WorldWideScience

Sample records for helical jet model

  1. A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta

    Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.

    2016-01-01

    Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.

  2. HOMOLOGOUS HELICAL JETS: OBSERVATIONS BY IRIS, SDO, AND HINODE AND MAGNETIC MODELING WITH DATA-DRIVEN SIMULATIONS

    Cheung, Mark C. M.; Pontieu, B. De; Tarbell, T. D.; Fu, Y.; Martínez-Sykora, J.; Boerner, P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Tian, H.; Testa, P.; Reeves, K. K.; Golub, L.; McKillop, S.; Saar, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kleint, L. [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstr. 6, 5210 Windisch (Switzerland); Kankelborg, C.; Jaeggli, S. [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); Carlsson, M., E-mail: cheung@lmsal.com [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); and others

    2015-03-10

    We report on observations of recurrent jets by instruments on board the Interface Region Imaging Spectrograph, Solar Dynamics Observatory (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. Far-ultraviolet spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of ±100 km s{sup −1}. Raster Doppler maps using a Si iv transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.

  3. SIGNATURES OF RELATIVISTIC HELICAL MOTION IN THE ROTATION MEASURES OF ACTIVE GALACTIC NUCLEUS JETS

    Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2009-10-01

    Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.

  4. Helical Magnetic Fields in AGN Jets Y. J. Chen1,2,∗ , G.-Y. Zhao1,2 ...

    Abstract. We establish a simple model to describe the helical mag- netic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observa- tion of many blazar objects, suggesting the existence of helical magnetic fields in these sources. Key words.

  5. Helical axis stellarator equilibrium model

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  6. Numerical simulation of an excited round jet under helical disturbances by three-dimensional discrete vortex method; Helical kakuran ni yoru reiki enkei funryu no uzuho simulation

    Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)

    1998-09-25

    The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.

  7. Experimental investigation of helicity in turbulent swirling jet using dual-plane dye laser PIV technique

    Regunath, G.; Zimmerman, W. B.; Tesař, Václav; Hewakandamby, B.N.

    2008-01-01

    Roč. 45, č. 6 (2008), s. 973-986 ISSN 0723-4864 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jet * swirling jet * helicity * PIV Subject RIV: BK - Fluid Dynamics Impact factor: 1.854, year: 2008 http://www.springerlink.com/

  8. Modelling simple helically delivered dose distributions

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  9. The Use of Faraday Rotation Sign Maps as a Diagnostic for Helical Jet Magnetic Fields

    Reichstein, Andrea; Gabuzda, Denise

    2012-01-01

    We present maps of the sign of the Faraday Rotation measure obtained from multi-frequency radio observations made with the Very Long Baseline Array (VLBA). The Active Galactic Nuclei (AGN) considered have B-field structures with a central 'spine' of B-field orthogonal to the jet and/or a longitudinal B-field near one or both edges of the jet. This structure can plausibly be interpreted as being caused by a helical/toroidal jet magnetic field. Faraday Rotation is a rotation of the plane of polarization that occurs when the polarized radiation passes through a magnetized plasma. The sign of the RM is determined by the direction of the line-of-sight B-field in the region causing the Faraday Rotation, and an ordered toroidal or helical magnetic field associated with an AGN jet will thus produce a distinctive bilateral distribution of the RMs across the jet. We present and discuss RM-sign maps and their possible interpretation regarding the magnetic field geometries for several sources.

  10. Measurement of the W boson helicity fractions in t anti t events at 8 TeV in the lepton+jets channel with the ATLAS detector

    Kareem, Mohammad Jawad

    2017-04-20

    Precise measurements of the properties of the top quark allow for testing the Standard Model (SM) and can be used to constrain new physics models. The top quark is predicted in the SM to decay almost exclusively to a W boson and b-quark. Thus, studying the Wtb vertex structure at high precision and in detail is motivated. This thesis presents a measurement of the W boson helicity fractions in top quark decays with t anti t events in the lepton+jets final state using proton-proton collisions at a centre-of-mass energy of √(s)=8 TeV recorded in 2012 with the ATLAS detector at the LHC. The data sample corresponds to an integrated luminosity of 20.2 fb{sup -1}. The angular distribution of two different analysers, the charged lepton and the down-type quark in the W boson rest frame are used to measure the helicity fractions. The most precise measurement is obtained from the leptonic analyser and events which contain at least two b-quark tagged jets. The results of F{sub 0}=0.709±0.012 (stat.+bkg. norm.){sup +0.015}{sub -0.014}(syst.), F{sub L}=0.299±0.008 (stat.+bkg. norm.){sup +0.013}{sub -0.012}(syst.), F{sub R}=-0.008±0.006 (stat.+bkg. norm.)±0.012(syst.), which stand for longitudinal, left- and right-handed W boson helicity fractions respectively, are obtained by performing a combined fit of electron+jets and muon+jets channels to data. The measured helicity fractions are consistent with the Standard Model prediction. As the polarisation state of the W boson in top quark decays is sensitive to the Wtb vertex structure, limits on anomalous Wtb couplings are set.

  11. On Helical Projection and Its Application in Screw Modeling

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  12. Theoretical modeling of transport barriers in helical plasmas

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  13. Transmembrane helices can induce domain formation in crowded model membranes

    Domanski, Jan; Marrink, Siewert J.; Schäfer, Lars V.

    We studied compositionally heterogeneous multi-component model membranes comprised of saturated lipids, unsaturated lipids, cholesterol, and a-helical TM protein models using coarse-grained molecular dynamics simulations. Reducing the mismatch between the length of the saturated and unsaturated

  14. Synthesis, model and stability of helically coiled carbon nanotubes

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    . Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission......Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner...

  15. Helicity of Solar Active Regions from a Dynamo Model Piyali ...

    - tions with positive and negative helicities are denoted by '+' and 'o' respectively. A flux eruption takes place in our model whenever the toroidal field at the bottom of the SCZ exceeds a critical value. Whenever an eruption takes place in our ...

  16. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  17. Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods

    Prior, Christopher

    2014-03-11

    © 2014, Springer Science+Business Media Dordrecht. We consider a geometrically accurate model for a helically wound rope constructed from two intertwined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various relevant physical scenarios. This discussion also extends to the boundary and how this composite system can be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients of this effective rod.

  18. Plasma transport simulation modeling for helical confinement systems

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  19. Plasma transport simulation modelling for helical confinement systems

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  20. An Operational Model for the Prediction of Jet Blast

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  1. Model of the final borehole geometry for helical laser drilling

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  2. Jet models of X-Ray Flashes

    Lamb, D.Q.; Donaghy, T.Q.; Graziani, C.

    2005-01-01

    One third of all HETE-2-localized bursts are X-Ray Flashes (XRFs), a class of events first identified by Heise in which the fluence in the 2-30 keV energy band exceeds that in the 30-400 keV energy band We summarize recent HETE-2 and other results on the properties of XRFs. These results show that the properties of XRFs, X-ray-rich gamma-ray bursts (GRBs), and GRBs form a continuum, and thus provide evidence that all three kinds of bursts are closely related phenomena. As the most extreme burst population, XRFs provide severe constraints on burst models and unique insights into the structure of GRB jets, the GRB rate, and the nature of Type Ib/Ic supernovae. We briefly mention a number of the physical models that have been proposed to explain XRFs. We then consider two fundamentally different classes of phenomenological jet models: universal jet models, in which it is posited that all GRBs jets are identical and that differences in the observed properties of the bursts are due entirely to differences in the viewing angle; and variable-opening angle jet models, in which it is posited that GRB jets have a distribution of jet opening angles and that differences in the observed properties of the bursts are due to differences in the emissivity and spectra of jets having different opening angles. We consider three shapes far the emissivity as a function of the viewing angle θ ν from the axis of the jet: power law, top hat (or uniform) , and Gaussian (or Fisher). We then discuss the effect of relativistic beaming on each of these models. We show that observations can distinguish between these various models

  3. Forward modeling of JET polarimetry diagnostic

    Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.

    2008-01-01

    An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.

  4. Supersonic induction plasma jet modeling

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  5. Jet Noise Modeling for Supersonic Business Jet Application

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2004-01-01

    This document describes the development of an improved predictive model for coannular jet noise, including noise suppression modifications applicable to small supersonic-cruise aircraft such as the Supersonic Business Jet (SBJ), for NASA Langley Research Center (LaRC). For such aircraft a wide range of propulsion and integration options are under consideration. Thus there is a need for very versatile design tools, including a noise prediction model. The approach used is similar to that used with great success by the Modern Technologies Corporation (MTC) in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research Program and in developing a more recent model for coannular nozzles over a wide range of conditions. If highly suppressed configurations are ultimately required, the 2DME model is expected to provide reasonable prediction for these smaller scales, although this has not been demonstrated. It is considered likely that more modest suppression approaches, such as dual stream nozzles featuring chevron or chute suppressors, perhaps in conjunction with inverted velocity profiles (IVP), will be sufficient for the SBJ.

  6. Modelling of helical current filaments induced by LHW on EAST

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  7. Modelling of density limit phenomena in toroidal helical plasmas

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  8. Modelling of density limit phenomena in toroidal helical plasmas

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  9. Lubricant jet flow phenomena in spur and helical gears with modified addendums - For radially directed individual jets

    Akin, L. S.; Townsend, D. P.

    1989-01-01

    This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.

  10. Lubricant Jet Flow Phenomena in Spur and Helical Gears with Modified Addendums; for Radially Directed Individual Jets

    Akin, Lee S.; Townsend, Dennis P.

    1989-01-01

    This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.

  11. 75 FR 79952 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    2010-12-21

    ... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E... airplanes Inspection threshold (whichever occurs later) Inspection interval Model FAN JET FALCON, FAN JET...

  12. A Field Theory Approach to Modeling Helical FCG's

    Fortgang, C.M.

    1998-01-01

    Often helical flux-compressor generator (FCG) design codes are essentially circuit codes which utilize known equations for parameterizing circuit elements such as armature and stator inductance. The authors present an analytical model that is based more on first principals. The stator inductance is calculated using a definition of inductance in terms of the magnetic vector-potential. The calculation accounts for winding-pitch, bifurcations, and works for any ratio of length to diameter. The currents on the armature are calculated self-consistently and are not assumed to simply 'mirror' the stator currents. Resistive losses and magnetic diffusion losses are calculated less rigorously but they are working on better methods. Details of the model and comparison with experiment will be presented

  13. Cfd modeling of a synthetic jet actuator

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  14. A MODEL OF THE HELIOSPHERE WITH JETS

    Drake, J. F.; Swisdak, M.; Opher, M.

    2015-01-01

    An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B 2 , in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This same pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models

  15. Measurement of the $W$ boson helicity fractions in $t\\bar{t}$ events at $\\sqrt s=$ 8 TeV in the lepton+jets channel with the ATLAS detector

    AUTHOR|(INSPIRE)INSPIRE-00384533; Quadt, Arnulf; Lemmer, Boris; Shabalina, Elizaveta

    Precise measurements of the properties of the top quark allow for testing the Standard Model (SM) and can be used to constrain new physics models. The top quark is predicted in the SM to decay almost exclusively to a $W$ boson and $b$-quark. Thus, studying the $Wtb$ vertex structure at high precision and in detail is motivated. This thesis presents a measurement of the $W$ boson helicity fractions in top quark decays with $t\\bar{t}$ events in the lepton + jets final state using proton-proton collisions at a centre-of-mass energy of $\\sqrt s$ = 8 TeV recorded in 2012 with the ATLAS detector at the LHC. The data sample corresponds to an integrated luminosity of 20.2~fb$^{-1}$. The angular distribution of two different analysers, the charged lepton and the down-type quark in the $W$ boson rest frame are used to measure the helicity fractions. The most precise measurement is obtained from the leptonic analyser and events which contain at least two $b$-quark tagged jets. The results of ...

  16. Magnetohydrodynamic models of astrophysical jets

    Beskin, Vasily S

    2010-01-01

    In this review, analytical results obtained for a wide class of stationary axisymmetric flows in the vicinity of compact astrophysical objects are analyzed, with an emphasis on quantitative predictions for specific sources. Recent years have witnessed a great increase in understanding the formation and properties of astrophysical jets. This is due not only to new observations but also to advances in analytical theory which has produced fairly simple relations, and to what can undoubtedly be called a breakthrough in numerical simulation which has enabled confirmation of theoretical predictions. Of course, we are still very far from fully understanding the physical processes occurring in compact sources. Nevertheless, the progress made raises hopes for near-future test observations that can give insight into the physical processes occurring in active astrophysical objects. (reviews of topical problems)

  17. Continuum model for chiral induced spin selectivity in helical molecules

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  18. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng

    2011-01-01

    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  19. Wavepacket models for supersonic jet noise

    Sinha, Aniruddha; Rodríguez, Daniel; Brès, Guillaume A.; Colonius, Tim

    2014-01-01

    Gudmundsson and Colonius (J. Fluid Mech., vol. 689, 2011, pp. 97–128) have recently shown that the average evolution of low-frequency, low-azimuthal modal large-scale structures in the near field of subsonic jets are remarkably well predicted as linear instability waves of the turbulent mean flow using parabolized stability equations. In this work, we extend this modelling technique to an isothermal and a moderately heated Mach 1.5 jet for which the mean flow fields are obtained from a high-f...

  20. 75 FR 43878 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    2010-07-27

    ... Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G Airplanes.... Since that NPRM was issued, we have determined that Model FAN JET FALCON SERIES C, D, E, F, and G..., Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G airplanes, and Model MYSTERE-FALCON 20-C5...

  1. Nonlinear interaction model of subsonic jet noise.

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  2. Development of a generalized integral jet model

    Duijm, Nijs Jan; Kessler, A.; Markert, Frank

    2017-01-01

    Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational requireme......Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational...... requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models, however, are not suited to handle transient releases, such as releases from pressurized equipment, where the initially high release rate decreases rapidly with time. Further, on gas ignition, a second...... model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...

  3. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method

    Guo, Y. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210023 (China); Pariat, E.; Moraitis, K. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Valori, G. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Anfinogentov, S. [Institute of Solar-Terrestrial Physics SB RAS 664033, Irkutsk, P.O. box 291, Lermontov Street, 126a (Russian Federation); Chen, F. [Max-Plank-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany); Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4 Soranou Efesiou Street, 11527 Athens (Greece); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Thalmann, J. K. [Institute of Physics, Univeristy of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Yang, S., E-mail: guoyang@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-05-01

    We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.

  4. Towards LES Models of Jets and Plumes

    Webb, A. T.; Mansour, N. N.

    2000-01-01

    As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally

  5. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  6. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  7. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  8. Machine learning, computer vision, and probabilistic models in jet physics

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  9. A Model of Polarisation Rotations in Blazars from Kink Instabilities in Relativistic Jets

    Krzysztof Nalewajko

    2017-10-01

    Full Text Available This paper presents a simple model of polarisation rotation in optically thin relativistic jets of blazars. The model is based on the development of helical (kink mode of current-driven instability. A possible explanation is suggested for the observational connection between polarisation rotations and optical/gamma-ray flares in blazars, if the current-driven modes are triggered by secular increases of the total jet power. The importance of intrinsic depolarisation in limiting the amplitude of coherent polarisation rotations is demonstrated. The polarisation rotation amplitude is thus very sensitive to the viewing angle, which appears to be inconsistent with the observational estimates of viewing angles in blazars showing polarisation rotations. Overall, there are serious obstacles to explaining large-amplitude polarisation rotations in blazars in terms of current-driven kink modes.

  10. Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150

    Sol N. Molina

    2016-11-01

    Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.

  11. A theoretical model of the M87 jet

    Falle, S.A.E.G.; Wilson, M.J.

    1985-01-01

    This paper describes a theoretical model of the knots in the M87 jet based on the idea that it is a steady fluid jet propagating through a non-uniform atmosphere. It is argued that knots D, E and F can be explained by the jet being underexpanded as it emerges from the central source, while knot A is due to reconfinement of the jet. Very high resolution numerical calculations are used to show that good agreement with the observed positions of the knots can be obtained with reasonable jet parameters and an atmosphere consistent with the X-ray observations. (author)

  12. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  13. A semiclassical model for quark jet fragmentation

    Andersson, B.; Gustafson, G.; Peterson, C.

    1979-01-01

    A semiclassical model is presented for the way the energy of a fast quark is transformed into observable hadrons. It reproduces the features of 1+1 dimensional QED (the Schwinger model) concerning a flat rapidity distribution in the central region. It also reproduces results from phenomenological considerations, which, based upon scaling, predict that meson formation in the fragmentation region can be described by an iterative scheme, implying a set of coupled integral equations. In particular the model predicts that the probability to find a meson containing the leading quark is independent of the Feynman scaling variable z. The iterative structure corresponds to a Brownian motion with relevance both to the cofinement problems and to the distribution of mass in the quark jet. (orig.) [de

  14. Jet browser model accelerated by GPUs

    Forster Richárd

    2016-12-01

    Full Text Available In the last centuries the experimental particle physics began to develop thank to growing capacity of computers among others. It is allowed to know the structure of the matter to level of quark gluon. Plasma in the strong interaction. Experimental evidences supported the theory to measure the predicted results. Since its inception the researchers are interested in the track reconstruction. We studied the jet browser model, which was developed for 4π calorimeter. This method works on the measurement data set, which contain the components of interaction points in the detector space and it allows to examine the trajectory reconstruction of the final state particles. We keep the total energy in constant values and it satisfies the Gauss law. Using GPUs the evaluation of the model can be drastically accelerated, as we were able to achieve up to 223 fold speedup compared to a CPU based parallel implementation.

  15. Modeling Jet Interaction of a Round Jet with a Subsonic Carrying Flow

    Yu. P. Korobkova

    2017-01-01

    Full Text Available The paper analyzes numerical simulation of the round jet with a subsonic carrying flow. Performs calculations for different tilt angles of the jet ωj blowing and constructs the fields of velocities and pressures of the flow, jet trajectory, as well as calculates the pressure coefficients on the plate surface.To solve this problem, the CAD Solidworks Flow Simulation software was used. This package contains the solution of the Nowier-Stokes equation, which is necessary for modeling this problem.To test operation capability of the closing condition (k-th model of turbulence and proper choice of the boundaries of the computational domain, was solved a test problem forThe solution analysis has shown that the k-th model of turbulence was capable, and has a good agreement with other authors' experiment results [4]. Based on the selected conditions, further calculations were carried out for different tilt angles of jet blowing.In the course of research activities, it was revealed that the tilt angle of the jet blowing has a strong impact on redistribution of velocity and pressure in the area of the jet interaction, which allows the efficient use of such jets to control aerodynamic characteristics of the aircraft with the same power consumption for blowing out the gas. The solution of this problem is very relevant in wide application in aviation and rocket and space technology.

  16. Solar Coronal Jets: Observations, Theory, and Modeling

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  17. Studies of Monte Carlo Modelling of Jets at ATLAS

    Kar, Deepak; The ATLAS collaboration

    2017-01-01

    The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets.  Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.

  18. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments.

    Hayward, Steven; Milner-White, E James

    2017-10-01

    Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design. © 2017 Wiley Periodicals, Inc.

  19. Empirical model of the M 87 jet

    Shklovskij, I.S.

    1984-01-01

    The nature of the M87 jet is discussed. Recent observations of the M87 jet in radio, optical and X-ray regions, carried out with a sufficiently high resolving power, have revealed an identity of the brightness distribution at all frequencies. This points to a decisive role of the regular magnetic field variations along the jet for its overall structure. The bright knots of the jet are in the places where the field is enhanced. In the same places, a small fraction of relativistic electrons acquires large pitch-angles due to the interaction with plasma waves, leading to the synchrotron emission of the knots. The velocity of the plasma ejected from the nucleus of M87 should be 0.1 c. Thus, the M87 jet is one-sided

  20. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  1. ATLAS Standard Model Measurements Using Jet Grooming and Substructure

    Ucchielli, Giulia; The ATLAS collaboration

    2017-01-01

    Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”

  2. Integral bubble and jet models with pressure forces

    Vulfson, A. N.; Nikolaev, P. V.

    2017-07-01

    Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.

  3. Time-dependent inhomogeneous jet models for BL Lac objects

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  4. Quasi-Similarity Model of Synthetic Jets

    Tesař, Václav; Kordík, Jozef

    2009-01-01

    Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com

  5. Reduced order modeling of flashing two-phase jets

    Gurecky, William, E-mail: william.gurecky@utexas.edu; Schneider, Erich, E-mail: eschneider@mail.utexas.edu; Ballew, Davis, E-mail: davisballew@utexas.edu

    2015-12-01

    Highlights: • Accident simulation requires ability to quickly predict two-phase flashing jet's damage potential. • A reduced order modeling methodology informed by experimental or computational data is described. • Zone of influence volumes are calculated for jets of various upstream thermodynamic conditions. - Abstract: In the event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor, the escaping coolant produces a highly energetic flashing jet with the potential to damage surrounding structures. In LOCA analysis, the goal is often to evaluate many break scenarios in a Monte Carlo style simulation to evaluate the resilience of a reactor design. Therefore, in order to quickly predict the damage potential of flashing jets, it is of interest to develop a reduced order model that relates the damage potential of a jet to the pressure and temperature upstream of the break and the distance from the break to a given object upon which the jet is impinging. This work presents framework for producing a Reduced Order Model (ROM) that may be informed by measured data, Computational Fluid Dynamics (CFD) simulations, or a combination of both. The model is constructed by performing regression analysis on the pressure field data, allowing the impingement pressure to be quickly reconstructed for any given upstream thermodynamic condition within the range of input data. The model is applicable to both free and fully impinging two-phase flashing jets.

  6. A numerical model for buoyant oil jets and smoke plumes

    Zheng, L.; Yapa, P. D.

    1997-01-01

    Development of a 3-D numerical model to simulate the behaviour of buoyant oil jets from underwater accidents and smoke plumes from oil burning was described. These jets/plumes can be oil-in-water, oil/gas mixture in water, gas in water, or gas in air. The ambient can have a 3-D flow structure, and spatially/temporally varying flow conditions. The model is based on the Lagrangian integral technique. The model formulation of oil jet includes the diffusion and dissolution of oil from the jet to the ambient environment. It is suitable to simulate well blowout accidents that can occur in deep waters, including that of the North Sea. The model has been thoroughly tested against a variety of data, including data from both laboratory and field experiments. In all cases the simulation data compared very well with experimental data. 26 refs., 10 figs

  7. Dihadron fragmentation functions in the quark-jet model: Transversely polarized quarks

    Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.

    2018-01-01

    Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-polarization-dependent dihadron fragmentation functions (DiFFs) H1∢ and H1⊥ of a quark into π+π- pairs. Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the DiFFs H1∢ and H1⊥. A notable finding is that there are previously unnoticed apparent discrepancies between the definitions of the so-called interference DiFF (IFF) H1∢ , entering the cross sections for two-hadron semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on the helicity-dependent DiFF G1⊥.

  8. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  9. Autoxidation of jet fuels: Implications for modeling and thermal stability

    Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.

  10. Computer modeling of jet mixing in INEL waste tanks

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  11. ePLAS Development for Jet Modeling and Applications

    Mason, Rodney J.

    2011-01-01

    Plasma jets provide an alternate approach to the creation of high energy density laboratory plasmas (HEDLP). For the Plasma Liner Experiment (PLX), typically 30 partially ionized argon jets, produced with mini-rail guns, will be focused into a central volume for subsequent magnetic compression into high density plasma liners that can reach high (0.1 Mbar) peak pressures upon stagnation. The jets are typically 2.5 cm in radius traveling at Mach number 30. Ultimate success will require optimized tuning of the rail configurations, the nozzles injecting the gases, and the careful implementation of pre-ionization. The modeling of plasma jet transport is particularly challenging, due the large space (100 sq cm) and time scales (microseconds) involved. Even traditional implicit methods are insufficient, due to the usual need to track electrons explicitly on the mesh. Wall emission and chemistry must be managed, as must ionization of the jet plasma. Ions in the jets are best followed as particles to account properly for collisions upon jet merger. This Phase I Project developed the code ePLAS to attack and successfully surmount many of these challenges. It invented a new 'super implicit' electromagnetic scheme, using implicit electron moment currents that allowed for modeling of jets over multi-cm and multi-picoseconds on standard, single processor 2 GHz PCs. It enabled merger studies of two jets, in preparation for the multi-jet merger problem. The Project explored particle modeling for the ions, and prepared for the future addition of a grid-base jet ion collision model. Access was added to tabular equations of state for the study of ionization effects in merging jets. The improved code was discussed at the primary plasma meetings (IEEE and APS) during the Project period. Collaborations with National Laboratory and industrial partners were nurtured. Code improvements were made to facilitate code use. See: http://www.researchapplicationscorp.com. The ePLAS code enjoys EAR

  12. A modified stratified model for the 3C 273 jet

    Liu Wenpo; Shen Zhiqiang

    2009-01-01

    We present a modified stratified jet model to interpret the observed spectral energy distributions of knots in the 3C 273 jet. Based on the hypothesis of the single index of the particle energy spectrum at injection and identical emission processes among all the knots, the observed difference of spectral shape among different 3C 273 knots can be understood as a manifestation of the deviation of the equivalent Doppler factor of stratified emission regions in an individual knot from a characteristic one. The summed spectral energy distributions of all ten knots in the 3C 273 jet can be well fitted by two components: a low-energy component (radio to optical) dominated by synchrotron radiation and a high-energy component (UV, X-ray and γ-ray) dominated by inverse Compton scattering of the cosmic microwave background. This gives a consistent spectral index of α = 0.88 (S v ∝ v -α ) and a characteristic Doppler factor of 7.4. Assuming the average of the summed spectrum as the characteristic spectrum of each knot in the 3C 273 jet, we further get a distribution of Doppler factors. We discuss the possible implications of these results for the physical properties in the 3C 273 jet. Future GeV observations with GLAST could separate the γ-ray emission of 3C 273 from the large scale jet and the small scale jet (i.e. the core) through measuring the GeV spectrum.

