scaled torsional variance in all the meridians of the eye: the relative magnitudes are quantified by the scaled torsional fraction. An increase in accommodative demand generally results in an increase in variance. The rabbit ears usually become larger but less well divided. The correlation between curvital and torsional powers is usually positive in the first quadrant and negative in the second quadrant. Typical, atypical, and mean typical responses are discussed.

  6. Comparison of torsional and microburst longitudinal phacoemulsification: a prospective, randomized, masked clinical trial.

    Science.gov (United States)

    Vasavada, Abhay R; Raj, Shetal M; Patel, Udayan; Vasavada, Vaishali; Vasavada, Viraj

    2010-01-01

    To compare intraoperative performance and postoperative outcome of three phacoemulsification technologies in patients undergoing microcoaxial phacoemulsification through 2.2-mm corneal incisions. The prospective, randomized, single-masked study included 360 eyes randomly assigned to torsional (Infiniti Vision System; Alcon Laboratories, Fort Worth, TX), microburst with longitudinal (Infiniti), or microburst with longitudinal (Legacy Everest, Alcon Laboratories) ultrasound. Assessments included surgical clock time, fluid volume, and intraoperative complications, central corneal thickness on day 1 and months 1 and 3 postoperatively, and endothelial cell density at 3 months postoperatively. Comparisons among groups were conducted. Torsional ultrasound required significantly less surgical clock time and fluid volume than the other groups. There were no intraoperative complications. Change in central corneal thickness and endothelial cell loss was significantly lower in the torsional ultrasound group at all postoperative visits (P < .001, Kruskal-Wallis test) compared to microburst longitudinal ultrasound modalities. Torsional ultrasound demonstrated quantitatively superior intraoperative performance and showed less increase in corneal thickness and less endothelial cell loss compared to microburst longitudinal ultrasound. Copyright 2010, SLACK Incorporated.

  7. The effect of random mass, stiffness and eccentricity parameters on seismic response of torsional system

    International Nuclear Information System (INIS)

    Ghafory-Ashtiany, M.

    2001-01-01

    In this paper, the effect of random eccentricity, mass and stiffness parameter on the dynamic characteristics of structure and story shear and torsional response has been comprehensively examined. Numerical results are obtained for a five-story torsional building excited by random excitation with various damping ration and frequency parameter values using both approaches of response calculations-a more accurate complex mode and an approximate normal mode have been used. The results show that the introduction of eccentricity in a direction introduces torsional moments in the system and reduces the direct story shear. For a safe design, eccentricity should be neglected in the calculations for shear, and a value of 0.05 of radius of gyration for calculation of torsional moment should be considered, even if a structure is intended to be symmetrical

  8. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles

    Science.gov (United States)

    Lima, Márcio D.; Li, Na; Jung de Andrade, Mônica; Fang, Shaoli; Oh, Jiyoung; Spinks, Geoffrey M.; Kozlov, Mikhail E.; Haines, Carter S.; Suh, Dongseok; Foroughi, Javad; Kim, Seon Jeong; Chen, Yongsheng; Ware, Taylor; Shin, Min Kyoon; Machado, Leonardo D.; Fonseca, Alexandre F.; Madden, John D. W.; Voit, Walter E.; Galvão, Douglas S.; Baughman, Ray H.

    2012-11-01

    Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.

  9. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  10. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  11. Resistance of i-beams in warping torsion with account for the development of plasticdeformations

    Directory of Open Access Journals (Sweden)

    Tusnin Aleksandr Romanovich

    2014-01-01

    Full Text Available Torsion of thin-walled open-section beams due to restrained warping displacements of cross-section is causing additional stresses, which make a significant contribution to the total stress. Due to plastic deformation there are certain reserves of bearing capacity, identification of which is of significant practical interest. The existing normative documents for the design of steel structures in Russia do not include design factor taking into account the development of plastic deformation during warping torsion. The analysis of thin-walled open-section members with plastic deformation will more accurately determine their load-bearing capacity and requires further research. Reserves of the beams bearing capacity due to the development of plastic deformations are revealed when beams are influenced by bending, as well as tension and compression. The existing methodology of determining these reserves and the plastic shape factor in bending was reviewed. This has allowed understanding how it was possible to solve this problem for warping torsion members and outline possible ways of theoretical studies of the bearing capacity in warping torsion. The authors used theoretical approach in determining this factor for the symmetric I-section beam under the action of bimoment and gave recommendations for the design of torsion members including improved value of plastic shape factor.

  12. Intravaginal testicular torsion in newborns. To fix or not to fix the contralateral testis?

    Directory of Open Access Journals (Sweden)

    G. Bordin

    2013-10-01

    Full Text Available Scrotal swelling suggesting testicular torsion is a rare urological emergency which requires a clinical urgent evaluation and most of the times must be managed surgically. In newborns it can occur in the postnatal period, usually within the twenty-eighth day of life, or more frequently in utero, during the descent of the testis into the scrotum. Usually its poor fixedness allows the testis an abnormal mobility inside the scrotum, configuring the framework of extravaginal torsion. On the contrary during the perinatal period a twist that takes place inside the tunica vaginalis, known as intravaginal torsion, is extremely uncommon and only few cases are well documented in the literature. Authors present a rare case of intravaginal testicular torsion occurred in perinatal period. In this situation only the early surgical exploration of the scrotum may allow the rescue of the gonad, although in rare cases. Timing of surgical treatment and need for contralateral testicular fixation remain controversial. However since the anatomical defect of the tunica vaginalis can be bilateral the surgical fixation even of the contralateral testis is important, now or later, in order to prevent any future torsion of this gonad. The authors also present a brief review of recent literature on the subject.

  13. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  14. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  15. Biothermal sensing of a torsional artificial muscle.

    Science.gov (United States)

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-02-14

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.

  16. Nonlinear modulation of torsional waves in elastic rod. [Instability

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, M; Sugimoto, N [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1977-06-01

    Nonlinear Schroedinger equation, which describes the nonlinear modulation of dispersive torsional waves in an elastic rod of circular cross-section, is derived by the derivative expansion method. It is found, for the lowest dispersive mode, that the modulational instability occurs except in the range of the carrier wavenumber, 2.799torsional and its second-harmonic longitudinal modes.

  17. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  18. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  19. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  20. New torsion black hole solutions in Poincaré gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, Jose A.R.; Valcarcel, Jorge Gigante, E-mail: cembra@fis.ucm.es, E-mail: jorgegigante@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid (Spain)

    2017-01-01

    We derive a new exact static and spherically symmetric vacuum solution in the framework of the Poincaré gauge field theory with dynamical massless torsion. This theory is built in such a form that allows to recover General Relativity when the first Bianchi identity of the model is fulfilled by the total curvature. The solution shows a Reissner-Nordström type geometry with a Coulomb-like curvature provided by the torsion field. It is also shown the existence of a generalized Reissner-Nordström-de Sitter solution when additional electromagnetic fields and/or a cosmological constant are coupled to gravity.