  13. A hybrid deterministic-probabilistic approach to model the mechanical response of helically arranged hierarchical strands

    Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.

    2017-09-01

    Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.

  14. Mathematical Model of the Jet Engine Fuel System

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  15. Transverse momentum correlations of quarks in recursive jet models

    Artru, X.; Belghobsi, Z.; Redouane-Salah, E.

    2016-08-01

    In the symmetric string fragmentation recipe adopted by PYTHIA for jet simulations, the transverse momenta of successive quarks are uncorrelated. This is a simplification but has no theoretical basis. Transverse momentum correlations are naturally expected, for instance, in a covariant multiperipheral model of quark hadronization. We propose a simple recipe of string fragmentation which leads to such correlations. The definition of the jet axis and its relation with the primordial transverse momentum of the quark is also discussed.

  16. Mathematical Model of the Jet Engine Fuel System

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  17. Studies of turbulent round jets through experimentation, simulation, and modeling

    Keedy, Ryan

    This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make

  18. Modeling jet and outflow feedback during star cluster formation

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  19. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

    Bánsági, T.; Taylor, A. F., E-mail: A.F.Taylor@sheffield.ac.uk [Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2015-06-15

    The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were determined in simulations with initial random noise perturbations to the uniform state for W < l/2 and D ∼ l or lower. We show that the geometric constraints of the reaction domain may result in the formation of helical Turing patterns with parameters that give stripes (b = 0.2) or spots (b = 0.37) in two dimensions. For b = 0.2, the helices were composed of lamellae and defects were likely as the diameter of the cylinder increased. With b = 0.37, the helices consisted of semi-cylinders and the orientation of stripes on the outer surface (and hence winding number) increased with increasing diameter until a new stripe appeared.

  20. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

    Bánsági, T.; Taylor, A. F.

    2015-01-01

    The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were determined in simulations with initial random noise perturbations to the uniform state for W < l/2 and D ∼ l or lower. We show that the geometric constraints of the reaction domain may result in the formation of helical Turing patterns with parameters that give stripes (b = 0.2) or spots (b = 0.37) in two dimensions. For b = 0.2, the helices were composed of lamellae and defects were likely as the diameter of the cylinder increased. With b = 0.37, the helices consisted of semi-cylinders and the orientation of stripes on the outer surface (and hence winding number) increased with increasing diameter until a new stripe appeared

  1. Modelling of JET diagnostics using Bayesian Graphical Models

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  2. Employing helicity amplitudes for resummation

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  3. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  4. Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup

    Weberski, J. D.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    A zero-dimensional power balance model for predicting Ip(t) for Local Helicity Injection (LHI) discharges has been used to interpret experimental results from recent experimental campaigns using high-field-side (HFS) helicity injection. This model quantifies LHI's effective drive (Veff) through helicity balance while enforcing the Taylor relaxation current limit and tracking inductive effects to determine Ip(t) . Recent analysis of HFS LHI discharges indicate LHI is the dominant source of drive and provides Veff up to 1.3 V while geometric effects and inductive drive provide < 0.1 V throughout much of the discharge. In contrast to previous analysis of low-field-side (LFS) LHI discharges, which were driven by Veff = 0.3 V and 2.0 V from geometric effects and inductive drive. A significant remaining uncertainty in the model is the resistive dissipation of LHI discharges. This requires greater understanding of LHI confinement scaling and impurity content, which are currently under investigation. However, the model and experimental Ip(t) exhibit good agreement for parameters consistent with previous experimental findings. Extrapolation of plasma parameters and shaping from recent experiments allow for the model to project the performance of LHI systems. These projections indicate Ip 0.3 MA can be accessed on Pegasus via HFS LHI through changes to injector geometry to provide more Veff. This regime can be accessed via a LFS system by increasing the Taylor relaxation current limit early in the discharge. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  5. Four-jet impingement: Noise characteristics and simplified acoustic model

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  6. Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

    Moreno-Pérez, J.; Bonilla-Petriciolet, A.; Rojas-Mayorga, C. K.

    2016-01-01

    This study reports the assessment of helical coil-packed bed columns for Zn2+ adsorption on bone char. Zn2+ adsorption breakthrough curves have been obtained using helical coil columns with different characteristics and a comparison has been conducted with respect to the results of straight fixed-bed...... columns. Results showed that the helical coil adsorption columns may offer an equivalent removal performance than that obtained for the traditional packed bed columns but using a compact structure. However, the coil diameter, number of turns, and feed flow appear to be crucial parameters for obtaining...... the best performance in this packed-bed geometry. A mass transfer model for a mobile fluid flowing through a porous media was used for fitting and predicting the Zn2+ breakthrough curves in helical coil bed columns. Results of adsorbent physicochemical characterization showed that Zn2+ adsorption on bone...

  7. Modelling ion cyclotron emission from KSTAR tokamak and LHD helical device plasmas

    Dendy, Richard; Chapman, Ben; Reman, Bernard; Chapman, Sandra; Akiyama, Tsuyoshi; Yun, Gunsu

    2017-10-01

    New high quality measurements of ion cyclotron emission (ICE) from KSTAR and LHD greatly extend the scope and diversity of plasma conditions under which ICE is observed. Variables include the origin (fusion reactions or neutral beam injection) and energy (sub- or super-Alfvénic) of the minority energetic ions that drive ICE; the composition of the bulk plasma (hydrogen or deuterium) which supports the modes excited; plasma density in the emitting region, and the timescale on which it changes; and toroidal magnetic field geometry (tokamak or helical device). Future exploitation of ICE as a diagnostic for energetic ion populations in JET D-T plasmas and in ITER rests on quantitative understanding of the physics of the emission. This is tested and extended by current KSTAR and LHD measurements of ICE. We report progress on direct numerical simulation using full orbit ion kinetic codes that solve the Maxwell-Lorentz equations for hundreds of millions of particles. In the saturated regime, these simulations yield excited field spectra that correspond directly to the measured ICE spectra under diverse KSTAR and LHD regimes. At early times, comparison of simulation outputs with linear analytical theory confirms the magnetoacoustic cyclotron instability as the basic driver of ICE. Supported by RCUK Energy Programme Grant EP/P012450/1, NRF Korea Grant 2014M1A7A1A03029881, NIFS budget ULHH029 and Euratom.

  8. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  9. On an uncorrelated jet model with Bose-Einstein statistics

    Bilic, N.; Dadic, I.; Martinis, M.

    1978-01-01

    Starting from the density of states of an ideal Bose-Einstein gas, an uncorrelated jet model with Bose-Einstein statistics has been formulated. The transition to continuum is based on the Touschek invariant measure. It has been shown that in this model average multiplicity increases logarithmically with total energy, while the inclusive distribution shows ln s violation of scaling. (author)

  10. Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments

    Đuričković, Bojan

    2013-09-05

    In various single-molecule experiments, a chiral polymer, such as DNA, is simultaneously pulled and twisted. We address an elementary but fundamental question raised by various authors: does the molecule overwind or unwind under tension? We show that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory for helical structures that relates axial force and axial torque to axial translation and rotation. © 2013 American Physical Society.

  11. Explaining formation of Astronomical Jets using Dynamic Universe Model

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  12. An Empirical Temperature Variance Source Model in Heated Jets

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  13. Modelling and experimental validation for off-design performance of the helical heat exchanger with LMTD correction taken into account

    Phu, Nguyen Minh; Trinh, Nguyen Thi Minh [Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-07-15

    Today the helical coil heat exchanger is being employed widely due to its dominant advantages. In this study, a mathematical model was established to predict off-design works of the helical heat exchanger. The model was based on the LMTD and e-NTU methods, where a LMTD correction factor was taken into account to increase accuracy. An experimental apparatus was set-up to validate the model. Results showed that errors of thermal duty, outlet hot fluid temperature, outlet cold fluid temperature, shell-side pressure drop, and tube-side pressure drop were respectively +-5%, +-1%, +-1%, +-5% and +-2%. Diagrams of dimensionless operating parameters and a regression function were also presented as design-maps, a fast calculator for usage in design and operation of the exchanger. The study is expected to be a good tool to estimate off-design conditions of the single-phase helical heat exchangers.

  14. Hybrid model for simulation of plasma jet injection in tokamak

    Galkin, Sergei A.; Bogatu, I. N.

    2016-10-01

    Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.

  15. Turbulent Helicity in the Atmospheric Boundary Layer

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  16. Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model

    El-Amin, Mohamed; Sun, Shuyu; Heidemann, Wolfgang; Mü ller-Steinhagen, Hans M.

    2010-01-01

    Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical

  17. A Comprehensive Analysis of Jet Quenching via a Hybrid Strong/Weak Coupling Model for Jet-Medium Interactions

    Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-12-15

    Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.

  18. A dermatotoxicokinetic model of human exposures to jet fuel.

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  19. Modelling magnetic forces during asymmetric vertical displacement events at JET

    Riccardo, V.; Walker, S.; Noll, P.

    2000-01-01

    Asymmetric vertical disruption events (AVDEs) are fortunately rare, but can induce large lateral forces which can cause significant mechanical damage to tokamaks. In this paper we present a simple model which allows the lateral forces generated during such a disruption to be estimated as a function of relatively easily obtained electromagnetic parameters: the asymmetries in the vertical current moment. This model is validated by using it to predict the displacement history of the JET tokamak caused by a number of major AVDEs. It is shown that the predicted forces and displacements agree well with quantities measured during these disruptions. One conclusion from the model is that the maximum sideways displacement scales with the product of the plasma current and the toroidal field, and this recipe is now used at JET to assess a priori the hazards of performing high current and high field pulses when they are known to be likely to disrupt. (author)

  20. NJL-jet model for quark fragmentation functions

    Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.

    2009-01-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.

  1. Kaon fragmentation function from NJL-jet model

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2010-01-01

    The NJL-jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters [1]. Earlier studies of the pion fragmentation functions using the Nambu-Jona-Lasinio (NJL) model within this framework showed good qualitative agreement with the empirical parameterizations. Here we extend the NJL-jet model by including the strange quark. The corrections to the pion fragmentation function and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation function exhibit a qualitative agreement with the empirical parameterizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark's. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.

  2. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Experiments to measure the gluon helicity distribution in protons

    Spinka, H.; Beddo, M.E.; Underwood, D.G.

    1993-01-01

    Several experiments are described that could obtain information about the gluon helicity distribution in protons. These experiments include inclusive direct-γ, direct-γ + jet, jet, and jet + jet production with colliding beams of longitudinally-polarized protons. Some rates and kinematics are also discussed

  4. Modeling axisymmetric flows dynamics of films, jets, and drops

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  5. Numerical modelling of the jet nozzle enrichment process

    Vercelli, P.

    1983-01-01

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt

  6. The Composition of GRB Jets and the ICMART Model

    Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.

  7. The new JET phased ICRH array: first experiments and modelling

    Bures, M; Bhatnagar, V; Brown, T; Fechner, B; Gormezano, C; Kaye, A; Lennholm, M; Righi, E; Rimini, F; Sibley, A; Start, D; Wade, T [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Goulding, R [Oak Ridge National Lab., TN (United States); Lamalle, P [Ecole Royale Militaire, Brussels (Belgium). Lab. de Physique des Plasmas; Nguyen, F [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1994-07-01

    New ICRH antennas on JET were designed to couple to the new JET divertor plasma configurations and to improve the Fast Wave Current Drive (FWCD) capabilities. The A2 antenna consists of 4 straps whose currents can be phased at arbitrary angles. The real time automatic tuning acts on frequency, line length (line phase shifters) and stub length. Provision is made for the coupling resistance/plasma position feedback to accommodate the fast changes in antenna loading. The first coupling, tuning and heating results are reported in 0{pi}0{pi}, 0000 and 00{pi}{pi} phasing. A new antenna model is described, which was developed to simulate the measured antenna loading in terms of plasma parameters and to provide a starting point for the real time automatic tuning. 5 refs., 4 figs.

  8. Spectroscopic validation of the supersonic plasma jet model

    Selezneva, S.E.; Sember, V.; Gravelle, D.V.; Boulos, M.I.

    2002-01-01

    Optical emission spectroscopy is applied to validate numerical simulations of supersonic plasma flow generated by induction torch with a convergent-divergent nozzle. The plasmas exhausting from the discharge tube with the pressure 0.4-1.4 atm. through two nozzle configurations (the outlet Mach number equals 1.5 and 3) into low-pressure (1.8 kPa) chamber are compared. Both modelling and experiments show that the effect of the nozzle geometry on physical properties of plasma jet is significant. The profiles of electron number density obtained from modeling and spectroscopy agree well and show the deviations from local thermodynamic equilibrium. Analysis of intercoupling between different sorts of nonequilibrium processes is performed. The results reveal that the ion recombination is more essential in the nozzle with the higher outlet number than in the nozzle with the lower outlet number. It is demonstrated that in the jets the axial electron temperature is quite low (3000-8000 K). For spectroscopic data interpretation we propose a method based on the definition of two excitation temperatures. We suppose that in mildly under expanded argon jets with frozen ion recombination the electron temperature can be defined by the electronic transitions from level 5p (the energy E=14.5 eV) to level 4p (E=13.116 eV). The obtained results are useful for the optimization of plasma reactors for plasma chemistry and plasma processing applications. (author)

  9. Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters

    Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.

    2017-10-01

    We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  10. FAN-SHAPED JETS IN THREE-DIMENSIONAL RECONNECTION SIMULATION AS A MODEL OF UBIQUITOUS SOLAR JETS

    Jiang Ronglin; Fang Cheng; Shibata, Kazunari; Isobe, Hiroaki

    2011-01-01

    Magnetic reconnection is a fundamental process in space and astrophysical plasmas in which the oppositely directed magnetic field changes its connectivity and eventually converts its energy into kinetic and thermal energy of the plasma. Recently, ubiquitous jets (for example, chromospheric anemone jets, penumbral microjets, umbral light bridge jets) have been observed by the Solar Optical Telescope on board the satellite Hinode. These tiny and frequently occurring jets are considered to be a possible evidence of small-scale ubiquitous reconnection in the solar atmosphere. However, the details of three-dimensional (3D) magnetic configuration are still not very clear. Here, we propose a new model based on 3D simulations of magnetic reconnection using a typical current sheet magnetic configuration with a strong guide field. The most interesting feature is that the jets produced by the reconnection eventually move along the guide field lines. This model provides a fresh understanding of newly discovered ubiquitous jets and moreover a new observational basis for the theory of astrophysical magnetic reconnection.

  11. Performance Analysis of a Multiple Micro-Jet Impingements Cooling Model

    A. Husain

    2016-06-01

    Full Text Available The present study investigates the thermal performance of a multiple micro-jet impingements model for electronics cooling. The fluid flow and heat transport characteristics were investigated for steady incompressible laminar flow by solving three-dimensional (3D Navier-Stokes equations. Several parallel and staggered micro-jet configurations (ie. inline 2 Å~ 2, 3 Å~ 3 and 4 Å~ 4 jets, and staggered five-jet and 13-jet arrays with the jet diameter to the channel height ratios from 0.25–0.5 were analyzed at various flow rates for the maximum temperature rise, pressure drop, heat-transfer coefficient, thermal resistance, and pumping power characteristics. The parametric investigation was carried out based on the number of jets and the jet diameters at various mass flow rates and jet Reynolds numbers. Temperature uniformity and coefficient of performance were evaluated to find out the trade-off among the various designs investigated in the present study. The maximum temperature rise and the pressure drop decreased with an increase in the number of jets except in the case of staggered five-jet array. A higher temperature uniformity was observed at higher flow rates with a decrease in the coefficient of performance. The performance parameters, such as thermal resistance and pumping power, showed a conflicting nature with respect to design variables (viz. jet diameter to stand-off ratio and interjet spacing or number of jets at various Reynolds numbers within the laminar regime.

  12. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  13. Equipartition Jet Model for the Seyfert 1 Galaxy 3C120

    Siek Hyung

    2003-09-01

    Full Text Available The motion of 3C120 Jet relative to the core is reasonably uniform and the VLBI scale jet connects outwards to a VLA ˜ 100 kpc scale. We measured the jet width variation from the center and found some indication of a power law which indicates the jet expands roughly with a constant opening angle and a constant flow velocity, Vf \\cong c, from subparsec scales to ˜ 100 kpc. With such a constant flow velocity and based on other physical parameters deduced from observed emission characteristics of the jet, we have established an equipartition jet model which might accommodate the basic parameters of the jet on subparsec scales, with which one can fit the radio intensities over all the scale of the jet even to ˜ 100 kpc.

  14. Gluon and quark jets in a recursive model motivated by quantum chromodynamics

    Sukhatme, U.P.

    1979-01-01

    We compute observable quantities like the multiplicity and momentum distributions of hadrons in gluon and quark jets in the framework of a recursive cascade model, which is strongly motivated by the fundamental interactions of QCD. Fragmentation occurs via 3 types of breakups: quark → meson + quark, gluon → meson + gluon, gluon → quark + antiquark. In our model gluon jets are softer than quark jets. The ratio of gluon jet to quark jet multiplicity is found to be 2 asymptotically, but much less at lower energies. Some phenomenological consequences for γ decay are discussed. (orig.)

  15. Modeling analyses of two-phase flow instabilities for straight and helical tubes in nuclear power plants

    Dong, Ruiting; Niu, Fenglei; Zhou, Yuan; Yu, Yu; Guo, Zhangpeng

    2016-01-01

    Highlights: • Two-phase flow instabilities in straight and helical tubes were studied. • The effects of system pressure, mass flux, inlet subcooling on DWO were studied. • The simulation results are consistent with the experimental results. • The RELAP5 results are consistent with frequency domain method results. - Abstract: The effects of system pressure, mass flux and inlet subcooling on two-phase flow instability for the test section consisted of two heated straight channels or two helical channels are studied by means of RELAP5/MOD3.3 and multi-variable frequency domain control theory. The experimental data in two straight channels are used to verify the RELAP5 and multi-variable frequency domain control theory results. The thermal hydraulic behaviors and parametric effects are simulated and compared with the experimental data. The RELAP5 results show that the flow stability increases with the system pressure, mass velocity, and inlet subcooling at high subcoolings. The frequency domain theory presents the same results as those given by the time domain theory (RELAP5). The effects of system pressure, mass velocity and inlet subcooling are simulated to find the difference between the straight and the helical tube flows. The RELAP5 and the multi-variable frequency domain control theory are used in modeling and simulating density wave oscillation to study their advantages and disadvantages in straight and helical tubes.

  16. Modeling analyses of two-phase flow instabilities for straight and helical tubes in nuclear power plants

    Dong, Ruiting [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China); Niu, Fenglei, E-mail: niufenglei@ncepu.edu.cn [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China); Zhou, Yuan [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Yu, Yu; Guo, Zhangpeng [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China)

    2016-10-15

    Highlights: • Two-phase flow instabilities in straight and helical tubes were studied. • The effects of system pressure, mass flux, inlet subcooling on DWO were studied. • The simulation results are consistent with the experimental results. • The RELAP5 results are consistent with frequency domain method results. - Abstract: The effects of system pressure, mass flux and inlet subcooling on two-phase flow instability for the test section consisted of two heated straight channels or two helical channels are studied by means of RELAP5/MOD3.3 and multi-variable frequency domain control theory. The experimental data in two straight channels are used to verify the RELAP5 and multi-variable frequency domain control theory results. The thermal hydraulic behaviors and parametric effects are simulated and compared with the experimental data. The RELAP5 results show that the flow stability increases with the system pressure, mass velocity, and inlet subcooling at high subcoolings. The frequency domain theory presents the same results as those given by the time domain theory (RELAP5). The effects of system pressure, mass velocity and inlet subcooling are simulated to find the difference between the straight and the helical tube flows. The RELAP5 and the multi-variable frequency domain control theory are used in modeling and simulating density wave oscillation to study their advantages and disadvantages in straight and helical tubes.

  17. Modeling and Swimming Property Characterizations of Scaled-Up Helical Microswimmers.

    Xu , Tiantian; Hwang , Gilgueng; Andreff , Nicolas; Régnier , Stéphane

    2014-01-01

    International audience; Micro- and nanorobots capable of controlled propulsion at low Reynolds number are foreseen to change many aspects of medicine by enabling targeted diagnosis and therapy, and minimally invasive surgery. Several kinds of helical swimmers with different heads actuated by a rotating magnetic field have been proposed in prior works. Beyond these proofs of concepts, this paper aims to obtain an optimized design of the helical swimmers adapted to low Reynolds numbers. For thi...

  18. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets

    Gou, Junli; Ma, Haifu; Yang, Zijiang; Shan, Jianqiang

    2017-01-01

    Highlights: •A review of heat transfer characteristics for water flow in helically coiled tubes are conducted. •An assessment of heat transfer models under different heat transfer modes in helically coiled tubes are performed. •This work could provide references for the use of the correlations and for further studies. -- Abstract: This paper presents an assessment of the heat transfer models under different heat transfer modes for water flow in helically coiled tubes based on the compiled datasets from the reviewed literatures. For single phase flow, most of the correlations of the heat transfer coefficient can fit well to the experiments. The correlations of Xin-Ebadian, Dravid and Kalb-Seader for laminar flow and those of Seban-McLaughlim, Mori-Nakayama, Xin-Ebadian, Hardik, Rogers-Mayhew, Mikaila-Poskas and El-Genk-Schriener for turbulent flow are recommended. For flow boiling heat transfer, Steiner-Taborek correlation could be utilized to predict the boiling heat transfer coefficients in helically coiled tubes for a relatively wide range of parameters. For dryout quality, the correlations of Hwang et al. and Santini et al. give relatively better predictions than others. However, more accurate correlations for flow boiling heat transfer coefficient and dryout quality need to be developed based on further investigations with wider parameter ranges in the future. The present work could provide references for the investigators for future uses of those correlations and for performing further investigations on the heat transfer characteristics of water flow in helically coiled tubes.

  19. A model for precessing helical vortex in the turbine discharge cone

    Kuibin, P A; University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" data-affiliation=" (Department of Hydraulic Machinery, University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" >Susan-Resiga, R F; Muntean, S

    2014-01-01

    The decelerated swirling flow in the discharge cone of hydraulic turbine develops various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency regime. In particular, the precessing helical vortex ( v ortex rope ) developed at part-load regimes is notoriously difficult and expensive to be computed using full three-dimensional turbulent unsteady flow models. On the other hand, modern design and optimization techniques require robust, tractable and accurate a-priori assessment of the turbine flow unsteadiness level within a wide operating range before actually knowing the runner geometry details. This paper presents the development and validation of a quasi-analytical model of the vortex rope in the discharge cone. The first stage is the computing of the axisymmetrical swirling flow at runner outlet with input information related only to the operating point and to the blade outlet angle. Then, the swirling flow profile further downstream is computed in successive cross-sections through the discharge cone. The second stage is the reconstruction of the precessing vortex core parameters in successive cross-sections of the discharge cone. The final stage lies in assembling 3D unsteady flow field in the discharge cone. The end result is validated against both experimental and numerical data

  20. Abrasive slurry jet cutting model based on fuzzy relations

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  1. Descriptive models for single-jet sluicing of sludge waste

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  2. NASA Jet Noise Research

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  3. A topological model for baryon production in jets

    Ellis, J.; Kowalski, H.

    1988-01-01

    We present a conceptual model for baryon production in jets, inspired by the Skyrme picture of baryons as topological defects in a chiral quark-antiquark condensate. High energy collisions produce ''hot'' partons which split perturbatively into showers of ''cool'' partons which hadronize non-perturbatively. We visualize each of these as corresponding to a connected domain with a common orientation of the chiral condensate. Topological defects, namely baryons, are formed when there are mismatches in the orientations of adjacent field domains, rather as cosmic strings or monopoles are formed in the early Universe. Our model gives a good qualitative description of various salient features of baryon production in jets, which previously could be described only with a large number of free parameters. In particular, we give a qualitative explanation of the high baryon production rate in Υ decays compared to the e + e - continuum. When combined with a perturbative QCD parton shower Monte Carlo it could become a basis for a fully-fledged fragmentation model. (orig.)

  4. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    Baek, Seung Man [Seoul Nat' l Univ., Seoul (Korea, Republic of); Zhong, Yiming; Nam, Jin Hyun [Daegu Univ., Daegu (Korea, Republic of); Chung, Jae Dong [Sejong Univ., Seoul (Korea, Republic of); Hong, Hiki [Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings.

  5. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  6. Jet fragmentation

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  7. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Bellan, Paul

    2017-10-01

    MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical

  8. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent

  9. Quark fragmentation functions in NJL-jet model

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  10. Model of UV flashes due to gigantic blue jets

    Milikh, G M; Shneider, M N

    2008-01-01

    Analysis of UV flashes observed by the UV detector on board the 'Tatiana' microsatellite suggests, based on their location, pulse width and energy of the source of the photons, that the flashes were generated by gigantic blue jets (GBJs). Presented in this paper is a numerical model of UV flashes due to a bunch of long streamers which form a leader, a prong such as that observed in a GBJ. Using a previously developed model of upward propagation of a long streamer in the exponential atmosphere the paper describes temporal evolution of the UV flux generated by a bunch of long streamers, in the given spectral range 300-400 nm used by the UV detector on board 'Tatiana'. The model is in agreement with the observations.

  11. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  12. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  13. Modelling of Turbulent Lifted Jet Flames using flamelets: a priori assessment and a posteriori validation

    Ruan, S; Swaminathan, Nedunchezhian; Darbyshire, O

    2014-01-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and presumed PDF approach with interests on both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes to the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction, Z, and progress ...

  14. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  15. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  16. Diffractive jet production in a simple model with applications to DESY HERA

    Berera, A.; Soper, D.E.

    1994-01-01

    In diffractive jet production, two high energy hardons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at DESY HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q 2 . Lossless events should be present for small Q 2 , but not for Q 2 larger than 1/R P 2 , where R P is a characteristic size of the Pomeron

  17. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  18. Flux rope breaking and formation of a rotating blowout jet

    Joshi, Navin Chandra; Nishizuka, Naoto; Filippov, Boris; Magara, Tetsuya; Tlatov, Andrey G.

    2018-05-01

    We analysed a small flux rope eruption converted into a helical blowout jet in a fan-spine configuration using multiwavelength observations taken by Solar Dynamics Observatory, which occurred near the limb on 2016 January 9. In our study, first, we estimated the fan-spine magnetic configuration with the potential-field calculation and found a sinistral small filament inside it. The filament along with the flux rope erupted upwards and interacted with the surrounding fan-spine magnetic configuration, where the flux rope breaks in the middle section. We observed compact brightening, flare ribbons, and post-flare loops underneath the erupting filament. The northern section of the flux rope reconnected with the surrounding positive polarity, while the southern section straightened. Next, we observed the untwisting motion of the southern leg, which was transformed into a rotating helical blowout jet. The sign of the helicity of the mini-filament matches the one of the rotating jets. This is consistent with recent jet models presented by Adams et al. and Sterling et al. We focused on the fine thread structure of the rotating jet and traced three blobs with the speed of 60-120 km s- 1, while the radial speed of the jet is ˜400 km s- 1. The untwisting motion of the jet accelerated plasma upwards along the collimated outer spine field lines, and it finally evolved into a narrow coronal mass ejection at the height of ˜9Rsun. On the basis of detailed analysis, we discussed clear evidence of the scenario of the breaking of the flux rope and the formation of the helical blowout jet in the fan-spine magnetic configuration.

  19. Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs

    Enemark, Søren; Santos, Ilmar; Savi, M. A.

    2016-01-01

    The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by Lagoudas and co-workers incorporating two modifications related t...

  20. Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-01-01

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...

  1. Models for the cross flow and the turbulent eddy diffusivity in bundles of rods with helical spacers

    Fernandez y Fernandez, E.; Carajilescov, P.

    1985-01-01

    The fuel elements of a LMFBR type reactor consist of a bundle of rods wrapped by helical wires that work as spacers. The bundle of rods is surrounded by an hexagonal duct. Models for the channel cross flow and for the turbulent eddy diffusivity were developed. In conjunction with these models, the flow redistribution factors permit to estabish a determinist method to calculate the temperature distribution. The obtained results are compared with experimental data available in the literature and with results given by other codes. Although these codes are based on much more complex models, the comparison was very satisfactory. (Author) [pt

  2. Helical filaments

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  3. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  4. Development of the VESUVIUS module. Molten jet breakup modeling and model verification

    Vierow, K. [Nuclear Power Engineering Corp., Tokyo (Japan); Nagano, Katsuhiro; Araki, Kazuhiro

    1998-01-01

    With the in-vessel vapor explosion issue ({alpha}-mode failure) now considered to pose an acceptably small risk to the safety of a light water reactor, ex-vessel vapor explosions are being given considerable attention. Attempts are being made to analytically model breakup of continuous-phase jets, however uncertainty exists regarding the basic phenomena. In addition, the conditions upon reactor vessel failure, which determine the starting point of the ex-vessel vapor explosion process, are difficult to quantify. Herein, molten jet ejection from the reactor pressure vessel is characterized. Next, the expected mode of jet breakup is determined and the current state of analytical modeling is reviewed. A jet breakup model for ex-vessel scenarios, with the primary breakup mechanism being the Kelvin-Helmholtz instability, is described. The model has been incorporated into the VESUVIUS module and comparisons of VESUVIUS calculations against FARO L-06 experimental data show differences, particularly in the pressure curve and amount of jet breakup. The need for additional development to resolve these differences is discussed. (author)

  5. Scaling Regimes in the Model of Passive Scalar Advected by the Turbulent Velocity Field with Finite Correlation Time. Influence of Helicity in Two-Loop Approximation

    Chkhetiani, O G; Jurcisinova, E; Jurcisin, M; Mazzino, A; Repasan, M

    2005-01-01

    The advection of a passive scalar quantity by incompressible helical turbulent flow has been investigated in the framework of an extended Kraichnan model. Statistical fluctuations of the velocity field are assumed to have the Gaussian distribution with zero mean and defined noise with finite-time correlation. Actual calculations have been done up to two-loop approximation in the framework of the field-theoretic renormalization group approach. It turned out that the space parity violation (helicity) of a stochastic environment does not affect anomalous scaling which is the peculiar attribute of a corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, and the effective diffusivity strongly depend on the amount of helicity.

  6. Angular structure of jet quenching within a hybrid strong/weak coupling model

    Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the

  7. A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS

    Cécere, Mariana [Instituto de Astronomía Teórica y Experimental, Universidad Nacional de Córdoba, X5000BGR, Córdoba (Argentina); Velázquez, Pablo F.; De Colle, Fabio; Esquivel, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, CP: 04510, D.F., México (Mexico); Araudo, Anabella T. [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58090, Morelia, Michoacán, México (Mexico)

    2016-01-10

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  8. Applications of 2D helical vortex dynamics

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  9. Test of Colour Reconnection Models using Three-Jet Events in Hadronic Z Decays

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G; Dissertori, G

    2006-01-01

    Hadronic Z decays into three jets are used to test QCD models of colour reconnection (CR). A sensitive quantity is the rate of gluon jets with a gap in the particle rapidity distribution and zero jet charge. Gluon jets are identified by either energy-ordering or by tagging two b-jets. The rates predicted by two string-based tunable CR models, one implemented in JETSET (the GAL model), the other in ARIADNE, are too high and disfavoured by the data, whereas the rates from the corresponding non-CR standard versions of these generators are too low. The data can be described by the GAL model assuming a small value for the R_0 parameter in the range 0.01-0.02.

  10. Test of colour reconnection models using three-jet events in hadronic Z decays

    Schael, S.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmueller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hoelldorfer, F.; Jakobs, K.; Kayser, F.; Mueller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huettmann, K.; Luetjens, G.; Maenner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara III, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    2006-01-01

    Hadronic Z decays into three jets are used to test QCD models of colour reconnection (CR). A sensitive quantity is the rate of gluon jets with a gap in the particle rapidity distribution and zero jet charge. Gluon jets are identified by either energy-ordering or by tagging two b-jets. The rates predicted by two string-based tunable CR models, one implemented in JETSET (the GAL model), the other in ARIADNE, are too high and disfavoured by the data, whereas the rates from the corresponding non-CR standard versions of these generators are too low. The data can be described by the GAL model assuming a small value for the R 0 parameter in the range 0.01-0.02. (orig.)

  11. Modeling Coma Gas Jets in Comet Hale-Bopp

    Lederer, S. M.; Campins, H.

    2001-01-01

    We present an analysis of OH, CN, and C2 jets observed in Comet Hale-Bopp. The relative contributions from and composition of the coma gas sources, and the parameters describing the active areas responsible for the gas jets will be discussed. Additional information is contained in the original extended abstract.

  12. Toy Model of Frame-Dragging Magnetosphere for the M87 Jet

    2016-01-27

    Jan 27, 2016 ... Toy Model of Frame-Dragging Magnetosphere for the M87 Jet ... The outermost layer of jet is driven by the frame-dragging effect in the Kerr ... All these have helped shorten the publication time and have improved the visibility ...

  13. Numerical modelling of unsteady flow behaviour in the rectangular jets with oblique opening

    James T. Hart

    2016-09-01

    Full Text Available Vortex shedding in a bank of three rectangular burner-jets was investigated using a CFD model. The jets were angled to the wall and the whole burner was recessed into a cavity in the wall; the ratio of velocities between the jets varied from 1 to 3. The model was validated against experimentally measured velocity profiles and wall pressure tapings from a physical model of the same burner geometry, and was generally found to reproduce the mean flow field faithfully. The CFD model showed that vortex shedding was induced by a combination of an adverse pressure gradient, resulting from the diffuser-like geometry of the recess, and the entrainment of fluid into the spaces separating the jets. The asymmetry of the burner, a consequence of being angled to the wall, introduced a cross-stream component into the adverse pressure gradient that forced the jets to bend away from their geometric axes, the extent of which depended upon the jet velocity. The vortex shedding was also found to occur in different jets depending on the jet velocity ratio.

  14. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    Takasao, Shinsuke; Suzuki, Takeru K. [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2017-09-20

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.

  15. Improvement on reaction model for sodium-water reaction jet code and application analysis

    Itooka, Satoshi; Saito, Yoshinori; Okabe, Ayao; Fujimata, Kazuhiro; Murata, Shuuichi

    2000-03-01

    In selecting the reasonable DBL on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.30) and application analysis to the water injection tests for confirmation of code propriety were performed. On the improvement of the code, a gas-liquid interface area density model was introduced to develop a chemical reaction model with a little dependence on calculation mesh size. The test calculation using the improved code (LEAP-JET ver.1.40) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results and the influence to analysis result of a model are reasonable. For the application analysis to the water injection tests, water injection behavior and SWR jet behavior analyses on the new SWAT-1 (SWAT-1R) and SWAT-3 (SWAT-3R) tests were performed using the LEAP-BLOW code and the LEAP-JET code. In the application analysis of the LEAP-BLOW code, parameter survey study was performed. As the results, the condition of the injection nozzle diameter needed to simulate the water leak rate was confirmed. In the application analysis of the LEAP-JET code, temperature behavior of the SWR jet was investigated. (author)

  16. Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model

    El-Amin, Mohamed

    2010-06-13

    Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.

  17. Advanced Modeling in Excel: from Water Jets to Big Bang

    Ignatova, Olga; Chyzhyk, D.; Willis, C.; Kazachkov, A.

    2006-12-01

    An international students’ project is presented focused on application of Open Office and Excel spreadsheets for modeling of projectile-motion type dynamical systems. Variation of the parameters of plotted and animated families of jets flowing at different angles out of the holes in the wall of water-filled reservoir [1,2] revealed unexpected peculiarities of the envelopes, vertices, intersections and landing points of virtual trajectories. Comparison with real-life systems and rigorous calculations were performed to prove predictions of computer experiments. By same technique, the kinematics of fireworks was analyzed. On this basis two-dimensional ‘firework’ computer model of Big Bang was designed and studied, its relevance and limitations checked. 1.R.Ehrlich, Turning the World Inside Out, (Princeton University Press, Princeton, NJ, 1990), pp. 98-100. 2.A.Kazachkov, Yu.Bogdan, N.Makarovsky, N.Nedbailo. A Bucketful of Physics, in R.Pinto, S.Surinach (eds), International Conference Physics Teacher Education Beyond 2000. Selected Contributions (Elsevier Editions, Paris, 2001), pp.563-564. Sponsored by Courtney Willis.

  18. The angular structure of jet quenching within a hybrid strong/weak coupling model

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-08-01

    Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.

  19. Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characteristics of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.

  20. Numerical modeling of normal turbulent plane jet impingement on solid wall

    Guo, C.Y.; Maxwell, W.H.C.

    1984-10-01

    Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.

  1. Realistic modelling of jets in heavy-ion collisions

    Young, Clint; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2013-01-01

    The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to q -hat ⊥ , as well as being sensitive to partonic energy loss and radiative processes. We use martini, an event generator, to study how finite-temperature processes at leading order affect dijets

  2. Some comments on jet fragmentation models and sup(α)s determinations

    Sjoestrand, T.

    1984-03-01

    A number of interrelated topics on jet properties in e + e - annihilation is discussed. The need for different αsub(s) values in different fragmentation models is explained, with particular emphasis on the sensitivity to the choice of momentum conservation scheme in independent fragmentation models. Also other factors leading to a broad range of experimental αsub(s) values are discussed. Old and new methods to distinguish different fragmentation models are presented, with particular emphasis on gluon jet fragmentation properties. (orig.)

  3. Modeling the plasma chemistry of stratospheric Blue Jet streamers

    Winkler, Holger; Notholt, Justus

    2014-05-01

    Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.

  4. Prediction/modelling of the neutron emission from JET discharges

    Jarvis, O.N. [EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Conroy, S. [INF, Uppsala University, EURATOM-VR, Uppsala (Sweden)

    2002-08-01

    The neutron emission from the JET tokamak is investigated using an extensive set of diagnostics, permitting the instantaneous neutron yield, the radial profile of the neutron emission and neutron energy spectra to be studied. Apart from their importance as an immediate indication of plasma fusion performance, the customary use for neutron measurements is as a test of the internal consistency of the non-neutron diagnostic data, from which the expected neutron production can be predicted. However, because contours of equal neutron emissivity are not necessarily coincident with magnetic flux surfaces, a fully satisfactory numerical analysis requires the application of highly complex transport codes such as TRANSP. In this paper, a far simpler approach is adopted wherein the neutron emission spatial profiles are used to define the plasma geometry. A two-volume model is used, with a core volume that encompasses about (2/3) of the neutron emission and the peripheral volume the remainder. The overall approach provides an interpretation of the measured neutron data, for both deuterium and deuterium-tritium (D-T) plasma discharges, that are as accurate as the basic non-nuclear plasma data warrant. The model includes the empirical assumption that particles, along with their energies and momenta, are transported macroscopically in accordance with classical conservation laws. This first-order estimate of cross-field transport (which, for D-T plasmas, determines the D : T fuel concentration ratio in the plasma core) is fine-tuned to reproduce the experimental ion and electron temperature data. The success of this model demonstrates that the observed plasma rotation rates, temperatures and the resulting neutron emission can be broadly explained in terms of macroscopic transport. (author)

  5. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  6. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    Lyutikov, M

    2004-01-01

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For

  7. Effect of jet injection on infectivity of measles, mumps, and rubella vaccine in a bench model.

    Coughlin, Melissa M; Collins, Marcus; Saxon, Gene; Jarrahian, Courtney; Zehrung, Darin; Cappello, Chris; Dhere, Rajeev; Royals, Michael; Papania, Mark; Rota, Paul A

    2015-08-26

    Disposable-syringe jet injectors (DSJIs) with single-use, auto disable, needle-free syringes offer the opportunity to avoid hazards associated with injection using a needle and syringe. Clinical studies have evaluated DSJIs for vaccine delivery, but most studies have focused on inactivated, subunit, or DNA vaccines. Questions have been raised about possible damage to live attenuated viral vaccines by forces generated during the jet injection process. This study examines the effect of jet injection on the integrity of measles, mumps, and rubella vaccine (MMR), measured by viral RNA content and infectivity. Three models of DSJIs were evaluated, each generating a different ejection force. Following jet injection, the RNA content for each of the vaccine components was measured using RT-qPCR immediately after injection and following passage in Vero cells. Jet injection was performed with and without pig skin as a simulation of human skin. There was little to no reduction of RNA content immediately following jet injection with any of the three DSJIs. Samples passaged in Vero cells showed no loss in infectivity of the measles vaccine following jet injection. Mumps vaccine consistently showed increased replication following jet injection. Rubella vaccine showed no loss after jet injection alone but some infectivity loss following injection through pig skin with two of the devices. Overall, these data demonstrated that forces exerted on a live attenuated MMR vaccine did not compromise vaccine infectivity. The bench model and protocol used in this study can be applied to evaluate the impact of jet injection on other live virus vaccines. Published by Elsevier Ltd.

  8. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  9. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media

    Harrison, Richard; Gottlieb, Ore; Nakar, Ehud

    2018-06-01

    Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion, the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. derived a general simplified (semi-)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g. collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/˜ore/propagation.html.

  10. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media

    Harrison, Richard; Gottlieb, Ore; Nakar, Ehud

    2018-03-01

    Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. (2011b) derived a general simplified (semi)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g., collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/ ore/propagation.html.

  11. Voltage dependence of a stochastic model of activation of an alpha helical S4 sensor in a K channel membrane

    Vaccaro, S. R.

    2011-09-01

    The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.

  12. Effect of LES models on the entrainment of a passive scalar in a turbulent planar jet

    Chambel Lopes, Diogo; da Silva, Carlos; Reis, Ricardo; Raman, Venkat

    2011-11-01

    Direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. Specifically the effect of subgrid-scale models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent. It has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. The subgrid scales of motion near the T/NT interface are far from equilibrium and contain an important fraction of the total kinetic energy. Model constants used in several subgrid-scale models such as the Smagorinsky and the gradient models need to be corrected near the jet edge. The procedure used to obtain the dynamic Smagorinsky constant is not able to cope with the intermittent nature of this region.

  13. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  14. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Debbarma, Ajoy; Pandey, Krishna Murari

    2016-01-01

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  15. Magnetic Field Topology in Jets

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  16. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  17. Diffusion in a tokamak with helical magnetic cells

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  18. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  19. Numerical investigation on effects of induced jet on boundary layer and turbulent models around airfoils

    Shojaeefard, M.H.; Pirnia, A.; Fallahian, M.A. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Tahani, M. [Iran University of Science and Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of); University of Tehran, Faculty of New Science and Technology, Tehran (Iran, Islamic Republic of)

    2012-06-15

    In this study the effects of induced jet at trailing edge of a two dimensional airfoil on its boundary layer shape, separation over surface and turbulent parameters behind trailing edge are numerically investigated and compared against a previous experimental data. After proving independency of results from mesh size and obtaining the required mesh size, different turbulent models are examined and RNG k-epsilon model is chosen because of good agreement with experimental data in velocity and turbulent intensity variations. A comparison between ordinary and jet induced cases, regarding numerical data, is made. The results showed that because of low number of measurement points in experimental study, turbulent intensity extremes are not captured. While in numerical study, these values and their positions are well calculated and exact variation of turbulent intensity is acquired. Also a study in effect of jet at high angles of attack is done and the results showed the ability of jet in controlling separation and reducing wake region. (orig.)

  20. Studies of heating efficiencies and models of RF-sheaths for the JET antennae

    Hedin, J.

    1996-02-01

    A theoretical model for the appearance of RF-sheaths is developed to see if this can explain the expected lower heating efficiencies of the new A 2 antennae at JET. The equations are solved numerically. A general method for evaluation of the experimental data of the heating efficiencies of the new antennae at JET is developed and applied for discharges with and without the bumpy limiter on the D antennae. 8 refs, 26 figs

  1. Jet-associated resonance spectroscopy

    Englert, Christoph [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Ferretti, Gabriele [Chalmers University of Technology, Department of Physics, Goeteborg (Sweden); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2017-12-15

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet-Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities. (orig.)

  2. Jet-associated resonance spectroscopy

    Englert, Christoph; Ferretti, Gabriele; Spannowsky, Michael

    2017-12-01

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet- Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities.

  3. The improvement of the heat transfer model for sodium-water reaction jet code

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  4. Modeling Sound Propagation Through Non-Axisymmetric Jets

    Leib, Stewart J.

    2014-01-01

    A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.

  5. Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank

    Kendil, F Zidouni [Nuclear research Center of Birine, Ain-Oussara (Algeria); Danciu, D-V; Lucas, D [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Salah, A Bousbia [Theoretical and Applied Fluid Mechanics Laboratory, Faculty of Physics - USTHB, Algiers (Algeria); Mataoui, A, E-mail: zidounifaiza@yahoo.fr, E-mail: d.danciu@hzdr.de [Department of mechanical and Nuclear Engineering University of Pisa-2, Pisa (Italy)

    2011-12-22

    Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both {kappa} - {epsilon} and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the {kappa} - {epsilon} model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the {kappa} - {epsilon} model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.

  6. Physical Modelling of Axisymmetric Turbulent Impinging Jets as used within the Nuclear Industry for Mobilisation of Sludges

    McKendrick, D.; Biggs, S.R.; Fairweather, M.; Rhodes, D.

    2008-01-01

    The impingement of a fluid jet onto a surface has broad applications across many industries. Within the UK nuclear industry, during the final stages of fuel reprocessing, impinging fluid jets are utilised to mobilise settled sludge material within storage tanks and ponds in preparation for transfer and ultimate immobilisation through vitrification. Despite the extensive applications of impinging jets within the nuclear and other industries, the study of two-phase, solid loaded, impinging jets is limited, and generally restricted to computational modelling. Surprisingly, very little fundamental understanding of the turbulence structure within such fluid flows through experimental investigation is found within the literature. The physical modelling of impinging jet systems could successfully serve to aid computer model validation, determine operating requirements, evaluate plant throughput requirements, optimise process operations and support design. Within this project a method is illustrated, capable of exploring the effects of process and material variables on flow phenomena of impinging jets. This is achieved via the use of non-intrusive measurement techniques Particle Image Velocimetry (PIV), Ultrasonic Doppler Velocity Profiler (UDVP) and high speed imaging. The turbulence structure for impinging jets, and their resultant radial wall jets, is presented at different jet-to-plate ratios, jet Reynolds numbers and jet outlet diameters. (authors)

  7. A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets

    S. Carcano

    2013-11-01

    Full Text Available An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007 numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964. For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993. At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008. Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.

  8. Nonideal, helical, vortical magnetohydrodynamic steady states

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  9. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  10. Revisiting the EC/CMB model for extragalactic large scale jets

    Lucchini, M.; Tavecchio, F.; Ghisellini, G.

    2017-04-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.

  11. Effect of LES models on the entrainment characteristics in a turbulent planar jet

    Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat

    2012-11-01

    The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.

  12. Helicity content and tokamak applications of helicity

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  13. Fourier plane modeling of the jet in the galaxy M81

    Ramessur, Arvind; Bietenholz, Michael F.; Leeuw, Lerothodi L.; Bartel, Norbert

    2015-03-01

    The nearby spiral galaxy M81 has a low-luminosity Active Galactic Nucleus in its center with a core and a one-sided curved jet, dubbed M81*, that is barely resolved with VLBI. To derive basic parameters such as the length of the jet, its orientation and curvature, the usual method of model-fitting with point sources and elliptical Gaussians may not always be the most appropriate one. We are developing Fourier-plane models for such sources, in particular an asymmetric triangle model to fit the extensive set of VLBI data of M81* in the u-v plane. This method may have an advantage over conventional ones in extracting information close to the resolution limit to provide us with a more comprehensive picture of the structure and evolution of the jet. We report on preliminary results.

  14. Lectures on perturbative QCD, jets and the standard model: collider phenomenology

    Ellis, S.D.

    1988-01-01

    Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs

  15. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-01-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  16. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  17. A model for radiative cooling of a semitransparent molten glass jet

    Song, M.; Ball, K.S.; Bergman, T.L.

    1998-01-01

    Transfer of molten glass from location to location typically involves a pouring process, during which a stream of glass is driven by gravity and cooled by combined convective and radiative heat transfer. This study of the thermal and fluid mechanics aspects of glass pouring is motivated by the glass casting of vitrified, surplus weapons-grade plutonium. Here, a mathematical model for the radiative cooling of a semitransparent molten glass jet with temperature-dependent viscosity has been developed and is implemented numerically. The axial velocity and jet diameter variations along the length of the jet, the axial bulk mean temperature distributions, and the centerline-to-surface glass temperature distributions are determined for different processing conditions. Comparisons are also made between the semitransparent predictions, which are based on a spectral discrete ordinates model, and predictions for an opaque medium

  18. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    Karsenty, Florent

    2012-08-16

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  19. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  20. Helical type vacuum container

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  1. A new geometrical model for mixing of highly viscous fluids by combining two-blade and helical screw agitators

    Hadjeb Abdessalam

    2017-09-01

    Full Text Available Mixing processes are becoming today a huge concern for industrialists in various domains like the pharmaceutical production, oil refining, food industry and manufacture of cosmetic products especially when the processes are related to the mixing of highly viscous products. So the choice of a stirring system for this category of products or fluids must be rigorously examined before use because of the flows which are laminar in the most cases, something that is not good to obtain homogeneous particles or suspensions after the mixing operation. This CFD study allows developing a new geometrical model of mechanical agitator with high performance for mixing of highly viscous fluids. It consists of a combination of two bladed and helical screw agitators. The investigations of the flow structure generated in the vessel are made by using the computer code ANSYS CFX (version 13.0, which allows us to realize and test the effectiveness of the new stirrer on the resulting mixture and power consumption.

  2. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  3. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  4. Novel Profiling Model and Side Effects of Helical Scan Silicon Heads

    Hozoi, A.; Groenland, J.P.J.; Albertini, J.B.; Lodder, J.C.

    2002-01-01

    Partial erasure of track edges was directly measured from triple-track patterns using a novel model to interpret the output profiles. The model is based on representing the read head as the sum of a reference width, wavelength independent, and two side reading effective widths that are wavelength

  5. The thermalhydraulics of a pin bundle with a helical wire wrap spacer. Modeling and qualification for a new sub-assembly concept

    Valentin, B.

    2000-01-01

    For the sub-assembly composed by an hexcan and a pin bundle with an helical wire wrap spacer, the calculation of the maximum clad temperatures, with the design code CADET, imposed to correctly evaluate the heat and mass transfers due to the helical wire. The models use theoretical and experimental arguments which are presented after a brief description of the hydraulic behavior of a such bundle. The design of a new sub-assembly concept, in the framework of high plutonium consumption in fast reactor projects needs to qualify tile models from RAPSODIE, PHENIX and SUPER-PHENIX programs. The qualification program, which could be used, is described. the approach is notably comparative for the hydraulic fields and the past experimental results will be useful. Another approach is briefly presented. It uses a multidimensional code (TRIO) which solves Navier-Stokes equations. The utility and the limits of a such method are described. (author)

  6. Numerical modeling of turbulent jet diffusion flames in the atmospheric surface layer

    Hernández, J.; Crespo, A.; Duijm, N.J.

    1995-01-01

    The evolution of turbulent jet diffusion flames of natural gas in air is predicted using a finite-volume procedure for solving the flow equations. The model is three dimensional, elliptic and based on the conserved-scalar approach and the laminar flamelet concept. A laminar flamelet prescription for

  7. Simulation of the Low-Level-Jet by general circulation models

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  8. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators : Modeling, simulations, experiments

    Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-01-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as

  9. Developments in modelling of thermal radiation from pool and jet fires

    Boot, H.

    2016-01-01

    In the past decades, the standard approach in the modelling of consequences of pool and jet fires would be to describe these fires as tilted cylindrical shaped radiating flame surfaces, having a specific SEP (Surface Emissive Power). Some fine tuning on pool fires has been done by Rew and Hulbert in

  10. Vortex wake investigation behind a wing-flap model with jet simulations

    Veldhuis, L.L.M.; De Kat, R.

    2008-01-01

    To get a better insight in the effect of jets on vortex development and decay, stereo-PIV measurements were performed in a towing tank behind a flapped aircraft model. The experimental data set yields the wake vortex behavior in a range that extends from the vortex formation stage up to the

  11. Analytical models for predicting the ion velocity distributions in JET in the presence of ICRF heating

    Anderson, A.; Eriksson, L.G.; Lisak, M.

    1986-01-01

    The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)

  12. Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments

    Đuričković, Bojan; Goriely, Alain; Maddocks, John H.

    2013-01-01

    that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory

  13. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.

    2013-01-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d i to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I tor /I inj ) and formation time τ f demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I tor /I inj ) and exhibits much a longer τ f . Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD

  14. Modelling blazar flaring using a time-dependent fluid jet emission model - an explanation for orphan flares and radio lags

    Potter, William J.

    2018-01-01

    Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.

  15. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  16. Understanding jet noise.

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  17. How reverse turns may mediate the formation of helical segments in proteins: an x-ray model.

    Perczel, A; Foxman, B M; Fasman, G D

    1992-01-01

    The three-dimensional structure of a protein is the assembly of different secondary structural elements, such as alpha-helices, beta-pleated sheets, and beta-turns. Although the conformation of hundreds of proteins has been elaborated in the solid state, only a vague understanding of the mechanism of their conformational folding is known. One facet of this topic is the conformational interconversion of one or more beta-turns to a helical structure (and vice versa), which may also be related t...

  18. Elasto-dynamic analysis of a gear pump-Part III: Experimental validation procedure and model extension to helical gears

    Mucchi, E.; Dalpiaz, G.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model's experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure evolution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the

  19. CT portography by multidetector helical CT. Comparison of three rendering models

    Nakayama, Yoshiharu; Imuta, Masanori; Funama, Yoshinori; Kadota, Masataka; Utsunomiya, Daisuke; Shiraishi, Shinya; Hayashida, Yoshiko; Yamashita, Yasuyuki

    2002-01-01

    The purpose of this study was to assess the value of multidetector CT portography in visualizing varices and portosystemic collaterals in comparison with conventional portography, and to compare the visualizations obtained by three rendering models (volume rendering, VR; minimum intensity projection, MIP; and shaded surface display, SSD). A total of 46 patients with portal hypertension were examined by CT and conventional portography for evaluation of portosystemic collaterals. CT portography was performed by multidetector CT (MD-CT) scanner with a slice thickness of 2.5 mm and table feed of 7.5 mm. Three types of CT portographic models were generated and compared with transarterial portography. Among 46 patients, 48 collaterals were identified on CT transverse images, while 38 collaterals were detected on transarterial portography. Forty-four of 48 collaterals identified on CT transverse images were visualized with the MIP model, while 34 and 29 collaterals were visualized by the VR and SSD methods, respectively. The average CT value for the portal vein and varices was 198 HU with data acquisition of 50 sec after contrast material injection. CT portography by multidetector CT provides excellent images in the visualization of portosystemic collaterals. The images of collaterals produced by MD-CT are superior to those of transarterial portography. Among the three rendering techniques, MIP provides the best visualization of portosystemic collaterals. (author)

  20. A Search for Non-Standard Model $W$ Helicity in Top Quark Decays

    Kilminster, Benjamin John [Univ. of Rochester, NY (United States)

    2004-01-01

    The structure of the tbW vertex is probed by measuring the polarization of the W in t → W + b → l + v + b. The invariant mass of the lepton and b quark measures the W decay angle which in turn allows a comparison with polarizations expected from different possible models for the spin properties of the tbW interaction. We measure the fraction by rate of Ws produced with a V + A coupling in lieu of the Standard Model V-A to be fV + A = [special characters omitted] (stat) ± 0.21 (sys). We assign a limit of fV + A < 0.80 @ 95% Confidence Level (CL). By combining this result with a complementary observable in the same data, we assign a limit of fV + A < 0.61 @ 95% CL. We find no evidence for a non-Standard Model tbW vertex.

  1. CT portography by multidetector helical CT. Comparison of three rendering models

    Nakayama, Yoshiharu; Imuta, Masanori; Funama, Yoshinori; Kadota, Masataka; Utsunomiya, Daisuke; Shiraishi, Shinya; Hayashida, Yoshiko; Yamashita, Yasuyuki [Kumamoto Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to assess the value of multidetector CT portography in visualizing varices and portosystemic collaterals in comparison with conventional portography, and to compare the visualizations obtained by three rendering models (volume rendering, VR; minimum intensity projection, MIP; and shaded surface display, SSD). A total of 46 patients with portal hypertension were examined by CT and conventional portography for evaluation of portosystemic collaterals. CT portography was performed by multidetector CT (MD-CT) scanner with a slice thickness of 2.5 mm and table feed of 7.5 mm. Three types of CT portographic models were generated and compared with transarterial portography. Among 46 patients, 48 collaterals were identified on CT transverse images, while 38 collaterals were detected on transarterial portography. Forty-four of 48 collaterals identified on CT transverse images were visualized with the MIP model, while 34 and 29 collaterals were visualized by the VR and SSD methods, respectively. The average CT value for the portal vein and varices was 198 HU with data acquisition of 50 sec after contrast material injection. CT portography by multidetector CT provides excellent images in the visualization of portosystemic collaterals. The images of collaterals produced by MD-CT are superior to those of transarterial portography. Among the three rendering techniques, MIP provides the best visualization of portosystemic collaterals. (author)

  2. Emerging Jets

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  3. Emerging jets

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  4. Emerging jets

    Schwaller, Pedro; Stolarski, Daniel

    2015-02-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  5. Modelling of JET hybrid scenarios with GLF23 transport model: E × B shear stabilization of anomalous transport

    Voitsekhovitch, I.; Belo, da Silva Ares; Citrin, J.; Fable, E.; Ferreira, J.; Garcia, J.; Garzotti, L.; Hobirk, J.; Hogeweij, G. M. D.; Joffrin, E.; Kochl, F.; Litaudon, X.; Moradi, S.; Nabais, F.; JET-EFDA Contributors,; EU-ITM ITER Scenario Modelling group,

    2014-01-01

    The E × B shear stabilization of anomalous transport in JET hybrid discharges is studied via self-consistent predictive modelling of electron and ion temperature, ion density and toroidal rotation velocity performed with the GLF23 model. The E × B shear

  6. The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments

    de La Cuadra, Patricio

    Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the

  7. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  8. Bayesian modelling of the emission spectrum of the JET Li-BES system

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y. -c.; Contributors, JET

    2015-01-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are mode...

  9. Dynamics of helicity transport and Taylor relaxation

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  10. Met UM Upper-tropospheric summer jet teleconnections: A model assessment

    Joao Carvalho, Maria; Rodriguez, Jose; Milton, Sean

    2017-04-01

    The upper tropospheric jet stream has been documented to act as a waveguide (Hoskins and Ambrizzi, 1993) and supporting quasi-stationary Rossby waves (Schubert et al. 2011). These have been associated with remote effects in surface level weather such as rainfall anomalies in the East Asian Summer Monsoon as well as extreme temperature events. The goal of this work was to analyse the intraseasonal to interannual upper level boreal summer jet variability and its coupling with low level atmospheric dynamics within the Met Office Unified Model using climate runs. Using the Wallace and Gutzler (1981) proposed approach to find teleconnection patterns on the 200 hPa level wind, lead-lag correlation and Empirical Orthogonal Function analysis on the upper-level jet and relating the results with surface weather variables as well as dynamical variables, it was found that the model presents too strong jet variability, particularly in the tropical region and. In addition, the model presents high teleconnectivity hotspots with higher importance in areas such as the Mediterranean and Caspian Sea which are important source areas for Rossby Waves. Further to this, the model was found to produce an area of teleconnectivity between the tropical Atlantic and western Africa which is not observed in the reanalysis but coexists with long lasting precipitation biases. As comparison for the model results, ERA-Interim circulation and wind data and the TRMM precipitation dataset were used. In order to assess the relative importance of relevant model parameters in the biases and process errors, work is currently underway using perturbed model parameter ensembles.

  11. Heat pulse analysis in JET and relation to local energy transport models

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  12. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling

    Mezel, C; Hallo, L [Centre Lasers Intenses et Applications, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 33405 Talence, Cedex (France); Souquet, A; Guillemot, F, E-mail: mezel@celia.u-bordeaux1.f [Institut National de la Sante et de la Recherche Medicale, Universite Bordeaux 2 - UMR 577, 146 Rue Leo Saignat, 33076 Bordeaux Cedex (France)

    2010-03-15

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  13. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling

    Mezel, C; Hallo, L; Souquet, A; Guillemot, F

    2010-01-01

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  14. Calculating kaon fragmentation functions from the Nambu-Jona-Lasinio jet model

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2011-01-01

    The Nambu-Jona-Lasinio (NJL)-jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters. Earlier studies of the pion fragmentation functions using the NJL model within this framework showed qualitative agreement with the empirical parametrizations. Here we extend the NJL-jet model by including the strange quark. The corrections to the pion fragmentation functions and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation functions exhibit a qualitative agreement with the empirical parametrizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.

  15. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling.

    Mézel, C; Souquet, A; Hallo, L; Guillemot, F

    2010-03-01

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  16. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Soker, Noam, E-mail: soker@physics.technion.ac.il [Department of Physics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-04-10

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E {sub NS-spin}/ E {sub exp}) ≈ E {sub exp}/10{sup 52} erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  17. One-dimensional numerical modeling of Blue Jet and its impact on stratospheric chemistry

    Duruisseau, F.; Thiéblemont, R.; Huret, N.

    2011-12-01

    In the stratosphere the ozone layer is very sensitive to the NOx abundance. The ionisation of N2 and O2 molecules by TLE's (Transient Luminous Events) is a source of NOx which is currently not well quantified and could act as a loss of ozone. In this study a one dimensional explicit parameterization of a Blue-Jet propagation based on that proposed by Raizer et al. (2006 and 2007) has been developed. This parameterization considers Blue-Jet as a streamer initiated by a bidirectional leader discharge, emerging from the anvil and sustained by moderate cloud charge. The streamer growth varies with the electrical field induced by initial cloud charge and the initial altitude. This electrical parameterization and the chemical mechanisms associated with the discharge have been implemented into a detailed chemical model of stratospheric ozone including evolution of nitrogen, chlorine and bromine species. We will present several tests performed to validate the electrical code and evaluate the propagation velocity and the maximum altitude attains by the blue jet as a function of electrical parameters. The results obtained giving the spatiotemporal evolution of the electron density are then used to initiate the specific chemistry associated with the Blue Jet. Preliminary results on the impact of such discharge on the ozone content and the whole stratospheric system will be presented.

  18. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  19. The Magnetar Model of the Superluminous Supernova GAIA16apd and the Explosion Jet Feedback Mechanism

    Soker, Noam

    2017-01-01

    Under the assumption that jets explode core collapse supernovae (CCSNe) in a negative jet feedback mechanism (JFM), this paper shows that rapidly rotating neutron stars are likely to be formed when the explosion is very energetic. Under the assumption that an accretion disk or an accretion belt around the just-formed neutron star launch jets and that the accreted gas spins-up the just-formed neutron star, I derive a crude relation between the energy that is stored in the spinning neutron star and the explosion energy. This relation is ( E _N_S_-_s_p_i_n/ E _e_x_p) ≈ E _e_x_p/10"5"2 erg; It shows that within the frame of the JFM explosion model of CCSNe, spinning neutron stars, such as magnetars, might have significant energy in super-energetic explosions. The existence of magnetars, if confirmed, such as in the recent super-energetic supernova GAIA16apd, further supports the call for a paradigm shift from neutrino-driven to jet-driven CCSN mechanisms.

  20. CONFRONTING THE JET MODEL OF Sgr A* WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    Li, Ya-Ping; Yuan, Feng [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Daniel Wang, Q., E-mail: fyuan@shao.ac.cn, E-mail: wqd@astro.umass.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-01-01

    Sgr A* is probably the supermassive black hole being investigated most extensively due to its proximity to Earth. Several theoretical models for its steady state emission have been proposed in the past two decades. Both the radiative-inefficient accretion flow and the jet model have been shown to well explain the observed spectral energy distribution. The Faraday rotation measure (RM) has been unambiguously measured at the submillimeter wavelength, but it has only been tested against the accretion flow model. Here we first calculate the RM based on the jet model and find that the predicted value is two orders of magnitude lower than the measured value. We then include an additional contribution from the accretion flow in front of the jet and show that the measured RM may be reconciled with the model under some tight constraints. The main constraint is that the inclination angle should be greater than ∼73°. However, this requirement is not consistent with an existing observational estimate of the inclination angle.

  1. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals

    Kori, Hiroshi; Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2017-04-01

    The endogenous circadian clock drives oscillations that are completely synchronized with the environmental day-night rhythms with a period of approximately 24 hours. Temporal misalignment between one’s internal circadian clock and the external solar time often occurs in shift workers and long-distance travelers; such misalignments are accompanied by sleep disturbances and gastrointestinal distress. Repeated exposure to jet lag and rotating shift work increases the risk of lifestyle-related diseases, such as cardiovascular complaints and metabolic insufficiencies. However, the mechanism behind the disruption of one’s internal clock is not well understood. In this paper, we therefore present a new theoretical concept called “jet lag separatrix” to understand circadian clock disruption and slow recovery from jet lag based on the mathematical model describing the hierarchical structure of the circadian clock. To demonstrate the utility of our theoretical study, we applied it to predict that re-entrainment via a two-step jet lag in which a four-hour shift of the light-dark cycle is given in the span of two successive days requires fewer days than when given as a single eight-hour shift. We experimentally verified the feasibility of our theory in C57BL/6 strain mice, with results indicating that this pre-exposure of jet lag is indeed beneficial.

  2. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  3. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    Villata, M.; Ferrari, A.

    1994-01-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets

  4. Reversals in the six-jet Geodynamo model

    Vodinchar Gleb

    2016-01-01

    Full Text Available We describe a large-scale geodynamo model based on hypothesis about 6-cells convection in the Earth’s core. This hypothesis suggests indirect data of inhomogeneities in the density of the Earth?s core. The convection pattern is associated with a spherical harmonic Y24 which defines the basic poloidal component of velocity. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation with reversals. The velocity of convection and the dipole component of the magnetic field are similar to the observed ones.

  5. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  6. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  7. Ion temperature gradient modes in toroidal helical systems

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  8. Ion temperature gradient modes in toroidal helical systems

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  9. Description of premixing with the MC3D code including molten jet behavior modeling. Comparison with FARO experimental results

    Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)

  10. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    Erath, Byron D.; Plesniak, Michael W. [Purdue University, School of Mechanical Engineering, Indiana (United States)

    2006-05-15

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40 represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20 , with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40 , the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40 divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production. (orig.)

  11. Performance analysis of short helical borehole heat exchangers via integrated modelling of a borefield and a heat pump: A case study

    Zarrella, Angelo; Capozza, Antonio; De Carli, Michele

    2013-01-01

    This paper presents a new simulation tool package that calculates the energy efficiency of an entire Ground Source Heat Pump (GSHP) system. The package consists of two detailed models of borehole heat exchangers and heat pump equipment coupled in a single well-integrated calculation tool. It was used to analyze two types of ground heat exchangers in the same operating conditions for two Italian climates. Research focused on comparing a short helical-shaped pipe configuration with the more widespread and longer double U-tube. Analysis was carried out at the same energy exchange rate with the ground and addressed the difference in total borehole depth. The package also took into account the effects of the weather on the heat transfer between the heat exchanger and the surrounding ground. Analysis found that a much shorter total borehole depth was needed for the helical-shaped pipe, which consequently reduces installation costs. Therefore, this configuration may be a suitable alternative to conventional U-shaped tubes, especially for new residential housing with low energy loads and where deep probe drilling is not possible. Finally, this paper also investigates the influence of the axial effects in the ground on the seasonal energy efficiency of the whole system. -- Highlights: • A new model to evaluate the efficiency of the whole GSHP system is presented. • The model considers the interaction between the ground and the environment. • Two types of vertical ground heat exchangers are analyzed: helix and 2U-tube. • They are analyzed in the same operating conditions for two Italian climates. • With helical shaped pipe a shorter total borehole depth is required

  12. Analysis of ex-vessel melt jet breakup and coolability. Part 1: Sensitivity on model parameters and accident conditions

    Moriyama, Kiyofumi; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Hwang, Byoungcheol; Jung, Woo Hyun

    2016-06-15

    Highlights: • Application of JASMINE code to melt jet breakup and coolability in APR1400 condition. • Coolability indexes for quasi steady state breakup and cooling process. • Typical case in complete breakup/solidification, film boiling quench not reached. • Significant impact of water depth and melt jet size; weak impact of model parameters. - Abstract: The breakup of a melt jet falling in a water pool and the coolability of the melt particles produced by such jet breakup are important phenomena in terms of the mitigation of severe accident consequences in light water reactors, because the molten and relocated core material is the primary heat source that governs the accident progression. We applied a modified version of the fuel–coolant interaction simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA) to a plant scale simulation of melt jet breakup and cooling assuming an ex-vessel condition in the APR1400, a Korean advanced pressurized water reactor. Also, we examined the sensitivity on seven model parameters and five initial/boundary condition variables. The results showed that the melt cooling performance of a 6 m deep water pool in the reactor cavity is enough for removing the initial melt enthalpy for solidification, for a melt jet of 0.2 m initial diameter. The impacts of the model parameters were relatively weak and that of some of the initial/boundary condition variables, namely the water depth and melt jet diameter, were very strong. The present model indicated that a significant fraction of the melt jet is not broken up and forms a continuous melt pool on the containment floor in cases with a large melt jet diameter, 0.5 m, or a shallow water pool depth, ≤3 m.

  13. Filament Channel Formation, Eruption, and Jet Generation

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  14. Modeling of mechanical response of NiTi shape memory alloy subjected to combined thermal and non-proportional mechanical loading: A case study on helical spring actuator

    Frost, Miroslav; Sedlák, Petr; Kadeřávek, Lukáš; Heller, Luděk; Šittner, Petr

    2016-01-01

    Roč. 27, č. 14 (2016), s. 1927-1938 ISSN 1045-389X R&D Projects: GA ČR(CZ) GP14-28306P; GA ČR GA14-15264S; GA ČR GAP107/12/0800 Institutional support: RVO:61388998 ; RVO:68378271 Keywords : shape memory alloys * R-phase * modeling * elastic anisotropy * helical spring Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.255, year: 2016 http://jim.sagepub.com/content/27/14/1927.full.pdf

  15. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  16. Aqueous Solvation of Polyalanine α-Helices with Specific Water Molecules and with the CPCM and SM5.2 Aqueous Continuum Models using Density Functional Theory

    Marianski, Mateusz; Dannenberg, J. J.

    2012-01-01

    We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum...

  17. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  18. Experimental observations and modelling of thermal history within a steel plate during water jet impingement

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.; Lockhart, G.T.

    2002-01-01

    In order to investigate heat transfer of steel plates under a water jet impingement and to further simulate runout table operation in a hot strip mill, a full-scale pilot runout table facility was designed and constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement by one circular water jet from an industrial header. Recorded visual observations at the impinging surface were obtained. The effects of cooling water temperature and impingement velocity on the heat transfer from a steel plate were studied. A two-dimensional finite element method-based transient inverse heat conduction model was developed. With the help of the model, heat fluxes and heat transfer coefficients along the impinging surface under various cooling conditions were calculated. The microstructural evolution of the steel plate was also investigated for the varying cooling conditions. Samples were obtained from each plate, polished, etched and then photographed. (author)

  19. JET modeling and control analysis for POET (PFX Operating Early Task)

    Maviglia, F.; Albanese, R.; Last, J.R.; Lomas, P.J.; Mattei, M.; Neto, A.C.; Riccardo, V.; Rimini, F.G.

    2013-01-01

    Highlights: ► New POET operational space Safely opened, and used in 2011/12 JET exp. campaign. ► Fully non-linear dynamic simulation to reproduce the effects of different iron saturation level and eddy currents. ► Early achievement of highly shaped plasma. ► Reduced initial limiter phase: lower thermal load for the new metallic ILW and fuel retention studies. -- Abstract: The aim of the PFX Operating Early Task (POET) was to obtain a highly shaped plasma and x-point formation in the early phases of the discharge. The PFX is an amplifier which feeds the central pancakes of the JET primary circuit. In the past it was possible to energize the PFX circuit only when the PFGC current, which feeds all the coils of the primary circuit, was already flowing in the same direction as the PFX current would have flowed, to avoid repulsive vertical forces which would tend to lift the top pancakes of the central solenoid, balanced only by the net weight of the upper part of the JET machine. In this paper the modeling activity performed to provide a more accurate estimate of the ejection forces acting on the upper coils in order to safely widen the operational space, by using two dimensional finite element electromagnetic models and the simulation of the performances of the actual controller algorithm on tracking the desired references of current are described. Finally will be presented the results of the implemented POET system, routinely used in JET in the 2011/2012 experimental campaigns, in terms of anticipation of x-point formation and enhanced system flexibility

  20. JET modeling and control analysis for POET (PFX Operating Early Task)

    Maviglia, F., E-mail: francesco.maviglia@unirc.it [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Albanese, R. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Last, J.R.; Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Mattei, M. [Association EURATOM-ENEA-CREATE, Seconda Università di Napoli, Aversa (CE) (Italy); Neto, A.C. [Ass. EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, UTL, 1049-001 Lisboa (Portugal); Riccardo, V.; Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2013-10-15

    Highlights: ► New POET operational space Safely opened, and used in 2011/12 JET exp. campaign. ► Fully non-linear dynamic simulation to reproduce the effects of different iron saturation level and eddy currents. ► Early achievement of highly shaped plasma. ► Reduced initial limiter phase: lower thermal load for the new metallic ILW and fuel retention studies. -- Abstract: The aim of the PFX Operating Early Task (POET) was to obtain a highly shaped plasma and x-point formation in the early phases of the discharge. The PFX is an amplifier which feeds the central pancakes of the JET primary circuit. In the past it was possible to energize the PFX circuit only when the PFGC current, which feeds all the coils of the primary circuit, was already flowing in the same direction as the PFX current would have flowed, to avoid repulsive vertical forces which would tend to lift the top pancakes of the central solenoid, balanced only by the net weight of the upper part of the JET machine. In this paper the modeling activity performed to provide a more accurate estimate of the ejection forces acting on the upper coils in order to safely widen the operational space, by using two dimensional finite element electromagnetic models and the simulation of the performances of the actual controller algorithm on tracking the desired references of current are described. Finally will be presented the results of the implemented POET system, routinely used in JET in the 2011/2012 experimental campaigns, in terms of anticipation of x-point formation and enhanced system flexibility.

  1. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    S. Masina

    2002-05-01

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.  This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  2. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    S. Masina

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature. 

    This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.

    Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  3. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  4. A note on helicity

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  5. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  6. Progress in transport modelling of internal transport barrier plasmas in JET

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  7. Integrated modelling of material migration and target plate power handling at JET

    Coster, D.P.; Bonnin, X.; Chankin, A.

    2005-01-01

    The complexity of the tokamak edge and scrape-off layer (SOL) region is such that extrapolation to ITER requires modelling to be pursued through the integration of a number of edge codes, each of which must be thoroughly tested against results from present day machines. This contribution demonstrates how the edge modelling effort at JET is focused on such an approach by considering two examples, target power loading and material erosion and migration, the understanding of which are crucial issues for ITER. (author)

  8. Helical CT defecography

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  9. Quark jets, gluon jets and the three-gluon vertex

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  10. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  11. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  12. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  13. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  14. Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

    Wojtas Krzysztof

    2015-06-01

    Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

  15. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  16. The flow structure of jets from transient sources and implications for modeling short-duration explosive volcanic eruptions

    Chojnicki, K. N.; Clarke, A. B.; Adrian, R. J.; Phillips, J. C.

    2014-12-01

    We used laboratory experiments to examine the rise process in neutrally buoyant jets that resulted from an unsteady supply of momentum, a condition that defines plumes from discrete Vulcanian and Strombolian-style eruptions. We simultaneously measured the analog-jet discharge rate (the supply rate of momentum) and the analog-jet internal velocity distribution (a consequence of momentum transport and dilution). Then, we examined the changes in the analog-jet velocity distribution over time to assess the impact of the supply-rate variations on the momentum-driven rise dynamics. We found that the analog-jet velocity distribution changes significantly and quickly as the supply rate varied, such that the whole-field distribution at any instant differed considerably from the time average. We also found that entrainment varied in space and over time with instantaneous entrainment coefficient values ranging from 0 to 0.93 in an individual unsteady jet. Consequently, we conclude that supply-rate variations exert first-order control over jet dynamics, and therefore cannot be neglected in models without compromising their capability to predict large-scale eruption behavior. These findings emphasize the fundamental differences between unsteady and steady jet dynamics, and show clearly that: (i) variations in source momentum flux directly control the dynamics of the resulting flow; (ii) impulsive flows driven by sources of varying flux cannot reasonably be approximated by quasi-steady flow models. New modeling approaches capable of describing the time-dependent properties of transient volcanic eruption plumes are needed before their trajectory, dilution, and stability can be reliably computed for hazards management.

  17. Electrical characterization of the JET A2 antenna: Comparison of model with measurements

    Ryan, P.M.; Goulding, R.H.; Bhatnagar, V.; Kaye, A.; Wade, T.

    1993-01-01

    The JET experiment is replacing its previous (Al) antennas with upgraded designs (A2) for its upcoming ''pumped diverter'' operation. These antennas are more directional than the previous two-strap Al antennas when operated as a phased array. The frequency range is 23 to 57 MHz. A full-scale low power ''flat'' mockup was tested at JET; strap lengths were adjusted to give balanced operation with resonance at 42 MHz. A second mockup module, differing only slightly from the original, was subsequently fabricated and both modules were sent to ORNL for additional measurements and to test the operation of the power compensator circuit. There are benefits to using a transmission line model to characterize coupled antenna systems, primarily in the ease of incorporating the antennas into the overall analysis of the transmission, tuning, and matching system. The characteristics of the array under arbitrary phasing are also needed for the design, analysis, and control of the power compensator. There are aspects of the JET A2 antenna geometry that differ considerably from previously modeled cases. Each transmission line feeds two poloidally-stacked straps connected in parallel. The parallel straps present different electrical loads at the match point due to geometrical differences. Currents in one section of the strap influence other sections of the same strap as well as in neighboring straps due to internal inductive coupling. The lengths of the inner and outer straps differ; moreover, the inner straps are fed from ports located behind the outer straps, resulting in increased coupling between the inner and outer straps due to the long feed lines and in greater disparity between the electrical loads presented at the inner and outer feed ports. The present effort is to determine whether a more general coupled transmission line model can characterize the array response with sufficient accuracy for the purpose of design and analysis

  18. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    Gan, Zhaoming; Yuan, Feng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Hui; Li, Shengtai, E-mail: zmgan@shao.ac.cn, E-mail: fyuan@shao.ac.cn, E-mail: hli@lanl.gov, E-mail: sli@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-04-10

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.

  19. Modeling of Dissipation Element Statistics in Turbulent Non-Premixed Jet Flames

    Denker, Dominik; Attili, Antonio; Boschung, Jonas; Hennig, Fabian; Pitsch, Heinz

    2017-11-01

    The dissipation element (DE) analysis is a method for analyzing and compartmentalizing turbulent scalar fields. DEs can be described by two parameters, namely the Euclidean distance l between their extremal points and the scalar difference in the respective points Δϕ . The joint probability density function (jPDF) of these two parameters P(Δϕ , l) is expected to suffice for a statistical reconstruction of the scalar field. In addition, reacting scalars show a strong correlation with these DE parameters in both premixed and non-premixed flames. Normalized DE statistics show a remarkable invariance towards changes in Reynolds numbers. This feature of DE statistics was exploited in a Boltzmann-type evolution equation based model for the probability density function (PDF) of the distance between the extremal points P(l) in isotropic turbulence. Later, this model was extended for the jPDF P(Δϕ , l) and then adapted for the use in free shear flows. The effect of heat release on the scalar scales and DE statistics is investigated and an extended model for non-premixed jet flames is introduced, which accounts for the presence of chemical reactions. This new model is validated against a series of DNS of temporally evolving jet flames. European Research Council Project ``Milestone''.

  20. Estimation of k-ε parameters using surrogate models and jet-in-crossflow data

    Lefantzi, Sophia [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arunajatesan, Srinivasan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Dechant, Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-11-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of the calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal

  1. The critical temperature gradient model of plasma transport: applications to Jet and future tokamaks

    Rebut, P.H.; Lallia, P.P.; Watkins, M.L.

    1989-01-01

    The diversity and complexity of behaviour in tokamak plasmas place strong constraints on any model attempting a description in terms of a single underlying phenomenon. Assuming that turbulence in the magnetic topology is the underlying phenomenon, specific expressions for electron and ion heat flux are derived from heuristic and dimensional arguments. When used in plasma transport codes, rather satisfactory simulations of experimental results are achieved in different sized tokamaks in various regimes of operation. Predictions are given for the expected performance of JET at full planned power and implications for next step tokamaks are indicated

  2. Monte Carlo simulations of hadronic fragmentation functions using the Nambu-Jona-Lasinio-jet model

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang

    2011-01-01

    The recently developed Nambu-Jona-Lasinio--jet model is used as an effective chiral quark theory to calculate the quark fragmentation functions to pions, kaons, nucleons, and antinucleons. The effects of the vector mesons ρ, K * , and φ on the production of secondary pions and kaons are included. The fragmentation processes to nucleons and antinucleons are described by using the quark-diquark picture, which has been shown to give a reasonable description of quark distribution functions. We incorporate effects of next-to-leading order in the Q 2 evolution, and compare our results with the empirical fragmentation functions.

  3. CAD-model based remote handling control system for NET and JET

    Leinemann, K.; Kuehneapfel, U.; Ludwig, A.

    1989-01-01

    For maintenance work in fusion plants a supervisory control system concept was developed, which organized a close, problem-suited cooperation of man and machine, based on shared control and mutual help. The central module on the task control level of the control system is a real-time simulator based on a three-dimensional CAD-model. This simulator serves for planning and of-line programming of maintenance sequences, and, in th execution phase, for integrated viewing, combining TV and synthetic scene presentation. A first implementation of a geometric simulator and its integration in an overall control system was realized for JET. (author). 5 refs.; 7 figs

  4. Respiratory-Gated Helical Computed Tomography of Lung: Reproducibility of Small Volumes in an Ex Vivo Model

    Biederer, Juergen; Dinkel, Julien; Bolte, Hendrik; Welzel, Thomas; Hoffmann, Beata M.Sc.; Thierfelder, Carsten; Mende, Ulrich; Debus, Juergen; Heller, Martin; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: Motion-adapted radiotherapy with gated irradiation or tracking of tumor positions requires dedicated imaging techniques such as four-dimensional (4D) helical computed tomography (CT) for patient selection and treatment planning. The objective was to evaluate the reproducibility of spatial information for small objects on respiratory-gated 4D helical CT using computer-assisted volumetry of lung nodules in a ventilated ex vivo system. Methods and Materials: Five porcine lungs were inflated inside a chest phantom and prepared with 55 artificial nodules (mean diameter, 8.4 mm ± 1.8). The lungs were respirated by a flexible diaphragm and scanned with 40-row detector CT (collimation, 24 x 1.2 mm; pitch, 0.1; rotation time, 1 s; slice thickness, 1.5 mm; increment, 0.8 mm). The 4D-CT scans acquired during respiration (eight per minute) and reconstructed at 0-100% inspiration and equivalent static scans were scored for motion-related artifacts (0 or absent to 3 or relevant). The reproducibility of nodule volumetry (three readers) was assessed using the variation coefficient (VC). Results: The mean volumes from the static and dynamic inspiratory scans were equal (364.9 and 360.8 mm 3 , respectively, p = 0.24). The static and dynamic end-expiratory volumes were slightly greater (371.9 and 369.7 mm 3 , respectively, p = 0.019). The VC for volumetry (static) was 3.1%, with no significant difference between 20 apical and 20 caudal nodules (2.6% and 3.5%, p = 0.25). In dynamic scans, the VC was greater (3.9%, p = 0.004; apical and caudal, 2.6% and 4.9%; p = 0.004), with a significant difference between static and dynamic in the 20 caudal nodules (3.5% and 4.9%, p = 0.015). This was consistent with greater motion-related artifacts and image noise at the diaphragm (p <0.05). The VC for interobserver variability was 0.6%. Conclusion: Residual motion-related artifacts had only minimal influence on volumetry of small solid lesions. This indicates a high reproducibility of

  5. Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We concl...

  6. Helicity, Reconnection, and Dynamo Effects

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  7. System assessment of helical reactors in comparison with tokamaks

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  8. Time dependent approach of TeV blazars based on a model of inhomogeneous stratified jet

    Boutelier, T.

    2009-05-01

    The study of the emission and variability mechanisms of TeV blazars has been the subject of intensive research for years. The homogeneous one-zone model commonly used is puzzling since it yields very high Lorentz factor, in contradiction with other observational evidences. In this work, I describe a new time dependent multi-zone approach, in the framework of the two-flow model. I compute the emission of a full jet, where relativistic electron-positron pairs distributed in pileup propagate. The evolution and the emission of the plasma is computed taking into account a turbulent heating term, some radiative cooling, and a pair production term due to photo-annihilation process. Applied to PKS 2155-304, the model allows the reproduction of the full spectra, as well as the simultaneous multi wavelength variability, with a relatively small Lorentz factor. The variability is explained by the instability of the pair creation process. Nonetheless, the value is still high to agree with other observational evidences in radio. Hence, I show in the last part of this work how to conciliate high Lorentz factor with the absence of apparent superluminal movement in radio, by taking into account the effect of the opening angle on the appearance of relativistic jets. (author)

  9. Dose-volume and biological-model based comparison between helical tomotherapy and (inverse-planned) IMAT for prostate tumours

    Iori, Mauro; Cattaneo, Giovanni Mauro; Cagni, Elisabetta; Fiorino, Claudio; Borasi, Gianni; Riccardo, Calandrino; Iotti, Cinzia; Fazio, Ferruccio; Nahum, Alan E.

    2008-01-01

    Background and purpose: Helical tomotherapy (HT) and intensity-modulated arc therapy (IMAT) are two arc-based approaches to the delivery of intensity-modulated radiotherapy (IMRT). Through plan comparisons we have investigated the potential of IMAT, both with constant (conventional or IMAT-C) and variable (non-conventional or IMAT-NC, a theoretical exercise) dose-rate, to serve as an alternative to helical tomotherapy. Materials and methods: Six patients with prostate tumours treated by HT with a moderately hypo-fractionated protocol, involving a simultaneous integrated boost, were re-planned as IMAT treatments. A method for IMAT inverse-planning using a commercial module for static IMRT combined with a multi-leaf collimator (MLC) arc-sequencing was developed. IMAT plans were compared to HT plans in terms of dose statistics and radiobiological indices. Results: Concerning the planning target volume (PTV), the mean doses for all PTVs were similar for HT and IMAT-C plans with minimum dose, target coverage, equivalent uniform dose (EUD) and tumour control probability (TCP) values being generally higher for HT; maximum dose and degree of heterogeneity were instead higher for IMAT-C. In relation to organs at risk, mean doses and normal tissue complication probability (NTCP) values were similar between the two modalities, except for the penile bulb where IMAT was significantly better. Re-normalizing all plans to the same rectal toxicity (NTCP = 5%), the HT modality yielded higher TCP than IMAT-C but there was no significant difference between HT and IMAT-NC. The integral dose with HT was higher than that for IMAT. Conclusions: with regards to the plan analysis, the HT is superior to IMAT-C in terms of target coverage and dose homogeneity within the PTV. Introducing dose-rate variation during arc-rotation, not deliverable with current linac technology, the simulations result in comparable plan indices between (IMAT-NC) and HT

  10. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  11. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  12. A Rotation Measure Gradient on the M87 VLA Jet

    Algaba Juan Carlos

    2013-12-01

    Full Text Available Rotation measures (RMs have proven to be an excellent tool to study magnetic field structures in AGNs. Here we study RM properties on kiloparsec scales of theM87 jet via stacked multi wavelength polarized VLA observations. Our results show for the first time an indication of the RM gradient transverse to the jet in knot A, and possibly knot C and HST-1. Motivated by the shape of the RM in knots A and B, we discuss that part of it may be a filamentary structure of higher RM due to an external Faraday screen, although we consider this unlikely The data presented here can be easily explained by a helical magnetic field. By combining this result together with polarization direction plus the shape and degree of the fractional polarization across the jet, we can fairly conclude the presence of systematically wrapped, possibly helical, magnetic fields tightly wounded in knots A and C, in agreement with an MHD quad shock model.

  13. Neutron model for the formation of AGN jets with Cetral Radio Gap ...

    In this work, there has been an attempt to explain the formation of jets in some radio sources with gaps at their centers using the neutron “production-to-decay” process. The jet-light-up point is taken to coincide with the end of the lifetime of the neutrons. Calculated intrinsic opening angles for the jets of the selected Active ...

  14. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  15. Modeling and computation of heat exchanges in the configuration of an impinging jet on a hot plate

    Seiler, N.; Mimouni, S.; Simonin, O.; Gardin, P.; Seiler, J.M.

    2003-01-01

    The knowledge of the metal temperature history is essential, especially when strip leave the rolling mill, to get adequate final mechanical properties of steel. Some experiments have yet been carried out on the heat transfer associated with the impingement of a planar (1*9 mm 2 ) subcooled (5-16 K) water jet on a heated plate. Complete boiling curves were then obtained at different locations from the stagnation point and it was observed a phenomenon of 'shoulder of flux' in the transition boiling region near the impingement point. The aim of this work is to compute the heat flux transferred between a very hot plate and a subcooled liquid under a planar impinging jet to obtain the transient temperature distribution in the plate. To achieve this goal, a physical modelling of the phenomenon of 'shoulder of flux' has been carried out. This modelling is based on the assumption that the apparition of periodic bubble oscillations at the wall surface is due to the hydrodynamic fragmentation by the jet. The relation derived from this modelling is validated against experimental results from the literature obtained for a wide range of jet velocity, subcooling and jet diameter. This model is implemented in the new multiphase flow solver developed by EDF 'SATURNE polyphasique'. Numerical results are then compared to experimental heat fluxes obtained on previous experiments. (authors)

  16. Helical-D pinch

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  17. Functional copmponents produced by multi-jet modelling combined with electroforming and machining

    Baier, Oliver

    2014-08-01

    Full Text Available In fuel cell technology, certain components are used that are responsible for guiding liquid media. When these components are produced by conventional manufacturing, there are often sealing issues, and trouble- and maintenance-free deployment cannot be ensured. Against this background, a new process combination has been developed in a joint project between the University of Duisburg-Essen, the Center for Fuel Cell Technology (ZBT, and the company Galvano-T electroplating forming GmbH. The approach is to combine multi-jet modelling (MJM, electroforming and milling in order to produce a defined external geometry. The wax models are generated on copper base plates and copper-coated to a desirable thickness. Following this, the undefined electroplated surfaces are machined to achieve the desired measurement, and the wax is melted out. This paper presents, first, how this process is technically feasible, then describes how the MJM on a 3-D Systems ThermoJet was adapted to stabilise the process.In the AiF-sponsored ZIM project, existing limits and possibilities are shown and different approaches of electroplating are investigated. This paper explores whether or not activation of the wax structure by a conductive initial layer is required. Using the described process chain, different parts were built: a heat exchanger, a vaporiser, and a reformer (in which pellets were integrated in an intermediate step. In addition, multiple-layer parts with different functions were built by repeating the process combination several times.

  18. Characterisation, modelling and control of advanced scenarios in the european tokamak jet

    Tresset, G.

    2002-01-01

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  19. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  20. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  1. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  2. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Bellan, Paul M.

    2018-05-01

    Magnetohydrodynamic (MHD)-driven jets involve poloidal and toroidal magnetic fields, finite pressure gradients, and unbalanced forces. The mechanism driving these jets is first discussed qualitatively by decomposing the magnetic force into a curvature and a gradient component. The mechanism is then considered quantitatively by consideration of all terms in the three components of the MHD equation of motion and in addition, the implications of Ampere's law, Faraday's law, the ideal Ohm's law, and the equation of continuity. The analysis shows that jets are self-collimating with the tip of the jet moving more slowly than the main column of the jet so there is a continuous stagnation near the tip in the jet frame. Experiments supporting these conclusions are discussed and it is shown how this mechanism relates to jets in astrophysical and solar corona contexts.

  3. Single-superfield helical-phase inflation

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  4. Review of the helicity formalism

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  5. Tuning a RANS k-e model for jet-in-crossflow simulations.

    Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan; DeChant, Lawrence Justin

    2013-09-01

    We develop a novel calibration approach to address the problem of predictive ke RANS simulations of jet-incrossflow. Our approach is based on the hypothesis that predictive ke parameters can be obtained by estimating them from a strongly vortical flow, specifically, flow over a square cylinder. In this study, we estimate three ke parameters, C%CE%BC, Ce2 and Ce1 by fitting 2D RANS simulations to experimental data. We use polynomial surrogates of 2D RANS for this purpose. We conduct an ensemble of 2D RANS runs using samples of (C%CE%BC;Ce2;Ce1) and regress Reynolds stresses to the samples using a simple polynomial. We then use this surrogate of the 2D RANS model to infer a joint distribution for the ke parameters by solving a Bayesian inverse problem, conditioned on the experimental data. The calibrated (C%CE%BC;Ce2;Ce1) distribution is used to seed an ensemble of 3D jet-in-crossflow simulations. We compare the ensemble's predictions of the flowfield, at two planes, to PIV measurements and estimate the predictive skill of the calibrated 3D RANS model. We also compare it against 3D RANS predictions using the nominal (uncalibrated) values of (C%CE%BC;Ce2;Ce1), and find that calibration delivers a significant improvement to the predictive skill of the 3D RANS model. We repeat the calibration using surrogate models based on kriging and find that the calibration, based on these more accurate models, is not much better that those obtained with simple polynomial surrogates. We discuss the reasons for this rather surprising outcome.

  6. Helical Confinement Concepts

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  7. Determination of electron temperature and density at plasma edge in the Large Helical Device with opacity-incorporated helium collisional-radiative model

    Goto, M.; Sawada, K.

    2014-01-01

    Spectra of neutral helium in the visible wavelength range are measured for a discharge in the Large Helical Device (LHD). The electron temperature (T e ) and density (n e ) are derived from the intensity distribution of helium emission lines. For that purpose, a collisional-radiative model developed by Sawada et al. [Plasma and Fusion Res. 2010;5:001] which takes the reabsorption effect into account is used. It is found that incorporation of the reabsorption effect is necessary to obtain a set of T e and n e giving consistent line intensity distribution with the measurement, and that those parameters obtained vary as the line-averaged n e changes in the course of time. The position where the helium line emission dominantly takes place is located with the help of T e and n e profiles measured by the Thomson scattering system. The result indicates that the emission position is almost fixed at the place where the connection length of the magnetic field lines to the divertor plate leaps beyond 10 m. Because intense neutral atom line emission suggests the vigorous ionization of neutral atoms, the helium line emission location determined here can be regarded as the effective boundary of the plasma. - Highlights: • The reabsorption effect is included in the helium collisional-radiative model. • Electron temperature and density are derived for the Large Helical Device (LHD). • Line emission location is found to be little changed during the discharge. • This measurement method can be used to determine the position of effective plasma boundary

  8. Jet observables without jet algorithms

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  9. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.

    García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J

    2017-08-01

    The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modeling of fuel vapor jet eruption induced by local droplet heating

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  11. Investigation of a Water-Pond Arresting of a Dynamic Model of a Jet Transport

    Thompson, William C.

    1961-01-01

    Brief dynamic-model tests have been made at the request of the Federal Aviation Agency to investigate the use of a shallow pond of water at the end of a runway as a means of arresting jet-transport aircraft when they are forced to abort on take-off or overrun on landing. Such a scheme is of particular interest for civil aircraft because it requires no modifications or attachments to the airplane and no mechanical devices in the arresting system. A modification of this scheme that uses a flexible plastic cover over the water surface has also been tested. The purpose of this paper is to present the results of a dynamic model investigation which would aid in determining whether the water-pond arresting system could be used as a means of arresting airplane overrun.

  12. Model-based radiation scalings for the ITER-like divertors of JET and ASDEX Upgrade

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bonnin, X. [LSPM – CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Brezinsek, S. [Forschungszentrum Jülich, Institut für Energie- und Klimaforschung Plasmaphysik, 52425 Jülich (Germany); Federici, G. [EFDA PPP& T Department, D-85748 Garching (Germany)

    2015-08-15

    Effects of N-seeding in L-mode experiments in ASDEX Upgrade and JET are analysed numerically with the SOLPS5.0 code package. The modelling yields 3 qualitatively different radiative regimes with increasing N concentration, when initially attached outer divertor conditions are studied. The radiation pattern is observed to evolve asymmetrically, with radiation increasing first in the inner divertor, then in the outer divertor, and finally on closed field lines above the X-point. The properties of these radiative regimes are observed to be sensitive to cross-field drifts and they differ between the two devices. The modelled scaling of the divertor radiated power with the divertor neutral pressure is similar to an experimental scaling law for H-mode radiation. The same parametric dependencies are not observed in simulations without drifts.

  13. Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes

    Anselmino, M.; Murgia, F.; Quintairos, P.

    1999-04-01

    Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)

  14. An experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfire stop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. There is a separate appendix volume. 62 refs., 152 figs., 22 tabs.

  15. Numerical simulations of transverse liquid jet to a supersonic crossflow using a pure two-fluid model

    Haixu Liu

    2016-01-01

    Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.

  16. Controlling the Effluent Chemistry of a CAP jet for Biomedical Applications: FTIR Diagnostics and Gas Phase Modeling

    Schmidt-Bleker, Ansgar; Winter, Joern; Iseni, Sylvain; Duennbier, Mario; Barton, Annemarie; Bundscherer, Lena; Wende, Kristian; Masur, Kai; Weltmann, Klaus-Dieter; Reuter, Stephan

    2013-09-01

    The use of cold atmospheric pressure plasma (CAP) jets with shielding gas devices has proven to be a valuable tool for biomedical applications of plasmas. In order to understand which active components generated by the plasma source trigger desired biological effects, a deeper insight into the species output of CAP jets is necessary. In this work we investigate the effect of different shielding gas compositions using a CAP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used with relative humidity ranging from 0 to 100%. For all conditions the densities of O3, NO2, HNO3, N2O5 and N2O in the far-field of the jet are determined using Fourier-Transformed Infrared Spectroscopy (FTIR). A kinetic model for the neutral species humid air chemistry is fitted to the experimental data. The model yields insight into the processes in the CAP jets effluent. It is used to extrapolate the measured data to 2D density maps for each species depending on the O2/(O2 + N2) ratio and the relative humidity. The 2D maps serve as a basis for the design of further biological and physical experiments. The authors gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF, grant number 03Z2DN11/12).

  17. Characterisation, modelling and control of advanced scenarios in the european tokamak jet; Caracterisation, modelisation et controle des scenarios avances dans le tokamak europeen jet

    Tresset, G

    2002-09-26

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  18. Characterisation, modelling and control of advanced scenarios in the european tokamak jet; Caracterisation, modelisation et controle des scenarios avances dans le tokamak europeen jet

    Tresset, G

    2002-09-26

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  19. Jet formation and equatorial superrotation in Jupiter's atmosphere: Numerical modelling using a new efficient parallel code

    Rivier, Leonard Gilles

    Using an efficient parallel code solving the primitive equations of atmospheric dynamics, the jet structure of a Jupiter like atmosphere is modeled. In the first part of this thesis, a parallel spectral code solving both the shallow water equations and the multi-level primitive equations of atmospheric dynamics is built. The implementation of this code called BOB is done so that it runs effectively on an inexpensive cluster of workstations. A one dimensional decomposition and transposition method insuring load balancing among processes is used. The Legendre transform is cache-blocked. A "compute on the fly" of the Legendre polynomials used in the spectral method produces a lower memory footprint and enables high resolution runs on relatively small memory machines. Performance studies are done using a cluster of workstations located at the National Center for Atmospheric Research (NCAR). BOB performances are compared to the parallel benchmark code PSTSWM and the dynamical core of NCAR's CCM3.6.6. In both cases, the comparison favors BOB. In the second part of this thesis, the primitive equation version of the code described in part I is used to study the formation of organized zonal jets and equatorial superrotation in a planetary atmosphere where the parameters are chosen to best model the upper atmosphere of Jupiter. Two levels are used in the vertical and only large scale forcing is present. The model is forced towards a baroclinically unstable flow, so that eddies are generated by baroclinic instability. We consider several types of forcing, acting on either the temperature or the momentum field. We show that only under very specific parametric conditions, zonally elongated structures form and persist resembling the jet structure observed near the cloud level top (1 bar) on Jupiter. We also study the effect of an equatorial heat source, meant to be a crude representation of the effect of the deep convective planetary interior onto the outer atmospheric layer. We

  20. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  1. Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling

    H.-W. Wong

    2010-04-01

    Full Text Available Condensation trails (contrails formed from water vapor emissions behind aircraft engines are the most uncertain components of the aviation impacts on climate change. To gain improved knowledge of contrail and contrail-induced cirrus cloud formation, understanding of contrail ice particle formation immediately after aircraft engines is needed. Despite many efforts spent in modeling the microphysics of ice crystal formation in jet regime (with a plume age <5 s, systematic understanding of parametric effects of variables affecting contrail ice particle formation is still limited. In this work, we apply a microphysical parcel modeling approach to study contrail ice particle formation in near-field aircraft plumes up to 1000 m downstream of an aircraft engine in the soot-rich regime (soot number emission index >1×1015 (kg-fuel−1 at cruise. The effects of dilution history, ion-mediated nucleation, ambient relative humidity, fuel sulfur contents, and initial soot emissions were investigated. Our simulation results suggest that ice particles are mainly formed by water condensation on emitted soot particles. The growth of ice coated soot particles is driven by water vapor emissions in the first 1000 m and by ambient relative humidity afterwards. The presence of chemi-ions does not significantly contribute to the formation of ice particles in the soot-rich regime, and the effect of fuel sulfur contents is small over the range typical of standard jet fuels. The initial properties of soot emissions play the most critical role, and our calculations suggest that higher number concentration and smaller size of contrail particle nuclei may be able to effectively suppress the formation of contrail ice particles. Further modeling and experimental studies are needed to verify if our findings can provide a possible approach for contrail mitigation.

  2. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    Wang, Jui-Yang

    2017-06-01

    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  3. Validation of ASTEC v2.0 corium jet fragmentation model using FARO experiments

    Hermsmeyer, S.; Pla, P.; Sangiorgi, M.

    2015-01-01

    Highlights: • Model validation base extended to six FARO experiments. • Focus on the calculation of the fragmented particle diameter. • Capability and limits of the ASTEC fragmentation model. • Sensitivity analysis of model outputs. - Abstract: ASTEC is an integral code for the prediction of Severe Accidents in Nuclear Power Plants. As such, it needs to cover all physical processes that could occur during accident progression, yet keeping its models simple enough for the ensemble to stay manageable and produce results within an acceptable time. The present paper is concerned with the validation of the Corium jet fragmentation model of ASTEC v2.0 rev3 by means of a selection of six experiments carried out within the FARO facility. The different conditions applied within these six experiments help to analyse the model behaviour in different situations and to expose model limits. In addition to comparing model outputs with experimental measurements, sensitivity analyses are applied to investigate the model. Results of the paper are (i) validation runs, accompanied by an identification of situations where the implemented fragmentation model does not match the experiments well, and discussion of results; (ii) its special attention to the models calculating the diameter of fragmented particles, the identification of a fault in one model implemented, and the discussion of simplification and ad hoc modification to improve the model fit; and, (iii) an investigation of the sensitivity of predictions towards inputs and parameters. In this way, the paper offers a thorough investigation of the merit and limitation of the fragmentation model used in ASTEC

  4. Energy fluxes in helical magnetohydrodynamics and dynamo action

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  5. Modeling of under-expanded reactive CO2-into-sodium jets, in the frame of sodium fast reactors

    Vivaldi, D.

    2013-01-01

    This PhD work was motivated by the investigations in the frame of supercritical CO 2 Brayton cycles as possible energy conversion cycles for the Sodium-cooled Fast nuclear Reactors (SFRs). This technology represents an alternative to conventional steam Rankine cycles, with the main advantage represented by the elimination of the accidental sodium-water reaction scenario. Nevertheless, CO 2 chemically reacts with sodium, through an exothermic reaction leading to solid reaction products, mainly sodium carbonate. Following an accidental leakage inside the sodium-CO 2 heat exchanger of a SFR, the CO 2 , having an operating pressure of about 200 bars, would be injected into the low-operating pressure liquid sodium, creating an under-expanded reactive CO 2 -into-sodium jet. The under-expanded jet features a sonic gas injection velocity and an under-expansion in the first region downstream the leakage, where the CO 2 is accelerated to supersonic velocities. The exothermic reaction between the CO 2 and the sodium causes an increasing of the temperature inside the heat exchanger. An experimental facility was built at CEA Cadarache, for the realization of CO 2 -into-sodium jets: this facility has provided preliminary results in terms of temperature variations inside the jet due to the exothermic reaction. However, this type of experimental tests are complicated to realize and to analyse, due to the technical difficulties of realizing the contact between CO 2 and sodium, and to the incertitude of temperature measurement inside a two-phase high velocity jet. It follows that a numerical model of this kind of jets is required, in order to understand the CO 2 -sodium kinetics of reaction inside the jet and being able to transpose the phenomenon to relevant SFR sodium-CO 2 heat exchangers. This would allow to understand the consequences of a leakage inside a sodium-CO 2 heat exchanger, in terms of, for instance, temperature profiles inside the heat exchanger and on tube surfaces

  6. Sodium spray and jet fire model development within the CONTAIN-LMR code

    Scholtyssek, W.

    1993-01-01

    An assessment was made of the sodium spray fire model implemented in the CONTAIN code. The original droplet burn model, which was based on the NACOM code, was improved in several aspects, especially concerning evaluation of the droplet burning rate, reaction chemistry and heat balance, spray geometry and droplet motion, and consistency with CONTAIN standards of gas property evaluation. An additional droplet burning model based on a proposal by Krolikowski was made available to include the effect of the chemical equilibrium conditions at the flame temperature. The models were validated against single-droplet burn experiments as well as spray and jet fire experiments. Reasonable agreement was found between the two burn models and experimental data. When the gas temperature in the burning compartment reaches high values, the Krolikowski model seems to be preferable. Critical parameters for spray fire evaluation were found to be the spray characterization, especially the droplet size, which largely determines the burning efficiency, and heat transfer conditions at the interface between the atmosphere and structures, which controls the thermal hydraulic behavior in the burn compartment

  7. Meson and baryon production in K/sup +/ and. pi. /sup +/ beam jets and quark-diquark cascade model

    Kinoshita, Kisei [Kagoshima Univ. (Japan). Faculty of Education; Noda, Hujio; Tashiro, Tsutomu

    1982-11-01

    A quark-diquark cascade model which includes flavor dependence and resonance effect is studied. The inclusive distributions of vector and pseudoscalar mesons and octet baryons and antibaryons in K/sup +/ and ..pi../sup +/ beam jets are analyzed. The contribution of decuplet baryons to the octet baryon spectra is very important in meson beam jet. The effects of the asymmetric u- and anti s-quark distributions in K/sup +/ and the SU(6)-symmetry breaking for the produced octet baryon are discussed in connection with the ..pi../sup +//K/sup +/ beam ratio and other data.

  8. Modelling of Track Reconstruction Inside Jets with the 2016 ATLAS $\\sqrt{s}= 13$ TeV pp dataset

    The ATLAS collaboration

    2017-01-01

    Inside the core of high transverse momentum jets, the particle density is so high that the tracks of charged particles begin to overlap, and due to the different charged particles, pixel clusters in the ATLAS inner detector begin to merge. This high density environment results in a degradation of track reconstruction. Recent innovations to the ambiguity solving in the charged particle pattern recognition partially mitigate the loss in performance. However, it is critical for all physics results using tracks inside jets that the algorithms be well modeled by simulation. This note presents new measurements of the charged particle reconstruction inefficiency and fake rate inside jets with the $\\sqrt{s}=13$ TeV $pp$ dataset collected by the ATLAS experiment at the LHC in 2016.

  9. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VIII. Faraday Rotation in Parsec-scale AGN Jets

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  10. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.; Pushkarev, Alexander B.; Savolainen, Tuomas

    2012-01-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  11. Coulomb double helical structure

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  12. Dynamics of three-dimensional radiative structures during RMP assisted detached plasmas on the large helical device and its comparison with EMC3-EIRENE modeling

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Ida, Katsumi; Mukai, Kiyofumi; Sano, Ryuichi; Miyazawa, Junichi; Tanaka, Hirohiko; Masuzaki, Suguru; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu; LHD Experiment Group

    2016-04-01

    The resonant magnetic perturbation (RMP) island introduced in the stochastic edge of the large helical device (LHD) plasma plays an important role in the stabilization of the plasma detachment (Kobayashi et al 2013 Nucl. Fusion 53 093032). The plasma enters in the sustained detachment phase in the presence of an RMP once the line averaged density exceeds a critical value with a given input power. During detachment the enhanced radiation from the stochastic edge of the LHD undergoes several spatiotemporal changes which are studied quantitatively by an infrared imaging video bolometer (IRVB) diagnostic. The experimental results are compared qualitatively and quantitatively with the radiation predicted by the 3D transport simulation with fluid model, EMC3-EIRENE. A fair amount of qualitative agreement, before and after the detachment, is reported. The issue of overestimated radiation from the model is addressed by changing the free parameters in the EMC3-EIRENE code till the total radiation and the radiation profiles match closely, within a factor of two with the experimental observations. A better quantitative match between the model and the experiment is achieved at higher cross-field impurity diffusion coefficient and lower sputtering coefficient after the detachment. In this article a comparison, the first of its kind, is established between the quantified radiation from the experiments and the synthetic image obtained from the simulation code. This exercise is aimed towards validating the model assumptions against the experimentally measured radiation.

  13. Modeling energy and reproductive costs in caribou exposed to low flying military jet aircraft

    B.R. Luick

    1996-01-01

    Full Text Available We used simulation modeling to estimate the effect of low-flying military jet aircraft on the productivity of caribou. The base model (CARIBOU, CWS Whitehorse, Yukon Territory uses daily intake and expenditure of energy to assess the condition of female caribou throughout the annual cycle. The activity budget of the model caribou was adjusted based on field observations of responses to noise disturbance. A subroutine was added that predicted the likelihood of conception based on fall body fat weight. Caribou responses to overflights were evaluated by equipping free-ranging caribou with radio collars and activity sensors that could distinguish between resting and active periods. Collared animals were exposed to 110 overflights by A-10, F-15 and F- 16 jet aircraft during late-winter, post-calving and the insect season. Noise exposure levels for individual animals either were measured directly with collar-mounted dosimeters or were estimated based on the proximity of the caribou to the aircraft during the overflight. A Time-averaged Sound Level (LT was calculated from the total daily noise exposure for each animal and linear regression was used to evaluate the influence of daily noise exposure on daily hours spent resting. Results of these analyses then were used to modify the time budgets in the CARIBOU model. That is, if time spent resting declined, then time spent in the two rest classes (lying and standing were proportionately redistributed into the three active classes (foraging, walking and running. Model simulations indicated that caribou increased forage intake in response to increased noise exposure, but it also predicted that increased noise exposure would cause a reduced accumulation of body fat. Because body fat in fall has successfully been used to predict the probability of pregnancy (see Gerhart et al, 1993, this relationship was used in the model. Preliminary model simulations indicate that increased noise exposure decreases the

  14. Properties of gluon jets

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  15. Properties of gluon jets

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  16. Reynolds averaged modelling of low momentum propane jet diffusion flames in cross flow

    Majeski, A.J.; Chui, E.H. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Kostiuk, L.W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2003-07-01

    It is common practice to use continuous low flow rate flares to dispose of unwanted or by-product combustible gases resulting from the manufacturing process or oil recovery operations. This study evaluates the usefulness of computational fluid dynamics (CFD) modelling in the context of low momentum flux reacting jets. The experimental data was gathered at the University of Alberta's Combustion Wind Tunnel. This data was used to compare data obtained from the CFD simulations. Only a small subset of the experimental conditions was used for the computational model. No attempt was made to fine tune any of the individual models. They were all part of the commercial CFD software package CFX-TASC flow, by ANSYS Inc. Flame length and angle results compared favourably with experiments. The shape of the plume changed significantly in the far field. This could be explained by distortion caused by the turbulence model used. A flame front model was incorporated in an effort to estimate combustion efficiency. The results obtained were not conclusive. 20 refs., 4 figs.

  17. Helically linked mirror arrangement

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  18. $b$-Tagging and Large Radius Jet Modelling in a $g\\rightarrow b\\bar{b}$ rich sample at ATLAS

    Jiang, Zihao; The ATLAS collaboration

    2016-01-01

    Studies of b-tagging performance and jet properties in double b-tagged, large radius jets from sqrt(s)=8 TeV pp collisions recorded by the ATLAS detector at the LHC are presented. The double b-tag requirement yields a sample rich in high pT jets originating from the g->bb process. Using this sample, the performance of b-tagging and modelling of jet substructure variables at small b-quark angular separation is probed.

  19. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  20. Implementation of a correction factor for the Pohlhausen laminar boundary layer applied on the CEVA curved wall jet model

    Valeriu DRAGAN

    2013-09-01

    Full Text Available Curved wall jets have many technical applications, ranging from aeronautical circulation controlled wings to micro-fluidics and cryogenics. This paper addresses the issue of correctly estimating the boundary layer separation for laminar curved wall jets. For this, the Pohlhausen model was used in conjunction with the CEVA wall jet model with a semi-empirical modification which increases the accuracy for very thin jets. The method is therefore a mix of analytical equations with curve fitted experimental data in order to produce a simple yet effective way of estimating the boundary layer velocity profile along the curved wall. In order to cross-check the results, Newman’s empirical equation – which only provides a separation location but no information regarding the velocity profile - for boundary layer separation was used with good results. The hereby model could be used as a pre-design tool for rapid assessment of aeronautical high-lift applications such as Upper Surface Blown (USB or entrainment wings.

  1. The modelling of sodium jet fires in a global computer code - FEUMIX 3

    Rigollet-Pichon, L.; Malet, J.C.

    1996-01-01

    The purpose of the FEUMIX3 calculation programme is to study the consequences of an accidental leak of sodium circulating under pressure in a circuit composed of pipes and tanks. It mainly allows the thermal and mechanical consequences of a sodium fire accompanying the leak to be evaluated: evolution of the pressure in the room, evolution of the gas temperature, of the internal structures and walls, nature and quantities of aerosols produced in the room or released outside. FEUMIX3 uses the global approach to the sodium/oxygen reaction interfacial area. The FEUMIX3 calculation programme mainly concerns the sodium jets characterized by a Reynolds number higher than 105 for breaks with a cross section exceeding several mm 2 , a variable sodium flowrate (experimental conditions ranging from 0 to 250 kg/s) and for the time being, a sodium temperature of around 500 deg. C. FEUMIX3 moreover contains ventilation options allowing the parallel simulation of several systems (ventilation, extraction, gas leak, valves, pressure relief valves). The connection of several rooms to one another (100 maximum in the present version) is also predicted. The programme allows the interpretation of analytical experiments and the pre-calculation of demonstration experiments to be carried out. Within the framework of FR facility sizing, it supplies the data necessary to assess the integrity of the structures, of the behavior of systems and materials and the harmful effects on the outside or in the adjoining rooms. The model treats nearly all the scenario linked to a sodium leak, from ignition, including the establishment time of the jet, to the Propagation of fire and up to the extinguishment of the fire. It is even able to take into account the release of water coming from the over-heated concrete walls and to simulate the new chemical reactions of water-sodium and water-aerosols. (author)

  2. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  3. Core-SOL modelling of neon seeded JET discharges with the ITER-like wall

    Telesca, G. [Department of Applied Physics, Ghent University (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Ivanova-Stanik, I.; Zagoerski, R.; Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Brezinsek, S.; Huber, A.; Wiesen, S. [Forschungszentrum Juelich GmbH, Institut fuer Klima- und Energieforschung-Plasmaphysik, Juelich (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Drewelow, P. [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Giroud, C. [CCFE Culham, Abingdon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon (United Kingdom); Collaboration: JET EFDA contributors

    2016-08-15

    Five ELMy H-mode Ne seeded JET pulses have been simulated with the self-consistent core-SOL model COREDIV. In this five pulse series only the Ne seeding rate was changed shot by shot, allowing a thorough study of the effect of Ne seeding on the total radiated power and of its distribution between core and SOL tobe made. The increase in the simulations of the Ne seeding rate level above that achieved in experiments shows saturation of the total radiated power at a relatively low radiated-heating power ratio (f{sub rad} = 0.60) and a further increase of the ratio of SOL to core radiation, in agreement with the reduction of W release at high Ne seeding level. In spite of the uncertainties caused by the simplified SOL model of COREDIV (neutral model, absence of ELMs and slab model for the SOL), the increase of the perpendicular transport in the SOL with increasing Ne seeding rate, which allows to reproduce numerically the experimental distribution core-SOL of the radiated power, appears to be of general applicability. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  4. Jets in Planetary Atmospheres

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  5. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  6. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow

    2015-07-01

    about the jet nozzle location (taken as the moment reference point [ MRP ]). Also listed are the resultant force center of pressure and the...turbulent intensity JI jet interaction jet force amplification factor jet moment amplification factor about MRP (0) jet... MRP induced by jet thrust force, N-m (0) moment about missile nose induced by jet thrust force, N-m moment about MRP induced by

  7. Finite element analysis of helical flows in human aortic arch: A novel index

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  8. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Xianzhi Song

    Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in

  9. State-of-the-art and needs for jet instability and direct contact condensation model improvements

    Bousbia-Salah, A.; Moretti, F.; D'auria, F.; Bousbia-Salah, A.)

    2007-01-01

    There is a common understanding among thermal-hydraulic experts that the system analysis codes have currently reached an acceptable degree of maturity. Reliable application, however, is still limited to the validated domain. There is a growing need for qualified codes in assessing the safety of the existing reactors and for developing advanced reactor systems. Under conditions involving multi-phase flow simulations, the use of classical methods, mainly based upon the one dimensional approach, is not appropriate at all. The use of new computational models, such as the direct numerical simulation, large-eddy simulation or other advanced computational fluid dynamics methods, seems to be more suitable for more complex events. For this purpose, the European Commission financed NURESIM Integrated Project (as a part of the FP6 programme), was adopted to provide the initial step towards a Common European Standard Software Platform for modelling, recording and recovering computer data for nuclear reactor simulations. Some of the studies carried out at the University of Pisa within the framework of the NURESIM project are presented in this paper. They mainly concern the investigation of two critical phenomena connected with jet instabilities and direct contact condensation that occur during emergency core cooling. Through these examples, the state-of-the-art and the need for model improvements and validation against new experimental data for the sake of getting a better understanding and more accurate predictions are discussed. (author)

  10. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  11. Analysis and modelling of power modulation experiments in JET plasmas with internal transport barriers

    Marinoni, A [Politecnico di Milano, dipartimento di Ingegneria Nucleare, Milano (Italy); Mantica, P [Istituto di Fisica del Plasma, Euratom-ENEA-CNR Association, Milan (Italy); Eester, D Van [LPP-ERM/KMS, Association EURATOM-Belgian State, TEC, B-1000 Brussels (Belgium); Imbeaux, F [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 Saint Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association Euratom-Tekes, PO Box 2200 (Finland); Hawkes, N [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, 13108 Saint Paul lez Durance (France); Kiptily, V [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Pinches, S D [Max Plank Institut fur Plasmaphysik, Euratom Association, Garching (Germany); Salmi, A [Helsinki University of Technology, Association Euratom-Tekes, PO Box 2200 (Finland); Sharapov, S [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Voitsekhovitch, I [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Vries, P de [FOM Institut voor Plasmafysica, Association Euratom-FOM, Nieuwegein, The (Netherlands); Zastrow, K D [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2006-10-15

    Understanding the physics of internal transport barriers (ITBs) is a crucial issue in developing ITER relevant advanced tokamak scenarios. To gain new information on ITBs, RF power modulation experiments, mainly devoted to the study of electron heat transport through ITBs, have been performed on the JET tokamak. The main physics results have been reported in [1]. The present paper describes in detail the data analysis and numerical modelling work carried out for the interpretation of the experiments. ITBs located in the negative shear region behave as localized insulating layers able to stop the heat wave propagation, thus implying that the ITB is a region of low diffusivity characterized by a loss of stiffness. Various sources of spurious effects affecting the interpretation of the results are analysed and discussed. First principle based models have so far failed to predict the temperature profile in the first place, which prevented their application to modulation results, while empirical transport models have been set up and reproduce the major part of the data.

  12. A model study of the plasma chemistry of stratospheric Blue Jets

    Winkler, Holger; Notholt, Justus

    2015-04-01

    Stratospheric Blue Jets (BJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. They appear as conical bodies of blue light originating at the top of thunderclouds and proceed upward with velocities of the order of 100 km/s. Electric discharges in the atmosphere are known to have chemical effects. Of particular interest is the liberation of atomic oxygen and the formation of reactive nitrogen radicals. We have used a numerical plasma chemistry model in order to simulate the chemical processes in stratospheric BJs. It was applied to BJ streamers in the altitude range 18-38 km. The model results show that there is a production of ozone from atomic oxygen liberated at the streamer tips. At the same time, significant amounts of nitric oxide are produced. Compared to earlier plasma chemistry simulations of BJ streamers, the production of NO and O3 is by orders of magnitude larger. Additionally, the chemical processes in the leader part of a BJ have been simulated for the first time. In the leader channel, driven by high-temperature reactions, the concentration of N2O and NO increases by several orders of magnitude, and there is a significant depletion of ozone. The model results might gain importance by the fact that the chemical perturbations in BJs are largest at altitudes of the stratospheric ozone layer.

  13. Study on models for jet breakup for CANDU 6 containment analysis

    Baek, J.S.; Lee, N.H.; Huh, J.Y.; Choi, J.H.; Hwang, S.T.

    1996-01-01

    When high enthalpy liquid is discharged into a containment, thermal fragmentation is a dominant mechanism for the dispersion of liquid into droplets. The current method for aerosol size estimation used in SMART code for CANDU containment analysis results in too small aerosol diameter because it considers only aerodynamic atomization with very fast discharging velocity. The smaller the aerosol diameter, the less is the effect of aerosol removal mechanisms. Therefore, the amounts of aerosol released into environment for some containment isolation failure cases are quite large and the resulting dose values are very conservative. Among several models to predict the drop diameter for a high enthalpy liquid jet, an appropriate model (Koestel, Gido and Lamkin model) has been selected for aerosol size calculation and incorporated into SMART code. WALE (Water Aerosol Leakage Experiments) has been assessed by using this updated SMART code for the code verification. The calculated aerosol amount released into environment is still higher than the experimental value but much lower compared to those predicted by non-updated (original) SMART code. Some of CANDU DBAs (Design Basis Accidents) have been analyzed by using updated and original SMART codes. The comparison of the result shows that the amount of each radionuclide isotope released into outer atmosphere is significantly reduced with the updated SMART code

  14. Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames

    Mueller, Michael

    2012-11-01

    An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.

  15. Aqueous solvation of polyalanine α-helices with specific water molecules and with the CPCM and SM5.2 aqueous continuum models using density functional theory.

    Marianski, Mateusz; Dannenberg, J J

    2012-02-02

    We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water molecules that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models.

  16. Estimation of energy saving thanks to a reduced-model-based approach: Example of bread baking by jet impingement

    Alamir, M.; Witrant, E.; Della Valle, G.; Rouaud, O.; Josset, Ch.; Boillereaux, L.

    2013-01-01

    In this paper, a reduced order mechanistic model is proposed for the evolution of temperature and humidity during French bread baking. The model parameters are identified using experimental data. The resulting model is then used to estimate the potential energy saving that can be obtained using jet impingement technology when used to increase the heat transfer efficiency. Results show up to 16% potential energy saving under certain assumptions. - Highlights: ► We developed a mechanistic model of heat and mass transfer in bread including different and multiple energy sources. ► An optimal control system permits to track references trajectories with a minimization of energy consuming. ► The methodology is evaluated with jet impingement technique. ► Results show a significant energy saving of about 17% of energy with reasonable actuator variations

  17. General architecture of the alpha-helical globule.

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  18. Development of correlations for combustion modelling with supercritical surrogate jet fuels

    Raja Sekhar Dondapati

    2017-12-01

    Full Text Available Supercritical fluid technology finds its application in almost all engineering aspects in one or other way. Technology of clean jet fuel combustion is also seeing supercritical fluids as one of their contender in order to mitigate the challenges related to global warming and health issues occurred due to unwanted emissions which are found to be the by-products in conventional jet engine combustion. As jet fuel is a blend of hundred of hydrocarbons, thus estimation of chemical kinetics and emission characteristics while simulation become much complex. Advancement in supercritical jet fuel combustion technology demands reliable property statistics of jet fuel as a function temperature and pressure. Therefore, in the present work one jet fuel surrogate (n-dodecane which has been recognized as the constituent of real jet fuel is studied and thermophysical properties of each is evaluated in the supercritical regime. Correlation has been developed for two transport properties namely density and viscosity at the critical pressure and over a wide range of temperatures (TC + 100 K. Further, to endorse the reliability of the developed correlation, two arithmetical parameters have been evaluated which illustrates an outstanding agreement between the data obtained from online NIST Web-Book and the developed correlation.

  19. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-02-15

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.

  20. L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bernert, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Fischer, R. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lehnen, M. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); McCormick, K.; Müller, H.W.; Sieglin, B. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Stamp, M.F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Bonnin, X. [LSPM, CNRS, Université Paris 13, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Reiter, D.; Brezinsek, S. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany)

    2013-07-15

    The presently favoured option for reactor power handling combines metallic plasma-facing components and impurity seeding to achieve highly radiative scrape-off layer and divertor plasmas. It is uncertain whether tolerable divertor power loads will be obtained in this scenario, necessitating the development of predictive modelling tools. L-mode experiments with N{sub 2} seeding have been conducted at both ASDEX Upgrade and JET for benchmarking the critically important impurity radiation models in edge fluid codes. In both machines, particle and power loads are observed to first reduce at the inner target, and only then at the outer target. The outer divertor cools down with increasing N seeding rate, evolving from low-recycling conditions to a regime with peak temperature of 8–10 eV in both devices. First SOLPS5.0 simulations of N{sub 2} seeding in ASDEX Upgrade geometry show a similar in–out asymmetry in the effect of impurity radiation when drifts are activated in the simulations.

  1. Assimilation of time-averaged observations in a quasi-geostrophic atmospheric jet model

    Huntley, Helga S. [University of Washington, Department of Applied Mathematics, Seattle, WA (United States); University of Delaware, School of Marine Science and Policy, Newark, DE (United States); Hakim, Gregory J. [University of Washington, Department of Atmospheric Sciences, Seattle, WA (United States)

    2010-11-15

    The problem of reconstructing past climates from a sparse network of noisy time-averaged observations is considered with a novel ensemble Kalman filter approach. Results for a sparse network of 100 idealized observations for a quasi-geostrophic model of a jet interacting with a mountain reveal that, for a wide range of observation averaging times, analysis errors are reduced by about 50% relative to the control case without assimilation. Results are robust to changes to observational error, the number of observations, and an imperfect model. Specifically, analysis errors are reduced relative to the control case for observations having errors up to three times the climatological variance for a fixed 100-station network, and for networks consisting of ten or more stations when observational errors are fixed at one-third the climatological variance. In the limit of small numbers of observations, station location becomes critically important, motivating an optimally determined network. A network of fifteen optimally determined observations reduces analysis errors by 30% relative to the control, as compared to 50% for a randomly chosen network of 100 observations. (orig.)

  2. Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    Hardee, Philip; Rosen, Alexander

    2002-01-01

    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could de...

  3. Application of low Reynolds number k-{epsilon} turbulence models to the study of turbulent wall jets

    Kechiche, Jamel; Mhiri, Hatem [Laboratoire de Mecanique des Fluides et Thermique, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5000, Monastir (Tunisia); Le Palec, Georges; Bournot, Philippe [Institut de Mecanique de Marseille, 60, rue Joliot-Curie, Technopole de Chateau-Gombert, 13453 cedex 13, Marseille (France)

    2004-02-01

    In this work, we use closure models called ''low Reynolds number k-{epsilon} models'', which are self-adapting ones using different damping functions, in order to explore the computed behavior of a turbulent plane two-dimensional wall jets. In this study, the jet may be either isothermal or submitted to various wall boundary conditions (uniform temperature or a uniform heat flux) in forced convection regime. A finite difference method, using a staggered grid, is employed to solve the coupled governing equations with the inlet and the boundary conditions. The predictions of the various low Reynolds number k-{epsilon} models with standard or modified C{sub {mu}} adopted in this work were presented and compared with measurements and numerical results found in the literature. (authors)

  4. Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code

    Unterberg, B; Kalupin, D; Tokar', M Z; Corrigan, G; Dumortier, P; Huber, A; Jachmich, S; Kempenaars, M; Kreter, A; Messiaen, A M; Monier-Garbet, P; Ongena, J; Puiatti, M E; Valisa, M; Hellermann, M von

    2004-01-01

    Self-consistent modelling of energy and particle transport of the plasma background and impurities has been performed with the code RITM for argon seeded high density H-mode plasmas in JET. The code can reproduce both the profiles in the plasma core and the structure of the edge pedestal. The impact of argon on core transport is found to be small; in particular, no significant change in confinement is observed in both experimental and modelling results. The same transport model, which has been used to reproduce density peaking in the radiative improved mode in TEXTOR, reveals a flat density profile in Ar seeded JET H-mode plasmas in agreement with the experimental observations. This behaviour is attributed to the rather flat profile of the safety factor in the bulk of H-mode discharges

  5. Modeling of spreading of the melted corium jet inside the pool of emergency heat removal during severe accidents at NPP

    I. V. Kazachkov

    2012-03-01

    Full Text Available Important nuclear power safety problem in touch with modeling of melted corium jet spreading inside the coolant pool is considered in the paper. It appears by development of the passive protection systems against se-vere accidents. The non-linear mathematical developed model is presented for the jet under reactor vessel pool for one of the perspective passive protection systems and the results of its analysis and studies are given. The performed analysis and the results of the numerical simulation done on the base of the model have allowed estab-lishing the interesting behaviors of the system, which may be useful for the scientists, as well as the engineers-constructors of the passive protection systems against severe accidents.

  6. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  7. Modeling and analysis of the impacts of jet lag on circadian rhythm and its role in tumor growth

    Azka Hassan

    2018-06-01

    Full Text Available Circadian rhythms maintain a 24 h oscillation pattern in metabolic, physiological and behavioral processes in all living organisms. Circadian rhythms are organized as biochemical networks located in hypothalamus and peripheral tissues. Rhythmicity in the expression of circadian clock genes plays a vital role in regulating the process of cell division and DNA damage control. The oncogenic protein, MYC and the tumor suppressor, p53 are directly influenced by the circadian clock. Jet lag and altered sleep/wake schedules prominently affect the expression of molecular clock genes. This study is focused on developing a Petri net model to analyze the impacts of long term jet lag on the circadian clock and its probable role in tumor progression. The results depict that jet lag disrupts the normal rhythmic behavior and expression of the circadian clock proteins. This disruption leads to persistent expression of MYC and suppressed expression of p53. Thus, it is inferred that jet lag altered circadian clock negatively affects the expressions of cell cycle regulatory genes and contribute in uncontrolled proliferation of tumor cells.

  8. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    Yuan, Dawei; Li, Yutong; Lu, Xin; Yin, Chuanlei; Su, Luning; Liao, Guoqian; Zhang, Jie; Wu, Junfeng; Wang, Lifeng; He, Xiantu; Zhong, Jiayong; Wei, Huigang; Zhang, Kai; Han, Bo; Zhao, Gang; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhu, Jianqiang

    2015-01-01

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in the laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model

  9. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA

    Manning, Gerald S., E-mail: jerrymanning@rcn.com [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087 (United States)

    2015-09-14

    We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.

  10. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA

    Manning, Gerald S.

    2015-09-01

    We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity—a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.

  11. Scrape-off layer based modelling of the density limit in beryllated JET limiter discharges

    Borrass, K.; Campbell, D.J.; Clement, S.; Vlases, G.C.

    1993-01-01

    The paper gives a scrape-off layer based interpretation of the density limit in beryllated JET limiter discharges. In these discharges, JET edge parameters show a complicated time evolution as the density limit is approached and the limit is manifested as a non-disruptive density maximum which cannot be exceeded by enhanced gas puffing. The occurrence of Marfes, the manner of density control and details of recycling are essential elements of the interpretation. Scalings for the maximum density are given and compared with JET data. The relation to disruptive density limits, previously observed in JET carbon limiter discharges, and to density limits in divertor discharges is discussed. (author). 18 refs, 10 figs, 1 tab

  12. Helical Tomotherapy Quality Assurance

    Balog, John; Soisson, Emilie

    2008-01-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed

  13. Deformations of free jets

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  14. Large psub(T) hadronic multiplicity in a two-jet model

    Aurenche, P.; Bopp, F.W.; Mestres, L.G.

    1978-01-01

    Using a standard parametrization of large psub(T) scattering and assuming the hard subprocess is mediated by a color octet exchange which produces two universally decaying high mass color singlet jets, the s and psub(T) dependence of the associated multiplicity is obtained. Good agreement with ISR data is found with a jet density of 1.1 charged particle per unit of rapidity. (Auth.)

  15. Deciphering jet quenching with JEWEL

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  16. Determining How Magnetic Helicity Injection Really Works

    Paul M Bellan

    2001-01-01

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments

  17. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two

  18. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Durodié, Frédéric; Dumortier, Pierre; Helou, Walid; Křivská, Alena; Lerche, Ernesto

    2015-12-01

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  19. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); Dumortier, Pierre; Lerche, Ernesto [LPP-ERM/KMS, TEC Partner, Brussels (Belgium); JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Helou, Walid [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Collaboration: EUROfusion Consortium

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. At the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and

  20. Jet physics in ATLAS

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  1. COREDIV modelling of JET ILW discharges with different impurity seeding: nitrogen, neon, argon and krypton

    Ivanova-Stanik Irena

    2017-03-01

    Full Text Available Numerical simulations with the COREDIV code of JET H-mode discharges with 25 MW of auxiliary heating in the ITER-like wall (ILW configuration with different impurity seedings – nitrogen (N, neon (Ne, argon (Ar and krypton (Kr – are presented. All simulations have been performed with the same transport model and input discharge parameters like auxiliary heating, volume average plasma density, confinement factor. Only the seeded impurity puff rate was changed in the calculations. It appears that for the considered heating power of 25 MW and relatively low volume electron average density = 6.2 × 1019 m−3, impurity seeding is necessary. It has been found that for every gas at the maximum level of the seeding rate, allowed by the code convergence, the power to the plate is reduced up to 2–4 MW, with electron temperature at the plate of about 2 eV, indicating semi-detached conditions in the divertor region. It should be noted, however, that in cases with low and medium Z impurity (N, Ne and Ar, tungsten radiation is a significant part of radiation losses and stays above 22–32% of the total energy losses, but for high Z impurity (Kr it is reduced up to 10% of the total losses. The maximum of the Kr radiation is between the pedestal region and separatrix, showing that radiative mantle can be created, which might have a strong influence on the plasma parameters in the pedestal region.

  2. Stochastic model of the near-to-injector spray formation assisted by a high-speed coaxial gas jet

    Gorokhovski, M [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS-Ecole Centrale de Lyon-INSA Lyon-Universite Claude Bernard Lyon 1, 36 Avenue Guy de Collongue, 69131 Ecully Cedex (France); Jouanguy, J [Laboratoire de Mecanique de Lille, Ecole Centrale de Lille, Blvd Paul Langevin, 59655 Villeneuve d' Ascq Cedex (France); Chtab-Desportes, A [CD-adapco, 31 rue Delizy 93698 Pantin Cedex (France)], E-mail: mikhael.gorokhovski@ec-lyon.fr

    2009-06-01

    The stochastic model of spray formation in the vicinity of the air-blast atomizer has been described and assessed by comparison with measurements. In this model, the 3D configuration of a continuous liquid core is simulated by spatial trajectories of specifically introduced stochastic particles. The stochastic process is based on the assumption that due to a high Weber number, the exiting continuous liquid jet is depleted in the framework of statistical universalities of a cascade fragmentation under scaling symmetry. The parameters of the stochastic process have been determined according to observations from Lasheras's, Hopfinger's and Villermaux's scientific groups. The spray formation model, based on the computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region, is combined with the large-eddy simulation (LES) in the coaxial gas jet. Comparison with measurements reported in the literature for different values of the gas-to-liquid dynamic pressure ratio showed that the model predicts correctly the distribution of liquid in the close-to-injector region, the mean length of the liquid core, the spray angle and the typical size of droplets in the far field of spray.

  3. Employing Helicity Amplitudes for Resummation

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  4. Numerical modelling of heat transfer in a cavity due to liquid jet impingement for liquid supported stretch blow moulding

    Smyth, Trevor; Menary, Gary; Geron, Marco

    2018-05-01

    Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.

  5. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    Guillemaut, Christophe

    2013-01-01

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author) [fr

  6. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature

  7. Studies of b-jets reconstruction and identification in LHCb experiment in order to determine its sensibility to a standard model Higgs decaying in bb-bar pairs

    Coco, Victor

    2008-01-01

    LHCb sensitivity to a standard model Higgs in the H + (W, Z) → bb-bar + (ll-bar, ν l l) channel has been studied. Different effects affecting jet reconstruction have been studied at generator and full simulation of the detector level. After correction di-b-jet, mass resolution is σ m /m moyen = 22%. b-jet identification procedure has been set up, selecting ∼ 80% of b-jets while rejecting ∼ 99.5% of other jets. After reducing the bb-bar + l physical background, a statistical significance of 1 is obtained for 4 years of data taking at a luminosity of 5.10 32 cm -2 s -1 . (author)

  8. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  9. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap

    Kyriakou, Marilena; Missirlis, Dimitrios; Yakinthos, Kyros

    2010-01-01

    The flow development over delta wings is highly complicated since the interaction of the angle of attack with the delta-wing geometry leads to the appearance of a pair of well-organized counter-rotating leading-edge vortical structures. For relatively moderate angles of attack, these vortices remain robust and contribute to the enhancement of the overall lift performance. However, at higher angles of attack the vortices develop instabilities leading to the well-known vortex breakdown phenomenon, resulting in a deterioration of the aerodynamic properties. Thus, delaying vortex breakdown at higher angles of attack, is important and for this reason various techniques have been developed to control the breakdown mechanism. Such a technique is the use of trailing-edge jet-flaps. In the present work, an attempt to model the vortex breakdown together with its control, above a delta wing at high angles of attack, for cases with and without a trailing-edge jet-flap, is presented. To model the turbulent stresses, the low-Reynolds-number stress-omega model was used. The computational results were in good agreement with the available experimental data regarding the prediction of the onset of vortex breakdown and showed that the use of jet-flaps can lead to a significant delay of the breakdown process.

  10. Flexible helical yarn swimmers.

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  11. LHD helical divertor

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  12. Taking the lag out of jet lag through model-based schedule design.

    Dean, Dennis A; Forger, Daniel B; Klerman, Elizabeth B

    2009-06-01

    Travel across multiple time zones results in desynchronization of environmental time cues and the sleep-wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep-wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep-wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep-wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep-wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions.

  13. Taking the lag out of jet lag through model-based schedule design.

    Dennis A Dean

    2009-06-01

    Full Text Available Travel across multiple time zones results in desynchronization of environmental time cues and the sleep-wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep-wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep-wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep-wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep-wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions.

  14. Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes

    I Balagansky

    2017-09-01

    Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.

  15. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  16. Linear local stability of electrostatic drift modes in helical systems

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  17. Appendix to the thesis an experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfirestop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. This is a separate appendix volume, including computer codes and simulated results. 316 figs., 11 tabs.

  18. Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak

    Kikuchi, Y; Finken, K H; Jakubowski, M; Lehnen, M; Reiser, D; Sewell, G; Wolf, R C

    2006-01-01

    The error-field penetration process of the dynamic ergodic divertor (DED) on the TEXTOR tokamak has been investigated analytically in terms of a single fluid MHD model with a finite plasma resistivity and viscosity in a cylindrical geometry. The linear model produces a localization of the induced current at the resonance surface and predicts a vortex structure of the velocity field near the resonance layer. Moreover, effects of the Alfven resonance for the error-field penetration are identified by two peaks in the radial profiles of the perturbed toroidal current and the perturbed magnetic flux when the relative rotation velocity between the DED and the rotating tokamak plasma is set to large. Fine structures of the vorticity induced by the DED in the vicinity of the rational surface disappear by introducing a finite plasma perpendicular viscosity. In addition, it is shown that the two peaks of the perturbed toroidal current overlap by an anomalous plasma perpendicular viscosity. Likewise, a bifurcation of the penetration process from the suppressed to the excited state is obtained by a quasi-linear approach taking into account modifications of the radial profiles of the equilibrium current and the plasma rotation due to the DED. A comparison with real experimental results of the DED on the TEXTOR tokamak is shown

  19. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  20. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  1. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  2. Consequences of non-uniformity in the stoichiometry of component fractions within one and two loops models of alpha-helical peptides

    Atoms in biomolecular structures like alpha helices contain an array of distances and angles which include abundant multiple patterns of redundancies. Thus all peptides backbones contain the three atom sequence N-C*C, whereas the repeating set of a four atom sequences (N-C*C-N, C*-C-N-C*, and C-N-C...

  3. Effect of the aminoacid composition of model α-helical peptides on the physical properties of lipid bilayers and peptide conformation: a molecular dynamics simulation

    Melicherčík, Milan; Holúbeková, A.; Hianik, T.; Urban, J.

    2013-01-01

    Roč. 19, č. 11 (2013), s. 4723-4730 ISSN 1610-2940 Institutional support: RVO:67179843 Keywords : Bilayer lipid membranes * Helical peptides * Molecular dynamics simulations * Phase transitions Subject RIV: BO - Biophysics Impact factor: 1.867, year: 2013

  4. Splatter during jet irrigation cleansing of a wound model: a comparison of three inexpensive devices.

    Pigman, E C; Karch, D B; Scott, J L

    1993-10-01

    Pressurized jet irrigation is commonly used to cleanse traumatic wounds but results in splatter of blood, a biohazard. Three inexpensive irrigation devices were compared to assess the degree of splatter produced: a 1.25-in. 18-gauge angiocath, an Irrijet Irrigation System with a 12.7-cm splash shield, and a Zerowet Splashield held directly against the wound (Zerowet-C) and held 4 to 10 cm from the wound, an incorrect technique (Zerowet-I). A standard laceration was created in pieces of beef. This wound model was placed 1 m from the floor. Paper grid sheets were placed on the irrigator's face and chest. Six grid sheets were suspended at the 9:00, 12:00, and 3:00 positions 1 m from the wound model and 1 and 1.5 m from the floor to simulate exposure to nearby individuals. Two grid sheets were placed flat on the floor, at the 10:30 and 1:30 positions, 1 m from the base of the wound model stand. The study area was contained in a 3 x 2 x 2 m plastic sheet enclosure to prevent air drafts. Ten irrigations were performed with the angiocath, Irrijet, Zerowet-I, and Zerowet-C. Each run used 200 mL methylene blue solution delivered with a 50-mL syringe by one-hand pressure. The methylene blue splatter on each of the grids was counted by size (diameter, less than 1 mm, more than 1 mm and less than 5 mm, more than 5 mm and less than 10 mm, and more than 10 mm). There was significantly less splatter onto the irrigator's face and chest with Irrijet, Zerowet-I, and Zerowet-C. No facial splatter occurred with Zerowet-C. There was significantly less splatter at the 9:00 and 12:00 positions at both heights, and on the floor with Irrijet, Zerowet-I, and Zerowet-C. Less significant splatter difference was noted at the 3:00 position. Irrijet, Zerowet-I, and Zerowet-C were superior to the angiocath in preventing splatter during this wound model irrigation. The correct use of Zerowet (Zerowet-C) was particularly effective in preventing splatter onto the irrigator's face.

  5. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    Rachidi, Mariam El; Thion, Sé bastien; Togbé , Casimir; Dayma, Guillaume; Mehl, Marco; Dagaut, Philippe; Pitz, William J.; Zá dor, Judit; Sarathy, Mani

    2016-01-01

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  6. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    Rachidi, Mariam El

    2016-06-23

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  7. Using neural networks with jet shapes to identify b jets in e+e- interactions

    Bellantoni, L.; Conway, J.S.; Jacobsen, J.E.; Pan, Y.B.; Wu Saulan

    1991-01-01

    A feed-forward neural network trained using backpropagation was used to discriminate between b and light quark jets in e + e - → Z 0 → qanti q events. The information presented to the network consisted of 25 jet shape variables. The network successfully identified b jets in two- and three-jet events modeled using a detector simulation. The jet identification efficiency for two-jet events was 61% and the probability to call a light quark jet a b jet equal to 20%. (orig.)

  8. Electric Currents along Astrophysical Jets

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  9. Theoretical aspects of magnetic helicity

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  10. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  11. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  12. Jets and QCD

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  13. Jets and QCD

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  14. Finding the 3-gluon vertex from 4-jet events in e+e- annihilation

    Bengtsson, M.

    1988-05-01

    Although the 3-gluon coupling is a necessary ingredient for QCD to be asymptotically free, conclusive experimental evidence is still lacking. We make here a comprehensive and systematic study of the possibilities of finding it in e + e - annihilation at the Z 0 resonance. Emphasis is put on observables of 4-jet events which are sensitive to the specific helicity structure of the processes g → gg and g → qanti q. These observables give a quantitative and qualitative difference between QCD and abelian models, making it straightforward to confirm the nonabelian nature of the theory of strong interactions. (orig.)

  15. Comparative Influences of Fluid and Shell on Modeled Ejection Performance of a Piezoelectric Micro-Jet

    Kai Li

    2017-01-01

    Full Text Available The piezoelectric micro-jet, which can achieve the drop-on-demand requirement, is based on ink-jet technology and small droplets can be ejected out by precise control. The droplets are driven out of the nozzle by the acoustic pressure waves which are generated by the piezoelectric vibrator. The propagation processes of the acoustic pressure waves are affected by the acoustic properties of the fluid and the shell material of the micro-jet, as well as the excitations and the structure sizes. The influences of the fluid density and acoustic velocity in the fluid on the nozzle pressure and support reaction force of the vibrator are analyzed in this paper. The effects of the shell material on the ejection performance are studied as well. In order to improve the ejection performance of the micro-jet, for ejecting a given fluid, the recommended methods of selecting the shell material and adjusting excitations are provided based on the results, and the influences of the factors on working frequencies are obtained as well.

  16. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  17. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors,

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that

  18. ITER-like current ramps in JET with ILW: experiments, modelling and consequences for ITER

    Hogeweij, G.M.D.; Calabrò, G.; Sips, A.C.C.; Maggi, C.F.; De Tommasi, G.M.; Joffrin, E.; Loarte, A.; Maviglia, F.; Mlynář, Jan; Rimini, F.G.; Pütterich, T.

    2015-01-01

    Roč. 55, č. 1 (2015), 013009-013009 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : tokamak * ramp-up * JET * ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/1/013009#metrics

  19. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  20. Pellet injectors for JET

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  1. Helicity multiplexed broadband metasurface holograms.

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  2. Laser Boost of a Small Interstellar Ram Jet to Obtain Operational Velocity. Implications for the DM Rocket/Ram Jet Model

    Walcott Beckwith, Andrew

    2010-05-01

    In other conference research papers, Beckwith obtained a maximum DM mass/energy value of up to 5 TeV, as opposed to 400 GeV for DM, which may mean more convertible power for a dark matter ram jet. The consequences are from assuming that axions are CDM, and KK gravitons are for WDM, then ρWarm-Dark-Matter would dominate not only structure formation in early universe formation, but would also influence the viability of the DM ram jet applications for interstellar travel. The increase in convertible DM mass makes the ram jet a conceivable option. This paper in addition to describing the scientific issues leading to that 5 TeV mass for DM also what are necessary and sufficient laser boost systems which would permit a ram net to become operational.

  3. Search for the Higgs Boson and Rare Standard Model Processes in the ET+B-Jets Signature at the Collider Detector at Fermilab

    Potamianos, Karolos Jozef [Purdue Univ., West Lafayette, IN (United States)

    2011-12-01

    We study rare processes of the standard model of particle physics (SM) in events with missing transverse energy ET, no leptons, and two or three jets, of which at least one is identified as originating from a $b$-quark (ET+b-jets signature). We present a search for the SM Higgs boson produced in association with a $W$ or $Z$ boson when the Higgs decays into \\bbbar. We consider the scenario where $Z \\to \

  4. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  5. Weaving Knotted Vector Fields with Tunable Helicity.

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  6. Research on effect of turbulence models for numerical simulation of temperature fluctuation caused by coaxial-jet flow

    Cao Qiong; Lu Daogang; Lu Jing

    2012-01-01

    The 3D temperature fluctuation phenomenon caused by the mixing of the coaxial-jet hot and cold fluids was simulated by Fluent software. Several special turbulence models were applied to prediction of this phenomenon, i.e. large eddy simulation model (LES), Reynolds stress model (RSM) and standard k-ω model. By the comparison of the computed data and experimental ones, it is shown that LES is capable of predicting the mixing process. LES model best predicts the time-averaged temperature in the radius, height and azimuth directions. Reynolds averaged Navier-Stokes method (RANS) predicts the extended mixing of the hot and cold fluids. It is also shown that the transient temperature fluctuations are accurately predicted by LES model, while those not by RANS. (authors)

  7. Energy and helicity of magnetic torus knots and braids

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  8. Helicity of the $W$ boson in single - lepton $t \\bar{t}$ events

    Canelli, Maria Florencia [Rochester U.

    2003-08-01

    We have applied a general approach for extracting information from data to a study of top quarks produced in proton-antiproton (pp) collisions in the process pp ! tt. This reaction can be calculated in the Standard Model (SM), in which the top (or antitop) quarks decay into b quarks and W bosons: t ! W+ b, t ! W b. We examine the decays of the W boson in these events in order to establish how the spin of the W correlates with its momentum vector. This is dened by the helicity of the W boson (pro jection of its spin along its line of ight), which is also predicted by the SM. The analysis is based on a direct calculation of a probability for each event as a function of the helicity of the W bosons in top-antitop events in the lepton+jets nal state. These events correspond to one W decaying into a lepton and its neutrino, and the other W into a quark-antiquark pair, with the quarks from the W and the two b quarks evolving into jets of particles. The probability is calculated by convoluting the dierential cross section with the resolution and acceptance of the detector. This measurement uses top quarks collected by the D experiment in 125 events/pb of data in pp collisions at p s=1.8 TeV during Run I of the Fermilab TeVatron. Assuming the \\V{A" coupling of the SM decay, we obtain a longitudinal helicity fraction of F0=0.560.31(stat)0.07(syst) for the W, which is consistent with the prediction of the Standard Model of F0=0.70 for a top-quark mass of 175 GeV/c2 . The method employed in this analysis oers the possibility of increasing statistical precision by using both of the decays of W bosons in these events. Also Monte Carlo studies indicate that the approach provides an unbiased result in the limit of poor statistics. Although our measurement is severely limited by the small event sample of Run I, this powerful technique will provide far greater sensitivity to any departures from the SM in the data anticipated from Run II.

  9. Numerical modeling and validation of helium jet impingement cooling of high heat flux divertor components

    Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai

    2009-01-01

    Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)

  10. Temperature distribution in the reactive jet of water vapor and liquid sodium - contribution to wastage modelling

    Roger, F.; Park, K.Y.; Carreau, J.L.; Gbahoue, L.; Hobbes, P.

    1984-08-01

    The possibility of water vapor leaks across the wall of one or more of the heat exchanger tubes in the steam generator constitutes one of the important problems of safety of the Fast Breeder Reactors cooled by sodium. The jet thus formed can, in fact, destroy the neighbouring tubes. The hydrodynamic, chemical and thermal factors play an important role in this phenomenon and only the last-mentionned will be studied here. The use of the integral method of analysis, complemented by an experimental study, shows that the temperature profiles are Gaussian; if the maximum temperature is less than that of the boiling point of sodium, i.e. 1155 K, and for steam flow rates less than 0,5g/s, the temperature profiles can be represented by the error function, and an approximate equation gives the difference in temperature between the jet axis and the radical far-field

  11. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting The Business Operating Model and How-To Manual for 450 Specific Applications

    Maasberg, Wolfgang

    2012-01-01

    Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting is the first proprietary manual for cleaning and rehabilitation through pressure-washing, hydro-blasting and ultra high pressure water jetting (UHP).   It examines the cleaning, restoration and rehabilitation of statuary and historical structures; manufacturing hardware; and application technologies for residential, commercial and industrial areas, structures and buildings. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting contains over 450 applications from agricultural, marine, municipal, food processing, paper-pulp, pharmaceutical and cosmetic, industrial and power generating maintenance areas. It includes gear lists to help readers easily identify the appropriate tooling and equipment for each specific application and industry.   Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting supplies readers with the tools to create a successful business model for re...

  12. Search for the Standard Model Higgs Boson in Leptons plus Jets Final States

    Nguyen, Huong [Univ. of Virginia, Charlottesville, VA (United States)

    2014-01-01

    Searches for SM Higgs boson production in the leptons plus jets final states with a data set corresponding to 9.7 fb-1 of $\\bar{p}$p collisions at √s = 1.96TeV collected by the DØ Experiment are presented in this thesis. The searches are carried out in two independent analyses, accounting for different signal topologies.

  13. New ALMA and Fermi /LAT Observations of the Large-scale Jet of PKS 0637−752 Strengthen the Case Against the IC/CMB Model

    Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Oteo, Iván; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Zwaan, Martin A.; Laing, Robert [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-München (Germany); Godfrey, Leith, E-mail: meyer@umbc.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2017-02-01

    The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements of the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.

  14. Field of a helical Siberian Snake

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  15. Regional Climate Modelling of the Western Iberian Low-Level Wind Jet

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Álvaro

    2016-04-01

    The Iberian coastal low-level jet (CLLJ) is one the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30% was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling and of CLLJs, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: 1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35% to approximately 50%; 2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia

  16. Dynamics of Newtonian annular jets

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  17. Measurement of top quark polarization in $t \\overline{t}$ lepton+jets final states

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Aushev, Volodymyr; Aushev, Yegor; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brochmann, Michelle; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Franc, Jiri; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stefaniuk, Nazar; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2017-01-09

    We present a study of top quark polarization in $t \\overline{t}$ events produced in $p \\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV. Data correspond to 9.7 fb$^{-1}$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $\\ell$+jets final states, and first measurement of transverse polarization in $t \\overline{t}$ production. The observed distributions are consistent with the standard model.

  18. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  19. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  20. Design windows and cost analysis on helical reactors

    Kozaki, Y.; Imagawa, S.; Sagara, A.

    2007-01-01

    The LHD type helical reactors are characterized by a large major radius but slender helical coil, which give us different approaches for power plants from tokamak reactors. For searching design windows of helical reactors and discussing their potential as power plants, we have developed a mass-cost estimating model linked with system design code (HeliCos), thorough studying the relationships between major plasma parameters and reactor parameters, and weight of major components. In regard to cost data we have much experience through preparing ITER construction. To compare the weight and cost of magnet systems between tokamak and helical reactors, we broke down magnet systems and cost factors, such as weights of super conducting strands, conduits, support structures, and winding unit costs, through estimating ITER cost data basis. Based on FFHR2m1 deign we considered a typical 3 GWth helical plant (LHD type) with the same magnet size, coil major radius Rc 14 m, magnetic energy 120 GJ, but increasing plasma densities. We evaluated the weight and cost of magnet systems of 3 GWth helical plant, the total magnet weights of 16,000ton and costs of 210 BYen, which are similar values of tokamak reactors (10,200 ton, 110 BYen in ITER 2002 report, and 21,900 ton, 275 BYen in ITER FDR1999). The costs of strands and winding occupy 70% of total magnet costs, and influence entire power plants economics. The design windows analysis and comparative economics studies to optimize the main reactor parameters have been carried out. Economics studies show that it is misunderstanding to consider helical coils are too large and too expensive to achieve power plants. But we should notice that the helical reactor design windows and economics are very sensitive to allowable blanket space (depend on ergodic layer conditions) and diverter configuration for decreasing heat loads. (orig.)

  1. Boosted jets

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  2. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  3. Simulation of a gas jet entering the secondary side of a steam generator during a SGTR sequence: Validation of a FLUENT 6.2 Model

    Lopez del Pra, C. Lopez, E-mail: Claudia.lopez@ciemat.e [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain); Velasco, F.J.S.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain)

    2010-09-15

    This paper summarizes the major insights gained as a result of gas jets entering a tube bundle from either a guillotine or a fish-mouth breach of a steam generator tube. This scenario is highly relevant in nuclear safety since it determines the potential retention of radioactive particles during risk-dominant sequences, the so-called Steam Generator Tube Rupture (SGTR) sequences. The scenario has been modeled with the FLUENT 6.2 code and its predictions have been proven to be grid independent and consistent with the experimental data available. The topology of the jets and the influence of the inlet mass flow rate (from 75 to 250 kg/h) have been studied in terms of velocity profiles. The results show that the breach shape heavily determines the jet topology. Both jets initially describe a quasi-parabolic trajectory, which is affected by the presence of the tubes. A guillotine breach generates a jet with azimuthal symmetry, which vanishes for the fish-mouth breach configuration. In this case, jet expands azimuthally in a pseudo-triangular way with a small angle. This fact diminishes the momentum loss across the bundle, so that for the same inlet mass flow rate the fish-mouth jet penetration is higher than the guillotine one. The normalized maximum radial and axial velocities of the jet from the guillotine breach are found to be self-similar with respect to inlet mass flow rate along the tube row position and axial distance to the breach, respectively. However, in absolute terms higher penetrations are found at higher mass flow rates.

  4. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  5. Heat loss by helicity injection in spheromaks

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  6. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  7. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Conroy, Sean [Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ghani, Zamir [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Lengar, Igor [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Milocco, Alberto; Packer, Lee [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Pillon, Mario [ENEA, Department of Fusion and Nuclear Safety Technology, I-00044 Frascati, Rome (Italy); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  8. VLBA AND CHANDRA OBSERVATIONS OF JETS IN FRI RADIO GALAXIES: CONSTRAINTS ON JET EVOLUTION

    Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K.

    2012-01-01

    We present here the results from new Very Long Baseline Array (VLBA) observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 Uppasala General Catalog (UGC) Fanaroff-Riley type I (FRI) radio galaxies. New Chandra data of two sources, viz., UGC 00408 and UGC 08433, are combined with the Chandra archival data of 13 sources. The 5 GHz observations of 10 'core-jet' sources are polarization-sensitive, while the 1.6 GHz observations constitute second-epoch total intensity observations of nine 'core-only' sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field 'shearing' due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity I ν falls with distance d from the core, following the relation, I ν ∝d a , where a is typically ∼ – 1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity 'dimming,' two limiting cases are considered: (1) the jet has a constant speed on parsec scales and is expanding gradually such that the jet radius r∝d 0 .4 ; this expansion is, however, unobservable in the laterally unresolved jets at 5 GHz, and (2) the jet is cylindrical and is accelerating on parsec scales. Accelerating parsec-scale jets are consistent with the phenomenon of 'magnetic driving' in Poynting-flux-dominated jets. While slow jet expansion as predicted by case (1) is indeed observed in a few sources from the literature that are resolved laterally, on scales of tens or hundreds of parsecs, case (2) cannot be ruled out in the present data, provided the jets become conical on scales larger than those probed by VLBA. Chandra observations of 15 UGC FRIs detect X-ray jets in 9 of them. The high frequency of occurrence of X

  9. Transport barrier in Helical system

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  10. Generalized helicity and Beltrami fields

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  11. Generalized helicity and Beltrami fields

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  12. Toroidal helical quartz forming machine

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  13. A numerical study of the stabilitiy of helical vortices using vortex methods

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  14. A numerical study of the stabilitiy of helical vortices using vortex methods

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  15. Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA

    2018-01-01

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  16. Modeling of ICRH H-minorit driven n = 1 Resonant Modes in JET

    Gorelenkov, N.N.; Mantsinen, M.J.; Sharapov, S.E.; Cheng, C.Z.

    2003-01-01

    A nonperturbative code NOVA-KN (Kinetic Nonperturbative) has been developed to account for finite orbit width (FOW) effects in nonperturbative resonant modes such as the low-frequency MHD modes observed in the Joint European Torus (JET). The NOVA-KN code was used to show that the resonant modes with frequencies in the observed frequency range are ones having the characteristic toroidal precession frequency of H-minority ions. Results are similar to previous theoretical studies of fishbone instabilities, which were found to exist at characteristic precession frequencies of hot ions

  17. Resonant helical fields in tokamaks

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  18. Helical system. History and current state of helical research

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  19. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  20. A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy

    Bui, Van-Hung; Gilles, Patrick; Cohen, Guillaume; Rubio, Walter

    2018-05-01

    The use of titanium alloys in the aeronautical and high technology domains is widespread. The high strength and the low mass are two outstanding characteristics of titanium alloys which permit to produce parts for these domains. As other hard materials, it is challenging to generate 3D surfaces (e.g. pockets) when using conventional cutting methods. The development of Abrasive Water Jet Machining (AWJM) technology shows the capability to cut any kind of materials and it seems to be a good solution for such titanium materials with low specific force, low deformation of parts and low thermal shocks. Applying this technology for generating 3D surfaces requires to adopt a modelling approach. However, a general methodology results in complex models due to a lot of parameters of the machining process and based on numerous experiments. This study introduces an extended geometry model of an elementary pass when changing the firing angle during machining Ti-6AL-4V titanium alloy with a given machine configuration. Several experiments are conducted to observe the influence of major kinematic operating parameters, i.e. jet inclination angle (α) (perpendicular to the feed direction) and traverse speed (Vf). The material exposure time and the erosion capability of abrasives particles are affected directly by a variation of the traverse speed (Vf) and firing angle (α). These variations lead to different erosion rates along the kerf profile characterized by the depth and width of cut. A comparison demonstrated an efficiency of the proposed model for depth and width of elementary passes. Based on knowledge of the influence of both firing angle and traverse speed on the elementary pass shape, the proposed model allows to develop the simulation of AWJM process and paves a way for milling flat bottom pockets and 3D complex shapes.

  1. Controllable helical deformations on printed anisotropic composite soft actuators

    Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi

    2018-04-01

    Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

  2. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  3. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  4. Experimental validation of an analytical kinetic model for edge-localized modes in JET-ITER-like wall

    Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET

    2018-06-01

    The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.

  5. Parameterization and measurements of helical magnetic fields

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  6. ICRF heating on helical devices

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  7. ICRF heating on helical devices

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  8. The helical tomotherapy thread effect

    Kissick, M.W.; Fenwick, J.; James, J.A.; Jeraj, R.; Kapatoes, J.M.; Keller, H.; Mackie, T.R.; Olivera, G.; Soisson, E.T.

    2005-01-01

    Inherent to helical tomotherapy is a dose variation pattern that manifests as a 'ripple' (peak-to-trough relative to the average). This ripple is the result of helical beam junctioning, completely unique to helical tomotherapy. Pitch is defined as in helical CT, the couch travel distance for a complete gantry rotation relative to the axial beam width at the axis of rotation. Without scattering or beam divergence, an analytical posing of the problem as a simple integral predicts minima near a pitch of 1/n where n is an integer. A convolution-superposition dose calculator (TomoTherapy, Inc.) included all the physics needed to explore the ripple magnitude versus pitch and beam width. The results of the dose calculator and some benchmark measurements demonstrate that the ripple has sharp minima near p=0.86(1/n). The 0.86 factor is empirical and caused by a beam junctioning of the off-axis dose profiles which differ from the axial profiles as well as a long scatter tail of the profiles at depth. For very strong intensity modulation, the 0.86 factor may vary. The authors propose choosing particular minima pitches or using a second delivery that starts 180 deg off-phase from the first to reduce these ripples: 'Double threading'. For current typical pitches and beam widths, however, this effect is small and not clinically important for most situations. Certain extremely large field or high pitch cases, however, may benefit from mitigation of this effect

  9. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  10. Tracing the Jet Contribution to the Mid-IR over the 2005 Outburst of GRO J1655-40 via Broadband Spectral Modeling

    Migliari, S.; Tomsick, J. A.; Markoff, S.; Kalemci, E.; Bailyn, C. D.; Buxton, M.; Corbel, S; Fender, R. P.; Kaaret, P.

    2007-01-01

    We present new results from a multi-wavelength (radio/infrared/optical/X-ray) study of the black hole Xray binary GRO 51655-40 during its 2005 outburst. We detected, for the first time, mid-infrared emission at 24 micron from the compact jet of a black hole X-ray binary during its hard state, when the source shows emission from a radio compact jet, as well as a strong non-thermal hard X-ray component. These detections strongly constrain the optically thick part of the synchrotron spectrum of the compact jet, which is consistent with it being flat over 4 orders of magnitude in frequency. Moreover, using this unprecedented coverage, and especially thanks to the new Spitzer observations, we can test broadband disk and jet models during the hard state. Two of the hard-state broadband spectra are reasonably well fitted using a jet model with parameters that overall are similar to those previously found for Cyg X-1 and GX 339-4. Differences are also present; most notably, the jet power in GRO J1655-40 appears to be a factor of at least approximately 3-5 higher (depending on the distance) than those of Cyg X-1 and GX-339-4 at comparable disk luminosities. Furthermore, a few discrepancies between the model and the data, previously not found for the other two black hole systems for which there was no mid-IR/IR and optical coverage, are evident, and will help to constrain and refine theoretical models.

  11. Numerical Modeling of a Jet Ignition Direct Injection (JI DI LPG Engine

    Albert Boretti

    2017-01-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel. 

  12. Structural analysis of compression helical spring used in suspension system

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  13. Geometric analysis of alloreactive HLA α-helices.

    Ribarics, Reiner; Karch, Rudolf; Ilieva, Nevena; Schreiner, Wolfgang

    2014-01-01

    Molecular dynamics (MD) is a valuable tool for the investigation of functional elements in biomolecules, providing information on dynamic properties and processes. Previous work by our group has characterized static geometric properties of the two MHC α-helices comprising the peptide binding region recognized by T cells. We build upon this work and used several spline models to approximate the overall shape of MHC α-helices. We applied this technique to a series of MD simulations of alloreactive MHC molecules that allowed us to capture the dynamics of MHC α-helices' steric configurations. Here, we discuss the variability of spline models underlying the geometric analysis with varying polynomial degrees of the splines.

  14. Helicity amplitudes and electromagnetic decays of hyperon resonances

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  15. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  16. COMPARISON OF EXPERIMENTS TO CFD MODELS FOR MIXING USING DUAL OPPOSING JETS IN TANKS WITH AND WITHOUT INTERNAL OBSTRUCTIONS

    Leishear, R.; Poirier, M.; Lee, S.; Fowley, M.

    2012-06-26

    This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending times during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet

  17. Experiments on the CMB Spectrum, Big Jets Model and Their Implications for the Missing Half of the Universe

    Hsu Leonardo

    2018-01-01

    Full Text Available Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.

  18. Search for the standard model Higgs boson in $e^{+}e^{-}$ four- jet topology using neural networks and discriminant analysis

    Mjahed, M

    2003-01-01

    We present an attempt to separate between Higgs boson events (e/sup + /e/sup -/ to ZH to qqbb) and other physics processes in the 4-jet channel (e/sup +/e/sup -/ to Z/ gamma , W/sup +/W, ZZ to 4jets), using the discriminant analysis and neural networks methods. Events were produced at LEP2 energies, using the Lund Monte Carlo generator and the Aleph package. The most discriminant variables as the reconstructed jet mass, the jet properties (b-tag, rapidity weighted moments) and other variables are used. (8 refs).

  19. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission.

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-06-27

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November-February and along the West Saharan and Mauritanian coast for April-September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394.

  20. Particle-in-cell simulation of helical structure onset in plasma fiber with dust grains

    Kulhanek, Petr; Bren, David; Kaizr, Vaclav; Pasek, Jan

    2002-01-01

    Fully three dimensional PIC program package for the helical pinch numerical simulation was developed in our department. Both electromagnetic and gravitational interactions are incorporated into the model. Collisions are treated via Monte Carlo methods. The program package enabled to prove the conditions of onset of spiral and helical structures in the pinch

  1. What Helicity Can Tell Us about Solar Magnetic Fields Alexei A ...

    Concept of magnetic/current helicity was introduced to solar physics about 15 ... represented by a thin flux tube model with flux , one can show that magnetic helicity,. Hm = (2π). −1 2 ... For example, spiral pattern of filaments forming sunspot ...

  2. Generalized helicity and its time derivative

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  3. Identifying Jets Using Artifical Neural Networks

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  4. Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating

    Tardocchi, M.; Gorini, G.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Kaellne, J.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Johnson, T.; Lamalle, P. U.

    2006-01-01

    The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T HE ). This article addresses to what extent the T HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory

  5. MULTI-WAVELENGTH POLARIMETRY AND SPECTRAL STUDY OF THE M87 JET DURING 2002–2008

    Avachat, Sayali S.; Perlman, Eric S. [Department of Physics and Space Sciences, 150 W. University Boulevard, Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30605 (United States); Cara, Mihai; Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Owen, Frazer [National Radio Astronomy Observatory, Array Operations Center, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2016-11-20

    We present a multi-wavelength polarimetric and spectral study of the M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with Hubble Space Telescope ( HST ) imaging polarimetry. These observations have better angular resolution than previous work by factors of 2–3 and in addition, allow us to explore the time domain. These observations envelop the huge flare in HST-1 located 0.″86 from the nucleus. The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as showing filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models; however, they require additional combinations of features to explain the observed complexity, e.g., shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features.

  6. Simultaneous real-time control of the current and pressure profiles in JET: experiments and modelling

    Mazon, D.; Laborde, L.; Litaudon, X.; Moreau, D.; Zabeo, L.; Joffrin, E. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Murari, A. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Ariola, M.; Albanese, R.; Tommasi, G. de; Pironti, A. [Association Euratom-ENEA, CREATE, Napoly (Italy); Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Tala, T. [Euratom-Tekes Association, VTT Processes (Finland); Crisanti, F.; Pericoli-Ridolfini, V.; Tuccillo, A. [Association Euratom-ENEA, C.R. Frascati (Italy); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); De la Luna, E. [Euratom-Ciemat Association (Spain); Felton, R.; Corrigan, G. [Euratom-UKAEA Association, Culham Science Centre, Abingdon (United Kingdom)

    2004-07-01

    Real-time control of the plasma profiles (current density, pressure and flow) is one of the major issues for sustaining internal transport barriers (ITB) in a high performance plasma, with a large bootstrap current fraction. We have recently investigated the experimental and numerical aspects of the simultaneous control of the current and pressure profiles in JET ITB discharges. The current density and the electron temperature were successfully controlled via the safety factor profile (or via its inverse the tau-profile) and the {rho}{sup *}{sub Te} profile respectively. The results of these new studies are presented. With only a limited number of actuators, the technique aims at minimizing an integral square error signal which combines the 2 profiles, rather than attempting to control plasma parameters at some given radii with great precision. The resulting fuzziness of the control scheme allows the plasma to relax towards a physically accessible non-linear state which may not be accurately known in advance, but is close enough to the requested one to provide the required plasma performance. Closed loop experiments have allow to reach different target q and {rho}{sup *}{sub Te} profiles, and to some degree, to displace the region of maximum electron temperature gradient. The control has also shown some robustness in front of rapid transients.

  7. CORONA, JET, AND RELATIVISTIC LINE MODELS FOR SUZAKU/RXTE/CHANDRA-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE

    Nowak, Michael A.; Trowbridge, Sarah N.; Davis, John E.; Hanke, Manfred; Wilms, Joern; Markoff, Sera B.; Maitra, Dipankar; Tramper, Frank; Pottschmidt, Katja; Coppi, Paolo

    2011-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard 'low states'. Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the 'focused wind' from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2 . All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2 .

  8. A helical scintillating fiber hodoscope

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  9. Helical CT of ureteral disease

    Cikman, Pablo; Bengio, Ruben; Bulacio, Javier; Zirulnik, Esteban; Garimaldi, Jorge

    2000-01-01

    Among the new applications of helical CT is the study of the ureteral pathology. The objective of this paper was to evaluate patients with suspected pathology of this organ and the repercussion in the therapeutic plans. We studied 23 patients with a helical CT protocol, without IV contrast injection and performed multiplanar reconstruction (MPR). We called this procedure Pielo CT. Thirteen ureteral stones were detected, 6 calculi, 2 urinary tract tumors, dilatation of the system in a patient with neo-bladder. In 2 patients, in whom ureteral pathology was ruled out, we found other alterations that explained the symptoms, (gallbladder stones, disk protrusion). The Pielo CT let decide a therapeutical approach in 20 or 21 patients with ureteral pathology. (author)

  10. Theory of dynamics in long pulse helical plasmas

    Itoh, K.; Sanuki, H.; Toda, S.; Yokoyama, M.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    2001-01-01

    Self-organized dynamics of toroidal helical plasma, which is induced by the nonlinear transport property, is discussed. Neoclassical ripple diffusion is a dominant mechanism that drives the radial electric field. The bifurcation nature of the electric field generation gives rise to the electric field domain interface, across which the electric field changes strongly. This domain interface is an origin of internal transport barrier in helical systems. This nonlinearity gives rise to the self-organized oscillations; the electric field pulsation is one of the examples. Based on the model of density limit, in which the competition between the transport loss and radiation loss is analyzed, dynamics near the density limit of helical systems is also discussed. (author)

  11. Helicity formalism and spin effects

    Anselmino, M.; Caruso, F.; Piovano, U.

    1990-01-01

    The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)

  12. Radiation characteristics of helical tomotherapy

    Jeraj, Robert; Mackie, Thomas R.; Balog, John; Olivera, Gustavo; Pearson, Dave; Kapatoes, Jeff; Ruchala, Ken; Reckwerdt, Paul

    2004-01-01

    Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent

  13. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  14. The Origin and Structure of the Magnetic Fields and Currents of AGN Jets

    Denise Gabuzda

    2017-02-01

    Full Text Available This paper reviews observational evidence obtained to date about the overall structure of the magnetic fields in the jets of Active Galactic Nuclei (AGN. Because they are sensitive to the line-of-sight magnetic-field component, Faraday rotation observations of AGN jets provide an effective tool for searching for toroidal jet magnetic fields, whose line-of-sight component changes systematically across the jet. Transverse Faraday rotation measure (RM gradients providing direct evidence for helical/toroidal magnetic fields have been reliably detected in nearly 40 AGN on parsec scales. Helical magnetic fields are believed to form due to the combined action of the rotation of the central black hole and accretion disk, and these observations demonstrate that at least some of this helical field survives to distances well beyond the Very Long Baseline Interferometry (VLBI core. Observations of reversals in the direction of the transverse RM gradients in a number of AGN provide evidence for a“return”magnetic field forming a nested helical-field structure with oppositely directed azimuthal components in the inner and outer regions of the helical magnetic field. The collected data now provide firm evidence for a predominance of inward jet currents on parsec scales and outward currents on scales greater than a few tens of parsecs. This suggests a global pattern of magnetic fields and currents with an inward current near the jet axis and an outward current farther from the jet axis, with these currents closing in the accretion disk and far out in the radio lobes, forming a self-consistent set of fields and currents together with the implied nested helical-field structure.

  15. Off-diagonal helicity density matrix elements for vector mesons produced at LEP

    Anselmino, M.; Bertini, M.; Quintairos, P.

    1997-05-01

    Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)

  16. Theoretical study on instability mechanism of jet-induced sloshing. Model development using Orr-Sommerfeld equation generalized for non-parallel flow; Funryu reiki sloshing gensho no hassei kiko ni kansuru rironteki kenkyu. Hiheiko nagare ni ippankashita Orr-Sommerfeld hoteishiki wo mochiita model ka

    Eguchi, Y. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1998-07-25

    A theoretical model was developed to study the mechanism of free surface sloshing in a vessel induced by a steady vertical jet flow. In the model, jet deflection is calculated with eigen values of the generalized Orr-Sommerfeld equation which is applicable to slightly non-parallel jet. Instability criteria employed in the model are (1) resonace condition between sloshing and jet frequencies and (2) {pi} phase relation between jet displacement at an inlet and global jet deflection. Numerical results of the mathematical model have shown good agreement with experimental ones, which justifies that the inherent instability of free jet itself and edge tone feedback are the main causes of the self-excited sloshing. 9 refs., 10 figs.

  17. Magnetic helicity and active filament configuration

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  18. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  19. Mono-jet, -photon and -Z signals of a supersymmetric (B−L) model at the Large Hadron Collider

    Abdallah, W. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Department of Mathematics, Faculty of Science, Cairo University,Giza (Egypt); Fiaschi, J. [School of Physics and Astronomy, University of Southampton,Highfield, Southampton (United Kingdom); Khalil, S. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Moretti, S. [School of Physics and Astronomy, University of Southampton,Highfield, Southampton (United Kingdom)

    2016-02-23

    Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and -Z boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of R-parity conservation, owing to the presence in their spectra of a stable neutralino as a Dark Matter (DM) candidate. We assume here as theoretical framework the Supersymmetric version of the (B−L) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be the Z{sup ′} boson present in this scenario. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the Z{sup ′} is naturally massive and constrained by direct searches and Electro-Weak Precision Tests (EWPTs) to be at least in the TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the Standard Model (SM) background is very high. This somehow compensates the rather meagre production rates. Another special feature of this invisible BLSSM signal is its composition, which is often dominated by sneutrino decays (alongside the more traditional neutrino and neutralino modes). Sensitivity of the CERN machine to these two features can therefore help disentangling the BLSSM from more popular SUSY models. We assess in this analysis the scope of the LHC in establishing the aforementioned invisible signals through a sophisticated signal-to-background simulation carried out in presence of parton shower, hadronisation as well as detector effects. We find that significant sensitivity exists already after 300 fb{sup −1} during Run 2. We find that mono-jet events can be readily accessible at the LHC, so as to enable one to claim a prompt discovery, while mono-photon and -Z signals can be used as diagnostic tools of the underlying scenario.

  20. Neutrino helicity flips via electroweak interactions

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.; Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794)

    1989-01-01

    Electroweak mechanisms via which neutrinos may flip helicity are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W, Z, and γ exchange, including their interference, are derived for both Dirac and Majorana neutrinos (with emphasis on the former). It is shown that in general flip and nonflip cross sections differ by more than just a multiplicative factor of m/sub ν/ 2 /4E/sub ν/ 2 contrary to what might be expected and that this additional dependence on helicities can be significant. It is also shown that within the context of the standard model with massive neutrinos, for νe yields νe scattering, σ/sub Z//sup flip//σ/sub γ//sup flip/ ∼ 10 4 , independent of particle masses and energies to a good approximation. As an application, using some general considerations and the fact that the observed bar nu/sub e/ burst from SN 1987A lasted several seconds, these weak-interaction flip cross sections are used to rule out μ and tau neutrino masses above 30 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed