Impurity modes in the one-dimensional XXZ Heisenberg model
International Nuclear Information System (INIS)
Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.
2014-01-01
A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.
Influence of magnetic field on swap operation in Heisenberg XXZ model
Energy Technology Data Exchange (ETDEWEB)
Liu Jia [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.c [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)
2009-05-01
Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.
Influence of magnetic field on swap operation in Heisenberg XXZ model
International Nuclear Information System (INIS)
Liu Jia; Zhang Guofeng; Chen Ziyu
2009-01-01
Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.
Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2018-04-01
The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.
Quantum state transfer via a two-qubit Heisenberg XXZ spin model
Energy Technology Data Exchange (ETDEWEB)
Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn
2008-04-14
Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.
Quantum state transfer via a two-qubit Heisenberg XXZ spin model
International Nuclear Information System (INIS)
Liu Jia; Zhang Guofeng; Chen Ziyu
2008-01-01
Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing
International Nuclear Information System (INIS)
Grimm, Uwe; Schuetz, Gunter
1992-09-01
The finite-size spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with central charge c q [sl(2)] quantum algebra transformations. (author)
A TBA approach to thermal transport in the XXZ Heisenberg model
Zotos, X.
2017-10-01
We show that the thermal Drude weight and magnetothermal coefficient of the 1D easy-plane Heisenberg model can be evaluated by an extension of the Bethe ansatz thermodynamics formulation by Takahashi and Suzuki (1972 Prog. Theor. Phys. 48 2187). They have earlier been obtained by the quantum transfer matrix method (Klümper 1999 Z. Phys. B 91 507). Furthermore, this approach can be applied to the study of the far-out of equilibrium energy current generated at the interface between two semi-infinite chains held at different temperatures.
Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain
Institute of Scientific and Technical Information of China (English)
QIN Meng; TAO Ying-Juan; TIAN Dong-Ping
2008-01-01
We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Manojlović, N.; Salom, I.
2017-01-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Directory of Open Access Journals (Sweden)
N. Manojlović
2017-10-01
Full Text Available The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Zhou, Chao-Biao; Xiao, Shu-Yuan; Zhang, Cong; Wu, Gang; Ran, Yang-Qiang
2015-01-01
In this paper, by comparing with the thermal entanglement measured by negativity (N), we investigate the measurement-induced disturbance (MID) in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii–Moriya (DM) interaction and an inhomogeneous external magnetic field. We make a comparison between MID and N, and find that their behaviors present obvious differences following the changes of the exchange constant J, DM interaction D, the uniform magnetic field B and the inhomogeneity of magnetic field b. It is found that J and D broaden the region of MID. At the same time, we notice that, for the case of small D, MID can detect the quantum phase transition near J=0, but not for N. It is also observed that DM interaction and the inhomogeneous external magnetic field play competing roles in enhancing the N and MID in our system. Moreover, we also note D is a more efficient parameter than B and b when adjusting MID under the higher temperature. In addition, we discover that, for the same parameters, the region of MID in our system is larger than the result in mixed-spin (1/2, 1) system.
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N. [Univ. de Bourgogne (France). IMB, UMR 5584 du CNRS; Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M.; Terras, V. [ENS Lyon (France). UMR 5672 du CNRS, Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Inst., Moscow (Russian Federation)
2011-03-15
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system size. Moreover, the corresponding amplitudes can be obtained as a product of a ''smooth'' and a ''discrete'' part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the longdistance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determinant representations for their form factors. (orig.)
International Nuclear Information System (INIS)
Guo Ketao; Liang Mingchao; Xu Hongyu; Zhu Chengbo
2010-01-01
Using the concept of negativity, we investigate the thermal entanglement of a two-spin (1/2, 3/2) mixed-spin Heisenberg XXZ chain with an inhomogeneous external magnetic field. We obtain the analytical results of entanglement of this model. For the case of uniform magnetic field, we find that the critical temperature increases with the increase of the anisotropy parameter k, and for the same couplings, the critical temperature is higher than the results of the spin-1/2 XXZ chain and (1/2, 1) mixed-spin XXZ chain. Evidence of the quantum phase transition is found, and by adjusting the inhomogeneous magnetic parameter b, one is able to obtain more entanglement at higher temperature.
Type-I integrable quantum impurities in the Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Doikou, Anastasia, E-mail: adoikou@upatras.gr
2013-12-21
Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.
Type-I integrable quantum impurities in the Heisenberg model
International Nuclear Information System (INIS)
Doikou, Anastasia
2013-01-01
Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified
Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields
Thakur, Pradeep; Durganandini, P.
2018-02-01
We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
Connections of the Liouville model and XXZ spin chain
Faddeev, Ludvig D.; Tirkkonen, Olav
1995-02-01
The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin- {1}/{2} XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ = πν/( ν + 1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kač table parameterized by a string length K, and the remnant of the chain length mod ( ν + 1).
Connections of the Liouville model and XXZ spin chain
International Nuclear Information System (INIS)
Faddeev, L.D.; Tirkkonen, O.
1995-01-01
The quantum theory of the Liouville model with imaginary field is considered using the Quantum Inverse Scattering Method. An integrable structure with non-trivial spectral-parameter dependence is developed for lattice Liouville theory by scaling the L-matrix of lattice sine-Gordon theory. This L-matrix yields Bethe ansatz equations for Liouville theory, by the methods of the algebraic Bethe ansatz. Using the string picture of excited Bethe states, the lattice Liouville Bethe equations are mapped to the corresponding spin-1/2 XXZ chain equations. The well developed theory of finite-size corrections in spin chains is used to deduce the conformal properties of the lattice Liouville Bethe states. The unitary series of conformal field theories emerge for Liouville couplings of the form γ= πν/(ν+1), corresponding to root of unity XXZ anisotropies. The Bethe states give the full spectrum of the corresponding unitary conformal field theory, with the primary states in the Kac table parameterized by a string length K, and the remnant of the chain length mod (ν+1). (orig.)
Droplet localization in the random XXZ model and its manifestations
Elgart, A.; Klein, A.; Stolz, G.
2018-01-01
We examine many-body localization properties for the eigenstates that lie in the droplet sector of the random-field spin- \\frac 1 2 XXZ chain. These states satisfy a basic single cluster localization property (SCLP), derived in Elgart et al (2018 J. Funct. Anal. (in press)). This leads to many consequences, including dynamical exponential clustering, non-spreading of information under the time evolution, and a zero velocity Lieb-Robinson bound. Since SCLP is only applicable to the droplet sector, our definitions and proofs do not rely on knowledge of the spectral and dynamical characteristics of the model outside this regime. Rather, to allow for a possible mobility transition, we adapt the notion of restricting the Hamiltonian to an energy window from the single particle setting to the many body context.
Large-N behaviour of string solutions in the Heisenberg model
Fujita, T; Takahashi, H
2003-01-01
We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.
The role of the central element in the quantum algebra underlying the twisted XXZ chain
International Nuclear Information System (INIS)
Monteiro, M.R.; Roditi, I.; Rodrigues, L.M.C.S.; Sciuto, S.
1995-03-01
The relationship among the XXZ Heisenberg model and three models obtained from it by various transformations is studied. In particular, it is emphasized the role of a non trivial central element t Z in the underlying algebra and its relationship with the twisted boundary conditions, S +- N+1 = t +-N S +- 1 . (author). 18 refs
Excitation spectrum of ferromagnetic xxz-chains
International Nuclear Information System (INIS)
Schneider, T.; Stoll, E.
1983-01-01
In the history of xxz-Heisenberg spin chains, understanding of the dynamic form factors (DFF) is much less advanced. In this paper the DFF of ferromagnetic xxz chains as a tool to probe and interpret excitation spectrum is reviewed. The Isingheisenberg chain, and the Planar-Heisenberg chain (where HF approximations become exact) are studied. The results provide instructive connections between spin systems, interacting fermions and bosons. Various new aspects--thermally induced bound state effects in terms of central peaks in DFF for Isinglike xxz chains; the possibility to observe bound states in S /SUB zz/ (q,w) accessible by neutron scattering techniques, in the planar system--are found
Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model
Mkhitaryan, V. V.; Sedrakyan, A. G.
2003-01-01
We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.
Magnetic properties of S=l/2 antiferromagnetic XXZ model on the Shastry-Sutherland lattices
International Nuclear Information System (INIS)
Suzuki, Takafumi; Tomita, Yusuke; Kawashima, Naoki
2010-01-01
We study magnetic properties of the S=l/2 Ising-like XXZ model on the Shastry-Sutherland lattices considering the effect of long range interactions. By performing quantum Monte Carlo simulations, we find that magnetization plateau phases appear at one-half and one-third of the saturation magnetization. We also study the finite temperature transition to the magnetic plateau phases and discuss the universality class of the transition.
Heisenberg Model in a Rotating Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2005-01-01
We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.
Criticality of the D=2 anisotropic quantum Heisenberg model
International Nuclear Information System (INIS)
Caride, A.O.; Tsallis, C.; Zanette, S.I.
1983-01-01
Within a real space renormalization group framework, the square-lattice spin-1/2 Heisenberg ferromagnet in the presence of an Ising-like anisotropy is discussed. The controversial point on how T sub(c) vanishes in the isotropic Heisenberg limit is analyzed: quite strong evidence is presented favoring a continuous function of anisotropy. The crossover from the isotropic Heisenberg model to the pure Ising one is exhibited. (Author) [pt
Integrable higher order deformations of Heisenberg supermagnetic model
International Nuclear Information System (INIS)
Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong
2009-01-01
The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.
International Nuclear Information System (INIS)
Song, Xue-ke; Wu, Tao; Xu, Shuai; He, Juan; Ye, Liu
2014-01-01
In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state
Critical properties of the Kitaev-Heisenberg Model
Sizyuk, Yuriy; Price, Craig; Perkins, Natalia
2013-03-01
Collective behavior of local moments in Mott insulators in the presence of strong spin-orbit coupling is one of the most interesting questions in modern condensed matter physics. Here we study the finite temperature properties of the Kitaev-Heisenberg model which describe the interactions between the pseudospin J = 1 / 2 iridium moments on the honeycomb lattice. This model was suggested as a possible model to explain low-energy physics of AIr2O3 compounds. In our study we show that the Kitaev-Heisenberg model may be mapped into the six state clock model with an intermediate power-law phase at finite temperatures. In the framework of the Ginsburg-Landau theory, we provide an analysis of the critical properties of the finite-temperature ordering transitions. NSF grant DMR-1005932
Correlation functions of heisenberg-mattis model in one dimension
International Nuclear Information System (INIS)
Azeeem, W.
1991-01-01
The technique of real-space renormalization to the dynamics of Heisenberg-Mattis model, which represents a random magnetic system with competing ferromagnetic and antiferromagnetic interactions has been applied. The renormalization technique, which has been in use for calculating density of states, is extended to calculate dynamical response function from momentum energy dependent Green's functions. Our numerical results on density of states and structure function of one-dimensional Heisenberg-Mattis model come out to be in good agreement with computer simulation results. The numerical scheme worked out in this thesis has the advantage that it can also provide a complete map of momentum and energy dependence of the structure function. (author)
Applications of the Heisenberg magnetic model in nanoscience
International Nuclear Information System (INIS)
Labuz, M.; Kuzma, M.; Wal, A.
2003-01-01
The theoretical Heisenberg magnet model and its solution given by Bethe and Hulthen (B.H.) known as Bethe Ansatz (BA) is widely applied in physics (solid state physics, quantum dots, statistical physics, high-temperatures superconductivity, low-dimensional systems, etc.), chemistry (polymers, organic metals and magnets), biology (biological molecular arrays and chains), etc. In most of the applications, the Heisenberg model is applied to infinite chains (asymptotic case), which is a good reality approximation for objects of macroscopic size. In such a case, the solutions of the model are well known. However, for objects of nanoscale size, one has to find solutions of the Heisenberg model of a finite chain consisting of N nodes. For such a chain, the problem of solving of B.H. equations is very complicated (because of the strange nonlinearity of these equations) even for very small objects N N (combinatorial explosion). In such cases, even numerical methods are helpless. In our paper, we propose an approach in which numerical methods could be adapted to such a large numerical problem, as B.H. solutions for objects consisting of N>100, which responds to nanoscale physical or biological objects. This method is based on the 'experimental' observation that B.H. solutions change in a quasi-continuous way with respect to N
Global entanglement in XXZ chains
International Nuclear Information System (INIS)
Canosa, N.; Rossignoli, R.
2006-01-01
We examine the thermal entanglement of XXZ-type Heisenberg chains in the presence of a uniform magnetic field along the z axes through the evaluation of the negativity associated with bipartitions of the whole system and subsystems. Limit temperatures for nonzero global negativities are shown to depend on the asymmetry Δ, but not on the uniform field, and can be much higher than those limiting pairwise entanglement. It is also shown that global bipartite entanglement may exist for T>0 even for Δ≥1, i.e., when the system is fully aligned (and hence separable) at T=0, and that the bipartition leading to the highest limit temperature depends on Δ
2D XXZ model ground state properties using an analytic Lanczos expansion
International Nuclear Information System (INIS)
Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng
1997-01-01
A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs
Spin-density functional for exchange anisotropic Heisenberg model
International Nuclear Information System (INIS)
Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.
2009-01-01
Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.
Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu
2015-11-01
In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.
Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction
International Nuclear Information System (INIS)
Thakur, Pradeep; Durganandini, P.
2015-01-01
We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields
Morin-Duchesne, Alexi
couple sectors d and d' when specific constraints on λ, d, d' and N are satisfied. For the model of critical dense polymers (β = 0) on the strip, the eigenvalues of ρ(DN(λ, u)) were known, but their degeneracies only conjectured. By constructing an isomorphism between the link modules on the strip and a subspace of spin modules of the XXZ model at q = i, we prove this conjecture. We also show that the restriction of the Hamiltonian to any sector d is diagonalizable, and that the XX Hamiltonian has rank 2 Jordan cells when N is even. Finally, we study the Jordan structure of the transfer matrix T N(λ, ν) for periodic boundary conditions. When λ = πa/b and a, b ∈ Z× , the matrix TN(λ, ν) has Jordan blocks between sectors, but also within sectors. The approach using FN admits a generalization to the present case and allows us to probe the Jordan cells that tie different sectors. The rank of these cells exceeds 2 in some cases and can grow indefinitely with N. For the Jordan blocks within a sector, we show that the link modules on the cylinder and the XXZ spin modules are isomorphic except for specific curves in the (q, ν) plane. By using the behavior of the transformation ĩd N in a neighborhood of the critical values (qc, ν c), we explicitly build Jordan partners of rank 2 and discuss the existence of Jordan cells with higher rank. Keywords : phase transitions, Ising model, Potts model, Fortuin-Kasteleyn model, transfer matrix method, XXZ Hamiltonian, logarithmic conformal field theory, Jordan structure.
Anisotropic Heisenberg model for a semi-infinite crystal
International Nuclear Information System (INIS)
Queiroz, C.A.
1985-11-01
A semi-infinite Heisenberg model with exchange interactions between nearest and next-nearest neighbors in a simple cubic lattice. The free surface from the other layers of magnetic ions, by choosing a single ion uniaxial anisotropy in the surface (Ds) different from the anisotropy in the other layers (D). Using the Green function formalism, the behavior of magnetization as a function of the temperature for each layer, as well as the spectrum localized magnons for several values of ratio Ds/D for surface magnetization. Above this critical ratio, a ferromagnetic surface layer is obtained white the other layers are already in the paramagnetic phase. In this situation the critical temperature of surface becomes larger than the critical temperature of the bulk. (Author) [pt
Anti-ferromagnetic Heisenberg model on bilayer honeycomb
International Nuclear Information System (INIS)
Shoja, M.; Shahbazi, F.
2012-01-01
Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.
International Nuclear Information System (INIS)
Bhan, Jaemi; Kwon, Younghun
2007-01-01
Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23
Topological term of the antiferromagnetic Heisenberg model in 2+1 dimension
International Nuclear Information System (INIS)
Wu Ke; Yu Lu; Zhu Chuanjie
1988-05-01
It is shown in this note that the two different ways of introducing the topological term in the discussion of the spin 1/2 antiferromagnetic Heisenberg model are identical to each other. (author). 12 refs
Werner Heisenberg; Werner Heisenberg
Energy Technology Data Exchange (ETDEWEB)
Schiemann, G.
2008-07-01
This book contains a biography of Heisenberg, a description of the development of quantum mechanics, a consideration of connections of philosophy and physics, and a description of the scientific picture of the world. Finally a list of books written by Heisenberg respectively connected with his work is presented. (HSI)
Stapp's quantum dualism: The James/Heisenberg model of consciousness
International Nuclear Information System (INIS)
Noyes, H.P.
1994-01-01
Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James' description of conscious events and for matter from Werner Heisenberg's ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author's opinion fails to establish a monistic, scientific theory. The author traces Stapp's failure to his adamant rejection of arbitrariness, or 'randomness'. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin's explanation of biology, let along the triumphs of modern 'neo-Darwinism'. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp's views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy
Topological superconductivity in the extended Kitaev-Heisenberg model
Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.
2018-01-01
We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.
The infinite range Heisenberg model and high temperature superconductivity
Tahir-Kheli, Jamil
1992-01-01
The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.
Infinite-range Heisenberg model and high-temperature superconductivity
Tahir-Kheli, Jamil; Goddard, William A., III
1993-11-01
A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.
Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model
Ricardo de Sousa, J.; Araújo, Ijanílio G.
1999-07-01
We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....
Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model
Sousa, J. Ricardo de
A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.
The existence of a stable noncollinear phase in a Heisenberg model with complex structure
Energy Technology Data Exchange (ETDEWEB)
Shopova, Diana V.; Boyadjiev, Todor L
2003-05-19
We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.
Directory of Open Access Journals (Sweden)
R. Vlijm, I. S. Eliëns, J. -S. Caux
2016-10-01
Full Text Available Pumping a finite energy density into a quantum system typically leads to `melted' states characterized by exponentially-decaying correlations, as is the case for finite-temperature equilibrium situations. An important exception to this rule are states which, while being at high energy, maintain a low entropy. Such states can interestingly still display features of quantum criticality, especially in one dimension. Here, we consider high-energy states in anisotropic Heisenberg quantum spin chains obtained by splitting the ground state's magnon Fermi sea into separate pieces. Using methods based on integrability, we provide a detailed study of static and dynamical spin-spin correlations. These carry distinctive signatures of the Fermi sea splittings, which would be observable in eventual experimental realizations. Going further, we employ a multi-component Tomonaga-Luttinger model in order to predict the asymptotics of static correlations. For this effective field theory, we fix all universal exponents from energetics, and all non-universal correlation prefactors using finite-size scaling of matrix elements. The correlations obtained directly from integrability and those emerging from the Luttinger field theory description are shown to be in extremely good correspondence, as expected, for the large distance asymptotics, but surprisingly also for the short distance behavior. Finally, we discuss the description of dynamical correlations from a mobile impurity model, and clarify the relation of the effective field theory parameters to the Bethe Ansatz solution.
Large-n limit of the Heisenberg model: The decorated lattice and the disordered chain
International Nuclear Information System (INIS)
Khoruzhenko, B.A.; Pastur, L.A.; Shcherbina, M.V.
1989-01-01
The critical temperature of the generalized spherical model (large-component limit of the classical Heisenberg model) on a cubic lattice, whose every bond is decorated by L spins, is found. When L → ∞, the asymptotics of the temperature is T c ∼ aL -1 . The reduction of the number of spherical constraints for the model is found to be fairly large. The free energy of the one-dimensional generalized spherical model with random nearest neighbor interaction is calculated
The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory
International Nuclear Information System (INIS)
Liu, B.-G.; Pu, F.-C.
2001-01-01
The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood
Analytical results for entanglement in the five-qubit anisotropic Heisenberg model
International Nuclear Information System (INIS)
Wang Xiaoguang
2004-01-01
We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Δ=1 (Δ>1) for the case of zero (finite) temperature with Δ being the anisotropic parameter. In contrast, the mixedness takes its minimum at Δ=1 (Δ>1) for the case of zero (finite) temperature
Energy Technology Data Exchange (ETDEWEB)
Belgiorno, Francesco [Politecnico di Milano, Dipartimento di Matematica, Milano (Italy); INdAM-GNFM, Milano (Italy); Cacciatori, Sergio L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN sezione di Milano, Milano (Italy); Dalla Piazza, Francesco [Universita ' ' La Sapienza' ' , Dipartimento di Matematica, Roma (Italy); Doronzo, Michele [Universita dell' Insubria, Department of Science and High Technology, Como (Italy)
2016-06-15
We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ. The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered. (orig.)
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
Quantum Monte Carlo simulation for S=1 Heisenberg model with uniaxial anisotropy
International Nuclear Information System (INIS)
Tsukamoto, Mitsuaki; Batista, Cristian; Kawashima, Naoki
2007-01-01
We perform quantum Monte Carlo simulations for S=1 Heisenberg model with an uniaxial anisotropy. The system exhibits a phase transition as we vary the anisotropy and a long range order appears at a finite temperature when the exchange interaction J is comparable to the uniaxial anisotropy D. We investigate quantum critical phenomena of this model and obtain the line of the phase transition which approaches a power-law with logarithmic corrections at low temperature. We derive the form of logarithmic corrections analytically and compare it to our simulation results
The relation between mass-gap amplitudes and critical exponents in the Heisenberg model
International Nuclear Information System (INIS)
Alcaraz, F.C.; Felicio, J.R.D. de
1985-01-01
A recent result concerning the universality of the ratio of mass-gap amplitudes using the well known 1-D Heisenberg model which is the quantum version of the two-dimensional eight-vertex model is discussed. The believed extended scaling relation (x sub(p) = x sub(is an element of)/4) relating the polarization and energy anomalous dimensions is confirmed. The exponent, α, ν, γ sub(m) and γ sub(p) is also obtained by usual phenomenological renormalization group methods. (Author) [pt
A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs
Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.
Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji
2015-12-01
We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.
International Nuclear Information System (INIS)
Murtazaev, A.K.; Ramazanov, M.K.; Badiev, M.K.
2009-01-01
The critical properties of the 3D frustrated antiferromagnetic Heisenberg model on a triangular lattice are investigated by the replica Monte Carlo method. The static magnetic and chiral critical exponents of heat capacity a = 0.05(2), magnetization Β 0.30(1), Β k = 0.52(2), susceptibility Γ = 1.36(2), Γ k = 0.93(3), and correlation radius Ν 0.64(1), Ν k = 0.64(2) are calculated by using the finitesize scaling theory. The critical Fisher exponents η = - 0.06(3), η k = 0.63(4) for this model are estimated for the first time. A new universality class of the critical behavior is shown to be formed by the 3D frustrated Heisenberg model on the triangular lattice. A type of the interlayer exchange interaction is found to influence the universality class of antiferromagnetic Heisenberg model on the a triangular lattice.
International Nuclear Information System (INIS)
Foda, O.; Wheeler, M.; Zuparic, M.
2009-01-01
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP τ function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Energy Technology Data Exchange (ETDEWEB)
Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au
2009-10-21
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
The Design of Control Pulses for Heisenberg Always-On Qubit Models
Magyar, Rudolph
2015-03-01
One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network
International Nuclear Information System (INIS)
Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G
2015-01-01
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)
Stapp`s quantum dualism: The James/Heisenberg model of consciousness
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-02-18
Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James` description of conscious events and for matter from Werner Heisenberg`s ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author`s opinion fails to establish a monistic, scientific theory. The author traces Stapp`s failure to his adamant rejection of arbitrariness, or `randomness`. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin`s explanation of biology, let along the triumphs of modern `neo-Darwinism`. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp`s views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.
International Nuclear Information System (INIS)
Li Jun; Wei Guozhu; Du An
2005-01-01
The compensation and critical behaviors of a mixed spin-2 and spin-12 Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by the two-time Green's function technique, which takes into account the quantum nature of Heisenberg spins. The model can be relevant for understanding the magnetic behavior of the new class of organometallic ferromagnetic materials that exhibit spontaneous magnetic properties at room temperature. We carry out the calculation of the sublattice magnetizations and the spin-wave spectra of the ground state. In particular, we have studied the effects of the nearest, next-nearest-neighbor interactions, the crystal field and the external magnetic field on the compensation temperature and the critical temperature. When only the nearest-neighbor interactions and the crystal field are included, no compensation temperature exists; when the next-nearest-neighbor interaction between spin-12 is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other parameters in Hamiltonian fixed. The next-nearest-neighbor interactions between spin-2 and the external magnetic field have the effects of changing the compensation temperature and there is a narrow range of parameters of the Hamiltonian for which the model has the compensation temperatures and compensation temperature exists only for a small value of them
Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group
de Sousa, J. Ricardo; Fittipaldi, I. P.
1994-05-01
A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.
Ground state properties of a spin chain within Heisenberg model with a single lacking spin site
International Nuclear Information System (INIS)
Mebrouki, M.
2011-01-01
The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.
Block spins and chirality in Heisenberg model on Kagome and triangular lattices
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs
arXiv Topology in the 2d Heisenberg Model under Gradient Flow
Sandoval, Ilya O.; de Forcrand, Philippe; Gerber, Urs; Mejía-Díaz, Héctor
2017-10-28
The 2d Heisenberg model — or 2d O(3) model — is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurations are divided in topological sectors. In the lattice regularisation the topological charge Q can still be defined such that $Q\\in \\mathbb{Z}$. It has generally been observed, however, that the topological susceptibility ${{\\chi }_{t}}=\\langle {{Q}^{2}}\\rangle /V$ does not scale properly in the continuum limit, i.e. that the quantity ${{\\chi }_{t}}{{\\xi }^{2}}$ diverges for ξ → ∞ (where ξ is the correlation length in lattice units). Here we address the question whether or not this divergence persists after the application of the Gradient Flow.
Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model
Directory of Open Access Journals (Sweden)
Yin-Chen He
2017-07-01
Full Text Available The antiferromagnetic spin-1/2 Heisenberg model on a kagome lattice is one of the most paradigmatic models in the context of spin liquids, yet the precise nature of its ground state is not understood. We use large-scale density matrix renormalization group simulations (DMRG on infinitely long cylinders and find indications for the formation of a gapless Dirac spin liquid. First, we use adiabatic flux insertion to demonstrate that the spin gap is much smaller than estimated from previous DMRG simulation. Second, we find that the momentum-dependent excitation spectrum, as extracted from the DMRG transfer matrix, exhibits Dirac cones that match those of a π-flux free-fermion model [the parton mean-field ansatz of a U(1 Dirac spin liquid].
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains
Zhang, Xiong-Peng; Shao, Bin; Zou, Jian
2017-05-01
Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.
Energy Technology Data Exchange (ETDEWEB)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)
2016-05-06
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.
Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5
Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang
2015-09-01
The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
International Nuclear Information System (INIS)
Mól, L.A.S.; Costa, B.V.
2014-01-01
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems
Arian Zad, Hamid; Ananikian, Nerses
2017-11-01
We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.
Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry
Jipdi, M. N.; Tchoffo, M.; Fai, L. C.
2018-02-01
We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.
Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field
Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu
2017-08-01
In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.
de Sousa, J. Ricardo; de Albuquerque, Douglas F.
1997-02-01
By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.
Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model
Directory of Open Access Journals (Sweden)
Fariba Masoudi
2017-11-01
Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid
The q-deformed SU(2) Heisenberg model in 3-dimensions
International Nuclear Information System (INIS)
Lu Zhongyi; Yan Hong.
1991-07-01
A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs
Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain
Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami
2018-01-01
The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.
Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field
International Nuclear Information System (INIS)
Liu Guanghua; Li Ruoyan; Tian Guangshan
2012-01-01
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h c = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1. (paper)
Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states
Poilblanc, Didier
2017-09-01
A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
Green function study of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic model
International Nuclear Information System (INIS)
Li Jun; Wei Guozhu; Du An
2004-01-01
The magnetic properties of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by a multisublattice Green-function technique which takes into account the quantum nature of Heisenberg spins. This model can be relevant for understanding the magnetic behavior of the new class of organometallic materials that exhibit spontaneous magnetic moments at room temperature. We discuss the spontaneous magnetic moments and the finite-temperature phase diagram. We find that there is no compensation point at finite temperature when only the nearest-neighbor interaction and the single-ion anisotropy are included. When the next-nearest-neighbor interaction between spin-((1)/(2)) is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other values in Hamiltonian fixed. The next-nearest-neighbor interaction between spin-((3)/(2)) has the effect of changing the compensation temperature
Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration
Li, Huan; Song, Hai-Feng; Liu, Yu
2016-11-01
We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.
One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.
2017-11-01
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain
International Nuclear Information System (INIS)
Wu, F; Wang, W Z
2006-01-01
Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain
Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, V
2000-03-01
I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.
Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models
International Nuclear Information System (INIS)
Chudnovsky, V.
2000-01-01
I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Santos, R.M.Z. dos; Tsallis, C.; Santos, R.R. dos.
1984-01-01
Within a Real Space Renormalization group framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in satisfactory agreement with known results whenever available. (Author) [pt
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.
1984-11-01
Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt
Lima, L. S.
2018-06-01
We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.
A note on the boundary spin s XXZ chain
International Nuclear Information System (INIS)
Doikou, Anastasia
2007-01-01
The open spin s XXZ model with non-diagonal boundaries is considered. Within the algebraic Bethe ansatz framework and in the spirit of earlier works we derive suitable reference states. The derivation of the reference state is the crucial point in this investigation, and it involves the solution of sets of difference equations. For the spin s representation, expressed in terms of difference operators, the pseudo-vacuum is identified in terms of q-hypergeometric series. Having specified such states we then build the Bethe states and also identify the spectrum of the model for generic values of the anisotropy parameter q
Critical behavior in a random field classical Heisenberg model for amorphous systems
International Nuclear Information System (INIS)
Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de
2005-01-01
By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
International Nuclear Information System (INIS)
Bobak, Andrej; Dely, Jan; Pokorny, Vladislav
2010-01-01
The effects of both an exchange anisotropy and a single-ion anisotropy on the magnetic susceptibility of the mixed spin-1 and spin- 1/2 Heisenberg model are investigated by the use of an Oguchi approximation. Particular emphasis is given to the simple cubic lattice with coordination number z = 6 for which the magnetic susceptibility is determined numerically. Anomalous behaviour in the thermal variation of the magnetic susceptibility in the low-temperature region is found due to the applied negative single-ion anisotropy field strength. Also, the difference between the behaviours of the magnetic susceptibility of the Heisenberg and Ising models is discussed.
Critical behaviour of magnetic thin film with Heisenberg spin-S model
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Hourmatallah, A.; Benzakour, N.; Benyoussef, A.
2009-01-01
The magnetic properties of a ferromagnetic thin film of face centered cubic (FCC) lattice with Heisenberg spin-S are examined using the high-temperature series expansions technique extrapolated with Pade approximations method. The critical reduced temperature of the system τ c is studied as function of thickness of the film and the exchange interactions in the bulk, and within the surfaces J b , J s and J perpendicular respectively. A critical value of surface exchange interaction above which surface magnetism appears is obtained. The dependence of the reduced critical temperature on the film thickness L has been investigated.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Directory of Open Access Journals (Sweden)
Samuel Belliard
2013-11-01
Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model
International Nuclear Information System (INIS)
Si-Lakhal, B.; Abada, A.
2003-11-01
Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)
International Nuclear Information System (INIS)
Zhan-Hai, Dong
2009-01-01
In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property
Berry phase in Heisenberg representation
Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.
1994-01-01
We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.
Theory for disordered phase in Heisenberg and non-Heisenberg two-dimensional S=1 ferromagnets
International Nuclear Information System (INIS)
Spirin, D.V.; Fridman, Yu.A.
2003-01-01
We apply a modification of self-consistent spin-wave theory to investigation of two-dimensional S=1 isotropic Heisenberg and non-Heisenberg ferromagnets at nonzero temperatures. We use Hubbard operators method and bosonization technique. We calculated chemical potential and found dependence of correlation length on temperature. Specific heat has Schottky-type peak and decreases at high temperatures. Disordered phase in non-Heisenberg ferromagnet is also studied. The results for such a model differ from those of Heisenberg one
Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement
International Nuclear Information System (INIS)
Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D
2013-01-01
In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)
Evolution in totally constrained models: Schrödinger vs. Heisenberg pictures
Olmedo, Javier
2016-06-01
We study the relation between two evolution pictures that are currently considered for totally constrained theories. Both descriptions are based on Rovelli’s evolving constants approach, where one identifies a (possibly local) degree of freedom of the system as an internal time. This method is well understood classically in several situations. The purpose of this paper is to further analyze this approach at the quantum level. Concretely, we will compare the (Schrödinger-like) picture where the physical states evolve in time with the (Heisenberg-like) picture in which one defines parametrized observables (or evolving constants of the motion). We will show that in the particular situations considered in this paper (the parametrized relativistic particle and a spatially flat homogeneous and isotropic spacetime coupled to a massless scalar field) both descriptions are equivalent. We will finally comment on possible issues and on the genericness of the equivalence between both pictures.
International Nuclear Information System (INIS)
Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R; Sen, Aditi; Sen, Ujjwal
2016-01-01
Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities. (paper)
Energy Technology Data Exchange (ETDEWEB)
Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr
2017-07-15
Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.
Merino, Jaime; Ralko, Arnaud
2018-05-01
Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.
On domain wall boundary conditions for the XXZ spin Hamiltonian
DEFF Research Database (Denmark)
Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai
In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....
J{sub 1x}-J{sub 1y}-J{sub 2} square-lattice anisotropic Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Pires, A.S.T., E-mail: antpires@frisica.ufmg.br
2017-08-01
Highlights: • We use the SU(3) Schwinger boson formalism. • We present the phase diagram at zero temperature. • We calculate the quadrupole structure factor. - Abstract: The spin one Heisenberg model with an easy-plane single-ion anisotropy and spatially anisotropic nearest-neighbor coupling, frustrated by a next-nearest neighbor interaction, is studied at zero temperature using a SU(3) Schwinger boson formalism (sometimes also referred to as flavor wave theory) in a mean field approximation. The local constraint is enforced by introducing a Lagrange multiplier. The enlarged Hilbert space of S = 1 spins lead to a nematic phase that is ubiquitous to S = 1 spins with single ion anisotropy. The phase diagram shows two magnetically ordered phase, separated by a quantum paramagnetic (nematic) phase.
Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.
2008-01-01
The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained
Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model
Orth, Peter P.
2014-03-01
In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
Theory of the orthogonal dimer Heisenberg spin model for SrCu sub 2 (BO sub 3) sub 2
Miyahara, S
2003-01-01
The magnetic properties of SrCu sub 2 (BO sub 3) sub 2 are reviewed from a theoretical point of view. SrCu sub 2 (BO sub 3) sub 2 is a new two-dimensional spin gap system and its magnetic properties are well described by a spin-1/2 antiferromagnetic Heisenberg model of the orthogonal dimer lattice. The model has a dimer singlet ground state whose exactness was proven by Shastry and Sutherland for a topologically equivalent model more than 20 years ago. The exactness of the ground state is maintained even if interlayer couplings are introduced for SrCu sub 2 (BO sub 3) sub 2. In the two-dimensional model, quantum phase transitions take place between different ground states for which three phases are expected: a gapped dimer singlet state, a plaquette resonating valence bond state and a gapless magnetic ordered state. Analysis of the experimental data shows that the dimer singlet ground state is realized in SrCu sub 2 (BO sub 3) sub 2. The orthogonality of the dimer bonds, which is the underlying symmetry of th...
Rojas, M.; de Souza, S. M.; Rojas, Onofre
2017-02-01
The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.
Heisenberg spin glass experiments and the chiral ordering scenario
International Nuclear Information System (INIS)
Campbell, Ian A.; Petit, Dorothee C.M.C.
2010-01-01
An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)
Remark on Heisenberg's principle
International Nuclear Information System (INIS)
Noguez, G.
1988-01-01
Application of Heisenberg's principle to inertial frame transformations allows a distinction between three commutative groups of reciprocal transformations along one direction: Galilean transformations, dual transformations, and Lorentz transformations. These are three conjugate groups and for a given direction, the related commutators are all proportional to one single conjugation transformation which compensates for uniform and rectilinear motions. The three transformation groups correspond to three complementary ways of measuring space-time as a whole. Heisenberg's Principle then gets another explanation [fr
On the particle excitations in the XXZ spin chain
Energy Technology Data Exchange (ETDEWEB)
Ovchinnikov, A.A., E-mail: ovch@ms2.inr.ac.ru
2013-12-09
We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle–hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.
Zad, Hamid Arian; Movahhedian, Hossein
2016-08-01
Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.
Choi, Hwan Bin; Lee, Ji-Woo
2017-09-01
We study quantum phase transitions of a XXZ spin model with spin S = 1/2 and 1 in one dimension. The XXZ spin chain is one of basic models in understanding various one-dimensional magnetic materials. To study this model, we construct infinite-lattice matrix product state (iMPS), which is a tensor product form for a one-dimensional many-body quantum wave function. By using timeevolution- block-decimation method (TEBD) on iMPS, we obtain the ground states of the XXZ model at zero temperature. This method is very delicate in calculating ground states so that we developed a reliable method of finding the ground state with the dimension of entanglement coefficients up to 300, which is beyond the previous works. By analyzing ground-state energies, half-chain entanglement entropies, and entanglement spectrum, we found the signatures of quantum phase transitions between ferromagnetic phase, XY phase, Haldane phase, and antiferromagnetic phase.
Indian Academy of Sciences (India)
how Heisenberg identified the quantum mechan- ical exchange ... condensed matter physics from the Indian ... electrons per atom and 'm,' is the electronic mass. Dia- magnetism is .... what is the origin of this ordering field Hint = aM, that gives rise to a ... the case with magnetism, where the fundamental Inech- anism for the ...
Remarks on Heisenberg-Euler-type electrodynamics
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-03-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-06-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions
Xie, Yu-Xia; Sun, Yu-Hang; Li, Zhao
2018-01-01
We investigate the well-defined measures of measurement-induced nonlocality (MIN) for thermal states of the transverse field XX model, with the addition of three-spin interaction terms being introduced. The results showed that the MINs are very sensitive to system parameters of the chain. The three-spin interactions can serve as flexible parameters for enhancing MINs of the boundary spins, and the maximum enhancement achievable by varying strengths of the three-spin interactions are different for the chain with different number of spins.
The Heisenberg picture for single photon states
International Nuclear Information System (INIS)
Pienaar, Jacques; Myers, Casey; Ralph, Timothy C.
2011-01-01
In the context of quantum field theory, the Heisenberg picture has a distinct advantage over the Schrodinger picture because the Schrodinger picture requires us to transform the vacuum state itself, which can be intractable in the case of non-inertial reference frames, whereas the Heisenberg picture allows us to keep the same vacuum state and only transform the operators. However, the Heisenberg calculation requires the operators to already be expressed as a function of creation and annihilation operators acting on the original vacuum, whereas calculations in quantum information and quantum computation use operators that act on qubit states, necessarily containing particles. The relationship between the operators acting on these states and the operators acting on the vacuum state has remained elusive. We derive such an expression using an explicit model for single-particle production from the vacuum.
Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions
Directory of Open Access Journals (Sweden)
Tomaž Prosen
2014-09-01
Full Text Available A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ spin-1/2 chain for periodic (or twisted boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian transfer operator in fundamental representation (with auxiliary spin s=1/2, and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations we propose a simple explicit construction of infinite time averages of local operators such as the spin current.
On the particle-hole symmetry of the fermionic spinless Hubbard model in D=1
Directory of Open Access Journals (Sweden)
M.T. Thomaz
2014-06-01
Full Text Available We revisit the particle-hole symmetry of the one-dimensional (D=1 fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-06-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G
2009-07-02
We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-03-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
International Nuclear Information System (INIS)
Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef
2016-01-01
The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
3-D quantum Heisenberg ferromagnet with random anisotropy
International Nuclear Information System (INIS)
Santos, R.M.Z. dos; Santos, Raimundo R. dos; Mariz, A.M.; Rio Grande do Norte Univ., Natal; Tsallis, C.
1985-01-01
Critical properties of the 3-D quantum Heisenberg ferromagnet with random anisotropies; that is, the coupling between any pair of nearest-neighbouring spins can be either isotropic (Heisenberg) or anisotropic (Ising-or XY-like) at random are studied. Within a Migdal-Kadanoff approximation the full critical frontier and correlation length critical exponents are obtained. It is found that the isotropic Heisenberg model is unstable (in the context of universality classes) in the presence of a small concentration of couplings with lower symmetry. (Author) [pt
On integrable Hamiltonians for higher spin XXZ chain
International Nuclear Information System (INIS)
Bytsko, Andrei G.
2003-01-01
Integrable Hamiltonians for higher spin periodic XXZ chains are constructed in terms of the spin generators; explicit examples for spins up to (3/2) are given. Relations between Hamiltonians for some U q (sl 2 )-symmetric and U(1)-symmetric universal r-matrices are studied; their properties are investigated. A certain modification of the higher spin periodic chain Hamiltonian is shown to be an integrable U q (sl 2 )-symmetric Hamiltonian for an open chain
Generic boundary scattering in the open XXZ chain
International Nuclear Information System (INIS)
Doikou, Anastasia
2008-01-01
The open critical XXZ spin chain with a general right boundary and a trivial diagonal left boundary is considered. Within this framework we propose a simple computation of the exact generic boundary S-matrix (with diagonal and non-diagonal entries), starting from the 'bare' Bethe ansatz equations. Our results as anticipated coincide with the ones obtained by Ghoshal and Zamolodchikov, after assuming suitable identifications of the bulk and boundary parameters
Directory of Open Access Journals (Sweden)
Ynduráin, Francisco J.
2002-01-01
Full Text Available Not available
Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.
International Nuclear Information System (INIS)
Tao, Ruibao.
1991-09-01
A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs
Groundstate fidelity phase diagram of the fully anisotropic two-leg spin-½ XXZ ladder
Li, Sheng-Hao; Shi, Qian-Qian; Batchelor, Murray T.; Zhou, Huan-Qiang
2017-11-01
The fully anisotropic two-leg spin-\\tfrac{1}{2} XXZ ladder model is studied in terms of an algorithm based on the tensor network (TN) representation of quantum many-body states as an adaptation of projected entangled pair states to the geometry of translationally invariant infinite-size quantum spin ladders. The TN algorithm provides an effective method to generate the groundstate wave function, which allows computation of the groundstate fidelity per lattice site, a universal marker to detect phase transitions in quantum many-body systems. The groundstate fidelity is used in conjunction with local order and string order parameters to systematically map out the groundstate phase diagram of the ladder model. The phase diagram exhibits a rich diversity of quantum phases. These are the ferromagnetic, stripe ferromagnetic, rung singlet, rung triplet, Néel, stripe Néel and Haldane phases, along with the two XY phases XY1 and XY2.
Haghshenas, R.; Sheng, D. N.
2018-05-01
We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1place at J2c2/J1=0.610 (2 ) to the conventional Stripe phase. We compare our results with earlier DMRG and PEPS studies and suggest future directions for resolving remaining issues.
Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich
2018-04-01
We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.
A homomorphism between link and XXZ modules over the periodic Temperley–Lieb algebra
International Nuclear Information System (INIS)
Morin-Duchesne, Alexi; Saint-Aubin, Yvan
2013-01-01
We study finite loop models on a lattice wrapped around a cylinder. A section of the cylinder has N sites. We use a family of link modules over the periodic Temperley–Lieb algebra EPTL N (β,α) introduced by Martin and Saleur, and Graham and Lehrer. These are labeled by the numbers of sites N and of defects d, and extend the standard modules of the original Temperley–Lieb algebra. Besides the defining parameters β = u 2 + u −2 with u = e iλ/2 (weight of contractible loops) and α (weight of non-contractible loops), this family also depends on a twist parameter v that keeps track of how the defects wind around the cylinder. The transfer matrix T N (λ, ν) depends on the anisotropy ν and the spectral parameter λ that fixes the model. (The thermodynamic limit of T N is believed to describe conformal field theory of central charge c = 1 − 6λ 2 /(π(λ − π)).) The family of periodic XXZ Hamiltonians is extended to depend on this new parameter v, and the relationship between this family and the loop models is established. The Gram determinant for the natural bilinear form on these link modules is shown to factorize in terms of an intertwiner i-tilde N d between these link representations and the eigenspaces of S z of the XXZ models. This map is shown to be an isomorphism for generic values of u and v, and the critical curves in the plane of these parameters for which i-tilde N d fails to be an isomorphism are given. (paper)
On Condensation Properties of Bethe Roots Associated with the XXZ Chain
Kozlowski, Karol K.
2018-02-01
I prove that the Bethe roots describing either the ground state or a certain class of "particle-hole" excited states of the XXZ spin-1/2 chain in any sector with magnetisation m \\in [0;1/2] exist, are uniquely defined, and form, in the infinite volume limit, a dense distribution on a subinterval of R. The results hold for any value of the anisotropy {Δ ≥ -1}. In fact, I establish an even stronger result, namely the existence of an all order asymptotic expansion of the counting function associated with such roots. As a corollary, these results allow one to prove the existence and form of the infinite volume limit of various observables attached to the model -the excitation energy, momentum, the zero temperature correlation functions, so as to name a few- that were argued earlier in the literature.
Hamid, Arian Zad
2016-12-01
We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.
Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming
2018-06-01
The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.
International Nuclear Information System (INIS)
Pu Qiurong; Chen Yuan
2013-01-01
Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.
Cosmological implications of Heisenberg's principle
Gonzalo, Julio A
2015-01-01
The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.
Heisenberg, his wife s account
International Nuclear Information System (INIS)
Heisenberg, E.
1990-01-01
A wife tells about her husband life, Werner Heisenberg, Physics Nobel Price in 1932. After a happy childhood, this brilliant student was Albert Einstein, Niels Bohr, Arnold Sommerfeld s student. But at the nazism time, the great physician refused to leave his country, guaranteeing the Hitler regime and taking part in effort of war, that is to say the run to the bomb. The account of Elisabeth Heisenberg, although subjective, allows to understand the scientist s behaviour face terrifying realities of his time. (N.C.)
Non-Hermitian Heisenberg representation
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015
Werner Heisenberg - Life and Work
2002-01-01
Werner Heisenberg (centre) with Wolfgang Pauli and Enrico Fermi, 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 30 July*. German theoretical physicist Werner Karl Heisenberg (1901 - 1976) was one of the leading scientists of the 20th century. Nobel Prize in Physics in 1932, his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles can be determined simultaneously. Heisenberg was a keen supporter of CERN, and was as the first chairman of CERN's Scientific Policy Committee in October 1954. A related celebration will take place in the TH Amphitheatre (4/3-006), on Thursday 18 July at 16:00. After an introduction from the Director-General Luciano Maiani, his daughter, Barbara Blum, his last postgraduate, Helmut Rechenberg and Valentin Telegdi will evoke memories of the life and work ...
Werner Heisenberg - Life and Work
2002-01-01
Werner Heisenberg (centre) with Wolfgang Pauli (left) and Enrico Fermi on Lake Como, September 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 23 July. The exhibition was produced by the University Archive of Leipzig University (Gerald Wiemers) and the Max-Planck-Institut für Physik in Munich (Helmut Rechenberg) to mark the centenary of Heisenberg's birth in 1901. German theoretical physicist Werner Karl Heisenberg (5 December 1901 - 1 February 1976) was one of the leading scientists of the 20th century. He carried out important work in nuclear and particle physics, but his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles - such as position and linear momentum - can be determined simultaneously. In 1932 he was awarded the Noble Prize in Physics 'for the creation of q...
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2017-01-30
We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.
Vahedi, J; Ashouri, A; Mahdavifar, S
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Heisenberg's uncertainty relation: Violation and reformulation
International Nuclear Information System (INIS)
Ozawa, Masanao
2014-01-01
The uncertainty relation formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable so that their product should be no less than a limit set by Planck's constant. In 1980, Braginsky, Vorontsov, and Thorne claimed that this relation leads to a sensitivity limit for gravitational wave detectors. However, in 1988 a model of position measurement was constructed that breaks both this limit and Heisenberg's relation. Here, we discuss the problems as to how we reformulate Heisenberg's relation to be universally valid and how we experimentally quantify the error and the disturbance to refute the old relation and to confirm the new relation.
Figueiredo, T. P.; Rocha, J. C. S.; Costa, B. V.
2017-12-01
Although the topological Berezinskii-Kosterlitz-Thouless transition was for the first time described by 40 years ago, it is still a matter of discussion. It has been used to explain several experiments in the most diverse physical systems. In contrast with the ordinary continuous phase transitions the BKT-transition does not break any symmetry. However, in some contexts it can easily be confused with other continuous transitions, in general due to an insufficient data analysis. The two-dimensional XY (or sometimes called planar rotator) spin model is the fruit fly model describing the BKT transition. As demonstrated by Bramwell and Holdsworth (1993) the finite-size effects are more important in two-dimensions than in others due to the logarithmic system size dependence of the properties of the system. Closely related is the anisotropic two dimensional Heisenberg model (AH). Although they have the same Hamiltonian the spin variable in the former has only two degrees of freedom while the AH has three. Many works treat the AH model as undergoing a transition in the same universality class as the XY model. However, its characterization as being in the BKT class of universality deserve some investigation. This paper has two goals. First, we describe an analytical evidence showing that the AH model is in the BKT class of universality. Second, we make an extensive simulation, using the numerical Replica Exchange Wang-Landau method that corroborate our analytical calculations. From our simulation we obtain the BKT transition temperature as TBKT = 0 . 6980(10) by monitoring the susceptibility, the two point correlation function and the helicity modulus. We discuss the misuse of the fourth order Binder's cumulant to locate the transition temperature. The specific heat is shown to have a non-critical behavior as expected in the BKT transition. An analysis of the two point correlation function at low temperature, C(r) ∝r - η(T), shows that the exponent, η, is consistent
Nightingale, M.P.; Blöte, H.W.J.
1996-01-01
The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity
Heisenberg picture and measurement operation
International Nuclear Information System (INIS)
D'Espagnat, B.
1992-01-01
The idea is discussed according to which, in the Heisenberg picture, differently from the Schroedinger picture, the operators correspond exactly to the dynamic properties and the role of the density matrix is merely to describe our passive knowledge thereof. It is shown that the idea in question cannot be consistently kept as it is, and hints are given as to how it could be refined. (from author). 2 refs
International Nuclear Information System (INIS)
Brueger, Mirko
2008-07-01
In the first part of this thesis the different effects of the molecular magnetism were extensively considered and the possibility of their occurence in {Ni 4 Mo 12 } checked. In the second part of this thesis different models for the description of experimental results were presented. thereby the results of ESR, SQUIO, and high-field pulse measurements on {Ni 4 Mo 12 } are described
'Duality twisted'boundary conditions in n-state Potts Models
International Nuclear Information System (INIS)
Schuetz, G.
1992-11-01
We discuss a new class of toroidal boundary conditions for one-dimensional quantum Hamiltonian with S n symmetry which are related to two-dimensional n-state Potts models in the extreme anisotropic Hamiltonian limit. At their self-dual point (a point were a second-order phase transition occurs for n=2,3,4) the duality transformation is shown to be an additional symmetry giving rise to a new class of 'duality twisted' toroidal boundary conditions. This corresponding Hamiltonians are given in terms of generators of the periodic Temprely-Lieb algebra with an odd number of generators. We discuss as an example the critical Ising model. Here the complete spectrum for the new boundary conditions can be obtained from a projection mechanism in the spin-1/2 XXZ Heisenberg chain. (author)
The magnetic properties of the quantum Shastry-Sutherland model S = 1/2 spin
International Nuclear Information System (INIS)
Slavin, V.V.; Krivchikov, A.A.
2014-01-01
The dependence of magnetization of the Shastry-Sutherland lattice has been studied using the by exact diagonalization method at zero temperature in the framework of xxz-model with S = 1/2 spin. It is found that unlike the classical Heisenberg model, the magnetization plateaus corresponding to m*= m/ m sat =1/4,1/3,1/2 (here m sat is saturation magnetization) exist even in the case of isotropic exchange interactions. The influence of exchange interaction on the plateau widths has been studied. It is shown that there are three areas corresponding to different types of behavior of the system: the region of ''Neel'' antiferromagnet, the region of ''dimer'' antiferromagnet, and the intermediate region with the most pronounced unique properties of Shastry-Sutherland. The boundaries of these regions have been defined.
Energy Technology Data Exchange (ETDEWEB)
Goettel, Stefan
2015-05-22
In this thesis, we study two recently developed methods to tackle low-dimensional correlated quantum systems. In the first part, we benchmark the extension of the functional renormalization group to spin-systems. We apply it to the two-dimensional XXZ model and reproduce the prediction for the phase transition from planar to axial ordering at the isotropic point. The interpretation of the critical scale (where the flow of the susceptibility diverges) as the critical temperature of the system can be questioned, since it yields only good results in the Ising limit. Especially near the isotropic point, this interpretation becomes unsatisfactory as the Mermin-Wagner theorem is violated. We discuss several problems of the method and conclude that it should only be used to explore phase diagrams. In the second part, we extend previous works to two-level quantum dots in the Coulomb blockade regime with special hopping matrices in nonequilibrium, e.g., the Kondo model, to the generic form, including ferromagnetic leads, spin-orbit interactions etc. The dot and the transport observables are determined completely by the hybridization matrix, leading to one of our major results that all these models can be mapped to the Anderson impurity model with ferromagnetic leads. We investigate this model with a well-controlled real-time renormalization group approach and justify the results of a poor man's scaling analysis. By using a singular value decomposition of the tunneling matrix we can rotate the model to the anisotropic Kondo model in the high-energy regime to solve the flow equations analytically. With this, we calculate the stationary dot magnetization and the current. The minimum of the magnetization is found to be an ellipsoid as function of the magnetic field, where the stretching factor determines the distance to the scaling limit. Afterwards, we consider the special case of two external reservoirs and the system being in the scaling limit and discuss the golden
Quantum stability for the Heisenberg ferromagnet
International Nuclear Information System (INIS)
Bargheer, Till; Beisert, Niklas; Gromov, Nikolay
2008-01-01
Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.
Deformation quantization of the Heisenberg group
International Nuclear Information System (INIS)
Bonechi, F.
1994-01-01
After reviewing the way the quantization of Poisson Lie Groups naturally leads to Quantum Groups, the existing quantum version H(1) q of the Heisenberg algebra is used to give an explicit example of this quantization on the Heisenberg group. (author) 6 refs
Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain
Brockmann, M.; Wouters, B.; Fioretto, D.; De Nardis, J.; Vlijm, R.; Caux, J.-S.
2014-01-01
The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using
Werner Karl Heisenberg (1901-1976)
International Nuclear Information System (INIS)
Kvasnica, J.
1992-01-01
The life's career of Werner Karl Heisenberg is described with emphasis on his creative development and cooperation with many other prominent physicists in the field of the quantum theory of atoms. In 1925, Heisenberg modified Bohr's quantum rule; in 1927 he formulated the uncertainty principle which puts some restrictions on the simultaneous determination of the position and momentum. In 1928, Heisenberg set up the quantum theory of ferromagnetism, which still underlies all theories of magnetic properties of substances. Soon after Chadwick's discovery of the neutron (1932), Heisenberg introduced the concept of the isospin - he interpreted the proton and the neutron as one particle (nucleon) in two charge states. Heisenberg's professional and pedagogical activities during and after the 2nd world war are also described. (Z.S.). 5 refs
Local quantum control of Heisenberg spin chains
International Nuclear Information System (INIS)
Heule, Rahel; Bruder, C.; Stojanovic, Vladimir M.; Burgarth, Daniel
2010-01-01
Motivated by some recent results of quantum control theory, we discuss the feasibility of local operator control in arrays of interacting qubits modeled as isotropic Heisenberg spin chains. Acting on one of the end spins, we aim at finding piecewise-constant control pulses that lead to optimal fidelities for a chosen set of quantum gates. We analyze the robustness of the obtained results for the gate fidelities to random errors in the control fields, finding that with faster switching between piecewise-constant controls the system is less susceptible to these errors. The observed behavior falls into a generic class of physical phenomena that are related to a competition between resonance- and relaxation-type behavior, exemplified by motional narrowing in NMR experiments. Finally, we discuss how the obtained optimal gate fidelities are altered when the corresponding rapidly varying piecewise-constant control fields are smoothened through spectral filtering.
Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal
2017-12-01
Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.
On the physical part of the factorized correlation functions of the XXZ chain
International Nuclear Information System (INIS)
Boos, Herman; Goehmann, Frank
2009-01-01
It was recently shown by Jimbo et al (2008 arXiv:0811.0439) that the correlation functions of a generalized XXZ chain associated with an inhomogeneous six-vertex model with a disorder parameter α and with arbitrary inhomogeneities on the horizontal lines factorize and can all be expressed in terms of only two functions ρ and ω. Here we approach the description of the same correlation functions and, in particular, of the function ω from a different direction. We start from a novel multiple integral representation for the density matrix of a finite chain segment of length m in the presence of a disorder field α. We explicitly factorize the integrals for m = 2. Based on this, we present an alternative description of the function ω in terms of the solutions of certain linear and nonlinear integral equations. We then prove directly that the two definitions of ω describe the same function. The definition in the work of Jimbo et al (2008 arXiv:0811.0439) was crucial for the proof of the factorization. The definition given here together with the known description of ρ in terms of the solutions of nonlinear integral equations is useful for performing, e.g., the Trotter limit in the finite temperature case, or for obtaining numerical results for the correlation functions at short distances. We also address the issue of the construction of an exponential form of the density matrix for finite α.
New relativistic generalization of the Heisenberg commutation relations
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.
1984-01-01
A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator
Monthus, Cécile
2018-03-01
For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.
Criticality of the D=2 quantum Heisenberg ferromagnet with quenched random anisotropic
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.
1985-01-01
The square-lattice spin 1/2 anisotropic Heisenberg ferromagnet is considered, with interactions whose symmetry can independently (quenched model) and randomly be of two competing types, namely the isotropic Heisenberg type and the Ising one. Within a real space renormalization group framework, a quite precise numerical calculation of the critical frontier is performed, and its main asymptotic behaviour are established. The relevant universality classes are also characterized, through the analysis of the correlation length critical exponent. (Author) [pt
The finite temperature density matrix and two-point correlations in the antiferromagnetic XXZ chain
Göhmann, Frank; Hasenclever, Nils P.; Seel, Alexander
2005-10-01
We derive finite temperature versions of integral formulae for the two-point correlation functions in the antiferromagnetic XXZ chain. The derivation is based on the summation of density matrix elements characterizing a finite chain segment of length m. On this occasion we also supply a proof of the basic integral formula for the density matrix presented in an earlier publication.
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub
2018-04-01
We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.
Quantum Heisenberg groups and Sklyanin algebras
International Nuclear Information System (INIS)
Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.
1993-05-01
We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs
International Nuclear Information System (INIS)
Jiang Jianjun; Liu Yongjun; Tang Fei; Yang Cuihong
2011-01-01
We investigated the properties of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain using the spin-wave theory. The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the model are calculated to be compared with the corresponding properties of the mixed spin (1, 1/2) chain for a range of α. The results demonstrate that all the properties show similar behaviours in the small α limit, so the properties of the mixed spin (1, 1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. -- Research Highlights: →The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain are calculated. →In the small α limit, the properties of the mixed spin (1,1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. →The spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain may be of interest for some real quasi-one-dimensional molecular magnetic materials.
I grandi della fisica da Platone a Heisenberg
Von Weizsäcker, Carl Friedrich
2002-01-01
Parmenide ; Platone ; Aristotele ; Copernico, Keplero, Galilei ; Galileo Galilei ; Cartesio ; Gottfried Wilhelm Leibniz ; Cartesio, Newton, Leibniz, Kant ; Immanuel Kant ; Johann Wolfgang Goethe ; Robert Meyer ; Albert Einstein ; Niels Bohr ; Paul Adrien Maurice Dirac ; Niels Bohr e Werner Heisenberg, un ricordo del 1932 ; Werner Heisenberg ; Heisenberg, fisico e filosofo ; l'interpretazione filosofica della fisica moderna.
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
q-Power function over q-commuting variables and deformed XXX, XXZ chains
International Nuclear Information System (INIS)
Khoroshkin, S.M.; Stolin, A.A.; Tolstoy, V.N.
2001-01-01
Certain functional identifies for the Gauss q-power function of a sum of q-commuting variables are found. Then these identifies are used to obtain two-parameter twists of the quantum affine algebra U q (sl 2 ) and of the Yangian Y(sl 2 ). The corresponding deformed trigonometric and rational quantum R matrices, which then are used in the computation of deformed XXX and XXZ Hamiltonians [ru
International Nuclear Information System (INIS)
Hauke, Philipp; Cucchietti, Fernando M; Lewenstein, Maciej; Mueller-Hermes, Alexander; Banuls, Mari-Carmen; Ignacio Cirac, J
2010-01-01
Systems with long-range interactions show a variety of intriguing properties: they typically accommodate many metastable states, they can give rise to spontaneous formation of supersolids, and they can lead to counterintuitive thermodynamic behavior. However, the increased complexity that comes with long-range interactions strongly hinders theoretical studies. This makes a quantum simulator for long-range models highly desirable. Here, we show that a chain of trapped ions can be used to quantum simulate a one-dimensional (1D) model of hard-core bosons with dipolar off-site interaction and tunneling, equivalent to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this model in detail, employing perturbative mean-field theory, exact diagonalization and quasi-exact numerical techniques (density-matrix renormalization group and infinite time-evolving block decimation). We find that the complete devil's staircase-an infinite sequence of crystal states existing at vanishing tunneling-spreads to a succession of lobes similar to the Mott lobes found in Bose-Hubbard models. Investigating the melting of these crystal states at increased tunneling, we do not find (contrary to similar 2D models) clear indications of supersolid behavior in the region around the melting transition. However, we find that inside the insulating lobes there are quasi-long-range (algebraic) correlations, as opposed to models with nearest-neighbor tunneling, that show exponential decay of correlations.
Partition functions of classical Heisenberg spin chains with arbitrary and different exchange
International Nuclear Information System (INIS)
Cregg, P J; GarcIa-Palacios, J L; Svedlindh, P
2008-01-01
The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained
Energy Technology Data Exchange (ETDEWEB)
Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Salazar-Enriquez, C.D.; Londono-Navarro, J.; Jurado, J.F. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion, Instituto de Fisica. Universidad de Antioquia, A.A. 1226, Medellin (Colombia)
2011-06-15
This work presents a critical temperature study of La{sub 1-x}Ca{sub x}MnO{sub 3} manganites in bulk by means of Monte Carlo method thermal activated magnetic properties. The analysis was carried out for stoichiometries in the range of 0{<=}x{<=}1. The model is based on a three-dimensional classical Heisenberg-Hamiltonian involving the presence of Mn{sup 3+eg}, Mn{sup 3+eg'} and Mn{sup 4+} ions, and their nearest neighbor interaction. For this modeling, simple cubic lattice samples of size L{sup 3}, with L=6, 15 and 30 were used. The values of exchange parameters were determined by using LaMnO{sub 3} (x=0), La{sub 0.5}Ca{sub 0.5}MnO{sub 3} and CaMnO{sub 3} (x=1) phases. Relationships between exchange parameters and anisotropy constants for different hole densities were found. Results of transition temperatures for each phase showed good agreement with experimental reports, especially for L=30 and L{yields}{infinity}. - Research highlights: Stoichiometry influences the exchange interaction between magnetic ions. Charge and orbital ordering depend on the stoichiometry. LCMO magnetic phase diagram has a great variety of magnetic states.
Polarizability tensor and Kramers-Heisenberg induction
Wijers, Christianus M.J.
2004-01-01
A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical
Uncertainty inequalities for the Heisenberg group
Indian Academy of Sciences (India)
where φ is an admissible wavelet and kφ is an appropriate positive constant. For more on the history and the relevance of the uncertainty inequality, we refer the readers to the survey [5], the books [6,8], and the papers [2,10,11]. For the Heisenberg group Hn, Thangavelu [16] proved the following theorem. Theorem 1.1.
New Topological Configurations in the Continuous Heisenberg Spin Chain: Lower Bound for the Energy
Directory of Open Access Journals (Sweden)
Rossen Dandoloff
2015-01-01
Full Text Available In order to study the spin configurations of the classical one-dimensional Heisenberg model, we map the normalized unit vector, representing the spin, on a space curve. We show that the total chirality of the configuration is a conserved quantity. If, for example, one end of the space curve is rotated by an angle of 2π relative to the other, the Frenet frame traces out a noncontractible loop in SO(3 and this defines a new class of topological spin configurations for the Heisenberg model.
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment
Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.
2015-10-01
In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.
Spinon decay in the spin-1/2 Heisenberg chain with weak next nearest neighbour exchange
International Nuclear Information System (INIS)
Groha, Stefan; Essler, Fabian H L
2017-01-01
Integrable models support elementary excitations with infinite lifetimes. In the spin-1/2 Heisenberg chain these are known as spinons. We consider the stability of spinons when a weak integrability breaking perturbation is added to the Heisenberg chain in a magnetic field. We focus on the case where the perturbation is a next nearest neighbour exchange interaction. We calculate the spinon decay rate in leading order in perturbation theory using methods of integrability and identify the dominant decay channels. The decay rate is found to be small, which indicates that spinons remain well-defined excitations even though integrability is broken. (paper)
Criticality of the D=2 bond-dilute anisotropic Heisenberg ferromagnet
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Caride, A.O.
1984-01-01
The critical frontier and critical exponents associated with the quenched bond-dilute quantum anisotropic spin 1/2 Heisenberg ferromagnet in square lattice are described. To perform the calculations, an approximate real-space renormalization-group framework recently developed by some of us for the pure model (and analysed with some detail) is extended. Whenever comparison with available exact results is possible, the agreement is either perfect or quite satisfactory. Some effort has been dedicated to extract the main asymptotic behaviours of the critical frontier. Also several interesting quantum effects appearing in the composition laws of (Heisenberg) bond arrays are exhibited. (Author) [pt
Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2
Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.
2018-04-01
We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.
Considerations on Bohr's, Heisenberg's and Schroedinger's philosophy
International Nuclear Information System (INIS)
Shimony, A.
1981-01-01
In denying that the words 'physical reality' are meaningful without reference to an experimental arrangement, Bohr renounces any knowledge of the 'thing-in-itself'. However, the relation of his epistemology to both idealism and positivism remains obscure. Heisenberg departs from Bohr in enunciating a metaphysical implication of quantum mechanics. Heisenberg asserts that there is an intermediate modality -potentiality- between logical possibility and existence. His attempts to explain the transition from potentiality to existence are not convincing. Schroedinger rejects Bohr's interpretation of quantum mechanics as a positivist exercise and seeks instead a realist interpretation. Nevertheless, the metaphysics of Schroedinger is fundamentally idealistic, maintaining that the material aspect of the world is composed of the same elements as mind, but in a different order [fr
Heisenberg rise of total cross sections
International Nuclear Information System (INIS)
Ezhela, V.V.; Yushchenko, O.P.
1988-01-01
It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Controllable entanglement sudden birth of Heisenberg spins
International Nuclear Information System (INIS)
Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou
2011-01-01
We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)
Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain
Hao, Xiang; Zhu, Shiqun
2008-01-01
The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...
Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2002-01-01
We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η=((iπ)/(p+1)), p=1,2,..., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin-((p+1)/(2)) transfer matrix can be expressed in terms of a lower-spin transfer matrix, resulting in the truncation of the fusion hierarchy
Storing quantum information in XXZ spin rings with periodically time-controlled interactions
International Nuclear Information System (INIS)
Giampaolo, S M; Illuminati, F; Mazzarella, G
2005-01-01
We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits
Storing quantum information in XXZ spin rings with periodically time-controlled interactions
Energy Technology Data Exchange (ETDEWEB)
Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)
2005-10-01
We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.
On the semi-classical limit of scalar products of the XXZ spin chain
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yunfeng; Brunekreef, Joren [Institut für Theoretische Physik, ETH Zürich,Wolfgang Pauli Strasse 27, CH-8093 Zürich (Switzerland)
2017-03-03
We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.
On the semi-classical limit of scalar products of the XXZ spin chain
International Nuclear Information System (INIS)
Jiang, Yunfeng; Brunekreef, Joren
2017-01-01
We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.
Barrier functions for Pucci-Heisenberg operators and applications
Cutri , Alessandra; Tchou , Nicoletta
2007-01-01
International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...
Finite-temperature behavior of an impurity in the spin-1/2 XXZ chain
International Nuclear Information System (INIS)
Yahagi, Ryoko; Deguchi, Tetsuo; Sato, Jun
2014-01-01
We study the zero- and the finite-temperature behavior of the integrable spin-1/2 XXZ periodic chain with an impurity by the algebraic and thermal Bethe ansatz methods. We evaluate the local magnetization on the impurity site at zero temperature analytically and derive the impurity susceptibility exactly from it. In the graphs of the impurity specific heat versus temperature, we show how the impurity spin becomes more liberated from the bulk many-body effect as the exchange coupling between the impurity spin and other spins decreases and that at low temperature it couples strongly to them such as in the Kondo effect. Thus, we observe not only the crossover behavior from the high- to the low-temperature regime, but another from the N-site chain to the (N − 1)-site chain with a free impurity spin. We also show that the estimate of the Wilson ratio at a given low temperature is independent of the impurity parameter if its absolute value is small enough with respect to the temperature and the universality class is described by the XXZ anisotropy in terms of the dressed charge. (paper)
Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field
International Nuclear Information System (INIS)
Rezania, H.
2017-01-01
We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.
Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2017-02-01
We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.
International Nuclear Information System (INIS)
Peng Xinhua; Du Jiangfeng; Suter, D.
2005-01-01
Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)
Heisenberg's heirs exploit loopholes in his law
International Nuclear Information System (INIS)
Taubes, G.
1994-01-01
This article describes research into Heisenberg's Uncertainty Principle. Loopholes in the principle have led to a series of experiments using sophisticated optical techniques to extract information from a quantum system without disturbing the variable being measured. The experiments are based on a technique called back-action evasion, which exploits the possibility of channeling all the uncertainty generated by measuring one quantum variable (e.g. laser beam intensity) onto a related variable known as the conjugate observable (beam phase). These experiments and others are described
Heisenberg and the German atomic project
International Nuclear Information System (INIS)
Hermann, A.
1988-01-01
The discovery of nuclear fusion 50 years ago, man's entry into the new atomic age, occurred in a fateful era, marked by the Munich Agreement shortly before and the outbreak of World War II shortly afterwards. Werner Heisenberg, Germany's Number One Physicist, was, on the one hand, respected as a competent and 'useful' theoretician, but on the other, was reviled as a 'white Jew, the spirit of Einstein's spirit'. He plays a key role in answering the question of whether research at that time could have resulted in a German atomic bomb. (orig.) [de
Comments on 'On a proposed new test of Heisenberg's principle'
International Nuclear Information System (INIS)
Home, D.; Sengupta, S.
1981-01-01
A logical fallacy is pointed out in Robinson's analysis (J. Phys. A.; 13:877 (1980)) of a thought experiment purporting to show violation of Heisenberg's uncertainty principle. The real problem concerning the interpretation of Heisenberg's principle is precisely stated. (author)
Extended Heisenberg principle: Tentative analysis of its applications
International Nuclear Information System (INIS)
Golbbiewski, A.; Witko, M.
1988-01-01
The paper examines the extension of the Heisenberg principle for a larger number of simultaneously discussed observables. The possibilities of the extended Heisenberg principle are discussed for evaluation of the average value of the square of the selected operator and for evaluation of the standard deviation of the selected operator
Werner Heisenberg, 5 December 1901 - 1 February 1976
International Nuclear Information System (INIS)
Mott, N.; Peierls, R.
1977-01-01
An account is given of the life and work of Werner Heisenberg, with particular reference to his contribution to quantum mechanics and the formulation of the uncertainty principle. The development of atomic energy in Germany during the war is described, and the part played by Heisenberg in German post-war science. (U.K.)
Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?
Robertson, Bill
2016-01-01
Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…
Heisenberg groups and noncommutative fluxes
International Nuclear Information System (INIS)
Freed, Daniel S.; Moore, Gregory W.; Segal, Graeme
2007-01-01
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z 2 -graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured
Unceratainty of Heisenberg in Universe Destruction
Directory of Open Access Journals (Sweden)
Sri Jumini
2017-12-01
Full Text Available The Qur'an is a guidence which explaines all about the universe to human being. The discovery of science has been able to explain the truth of the Qur'an scientifically. One of which is the principle of Heisenberg's uncertainty in the event of the universe destruction. The purpose of this research is to know: 1 Science's view of the event of the universe destruction (Big Crunch in Qur’an [Al Infithaar]: 1-3, and How the relation of Heisenberg’s uncertainty principles and the law of thermodynamics II toward the collapse of the universe (Big Crunch based on Scientific views and the Quran. This research is a qualitative research using library research method which analyzes the related books directly or indirectly. The results of the analysis stated that: 1 The concentration of mass, which is big enough, relates to some of the laws of physics, those are: Relativity, Heisenberg's uncertainty principles, and the law of Thermodynamic II; 2 The universe will return at its sole point, i.e; the absence of the universe; 3 The destruction of the universe is the destruction of the order of the universe which then the stars fall scatteredly because of the gravitational force that prevents them disappears, the balance of the universe diminishes, decreases and becomes uncertain, and eventually disappears.
Heisenberg and the framework of science policy
International Nuclear Information System (INIS)
Carson, C.
2002-01-01
In the decades after 1945, new structures were created for science policy in the Federal Republic. To the establishment of the postwar framework Heisenberg contributed as much as any other figure. This was true even though, on the whole, he took no great pleasure in the venture, nor was he always particularly adept at it. His conceptions revolved around certain key notions: autonomy and centralization, elite advisory bodies and relationships of trust, modernization and international standards. These show up at many levels of his activity, from the Max Planck Society to national and international advisory committees to the Humboldt Foundation itself. His opinions were shaped by encounters in the Federal Republic, but they also grew out of his experience of the Third Reich. At a moment like the present, when the postwar settlement is under review, it is interesting to reflect on the inherited system: on the extent to which it reflects the situation of the postwar decades and the intuitions of those who, like Heisenberg, created it. (orig.)
Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube
Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake
2017-11-01
A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.
Field dependent spin transport of anisotropic Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.
Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
Directory of Open Access Journals (Sweden)
Azat M. Gainutdinov
2016-08-01
Full Text Available For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA formalism of Sklyanin. However, when q is a root of unity (q=eiπ/p with integer p≥2, the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings, and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized eigenvectors for various values of p and N.
Bounds on the entanglement entropy of droplet states in the XXZ spin chain
Beaud, V.; Warzel, S.
2018-01-01
We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.
Structure factors for the alternating Heisenberg chain
International Nuclear Information System (INIS)
Hamer, C.J.; Zheng, W.
2004-01-01
Full text: We develop a linked cluster method to calculate the spectral weights of many-particle excitations at zero temperature. The dynamical structure factor, which is measured in neutron scattering experiments, is expressed as a sum of 'exclusive' structure factors, each representing the contribution of a specific excited state. We apply these methods to the alternating Heisenberg chain, where complete wave-vector and frequency dependent spectral weights for one- and two-particle excitations (continuum and bound states) are calculated near the dimerized limit (λ = O). We also examine the variation of the spectral weights as the uniform chain (λ = 1) is approached. In agreement with Schmidt and Uhrig, we find that the spectral weight is dominated by 2-triplet states, even at λ 1, which implies that a description in terms of triplet-pair excitations remains a good quantitative description even for the uniform, undimerized chain
Dynamical properties of dissipative XYZ Heisenberg lattices
Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.
2018-04-01
We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.
Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2
International Nuclear Information System (INIS)
Babbitt, D.; Thomas, L.
1977-01-01
In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de
Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet
Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo
2017-01-01
In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...
Heisenberg vortex for light-weight refrigeration of liquid hydrogen
National Aeronautics and Space Administration — Only 83 years ago Werner Karl Heisenberg was awarded the Nobel Prize in physics. His work led to the creation of quantum mechanics, the application of which has,...
Heisenberg's principle of uncertainty and the uncertainty relations
International Nuclear Information System (INIS)
Redei, Miklos
1987-01-01
The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs
First-Order Polynomial Heisenberg Algebras and Coherent States
International Nuclear Information System (INIS)
Castillo-Celeita, M; Fernández C, D J
2016-01-01
The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)
Excitation spectrum of Heisenberg spin ladders
International Nuclear Information System (INIS)
Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.
1993-01-01
Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed
Variational principles and Heisenberg matrix mechanics
International Nuclear Information System (INIS)
Klein, A.; Li, C.-T.
1979-01-01
If in Heisenberg's equations of motion for a problem in quantum mechanics (or quantum field theory) one studies matrix elements in the energy representation and by use of completeness conditions expresses the equations solely in terms of matrix elements of the canonical variables, and if one does likewise with the associated kinematical constraints (commutation relations), one arrives at a formulation - largely unexplored hitherto - which can be exploited for both practical and theoretical development. In this contribution, the above theme is developed within the framework of one-dimensional problems. It is shown how this formulation, both dynamics and kinematics, can be derived from a new variational principle, indeed from an entire class of such principles. A powerful method of diagonalizing the Hamiltonians by means of computations utilizing these equations is described. The variational method is shown to be particularly useful for the study of the regime of large quantum numbers. The usual WKB approximation is seen to be contained as well as a basis for the study of systematic corrections to it. Further applications in progress are mentioned. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Brueger, Mirko
2008-07-15
In the first part of this thesis the different effects of the molecular magnetism were extensively considered and the possibility of their occurence in {l_brace}Ni{sub 4}Mo{sub 12}{r_brace} checked. In the second part of this thesis different models for the description of experimental results were presented. thereby the results of ESR, SQUIO, and high-field pulse measurements on {l_brace}Ni{sub 4}Mo{sub 12}{r_brace} are described.
Low-temperature transport in out-of-equilibrium XXZ chains
Bertini, Bruno; Piroli, Lorenzo
2018-03-01
We study the low-temperature transport properties of out-of-equilibrium XXZ spin-1/2 chains. We consider the protocol where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. We focus on the qualitative and quantitative features of the profiles of local observables, which at large times t and distances x from the junction become functions of the ratio \\zeta=x/t . By means of the generalized hydrodynamic equations, we analyse the rich phenomenology arising by considering different regimes of the phase diagram. In the gapped phases, variations of the profiles are found to be exponentially small in the temperatures, but described by non-trivial functions of ζ. We provide analytical formulae for the latter, which give accurate results also for small but finite temperatures. In the gapless regime, we show how the three-step conformal predictions for the profiles of energy density and energy current are naturally recovered from the hydrodynamic equations. Moreover, we also recover the recent non-linear Luttinger liquid predictions for low-temperature transport: universal peaks of width \
Heisenberg lecture: Supersymmetry in the spectra of atomic nuclei
International Nuclear Information System (INIS)
Graw, Gerhard
2003-01-01
Talk given at the Symposium: 'Werner Heisenberg und die Wissenschaft, das Denken und die Kunst', Alexander von Humboldt Club, Bucharest, October 16 - 17, 2001, Goethe-Institut, Bucharest, Romania. This Symposium of the Humboldt Club in Bucharest was dedicated to the work of Werner Heisenberg. With the occasion of the hundredth anniversary of his birthday the aim was to recall the impact of Heisenberg's work not only on physics and related fields but also on philosophy and on our present understanding of science. Werner Heisenberg discovered and formulated the laws of quantum physics, the concepts and the tools one uses at present. These discoveries resulted from his ambitious goal to reveal the fundamental laws of physics and to understand these laws within the logical and structural aspects they imply for the understanding of nature and of thinking. In this way he was aware of the potential of this fundamental new approach and applied the concept of quantum phenomena to physics, chemistry, biology, and to logical-philosophical questions. Being invited here as first speaker of this Symposium the author considered as appropriate, first to recall a few dates out of his vita and essentials of his work, and then to address to a timely subject, which is, hopefully, related to the work of Werner Heisenberg. (author)
Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions
International Nuclear Information System (INIS)
Plyushchay, M.S.
1996-01-01
Within a group-theoretical approach to the description of (2+1)-dimensional anyons, the minimal covariant set of linear differential equations is constructed for the fractional spin fields with the help of the deformed Heisenberg algebra (DHA), [a - ,a + ]=1+νK, involving the Klein operator K, {K,a ± }=0, K 2 =1. The connection of the minimal set of equations with the earlier proposed open-quote open-quote universal close-quote close-quote vector set of anyon equations is established. On the basis of this algebra, a bosonization of supersymmetric quantum mechanics is carried out. The construction comprises the cases of exact and spontaneously broken N=2 supersymmetry allowing us to realize a Bose endash Fermi transformation and spin-1/2 representation of SU(2) group in terms of one bosonic oscillator. The construction admits an extension to the case of OSp(2 parallel 2) supersymmetry, and, as a consequence, both applications of the DHA turn out to be related. The possibility of open-quote open-quote superimposing close-quote close-quote the two applications of the DHA for constructing a supersymmetric (2+1)-dimensional anyon system is discussed. As a consequential result we point out that the osp(2 parallel 2) superalgebra is realizable as an operator algebra for a quantum mechanical 2-body (nonsupersymmetric) Calogero model. Copyright copyright 1996 Academic Press, Inc
Phase transition in Ising, XY and Heisenberg magnetic films
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid - BP 63 46000 Safi (Morocco); LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Benyoussef, A. [LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco)
2012-01-01
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system {tau}{sub c} is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces J{sub b}, J{sub s} and J{sub Up-Tack }, respectively. It is found that {tau}{sub c} increases with the exchange interactions of surface. The magnetic phase diagrams ({tau}{sub c} versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures T{sub c}(l) from the bulk value (T{sub c}({infinity})/T{sub c}(l) - 1) can be described by a power law l{sup -{lambda}}, where {lambda} = 1/{upsilon} is the inverse of the correlation length exponent.
Reducing Uncertainty: Implementation of Heisenberg Principle to Measure Company Performance
Directory of Open Access Journals (Sweden)
Anna Svirina
2015-08-01
Full Text Available The paper addresses the problem of uncertainty reduction in estimation of future company performance, which is a result of wide range of enterprise's intangible assets probable efficiency. To reduce this problem, the paper suggests to use quantum economy principles, i.e. implementation of Heisenberg principle to measure efficiency and potential of intangible assets of the company. It is proposed that for intangibles it is not possible to estimate both potential and efficiency at a certain time point. To provide a proof for these thesis, the data on resources potential and efficiency from mid-Russian companies was evaluated within deterministic approach, which did not allow to evaluate probability of achieving certain resource efficiency, and quantum approach, which allowed to estimate the central point around which the probable efficiency of resources in concentrated. Visualization of these approaches was performed by means of LabView software. It was proven that for tangible assets performance estimation a deterministic approach should be used; while for intangible assets the quantum approach allows better quality of future performance prediction. On the basis of these findings we proposed the holistic approach towards estimation of company resource efficiency in order to reduce uncertainty in modeling company performance.
Exactly solved mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy
International Nuclear Information System (INIS)
Lisnyi, Bohdan; Strečka, Jozef
2015-01-01
The mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration–iteration transformation and the transfer-matrix method. The decoration–iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume–Emery–Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively. - Highlights: • Mixed spin-(1,1/2) Ising–Heisenberg diamond chain is exactly solved. • Quantum ground states with a singlet-dimer state of the Heisenberg spins are found. • Magnetization curve displays intermediate plateaus at zero and half of full magnetization. • Thermal dependences of specific heat may display up to four distinct peaks
Momentum conservation decides Heisenberg's interpretation of the uncertainty formulas
International Nuclear Information System (INIS)
Angelidis, T.D.
1977-01-01
In the light of Heisenberg's interpretation of the uncertainty formulas, the conditions necessary for the derivation of the quantitative statement or law of momentum conservation are considered. The result of such considerations is a contradiction between the formalism of quantum physics and the asserted consequences of Heisenberg's interpretation. This contradiction decides against Heisenberg's interpretation of the uncertainty formulas on upholding that the formalism of quantum physics is both consistent and complete, at least insofar as the statement of momentum conservation can be proved within this formalism. A few comments are also included on Bohr's complementarity interpretation of the formalism of quantum physics. A suggestion, based on a statistical mode of empirical testing of the uncertainty formulas, does not give rise to any such contradiction
Quantum Fourier transform, Heisenberg groups and quasi-probability distributions
International Nuclear Information System (INIS)
Patra, Manas K; Braunstein, Samuel L
2011-01-01
This paper aims to explore the inherent connection between Heisenberg groups, quantum Fourier transform (QFT) and (quasi-probability) distribution functions. Distribution functions for continuous and finite quantum systems are examined from three perspectives and all of them lead to Weyl-Gabor-Heisenberg groups. The QFT appears as the intertwining operator of two equivalent representations arising out of an automorphism of the group. Distribution functions correspond to certain distinguished sets in the group algebra. The marginal properties of a particular class of distribution functions (Wigner distributions) arise from a class of automorphisms of the group algebra of the Heisenberg group. We then study the reconstruction of the Wigner function from the marginal distributions via inverse Radon transform giving explicit formulae. We consider some applications of our approach to quantum information processing and quantum process tomography.
Multi parametric deformed Heisenberg algebras: a route to complexity
International Nuclear Information System (INIS)
Curado, E.M.F.; Rego-Monteiro, M.A.
2000-09-01
We introduce a generalized of the Heisenberg which is written in terms of a functional of one generator of the algebra, f(J 0 ), that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for q 2 = tan θ. The case where f is polynomial of order n in J 0 corresponds to a n-parameter Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J 0 , the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that ca not be continuously deformed to representations of Heisenberg algebra. (author)
Heisenberg in the atomic age science and the public sphere
Carson, Cathryn
2010-01-01
The end of the Second World War opened a new era for science in public life. Heisenberg in the Atomic Age explores the transformations of science's public presence in the postwar Federal Republic of Germany. It shows how Heisenberg's philosophical commentaries, circulating in the mass media, secured his role as science's public philosopher, and it reflects on his policy engagements and public political stands, which helped redefine the relationship between science and the state. With deep archival grounding, the book tracks Heisenberg's interactions with intellectuals from Heidegger to Habermas and political leaders from Adenauer to Brandt. It also traces his evolving statements about his wartime research on nuclear fission for the National Socialist regime. Working between the history of science and German history, the book's central theme is the place of scientific rationality in public life - after the atomic bomb, in the wake of the Third Reich.
On the fermionic Heisenberg group and its Q-representation
International Nuclear Information System (INIS)
Frydryszak, A.
1992-01-01
A nonstandard way of representing the canonical anticommutation relations is presented. It is connected with a generalization of the Heisenberg group to a graded phase space. It is shown how Grassmann harmonic analysis can be performed and what are the Q-representations of such a generalized Heisenberg group. As in the conventional case, the Schroedinger and Bargmann-Fock realizations were shown to exist. Grassmann-Hermite polynomials are obtained via the generalized Bargmann transform and new Grassmann-Laguerre polynomials are introduced. (author). 10 refs
Quasi-Linear Algebras and Integrability (the Heisenberg Picture
Directory of Open Access Journals (Sweden)
Alexei Zhedanov
2008-02-01
Full Text Available We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution interpretation of the corresponding integrable systems.
The Finite Heisenberg-Weyl Groups in Radar and Communications
Directory of Open Access Journals (Sweden)
Calderbank AR
2006-01-01
Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.
Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1/2 Heisenberg Antiferromagnet
Directory of Open Access Journals (Sweden)
Hui Shao
2017-12-01
Full Text Available We study the spin-excitation spectrum (dynamic structure factor of the spin-1/2 square-lattice Heisenberg antiferromagnet and an extended model (the J-Q model including four-spin interactions Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ-function contribution to the structure factor expected from spin-wave (magnon excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu(DCOO_{2}·4D_{2}O, where a broad spectral-weight continuum at wave vector q=(π,0 was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π,0 show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q=(π/2,π/2 (as also seen experimentally. We further investigate the reasons for the small magnon weight at (π,0 and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π,0 in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π,0-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
International Nuclear Information System (INIS)
Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre
2016-01-01
The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles. - Highlights: • Spin-1/2 Ising–Heisenberg three-leg tube is exactly solved in a zero magnetic field. • Thermal entanglement is only present in a frustrated part of the parameter space. • Spin frustration and thermal entanglement show antagonistic reentrance. • Specific heat may display a sharp narrow peak due to massive thermal excitations.
On the continuum limit of a classical compressible Heisenberg chain
International Nuclear Information System (INIS)
Fivez, J.
1982-01-01
The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)
The Bohr-Heisenberg correspondence principle viewed from phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder
2002-01-01
Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...
On the Clebsch-Gordan series for some Heisenberg groups
International Nuclear Information System (INIS)
Raszillier, H.
1984-11-01
We suggest the use of the Stone-von Neumann theorem for a simple insight into the Clebsch-Gordan series of the Heisenberg groups of quantum mechanics, constructed over the abelian groups Rsup(n) and Fsub(p)sup(n). (orig.)
Finite Heisenberg groups and Seiberg dualities in quiver gauge theories
International Nuclear Information System (INIS)
Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.
2006-01-01
A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers
A Poisson type formula for Hardy classes on Heisenberg's group
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2010-06-01
Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.
Spin Waves in a Classical Compressible Heisenberg Chain
Fivez, J.; Raedt, H. De
1980-01-01
The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.
On the magnetism of Heisenberg double-layer antiferromagnets
International Nuclear Information System (INIS)
Uijen, C.M.J. van.
1980-01-01
The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)
Generalized Heisenberg algebra and (non linear) pseudo-bosons
Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.
2018-04-01
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
Low temperature spin wave dynamics in classical Heisenberg chains
International Nuclear Information System (INIS)
Heller, P.; Blume, M.
1977-11-01
A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions
Resolvent kernel for the Kohn Laplacian on Heisenberg groups
Directory of Open Access Journals (Sweden)
Neur Eddine Askour
2002-07-01
Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.
Large field-induced gap of Kitaev-Heisenberg paramagnons in $\\alpha$-RuCl$_{3}$
Hentrich, Richard; Wolter, Anja U. B.; Zotos, Xenophon; Brenig, Wolfram; Nowak, Domenic; Isaeva, Anna; Doert, Thomas; Banerjee, Arnab; Lampen-Kelley, Paula; Mandrus, David G.; Nagler, Stephen E.; Sears, Jennifer; Kim, Young-June; Büchner, Bernd; Hess, Christian
2017-01-01
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $\\alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $\\kappa$ of $\\alpha$-RuCl$_{3}$: beyond a magnetic field of $B_c\\approx$ 7.5 T, $\\kappa$ increases by about one order of magnitude, resulting in a large magnetic field depen...
Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice
Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.
2018-04-01
Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.
Method for solving quantum field theory in the Heisenberg picture
International Nuclear Information System (INIS)
Nakanishi, Noboru
2004-01-01
This paper is a review of the method for solving quantum field theory in the Heisenberg picture, developed by Abe and Nakanishi since 1991. Starting from field equations and canonical (anti) commutation relations, one sets up a (q-number) Cauchy problem for the totality of d-dimensional (anti) commutators between the fundamental fields, where d is the number of spacetime dimensions. Solving this Cauchy problem, one obtains the operator solution of the theory. Then one calculates all multiple commutators. A representation of the operator solution is obtained by constructing the set of all Wightman functions for the fundamental fields; the truncated Wightman functions are constructed so as to be consistent with all vacuum expectation values of the multiple commutators mentioned above and with the energy-positivity condition. By applying the method described above, exact solutions to various 2-dimensional gauge-theory and quantum-gravity models are found explicitly. The validity of these solutions is confirmed by comparing them with the conventional perturbation-theoretical results. However, a new anomalous feature, called the ''field-equation anomaly'', is often found to appear, and its perturbation-theoretical counterpart, unnoticed previously, is discussed. The conventional notion of an anomaly with respect to symmetry is reconsidered on the basis of the field-equation anomaly, and the derivation of the critical dimension in the BRS-formulated bosonic string theory is criticized. The method outlined above is applied to more realistic theories by expanding everything in powers of the relevant parameter, but this expansion is not equivalent to the conventional perturbative expansion. The new expansion is BRS-invariant at each order, in contrast to that in the conventional perturbation theory. Higher-order calculations are generally extremely laborious to perform explicitly. (author)
International Nuclear Information System (INIS)
Paulinelli, H G; De Souza, S M; Rojas, Onofre
2013-01-01
In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising–Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet–triplet disordered and one triplet–singlet disordered phase, beside a dimer ferromagnetic–antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers. (paper)
International Nuclear Information System (INIS)
Fridman, Yu.A.; Matunin, D.A.; Klevets, Ph.N.; Kosmachev, O.A.
2009-01-01
The phase states of the 2D non-Heisenberg ferromagnetic with anisotropic bilinear and biquadratic exchange interactions are investigated. The limiting cases of the system under consideration are the two-dimensional XY-model with biquadratic exchange interaction and the isotropic Heisenberg ferromagnetic. The account of the magnetic dipole interaction leads to the realization of spatially inhomogeneous quadrupolar phase. The stability regions of various phase transitions for different values of the material parameters are studied. The phase diagram is built. Besides, the temperature phase transitions are investigated. The influence of the magnetoelastic interaction on the formation of the long-range quadrupolar order is determined.
Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.
2016-11-01
We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.
International Nuclear Information System (INIS)
Zhang, Guo-Feng
2007-01-01
Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic
Radiation emission as a virtually exact realization of Heisenbergs microscope
Energy Technology Data Exchange (ETDEWEB)
Andersen, K.K., E-mail: kka@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark); Brock, S. [Department of Culture and Society, Aarhus University, Jens Chr. Skous Vej 5, 8000 Aarhus C (Denmark); Esberg, J.; Thomsen, H.D.; Uggerhøj, U.I. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)
2013-11-15
Through the concept of ‘formation length’, recently observed directly in the radiation emission from ultrarelativistic electrons and an essential component in the interpretation of strong field radiation from electrons penetrating single crystals, we discuss the indeterminacy in the location of radiation emission. The analogy with the indeterminacy in the Heisenberg microscope Gedanken experiment is demonstrated from a number of viewpoints to be almost exact. The positive attitude regarding photon emission as a process that is somehow located in space and time is emphasized. We therefore interpret the measurements of formation lengths in radiation emission as a practically realizable version – using virtual incident photons instead of real – of the Heisenberg microscope Gedanken experiment.
Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction
Energy Technology Data Exchange (ETDEWEB)
Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar, South Sulawesi 90245 (Indonesia)
2016-03-11
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction
International Nuclear Information System (INIS)
Surungan, Tasrief; Bansawang, B.J.; Tahir, Dahlang
2016-01-01
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction
International Nuclear Information System (INIS)
Surungan, Tasrief
2016-01-01
Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al . [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al ., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase. (paper)
Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy
Lange, Florian; Ejima, Satoshi; Fehske, Holger
2018-02-01
Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .
DEFF Research Database (Denmark)
Clarke, S.J.; Harrison, A.; Mason, T.E.
1999-01-01
Copper(II) formate tetrahydrate (CFTH) is a model square S = 1/2 Heisenberg antiferromagnet with T-N = 16.54 +/- 0.05 K. The dispersion of spin-waves in the magnetic layers of a fully deuterated sample of this material has been mapped at 4.3 K by inelastic neutron scattering from the zone centre ...
Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids
van den Brink, Jeroen
The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory
International Nuclear Information System (INIS)
RANAIVOSON, R.T.R.
2011-01-01
In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr
Fischer, Andreas
2016-11-01
Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.
Heisenberg (and Schrödinger, and Pauli) on hidden variables
Bacciagaluppi, Guido; Crull, Elise
In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.
On the τ(2)-model in the chiral Potts model and cyclic representation of the quantum group Uq(sl2)
International Nuclear Information System (INIS)
Roan Shishyr
2009-01-01
We identify the precise relationship between the five-parameter τ (2) -family in the N-state chiral Potts model and XXZ chains with U q (sl 2 )-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover a one-parameter family of L-operators in terms of the quantum group U q (sl 2 ). When N is odd, the N-state τ (2) -model can be regarded as the XXZ chain of U q (sl 2 ) cyclic representations with q N =1. The symmetry algebra of the τ (2) -model is described by the quantum affine algebra U q (sl 2 -hat) via the canonical representation. In general, for an arbitrary N, we show that the XXZ chain with a U q (sl 2 )-cyclic representation for q 2N = 1 is equivalent to two copies of the same N-state τ (2) -model. (fast track communication)
Directory of Open Access Journals (Sweden)
Tetsuo Deguchi
2011-06-01
Full Text Available We show some symmetry relations among the correlation functions of the integrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple integrals representing the one-point functions in the spin-1 case. We review the multiple-integral representations of correlation functions for the integrable higher-spin XXZ chains derived in a region of the massless regime including the anti-ferromagnetic point. Here we make use of the gauge transformations between the symmetric and asymmetric R-matrices, which correspond to the principal and homogeneous gradings, respectively, and we send the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical support for the analytical expression of the one-point functions in the spin-1 case.
Classical ground states of Heisenberg and X Y antiferromagnets on the windmill lattice
Jeevanesan, Bhilahari; Orth, Peter P.
2014-10-01
We investigate the classical Heisenberg and planar (X Y ) spin models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations, and analytical calculations, we determine the complete ground-state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate noncoplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.
Solving the η-problem in hybrid inflation with Heisenberg symmetry and stabilized modulus
International Nuclear Information System (INIS)
Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.; Bastero-Gil, Mar; King, Steve F.
2009-01-01
We propose a class of models in which the η-problem of supersymmetric hybrid inflation is resolved using a Heisenberg symmetry, where the associated modulus field is stabilized and made heavy with the help of the large vacuum energy during inflation without any fine-tuning. The proposed class of models is well motivated both from string theory considerations, since it includes the commonly encountered case of no-scale supergravity Kähler potential, and from the perspective of particle physics since a natural candidate for the inflaton in this class of models is the right-handed sneutrino which is massless during the inflationary epoch, and subsequently acquires a large mass at the end of inflation. We study a specific example motivated by sneutrino hybrid inflation with no-scale supergravity in some detail, and show that the spectral index may lie within the latest WMAP range, while the tensor-to-scalar ratio is very small
Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet
Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg
2014-03-01
We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.
Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain
Strečka, Jozef; Richter, Johannes; Derzhko, Oleg; Verkholyak, Taras; Karľová, Katarína
2018-05-01
Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.
Q-operators for the open Heisenberg spin chain
Directory of Open Access Journals (Sweden)
Rouven Frassek
2015-12-01
Full Text Available We construct Q-operators for the open spin-12 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang–Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
Quantum spin circulator in Y junctions of Heisenberg chains
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
From linear optical quantum computing to Heisenberg-limited interferometry
International Nuclear Information System (INIS)
Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P
2004-01-01
The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level
Collective impurity effects in the Heisenberg triangular antiferromagnet
International Nuclear Information System (INIS)
Maryasin, V S; Zhitomirsky, M E
2015-01-01
We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting
Heisenberg Groups as Platform for the AAG key-exchange protocol
Kahrobaei, Delaram; Lam, Ha T.
2014-01-01
Garber, Kahrobaei, and Lam studied polycyclic groups generated by number field as platform for the AAG key-exchange protocol. In this paper, we discuss the use of a different kind of polycyclic groups, Heisenberg groups, as a platform group for AAG by submitting Heisenberg groups to one of AAG's major attacks, the length-based attack.
Spin-chirality decoupling in Heisenberg spin glasses and related systems
Kawamura, Hikaru
2006-01-01
Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.
Realistic Approach of the Relations of Uncertainty of Heisenberg
Directory of Open Access Journals (Sweden)
Paul E. Sterian
2013-01-01
Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.
Heisenberg's war. The secret history of the German bomb
International Nuclear Information System (INIS)
Powers, T.
1993-01-01
The history of Second World War Germany's 'Uranium Project', which often is referred to as the 'myth of the German atomic bomb', has been attracting the mind's of secret service men, futurologists, historians and journalists since after the end of the war it has become possible to lift the veil of secrecy. Powers book adds another one to the many investigations published since them. His approach to the piece of history starts with Heisenberg's visit to the U.S.A. in summer 1939, describes the plans of the German Heereswaffenamt pursued with the Uranium Project, and their counterpart on the side of the Allied Forces where German scientists, as immigrants in England and in the U.S.A., were doing their best to launch research for the development of an atomic bomb. The end of this 'competition' is marked by the internment of the ten German scientists and bomb specialists in Fall Hall. The leading story of the book centers on the small group of scientists around Heisenberg, who cleverly 'torpedoed' the development of the German atomic bomb in the years from 1939 until 1944. (HP) [de
The Heisenberg antiferromagnet on the square-kagomé lattice
Directory of Open Access Journals (Sweden)
J. Richter
2009-01-01
Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.
Linearized pseudo-Einstein equations on the Heisenberg group
Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard
2017-02-01
We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
International Nuclear Information System (INIS)
Ledue, D.; Berche, P.E.; Patte, R.
2004-01-01
We investigate the thermal-activated magnetisation reversal in a single ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo simulations. The aim of this work is to reproduce the reversal magnetisation by uniform rotation at very low temperature in the high-energy barrier hypothesis, that is to realize the Neel-Brown model. For this purpose we have considered a simple cubic nanoparticle where each site is occupied by a classical Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a single-ion anisotropy term and a Zeeman interaction term. Our numerical data of the thermal variation of the switching field are compared to an approximated expression and previous experimental results on Co nanoparticles
Heisenberg saturation of the Froissart bound from AdS-CFT
International Nuclear Information System (INIS)
Kang, Kyungsik; Nastase, Horatiu
2005-01-01
In a previous paper, we have analyzed high energy QCD from AdS-CFT and proved the saturation of the Froissart bound (a purely QCD proof of which is still lacking). In this Letter we describe the calculation in more physical terms and map it to QCD language. We find a remarkable agreement with the 1952 Heisenberg description of the saturation (pre-QCD!) in terms of shockwave collisions of pion field distributions. It provides a direct map between gauge theory physics and the gravitational physics on the IR brane of the Randall-Sundrum model. Saturation occurs through black hole production on the IR brane, which is in QCD production of a nonlinear pion field soliton of a Born-Infeld action in the hadron collision, that decays into free pions
Boukahil, A.; Huber, D. L.
1989-09-01
The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-neighbor exchange interactions of fixed magnitude and random sign are investigated. The Lyapounov exponent is calculated for chains of 107-108 spins over the interval 0Stinchcombe and Pimentel using transfer-matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the localization length diverges as ω-2/3. A formal connection is established between the spin glass and the one-dimensional discretized Schrödinger equation. By making use of the connection, it is shown that the theory of Derrida and Gardner, which was developed for weak potential disorder, can account quantitatively for the distribution and localization of the low-frequency magnon modes in the spin-glass model.
Xu, Ping; Du, An
2017-09-01
A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.
Effect of anisotropy on the entanglement of quantum states in a spin chain
Kartsev, PF; Kashurnikov, VA
2004-01-01
The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a magnetic field increases above the value reached in the absence of the field. The
Large $N$ critical exponents for the chiral Heisenberg Gross-Neveu universality class
Gracey, J. A.
2018-01-01
We compute the large N critical exponents η, ηϕ and 1/ν in d dimensions in the chiral Heisenberg Gross-Neveu model to several orders in powers of 1/N. For instance, the large N conformal bootstrap method is used to determine η at O(1/N3) while the other exponents are computed to O(1/N2). Estimates of the exponents for a phase transition in graphene are given which are shown to be commensurate with other approaches. In particular the behavior of the exponents in 2
International Nuclear Information System (INIS)
Kavitha, L.; Daniel, M.
2002-07-01
The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)
International Nuclear Information System (INIS)
Lobashev, A.A.; Mostepanenko, V.M.
1993-01-01
Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up
About the unitary discretizations of Heisenberg equations of motion
International Nuclear Information System (INIS)
Vazquez, L.
1986-01-01
In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)
Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry
Energy Technology Data Exchange (ETDEWEB)
Geremia, J M; Stockton, John K; Doherty, Andrew C; Mabuchi, Hideo [Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California, 91125 (United States)
2003-12-19
The shot-noise detection limit in current high-precision magnetometry [I. Kominis, T. Kornack, J. Allred, and M. Romalis, Nature (London) 422, 596 (2003)]10.1038/nature01484 is a manifestation of quantum fluctuations that scale as 1/{radical}(N) in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [V. Belavkin, Rep. Math. Phys. 43, 405 (1999)] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.
Variational principles for particles and fields in Heisenberg matrix mechanics
International Nuclear Information System (INIS)
Klein, A.; Li, C.T.; Vassanji, M.
1980-01-01
For many years we have advocated a form of quantum mechanics based on the application of sum rule methods (completeness) to the equations of motion and to the commutation relations, i.e., to Heisenberg matrix mechanics. Sporadically we have discussed or alluded to a variational foundation for this method. In this paper we present a series of variational principles applicable to a range of systems from one-dimensional quantum mechanics to quantum fields. The common thread is that the stationary quantity is the trace of the Hamiltonian over Hilbert space (or over a subspace of interest in an approximation) expressed as a functional of matrix elements of the elementary operators of the theory. These parameters are constrained by the kinematical relations of the theory introduced by the method of Lagrange multipliers. For the field theories, variational principles in which matrix elements of the density operators are chosen as fundamental are also developed. A qualitative discussion of applications is presented
Evolution of topological features in finite antiferromagnetic Heisenberg chains
International Nuclear Information System (INIS)
Chen Changfeng
2003-01-01
We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed
Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements
International Nuclear Information System (INIS)
Higgins, B L; Wiseman, H M; Pryde, G J; Berry, D W; Bartlett, S D; Mitchell, M W
2009-01-01
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique (Higgins et al 2007 Nature 450 393), our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.
Optimal matrix product states for the Heisenberg spin chain
International Nuclear Information System (INIS)
Latorre, Jose I; Pico, Vicent
2009-01-01
We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian
Uncertainty Einstein, Heisenberg, Bohr, and the struggle for the soul of science
Lindley, David
2007-01-01
The uncertainty in this delightful book refers to Heisenberg's Uncertainty Principle, an idea first postulated in 1927 by physicist Werner Heisenberg in his attempt to make sense out of the developing field of quantum mechanics. As Lindley so well explains it, the concept of uncertainty shook the philosophical underpinnings of science. It was Heisenberg's work that, to a great extent, kept Einstein from accepting quantum mechanics as a full explanation for physical reality. Similarly, it was the Uncertainty Principle that demonstrated the limits of scientific investigation: if Heisenberg is correct there are some aspects of the physical universe that are to remain beyond the reach of scientists. As he has done expertly in books like Boltzmann's Atom, Lindley brings to life a critical period in the history of science, explaining complex issues to the general reader, presenting the major players in an engaging fashion, delving into the process of scientific discovery and discussing the interaction between scien...
You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics
International Nuclear Information System (INIS)
Fritzsch, Harald
2008-01-01
Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
International Nuclear Information System (INIS)
Deb, Moumita; Ghosh, Asim Kumar
2016-01-01
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.
Critical properties of the D=3 bond-mixed quantum Heisenberg ferromagnet
International Nuclear Information System (INIS)
Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Stinchcombe, R.B.; Buck, B.
1983-01-01
Within a Migdal-Kadanoff-like real-space renormalisation group procedure critical properties of the quenched bond-mixed spin 1/2 Heisenberg ferromagnet in simple cubic lattice are treated. It is verified that it is possible, within a very simple framework, to obtain quite reliable results for the critical temperatures. In addition to that, a general method for renormalising arbitrary clusters of Heisenberg-coupled spins 1/2 is outlined. (Author) [pt
Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model
Yan, Zhao-Wen; Zhang, Mei-Na; Cui, Ji-Feng
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11605096 and 11601247, the Science Research Project of Inner Mongolia University of Technology under Grant No ZD201613, and the Innovation Foundation of Inner Mongolia University for the College Students under Grant No 201711208.
Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.
2017-12-01
We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .
Energy Technology Data Exchange (ETDEWEB)
Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2004-07-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.
Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu
2017-06-01
The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.
Effects of surface exchange anisotropy in Heisenberg ferromagnetic insulators
International Nuclear Information System (INIS)
Selzer, S.; Majlis, N.
1982-03-01
We consider an fcc semi-infinite ferromagnetic insulator displaying an anisotropic exchange interaction between spins on the (111) surface plane of the form Jsub(parallel)[Ssub(i)sup(x)Ssub(j)sup(x)+Ssub(i)sup(y)Ssub(j)sup(y )+etaSsub(i)sup(z)Ssub(j)sup(z)], assuming all other interactions isotropic. A self-consistent RPA calculation is performed, with a Green function method valid for any spin S, up to the bulk transition temperature Tsub(c)sup(b), by imposing that the magnetization of the third layer equals the bulk value. For eta sufficiently large, the surface magnetization is non-zero for T>Tsub(c)sup(b), up to a transition temperature Tsub(c)sup(s)(eta) whenever eta>=etasub(c)>1, where Tsub(c)sup(s)(etasub(c))=Tsub(c)sup(b). For T>Tsub(c)sup(b) the system is equivalent to a film of three layers, where the magnetization of the third one is identically zero as a boundary condition. A discontinuity of the derivative in the curve of the magnetization of the first two layers vs. temperature is found at Tsub(c)sup(b). The results show clearly a cross-over from Heisenberg to Ising behaviour at the surface. (author)
An analogue of the Heisenberg uncertainty relation in prequantum classical field theory
Energy Technology Data Exchange (ETDEWEB)
Khrennikov, Andrei, E-mail: Andrei.Khrennikov@vxu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, University of Vaexjoe, Vaexjoe (Sweden) and Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)
2010-02-01
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility of representing averages of quantum observables, including correlations of observables on subsystems of a composite system, as averages with respect to fluctuations of classical random fields. PCSFT is a classical model of wave type. For example, 'electron' is described by electronic field. In contrast to quantum mechanics (QM), this field is a real physical field and not a field of probabilities. An important point is that the prequantum field of , for example, an electron contains the irreducible contribution of the background field vacuum fluctuations. In principle, the traditional QM-formalism can be considered as a special regularization procedure: subtraction of averages with respect to vacuum fluctuations. In this paper, we derive a classical analogue of the Heisenberg-Robertson inequality for dispersions of functionals of classical (prequantum) fields. The PCSFT Robertson-like inequality provides a restriction on the product of classical dispersions. However, this restriction is not so rigid as in QM.
An analogue of the Heisenberg uncertainty relation in prequantum classical field theory
International Nuclear Information System (INIS)
Khrennikov, Andrei
2010-01-01
Prequantum classical statistical field theory (PCSFT) is a model that provides the possibility of representing averages of quantum observables, including correlations of observables on subsystems of a composite system, as averages with respect to fluctuations of classical random fields. PCSFT is a classical model of wave type. For example, 'electron' is described by electronic field. In contrast to quantum mechanics (QM), this field is a real physical field and not a field of probabilities. An important point is that the prequantum field of , for example, an electron contains the irreducible contribution of the background field vacuum fluctuations. In principle, the traditional QM-formalism can be considered as a special regularization procedure: subtraction of averages with respect to vacuum fluctuations. In this paper, we derive a classical analogue of the Heisenberg-Robertson inequality for dispersions of functionals of classical (prequantum) fields. The PCSFT Robertson-like inequality provides a restriction on the product of classical dispersions. However, this restriction is not so rigid as in QM.
Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap
International Nuclear Information System (INIS)
Schlottmann, P.
2000-01-01
We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point
International Nuclear Information System (INIS)
Cregg, P J; Murphy, K; Garcia-Palacios, J L; Svedlindh, P
2008-01-01
Interest in molecular magnets continues to grow, offering a link between the atomic and nanoscale properties. The classical Heisenberg model has been effective in modelling exchange interactions in such systems. In this, the magnetization and susceptibility are calculated through the partition function, where the Hamiltonian contains both Zeeman and exchange energy. For an ensemble of N spins, this requires integrals in 2N dimensions. For two, three and four spin nearest-neighbour chains these integrals reduce to sums of known functions. For the case of the three and four spin chains, the sums are equivalent to results of Joyce. Expanding these sums, the effect of the exchange on the linear susceptibility appears as Langevin functions with exchange term arguments. These expressions are generalized here to describe an N spin nearest-neighbour chain, where the exchange between each pair of nearest neighbours is different and arbitrary. For a common exchange constant, this reduces to the result of Fisher. The high-temperature expansion of the Langevin functions for the different exchange constants leads to agreement with the appropriate high-temperature quantum formula of Schmidt et al, when the spin number is large. Simulations are presented for open linear chains of three, four and five spins with up to four different exchange constants, illustrating how the exchange constants can be retrieved successfully
Kim, Sanghoon
2018-04-19
Chiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii–Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal in addition to Heisenberg exchange. The density functional theory and the tight-binding model calculations reveal that inversion symmetry breaking with spin–orbit coupling gives rise to the orbital-related correlation. Our study provides the experimental connection between the orbital physics and the spin–orbit-related phenomena, such as DMI.
Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field
International Nuclear Information System (INIS)
Sato, Masahiro; Oshikawa, Masaki
2002-01-01
We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)
S =1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain in a zinc-verdazyl complex
Yamaguchi, Hironori; Shinpuku, Yasuhiro; Shimokawa, Tokuro; Iwase, Kenji; Ono, Toshio; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Hosokoshi, Yuko
2015-02-01
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)2].(o -Py -V ) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; o -Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an S = 1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain (F-AF AHC). Ab initio molecular-orbital (MO) calculations indicate that two dominant interactions JF and JAF form the S = 1/2 F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the S = 1/2 F-AF AHC through quantum Monte Carlo calculations with | JAF/JF|=0.22 . The ab initio MO calculations also indicate a weak AF interchain interaction J' and that the coupled F-AF AHCs form a honeycomb lattice. The J' dependence of the Haldane gap is calculated, and the actual value of J' is determined to be less than 0.01 | JF| .
Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain
Directory of Open Access Journals (Sweden)
S. Paul
2017-06-01
Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.
Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation
International Nuclear Information System (INIS)
Mielke, E.W.; Scherzer, R.
1980-10-01
As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2011-01-01
We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....
Chiral-glass transition in a diluted dipolar-interaction Heisenberg system
International Nuclear Information System (INIS)
Zhang Kaicheng; Liu Guibin; Zhu Yan
2011-01-01
Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.
Heisenberg-limited interferometry with pair coherent states and parity measurements
International Nuclear Information System (INIS)
Gerry, Christopher C.; Mimih, Jihane
2010-01-01
After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.
International Nuclear Information System (INIS)
Hovhannisyan, V V; Ananikian, N S; Strečka, J
2016-01-01
The spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. (paper)
Introduction to integrable many-body systems II
International Nuclear Information System (INIS)
Samaj, L.
2010-01-01
This is the second part of a three-volume introductory course about integrable systems of interacting bodies. The models of interest are quantum spin chains with nearest-neighbor interactions between spin operators, in particular Heisenberg spin- 2 models. The Ising model in a transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transformation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ Heisenberg chain and the determination of its absolute ground state in various regions of the anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermodynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations are analyzed in high-temperature and low-temperature limits. An alternative derivation of the thermodynamics without using strings, leading to a non-linear integral equation determining the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Section 18. Section 19 deals with integrable cases of isotropic spin chains with an arbitrary spin. (Author)
Arian Zad, Hamid; Ananikian, Nerses
2018-04-01
The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.
On the Quantum Inverse problem for the continuous Heisenberg spin chain with axial anisotropy
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1986-06-01
We have considered the Quantum Inverse problem for the continuous form of Heisenberg spin chain with anisotropy. The form of quantum R-matrix, the commutation rules for the scattering data, and the explicit structure of the excitation spectrum are obtained. (author)
Deformed Heisenberg algebra and fractional spin field in 2+1 dimensions
International Nuclear Information System (INIS)
Plyushchay, M.S.
1993-09-01
With the help of the deformed Heisenberg algebra involving the Klein operator, we construct the minimal set of linear differential equations for the (2+1)-dimensional relativistic field with arbitrary fractional spin, whose value is defined by the deformation parameters. (author). 23 refs
A thermodynamic approximation of the groundstate of antiferromagnetic Heisenberg spin-1/2 lattices
Tielen, G.I.; Iske, P.L.; Caspers, W.J.; Caspers, W.J.
1991-01-01
The exact ground state of finite Heisenberg spin−1/2 lattices isstudied. The coefficients of the so-called Ising configurations contributing to the ground state are approximated by Boltzmann-like expressions. These expressions contain a parameter that may be related to an inverse temperature.
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
The 2-dimensional O(4) symmetric Heisenberg ferromagnet in terms of rotation invariant variables
International Nuclear Information System (INIS)
Holtkamp, A.
1981-09-01
After introduction of rotation invariant auxiliary variables, the integration over all rotation variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet can be performed. The resulting new Hamiltonian involves a sum over closed loops. It is complex and invariant under U(1) gauge transformations. Ruehl's boson representation is used to derive the result. (orig.)
Formation of quadrupolar phase in non-Heisenberg ferromagnets with half-integer spin
International Nuclear Information System (INIS)
Fridman, Yu.A.; Kosmachev, O.A.; Spirin, D.V.
2005-01-01
Possibility of realization of quadrupolar phase in non-Heisenberg ferromagnet with magnetic ion spin 32 is studied. It is shown that such phase state exists only in ferromagnets with high value of biquadratic exchange when external magnetic field is not applied. Phase diagram of the system is built
International Nuclear Information System (INIS)
Ragnisco, Orlando; Zullo, Federico
2010-01-01
We construct a two-parameter family of Baecklund transformations for the trigonometric classical Gaudin magnet. The approach follows closely the one introduced by Sklyanin and Kuznetsov (1998 J. Phys. A: Math. Gen. 31 2241-51) in a number of seminal papers and takes advantage of the intimate relation between the trigonometric and the rational case. As in the paper by Hone, Kuznetsov and one of the authors (OR) (2001 J. Phys. A: Math. Gen. 34 2477-90) the Baecklund transformations are presented as explicit symplectic maps, starting from their Lax representation. The (expected) connection with the xxz Heisenberg chain is established and the rational (xxx) case is recovered in a suitable limit. It is shown how to obtain a 'physical' transformation mapping real variables into real variables. The interpolating Hamiltonian flow is derived and some numerical iterations of the map are presented.
Energy Technology Data Exchange (ETDEWEB)
Schirach, Richard von
2014-07-01
Finally the German atomic physicists around Heisenberg, von Weizsaecker, and Hahn worked on their ''uranium machine'' in a Swabian beer-cellar - and took themselves for the world elite of nuclear research. In imprisonment they heared from the dropping of the Hiroshima bomb - a shock. Richard von Schirach shows the hindered ''fathers of the German atomic bomb'' in close-up, their eagerness, their hybris, their true importance, and their attempts to give after the war a new interpretation of their own role. A book, which raises in the sense of Duerrenmatt the question for the responsibility of science.
International Nuclear Information System (INIS)
Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F
2009-01-01
A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)
2005-04-08
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.
International Nuclear Information System (INIS)
Nagpal, A.K.
1978-01-01
Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
International Nuclear Information System (INIS)
Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong
2005-01-01
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains
Un'estrema solitudine la vita e l'opera di Werner Heisenberg
Cassidy, David C
1996-01-01
Il genio di Werner Heisenberg attraversa l'orizzonte della fisica del nostro secolo come una meteora. Testimoniano della fecondità e dell'originalità del suo pensiero non solo il Nobel che gli fu assegnato a soli 32 anni, ma soprattutto i decisivi impulsi da lui dati alla fisica quantistica, alla teoria delle particelle elementari, alla teoria del nucleo. Si deve a Heisenberg quel "principio di indeterminazione" che ha rivoluzionato non solo il corso della fisica ma il modo di concepire la posizione dell'uomo nell'universo. L'interesse del libro, però, vuole andare oltre la fisica, giacché il curriculum del "ragazzo di campagna dei biondi capelli" rispecchia in forma emblematica l'ambiguo rapporto della scienza col potere.
Heisenberg 1901-1976 : le témoignage de sa femme
Heisenberg, Elisabeth
1990-01-01
Une femme raconte la vie de son mari, Werner Heisenberg, Prix Nobel de Physique 1932. Après une enfance heureuse, ce brillant étudiant fut l'élève d'Albert Einstein, Niels Bohr, Arnold Sommerfeld. Mais à l'époque de la montée du nazisme, le grand physicien refusa de quitter son pays, cautionnant ainsi le régime d'Hitler et participant à "l'effort de guerre", c'est-à-dire à la course à la bombe. Le témoignage d'Elisabeth Heisenberg bien que naturellement subjectif, permet de saisir les ressorts psychologiques du comportement d'un savant face aux terrifiantes réalités de son époque.
Un-equivalency theorem between deformed and undeformed Heisenberg-Weyl's algebras
International Nuclear Information System (INIS)
Zhang Jianzu
2006-01-01
Two fundamental issues about the relation between the deformed Heisenberg-Weyl algebra in noncommutative space and the undeformed one in commutative space are elucidated. First the un-equivalency theorem between two algebras is proved: the deformed algebra related to the undeformed one by a non-orthogonal similarity transformation is explored; furthermore, non-existence of a unitary similarity transformation which transforms the deformed algebra to the undeformed one is demonstrated. Secondly the uniqueness of realizing the deformed phase space variables via the undeformed ones is elucidated: both the deformed Heisenberg-Weyl algebra and the deformed bosonic algebra should be maintained under a linear transformation between two sets of phase space variables which fixes that such a linear transformation is unique. Elucidation of this un-equivalency theorem has basic meaning both in theory and experiment
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
Energy Technology Data Exchange (ETDEWEB)
Masood, Syed [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Zaz, Zaid [Department of Electronics and Communication Engineering, University of Kashmir, Srinagar, Kashmir, 190006 (India); Ali, Ahmed Farag [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Raza, Jamil [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Shah, Mushtaq B. [Department of Physics, National Institute of Technology, Srinagar, Kashmir, 190006 (India)
2016-12-10
In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.
Spin nematic and orthogonal nematic states in S=1 non-Heisenberg magnet
International Nuclear Information System (INIS)
Fridman, Yu.A.; Kosmachev, O.A.; Klevets, Ph.N.
2013-01-01
Phases of S=1 non-Heisenberg magnet at various relationships between the exchange integrals are studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal nematic states. The phase diagram is constructed. It is shown that the phase transitions between the ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra of elementary excitations in all phases are obtained within the mean-field limit. - Highlights: ► We investigated phases of S=1 non-Heisenberg magnet. ► Found four phases: ferromagnetic, antiferromagnetic, nematic, and orthogonal nematic. ► The phase diagram is determined. ► The spectra of elementary excitations are obtained in all phases for the first time.
Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons
International Nuclear Information System (INIS)
Gauyacq, J-P; Lorente, N
2014-01-01
Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)
Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet
Energy Technology Data Exchange (ETDEWEB)
Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2017-06-15
Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.
An addendum to the Heisenberg-Euler effective action beyond one loop
Energy Technology Data Exchange (ETDEWEB)
Gies, Holger; Karbstein, Felix [Helmholtz-Institut Jena,Fröbelstieg 3, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Abbe Center of Photonics,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)
2017-03-21
We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.
Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3
Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won
2016-11-01
We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.
Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space
International Nuclear Information System (INIS)
Rodriguez D, R.
2007-01-01
In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)
International Nuclear Information System (INIS)
Masood, Syed; Faizal, Mir; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B.
2016-01-01
In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.
Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit
International Nuclear Information System (INIS)
Jeske, Jan; Cole, Jared H; Huelga, Susana F
2014-01-01
Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)
Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets
International Nuclear Information System (INIS)
Wal, A.J. van der.
1979-01-01
Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)
Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass
Hukushima, K.; Kawamura, H.
2000-01-01
Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...
Renormalization group treatment for spin waves in the randomly disordered Heisenberg chain
International Nuclear Information System (INIS)
Chaves, C.M.; Koiller, B.
1983-03-01
Local densities of states in the randomly disordered binary quantum Heisenberg chain using a generalization of a recently developed approach based on renormalization group ideas are calculated. It envolves decimating alternate apins along the chain in such a way as to obtain recursion relations to describe the renormalized set of Green's function equations of motion. The densities of states are richly structured, indicating that the method takes into account compositional fluctuations of arbitrary range. (Author) [pt
Extended Weyl-Heisenberg algebra and Rubakov-Spiridonov superalgebra: Anyonic realizations
International Nuclear Information System (INIS)
Daoud, M.; Douari, J.
2001-09-01
We give the realizations of the extended Weyl-Heisenberg (WH) algebra and the Rubakov-Spiridonov (RS) superalgebra in terms of anyons, characterized by the statistical parameter ν is an element of [0,1], on two-dimensional lattice. The construction uses anyons defined from usual fermionic oscillators (Lerda-Sciuto construction). The anyonic realization of the superalgebra sl(1/1) is also presented. (author)
Susceptibility and specific heat of the Heisenberg antiferromagnet on the Kagome lattice
International Nuclear Information System (INIS)
Bernhard, B.H.; Canals, B.; Lacroix, C.
2001-01-01
The dynamic susceptibility of the S=((1)/(2)) Heisenberg antiferromagnet is calculated on the Kagome lattice by means of a Green's function decoupling scheme. The spin-spin correlation functions decrease exponentially with distance. The specific heat exhibits a single-peak structure with a T 2 dependence at low temperature and the correct high-temperature behaviour. The calculated total change in entropy indicates a ground-state entropy of 0.46 ln 2
Ignatenko, A. N.; Irkhin, V. Yu.
2016-01-01
We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...
Zakeri, Khalil
2017-01-11
This Topical Review presents an overview of the recent experimental results on the quantitative determination of the magnetic exchange parameters in ultrathin magnetic films and multilayers grown on different substrates. The experimental approaches for probing both the symmetric Heisenberg and the antisymmetric Dzyaloshinskii-Moriya exchange interaction in ultrathin magnetic films and at interfaces are discussed in detail. It is explained how the experimental spectrum of magnetic excitations can be used to quantify the strength of these interactions.
The indeterminability of the world. Heisenberg and the struggle about the soul of the world
International Nuclear Information System (INIS)
Lindley, D.
2008-01-01
With his detection of the so-called uncertainty or undeterminacy relation the young physicist Werner Heisenberg upsetted 1972 over centuries valid physical certainties. The American physicist and journalist David Lindley depicts in his fascinating story the birth and development of one of the most important knowledges of history of sciences, which faned a vehement controversy under the greatests minds of his time and changed deeply our view of the world
Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets
International Nuclear Information System (INIS)
Zinke, R; Richter, J; Drechsler, S-L
2010-01-01
We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.
Exact expectation values of local fields in the quantum sine-Gordon model
International Nuclear Information System (INIS)
Lukyanov, S.; Rossijskaya Akademiya Nauk, Chernogolovka; Zamolodchikov, A.; Rossijskaya Akademiya Nauk, Chernogolovka
1997-01-01
We propose an explicit expression for vacuum expectation values left angle e iaφ right angle of the exponential fields in the sine-Gordon model. Our expression agrees both with semi-classical results in the sine-Gordon theory and with perturbative calculations in the massive Thirring model. We use this expression to make new predictions about the large-distance asymptotic form of the two-point correlation function in the XXZ spin chain. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir; Adami, H., E-mail: hamed.adami@yahoo.com
2017-01-15
In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice
Li, P. H. Y.; Bishop, R. F.
2016-06-01
We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.
Directory of Open Access Journals (Sweden)
M.R. Setare
2017-01-01
Full Text Available In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain
International Nuclear Information System (INIS)
Nayyar, A.H.; Murtaza, G.
1981-08-01
As an example of interaction between two solitons belonging to different species, a semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin systems are taken with their respective nonlinear interactions. The lattice soliton is shown to introduce spatial inhomogeneities into the propagation of the magnetic soliton resulting in (a) the trapping of the magnetic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the width of the magnetic soliton becoming time-dependent. (author)
International Nuclear Information System (INIS)
Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.
2008-01-01
We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements
Cruz, C.
The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.
On the completeness of the set of Bethe-Hulthen solutions of the linear Heisenberg system
International Nuclear Information System (INIS)
Caspers, W J; Labuz, M; Wal, A
2006-01-01
In this work we formulate the standard form of the solutions of the Heisenberg chain with periodic boundary conditions and show that these solutions can be transformed into the well-known Bethe-Hulthen solutions. The standard form is found by solving the secular problem, separated according to the irreducible representations of the translation group. The relevant parameters exp(ik j ) of the Bethe-Hulthen solutions are found from a set of linear equations with coefficients derived from the standard solutions. This correspondence between standard and Bethe-Hulthen solutions realizes the completeness of the Bethe-Hulthen method
Cálculo de la concurrencia para el modelo de Heisenberg
Castellanos,R; Franco,R; Silva-Valencia,J
2010-01-01
La concurrencia es una cantidad que nos permite medir el grado de entreveramiento que presenta un sistema cuántico y se puede calcular a partir de la matriz densidad reducida. En este artículo mostramos explicitamente como calcular la concurrencia para una cadena finita de espines s =1/2 descrita por el modelo de Heisenberg anistrópico. Nosotros mostramos que para cadenas finitas la concurrencia tiene un máximo en el punto crítico Δ = 1, la cual es una de las principales características ...
The night of the physicists. Heisenberg, Hahn, Weizsaecker, and the German bomb
International Nuclear Information System (INIS)
Schirach, Richard von
2014-01-01
Finally the German atomic physicists around Heisenberg, von Weizsaecker, and Hahn worked on their ''uranium machine'' in a Swabian beer-cellar - and took themselves for the world elite of nuclear research. In imprisonment they heared from the dropping of the Hiroshima bomb - a shock. Richard von Schirach shows the hindered ''fathers of the German atomic bomb'' in close-up, their eagerness, their hybris, their true importance, and their attempts to give after the war a new interpretation of their own role. A book, which raises in the sense of Duerrenmatt the question for the responsibility of science.
Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies
International Nuclear Information System (INIS)
Peters, D; Selke, W; McCulloch, I P
2010-01-01
Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.
The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation
International Nuclear Information System (INIS)
Azakov, S.; Dilaver, M.; Oztas, A.M.
1999-09-01
Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)
Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii–Moriya interaction
International Nuclear Information System (INIS)
Qiang, Zheng; Xiao-Ping, Zhang; Zhong-Zhou, Ren; Qi-Jun, Zhi
2009-01-01
This paper investigates the entanglement dynamics of the system, composed of two qubits A and B with Heisenberg XX spin interactation. There is a third controller qubit C, which only has Dzyaloshinskii–Moriya (DM) spin-orbit interaction with the qubit B. It is found that depending on the initial state of the controller qubit C and DM interaction, the entanglement of the system displays amplification and sudden birth effects. These effects indicate that one can control the entanglement of the system, which may be helpful for quantum information processing. (general)
Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF_{3}
DEFF Research Database (Denmark)
Coldea, R.; Cowley, R.A.; Perring, T.G.
1998-01-01
component evolves below T-N into the longitudinal susceptibility identified in an earlier polarized neutron experiment. The intensity and energy width of the longitudinal scattering decrease on cooling below T-N. Down to the lowest temperatures where the longitudinal susceptibility could be measured......The magnetic critical scattering of the near-ideal three-dimensional Heisenberg antiferromagnet (AF) RbMnF3 has been remeasured using neutron scattering. The critical dynamics has been studied in detail in the temperature range 0.77T(N)
Magnon damping in two-dimensional Heisenberg ferromagnetic system
International Nuclear Information System (INIS)
Cheng, T.-M.; Li Lin; Ze Xianyu
2006-01-01
A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed
International Nuclear Information System (INIS)
Fridman, Yu.A.; Klevets, Ph.N.; Kozhemyako, O.V.
2003-01-01
Influence of magnetoelastic (ME) interaction on the phase transitions in two-dimensional non-Heisenberg ferromagnets is investigated. It is shown that if the constant of Heisenberg exchange interaction is large, the ferromagnetic phase is implemented in a system. When the value of biquadratic exchange interaction increases there is a phase transition to the quadrupolar phase characterized by the tensor order parameters. Thus, ME interaction plays an essential role, not only stabilizing the long-range magnetic order in the system, but also determining the order of the phase transition
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...
RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet
Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.
2016-03-01
We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.
Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory
International Nuclear Information System (INIS)
Li Liangsheng; Li Li; Chen Xiaosong
2009-01-01
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ 3 = 0.224 and the reduced temperature T* = kT/ element of = 1.87 (σ is the diameter of Heisenberg hard sphere and element of is the coupling constant).
Energy Technology Data Exchange (ETDEWEB)
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)
2016-02-01
The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.
1971-01-01
Remote from the noise and bustle of Europe's capital cities, in the charming German lake-side town of Lindau, close to the borders of Austria and Switzerland, Nobel Prize Winners in physics gathered together from June 28-July 2 to talk of their science and its interaction with society.
DEFF Research Database (Denmark)
Albrechtslund, Anne-Mette Bech; Albrechtslund, Anders
of the series’ appeal is due to its epic chronicling of the flow of transgressing and intersecting knowledge environments in the story of Walter White’s gradual transformation from disheartened teacher to methamphetamine producing criminal mastermind. Walter uses his scientific training and knowledge...
Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures
International Nuclear Information System (INIS)
Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.
2003-01-01
We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains
International Nuclear Information System (INIS)
Myrheim, J.
1993-06-01
The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs
On the quantum inverse scattering problem
International Nuclear Information System (INIS)
Maillet, J.M.; Terras, V.
2000-01-01
A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains
Li, P. H. Y.; Bishop, R. F.
2018-03-01
We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.
Scalar potential for the gauged Heisenberg algebra and a non-polynomial antisymmetric tensor theory
International Nuclear Information System (INIS)
D'Auria, R.; Ferrara, S.; Trigiante, M.; Vaula, S.
2005-01-01
We study some issues related to the effective theory of Calabi-Yau compactifications with fluxes in type II theories. At first the scalar potential for a generic electric Abelian gauging of the Heisenberg algebra, underlying all possible gaugings of R-R isometries, is presented and shown to exhibit, in some circumstances, a 'dual' no-scale structure under the interchange of hypermultiplets and vector multiplets. Subsequently a new setting of such theories, when all R-R scalars are dualized into antisymmetric tensors, is discussed. This formulation falls in the class of non-polynomial tensor theories considered long ago by Freedman and Townsend and it may be relevant for the introduction of both electric and magnetic charges
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2010-10-01
Full Text Available Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor √1-n2, in terms of magnitude n ε [0,1] of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.
Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)
International Nuclear Information System (INIS)
Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S
2012-01-01
We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).
Abhinav, Kumar; Guha, Partha
2018-03-01
Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.
133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4
Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.
2006-10-01
We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.
Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Paul, Susobhan, E-mail: suso.phy.paul@gmail.com [Department of Physics, Scottish Church College, 1 & 3 Urquhart Square, Kolkata-700006 (India); Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com [Department of Physics, Jadavpur University, 188 Raja S C Mallik Road, Kolkata-700032 (India)
2016-05-06
Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.
International Nuclear Information System (INIS)
Starykh, O.; Singh, R.; Sandvik, A.
1997-01-01
Low temperature dynamics of the S=(1)/(2) Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T 1 and 1/T 2G are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and ω/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results. copyright 1997 The American Physical Society
Quantum Teleportation via Completely Anisotropic Heisenberg Chain in Inhomogeneous Magnetic Field
Institute of Scientific and Technical Information of China (English)
FU Cheng-Hua; HU Zhan-Ning
2013-01-01
The quantum teleportation with the entangled thermal state is investigated based on the completely anisotropic Heisenberg chain in the presence of the externally inhomogeneous magnetic field.The effects of the anisotropy and magnetic field for the quantum fidefity are studied in detail.The zero temperature limit and the features of the nonzero temperature for this nonclassical fidelity are obtained.We find that the quantum teleportation demands more stringent conditions than the thermal entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the critical temperature of the maximal teleportation fidelity.The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.
The semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet
International Nuclear Information System (INIS)
Benyoussef, A.; Boubekri, A.; Ez-Zahraouy, H.; Saber, M.
1998-08-01
Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the phase transitions in the semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet on a simple cubic lattice are examined. For fixed values of the reduced exchange anisotropic parameter, the critical temperature of the system is studied as a function of the ratio R of the surface exchange couplings to the bulk ones. It was found that if R ≤ R c , the system orders at the bulk critical temperature T B c /J and if R ≥ R c , the system exhibits two successive transitions. The surface orders at the surface critical temperature T S c /J which is higher than T B c /J and as the temperature is lowered, in the presence of ordered surface, the bulk orders at T B c /J. (author)
Neutron Scattering from the Heisenberg Ferromagnets EuO and EuS
DEFF Research Database (Denmark)
Dietrich, O. W.; Als-Nielsen, Jens Aage; Passell, L.
1976-01-01
Inelastic neutron scattering has been used to investigate the spin dynamics of the isotropic Heisenberg ferromagnet EuO over a wide range of wave vectors and over a temperature range extending from 0.14 to 1.9TC. Below the ordering temperature spin-wave renormalization is found to agree well...... with the predictions of Dyson-Maleev theory (including the dynamical but not the kinematical interaction) when both exchange and dipolar couplings between the Eu2+ ions are taken into account. At temperatures near TC broadening of the spin-wave lines was observed. For hydrodynamic spin waves, the wave......-vector dependence of the linewidths is found to be consistent with the expectations of microscopic spin-wave theory and the temperature dependence with predictions based on dynamical scaling. At TC, linewidths were found to deviate from the q5/2 wave-vector dependence expected on the basis of dynamical scaling...
International Nuclear Information System (INIS)
Barut, A.O.; Salamin, Y.I.
1989-07-01
We present a simple approach to the relativistic calculation of the rates of spontaneous emission starting from the Heisenberg picture formula for the power radiated by a charged particle undergoing acceleration, and evaluate atomic decay rates using relativistic Dirac-Coulomb wavefunctions. The spin of the electron, embedded in its relativistic wavefunction, is shown to correctly provide the two polarization states of the emitted radiation. We discuss selection rules and calculate the Hydrogen 2 P → 1 S transition rate, among others, to be Γ = (6.2650 ± 0.0007)x10 8 s -1 in good agreement with the full field theory calculation as well as with experiment. (author). 14 refs
Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss
1998-06-05
The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.
Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions
International Nuclear Information System (INIS)
Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J.
1993-01-01
A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author)
Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}: A new telluro-phosphate with S=1/2 Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Xia, Mingjun [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Shipeng; Lu, Jun; Sun, Young [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, R.K., E-mail: rkli@mail.ipc.ac.cn [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
2015-10-15
A new telluro-phosphate compound Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, one dimensional [CuTePO{sub 7}]{sup 3−} chains are formed by tetrahedral PO{sub 4} and trigonal bi-pyramidal TeO{sub 4} joining square planar CuO{sub 4} groups. Those [CuTePO{sub 7}]{sup 3−} chains are inter-connected by sharing one oxygen atom from the TeO{sub 4} group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system. - Graphical abstract: Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, containing (CuTePO{sub 7}){sup 3−} chains formed by PO{sub 4} and TeO{sub 4} joining CuO{sub 4} groups, shows typical 1D Heisenberg antiferromagnetic chain model behavior as confirmed by magnetic measurements. - Highlights: • New telluro-phosphate Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} has been grown. • It features layered structure composed of [CuTePO{sub 7}]{sup 3−} chains and TeO{sub 4} groups. • It shows the Heisenberg antiferromagnetic chain behavior. • It is transparent in the range of 1000–2500 nm with a UV absorption edge of 393 nm.
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling
Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun
2018-05-01
Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.
Energy Technology Data Exchange (ETDEWEB)
Rechenberg, Helmut [MPI fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
2010-07-01
With his discovery that measuring values of complementary fundamental quantities in the microscopic world cannot by arbitrarily precisely determined cutted Werner Heisenberg the Gordian knot for the finishing of quantum theory developed by Planck, Einstein, and others and opened by this a new ''golden era'' in the physics of the 20th century. On the base of the documents from his life and work, i. e. deeds, letters and reports of contemporaries, as well as the published and unpublished essays, books, and articles of Heisenberg - also the later on found, publications or manuscripts mainly coming from the inheritance - resulted this systematic biography of Heisenberg. The author, the last doctoral candidate of Heisenberg relied furthermore on factual and personal knowledges, mainly own remembrances on his doctoral father and his teachers, colleagues, and students. Because of the interest of an authentical biography of the theoretical physicist Heisenberg the presentation of the mathematical approaches and the corresponding derivations could not completely be abandoned. This biography appeals by this both to a scientifically cultivated as a wider in science interested audience and covers the first phase of Heisenberg's life until his Nobel price 1933. [German] Mit seiner Entdeckung, dass sich Messwerte komplementaerer Groessen in der mikroskopischen Welt nicht beliebig genau bestimmen lassen, durchschnitt Werner Heisenberg den Gordischen Knoten zur Vollendung der von Planck, Einstein und anderen entwickelten Quantentheorie und eroeffnete damit ein neues ''goldenes Zeitalter'' in der Physik des 20. Jahrhunderts. Auf der Grundlage der Dokumente aus seinem Leben und Wirken, d.h. der Urkunden, Briefe und Berichte von Zeitzeugen sowie der publizierten und unpublizierten Abhandlungen, Buecher und Artikel Heisenbergs - auch der spaeter aufgefundenen, ueberwiegend aus dem Nachlass Heisenbergs stammenden Veroeffentlichungen oder
Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.
2018-04-01
The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.
Heisenberg equations of motion for the spin-3/2 field in the presence of an interaction
International Nuclear Information System (INIS)
Nagpal, A.K.
1977-01-01
The Rarita-Schwinger spin-3/2 field interacting with a Dirac field and a scalar field (external) is found to satisfy the Heisenberg equations of motion, in the weak-field limit. This is analogous to the result, for the case of spin-3/2 field minimally coupled with external electromagnetic field, recently obtained by Mainland and Sudarshan (Phys. Rev. D. 8:1088 (1973)). (author)
Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’
International Nuclear Information System (INIS)
De Gier, Jan
2012-01-01
We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)
Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain
Directory of Open Access Journals (Sweden)
L. Čanová
2009-01-01
Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.
Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields
International Nuclear Information System (INIS)
Lyo, S.K.
1981-01-01
The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Directory of Open Access Journals (Sweden)
Claudio Cremaschini
2017-07-01
Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-15
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
International Nuclear Information System (INIS)
Atanasov, Victor; Saxena, Avadh
2010-12-01
Adopting a purely two dimensional relativistic equation for graphene's carriers contradicts the Heisenberg uncertainty principle since it requires setting off-the-surface coordinate of a three-dimensional wavefunction to zero. Here we present a theoretical framework for describing graphene's massless relativistic carriers in accordance with this most fundamental of all quantum principles. A gradual confining procedure is used to restrict the dynamics onto a surface and in the process the embedding of this surface into the three dimensional world is accounted for. As a result an invariant geometric potential arises which scales linearly with the Mean curvature and shifts the Fermi energy of the material proportional to bending. Strain induced modification of the electronic properties or 'straintronics' is clearly an important field of study in graphene. This opens a venue to producing electronic devices, MEMS and NEMS where the electronic properties are controlled by geometric means and no additional alteration of graphene is necessary. The appearance of this geometric potential also provides us with clues as to how quantum dynamics looks like in the curved space-time of general relativity. In this context, we explore a two-dimensional cross-section of the wormhole geometry realized with graphene as a solid state thought experiment. (author)
International Nuclear Information System (INIS)
Mayhall, Nicholas J.; Head-Gordon, Martin
2014-01-01
We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S ^ z , M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed
Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet
Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico
2018-03-01
The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .
Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice
International Nuclear Information System (INIS)
Perkins, Natalia; Brenig, Wolfram
2009-01-01
We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.
Magnon energy renormalization and low-temperature thermodynamics of O(3) Heisenberg ferromagnets
International Nuclear Information System (INIS)
Radošević, Slobodan M.; Pantić, Milan R.; Pavkov-Hrvojević, Milica V.; Kapor, Darko V.
2013-01-01
We present the perturbation theory for lattice magnon fields of the D-dimensional O(3) Heisenberg ferromagnet. The effective Hamiltonian for the lattice magnon fields is obtained starting from the effective Lagrangian, with two dominant contributions that describe magnon–magnon interactions identified as a usual gradient term for the unit vector field and a part originating in the Wess–Zumino–Witten term of the effective Lagrangian. Feynman diagrams for lattice scalar fields with derivative couplings are introduced, on the basis of which we investigate the influence of magnon–magnon interactions on magnon self-energy and ferromagnet free energy. We also comment appearance of spurious terms in low-temperature series for the free energy by examining magnon–magnon interactions and internal symmetry of the effective Hamiltonian (Lagrangian). -- Highlights: •Lattice magnon Hamiltonian constructed from the effective Lagrangian. •New Feynman diagrams with colored propagators and vertices for lattice scalar fields. •Influence of magnon–magnon interactions from the WZW term on magnon energies and free energy of O(3) HFM
Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain
International Nuclear Information System (INIS)
Richter, J; Haertel, M; Ihle, D; Drechsler, S-L
2009-01-01
We studied the thermodynamics of the one-dimensional J 1 -J 2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds J 1 2 > 0 using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on J 2 1 |/4 where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J 2 . The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from χ ∝ T -2 at J 2 1 |/4 to χ ∝ T -3/2 at the quantum-critical point J 2 = |J 1 |/4. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat C v (T) for J 2 and |J 1 |/8, indicating its strong influence on the low-energy spectrum.
Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model
Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.
2018-01-01
This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
International Nuclear Information System (INIS)
Kosevich, Yuriy A; Gann, Vladimir V
2013-01-01
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Energy Technology Data Exchange (ETDEWEB)
Kosmachev, O. A.; Krivtsova, A. V.; Fridman, Yu. A., E-mail: yuriifridman@gmail.com [Vernadskii Crimea Federal University (Russian Federation)
2016-02-15
We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.
International Nuclear Information System (INIS)
Boos, H.E.; Shiroishi, M.; Takahashi, M.
2005-01-01
We show how correlation functions of the spin-1/2 Heisenberg chain without magnetic field in the anti-ferromagnetic ground state can be explicitly calculated using information contained in the quantum Knizhnik-Zamolodchikov equation [qKZ]. We find several fundamental relations which the inhomogeneous correlations should fulfill. On the other hand, it turns out that these relations can fix the form of the correlations uniquely. Actually, applying this idea, we have obtained all the correlation functions on five sites. Particularly by taking the homogeneous limit, we have got the analytic form of the fourth-neighbor pair correlator j z S j+4 z >
DEFF Research Database (Denmark)
Lefmann, K.; Rischel, C.
1996-01-01
We present a numerical diagonalization study of two one-dimensional S=1/2 antiferromagnetic Heisenberg chains, having nearest-neighbor and Haldane-Shastry (1/r(2)) interactions, respectively. We have obtained the T=0 dynamical correlation function, S-alpha alpha(q,omega), for chains of length N=8......-28. We have studied S-zz(q,omega) for the Heisenberg chain in zero field, and from finite-size scaling we have obtained a limiting behavior that for large omega deviates from the conjecture proposed earlier by Muller ct al. For both chains we describe the behavior of S-zz(q,omega) and S...
Dynamical properties of the S =1/2 random Heisenberg chain
Shu, Yu-Rong; Dupont, Maxime; Yao, Dao-Xin; Capponi, Sylvain; Sandvik, Anders W.
2018-03-01
We study dynamical properties at finite temperature (T ) of Heisenberg spin chains with random antiferromagnetic exchange couplings, which realize the random singlet phase in the low-energy limit, using three complementary numerical methods: exact diagonalization, matrix-product-state algorithms, and stochastic analytic continuation of quantum Monte Carlo results in imaginary time. Specifically, we investigate the dynamic spin structure factor S (q ,ω ) and its ω →0 limit, which are closely related to inelastic neutron scattering and nuclear magnetic resonance (NMR) experiments (through the spin-lattice relaxation rate 1 /T1 ). Our study reveals a continuous narrow band of low-energy excitations in S (q ,ω ) , extending throughout the q space, instead of being restricted to q ≈0 and q ≈π as found in the uniform system. Close to q =π , the scaling properties of these excitations are well captured by the random-singlet theory, but disagreements also exist with some aspects of the predicted q dependence further away from q =π . Furthermore we also find spin diffusion effects close to q =0 that are not contained within the random-singlet theory but give non-negligible contributions to the mean 1 /T1 . To compare with NMR experiments, we consider the distribution of the local relaxation rates 1 /T1 . We show that the local 1 /T1 values are broadly distributed, approximately according to a stretched exponential. The mean 1 /T1 first decreases with T , but below a crossover temperature it starts to increase and likely diverges in the limit of a small nuclear resonance frequency ω0. Although a similar divergent behavior has been predicted and experimentally observed for the static uniform susceptibility, this divergent behavior of the mean 1 /T1 has never been experimentally observed. Indeed, we show that the divergence of the mean 1 /T1 is due to rare events in the disordered chains and is concealed in experiments, where the typical 1 /T1 value is accessed.
Directory of Open Access Journals (Sweden)
Mohammed Daoud
2018-04-01
Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)
2016-01-15
The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.
Entanglement entropy of excited states
International Nuclear Information System (INIS)
Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale
2009-01-01
We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl
2014-03-01
Heisenberg antiferromagnetic chains based on Ni{sup 2+} ions with integer spin S=1 exhibit intriguing behavior, e.g. the Haldane gap phase and the large-D phase. The predicted transitions between the two phases and the Neel phase has generated search for real candidate systems. Crucial to this search is the interplay between the ‘in-plane anisotropy’, i.e. the rhombic zero-field splitting (ZFS) E-term, and the ‘planar anisotropy’, i.e. the axial ZFS D-term. This paper clarifies intricate properties of orthorhombic ZFS Hamiltonians (H{sub ZFS}) and inconsistencies revealed by critical survey of pertinent studies. Reporting the non-standard (D, E) sets with λ=E/D out of the standard range (0, 1/3) alongside the standard sets with λ∝(0, 1/3) indicates that these properties are not recognized. We show that direct comparisons of the non-standard and standard sets are meaningless and lead to incorrect conclusions on the strength of the ‘in-plane anisotropy’ (E) as compared with the ‘planar anisotropy’ (D). To remedy such problems, the ZFSP sets reported for the large-D phase candidate systems are reanalyzed using orthorhombic standardization. The six physically equivalent ZFSP sets are determined in the conventional (D, E) and Stevens (b{sub 2}{sup 0}, b{sub 2}{sup 2}) notation. These considerations help understanding intricacies inherent in orthorhombic H{sub ZFS} and provide consistent data for future modeling of ZFS parameters in the large-D phase and Haldane gap systems.
A note on a boundary sine-Gordon model at the free-Fermion point
Murgan, Rajan
2018-02-01
We investigate the free-Fermion point of a boundary sine-Gordon model with nondiagonal boundary interactions for the ground state using auxiliary functions obtained from T - Q equations of a corresponding inhomogeneous open spin-\\frac{1}{2} XXZ chain with nondiagonal boundary terms. In particular, we obtain the Casimir energy. Our result for the Casimir energy is shown to agree with the result from the TBA approach. The analytical result for the effective central charge in the ultraviolet (UV) limit is also verified from the plots of effective central charge for intermediate values of volume.
Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8
Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.
2002-03-01
The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.
Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.
1996-03-01
We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.
Institute of Scientific and Technical Information of China (English)
Huang Li-Yuan; Fang Mao-Fa
2008-01-01
The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.
International Nuclear Information System (INIS)
Law, J M; Benner, H; Kremer, R K
2013-01-01
The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3
Quantum decoration transformation for spin models
Energy Technology Data Exchange (ETDEWEB)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br
2016-09-15
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Quantum decoration transformation for spin models
International Nuclear Information System (INIS)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre
2016-01-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
International Nuclear Information System (INIS)
Yoakam, M.C.
1983-01-01
The purpose of this thesis is to investigate the possiblity of simultaneously incorporating both Lorentz invariance and a special gauge invariance among Boson fields satisfying Proca-like commutators and gauge conditions (including Proca, Feynman, Yennie, Landau, and Coester Gauge choices for the commutators) as a stationary condition in both the interaction and Heisenberg pictures for Lagrangian formulations of second-quantized neutral vector-meson theories (which include regularization by the auxillary-field method) before the regularization is removed. This approach, if ultimately successful, will demonstrate the Lorentz invariance and gauge invariance can be included as internal symmetries of a regularized form of quantum electrodynamics. It was demonstrated that, with spinor mass-counterterms but without Boson mass-counterterms, a generalization of the method of Coester and Stueckelberg to reduce the usual forms of the Proca-like field interactions to the simpler Coester interaction is applicable. Therefore, the choice of the interaction operator is more general than its surface appearance would indicate. Under the same restriction, it was shown that a simple generalization of the Fermi operator will provide stationary gauge conditions for the Proca-like Boson operators, but that the requirement of limited-gauge-invariance in both the Heisenberg and interaction pictures removes the ambiguity usually associated with the Fermi operator. In the presence of the Boson mass counterterms, it was shown that the subsidiary conditions are, in general, no longer stationary in the Heisenberg picture
Toy Models of a Nonassociative Quantum Mechanics
International Nuclear Information System (INIS)
Dzhunushaliev, V.
2007-01-01
Toy models of a nonassociative quantum mechanics are presented. The Heisenberg equation of motion is modified using a nonassociative commutator. Possible physical applications of a nonassociative quantum mechanics are considered. The idea is discussed that a nonassociative algebra could be the operator language for the nonperturbative quantum theory. In such approach the nonperturbative quantum theory has observables and un observables quantities.
Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4
Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro
1980-09-01
The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.
International Nuclear Information System (INIS)
Azevedo, L.J.; Narath, A.; Richards, P.M.; Soos, Z.G.
1980-01-01
Proton spin-lattice relaxation rates in the one-dimensional (1D) spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato) copper (II), α-CuNSal, have been measured in applied fields up to 125 kOe in the temperature range 1-- 4 K. The strong coupling of protons close to the antiferromagnetic (AF) chain serves as a convenient probe to study the dynamics of the AF chain through the field-induced antiferromagnetic to ferromagnetic (F) phase transition. The magnetization of the AF chain, as measured by the proton field shift, is in close agreement with calculations by Bonner and Fisher and yields an exchange interaction J/k/sub B/=3.04 +- 0.04 K. The proton relaxation rate has isotropic (hyperfine coupled) and anisotropic (dipolar) components. We identify the isotropic relaxation rate with a creation or destruction of one-spin excitations (magnons) and the anisotropic rate with two-magnon processes. The measured one-magnon relaxation rate shows an enhancement near the critical field for the AF → F transition and a strong decrease of more than four decades as the critical field is exceeded. A no-adjustable-parameter calculation based on the fermion model quantitatively agrees with the measured one-magnon relaxation rate, both above and below the critical field H/sub c/. The enhanced relaxation at H/sub c/ is correctly predicted as a consequence of the divergence of the 1D density of magnon states, where a gap in the spin-wave spectrum exists. Above H/sub c/ a finite magnon lifetime must be included in order to produce a nonzero one-magnon relaxation rate. This is also calculated with no adjustable parameters. The two-magnon relaxation rate also shows a decrease as the critical field is exceeded and the calculated relaxation rate agrees well with experiment at low temperatures, provided, however, that one uses a boson rather than fermion picture
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2012-01-01
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1981-01-01
We consider general expressions of factorized S-matrices with Abelian symmetry expressed in terms of theta-functions. These expressions arise from representations of the Heisenberg group. New examples of factorized S-matrices lead to a large class of completely integrable models of statistical mechanics which generalize the XYZ-model of the eight-vertex model. (orig.)
Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach
International Nuclear Information System (INIS)
Spirin, D.V.; Fridman, Y.A.
2003-01-01
We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories
Shan, Xiao; Xiahou, Chengkui; Connor, J N L
2018-01-03
In earlier research, we have demonstrated that broad "hidden" rainbows can occur in the product differential cross sections (DCSs) of state-to-state chemical reactions. Here we ask the question: can pronounced and localized rainbows, rather than broad hidden ones, occur in reactive DCSs? Further motivation comes from recent measurements by H. Pan and K. Liu, J. Phys. Chem. A, 2016, 120, 6712, of a "bulge" in a reactive DCS, which they conjecture is a rainbow. Our theoretical approach uses a "weak" version of Heisenberg's scattering matrix program (wHSMP) introduced by X. Shan and J. N. L. Connor, Phys. Chem. Chem. Phys., 2011, 13, 8392. This wHSMP uses four general physical principles for chemical reactions to suggest simple parameterized forms for the S matrix; it does not employ a potential energy surface. We use a parameterization in which the modulus of the S matrix is a smooth-step function of the total angular momentum quantum number, J, and (importantly) its phase is a cubic polynomial in J. We demonstrate for a Legendre partial wave series (PWS) the existence of pronounced rainbows, supernumerary rainbows, and other interference effects, in reactive DCSs. We find that reactive rainbows can be more complicated in their structure than the familiar rainbows of elastic scattering. We also analyse the angular scattering using Nearside-Farside (NF) PWS theory and NF PWS Local Angular Momentum (LAM) theory, including resummations of the PWS. In addition, we apply full and NF asymptotic (semiclassical) rainbow theories to the PWS - in particular, the uniform Airy and transitional Airy approximations for the farside scattering. This lets us prove that structure in the DCSs are indeed rainbows, supernumerary rainbows as well as other interference effects.
Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study
International Nuclear Information System (INIS)
Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu
1999-04-01
Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)
Max-Planck-Institut fuer Physik. Werner-Heisenberg-Institut. Annual report 1993
International Nuclear Information System (INIS)
1994-03-01
The Institute's main field of activity is research into elementary particles and their interactions. The verification of the standard model of elementary particle physics was at the center of interest in the phenomenological investigations. The spectrum of experimental activities on particle accelerators is supplemented by experiments on astro-particle physics and cosmic sources. Segmented semiconductor detectors were developed for investigations in high-energy physics. The 1993 annual report also contains organisational and staff data and a survey of activities. (DG) [de
Shimada, Alisa; Nakano, Hiroki; Sakai, Tôru; Yoshimura, Kazuyoshi
2018-03-01
The S = 1/2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-diagonalization method. The examined distortion type is √{3} × √{3} . We study the case when the distortion connects the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which shows a marked peak structure related to the appearance of the intermediate state.
Katul, Gabriel G; Porporato, Amilcare; Nikora, Vladimir
2012-12-01
The existence of a "-1" power-law scaling at low wavenumbers in the longitudinal velocity spectrum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been uniform across laboratory studies. This letter shows that Heisenberg's eddy viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the "-1" power law in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large scale motions in modifying the k⁻¹ scaling.
International Nuclear Information System (INIS)
Jezewski, W.
1979-01-01
Properties of the Bloch self-consistently renormalized spin wave approximation are analyzed near the zero-field transition temperature Tsub(m). The analysis is carried out on the basis of the application of this approximation to the Heisenberg ferromagnet involving nearest neighbour interaction. Series expansions for the resulting Helmholtz free energy, magnetization, and specific heat in the reduced temperature t=(Tsub(m)-T)/Tsub(m) are derived and the critical exponents β and α' are obtained. The limiting case of infinite spin (the classical limit) is also investigated. (author)
Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass
International Nuclear Information System (INIS)
Zhang Kai-Cheng; Liu Yong; Chi Feng
2014-01-01
Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Thermodynamic properties of a layered S = 7/2 Heisenberg magnet Gd(OH)CO3
Orendac, Martin; Ulicny, Martin; Cizmar, Erik; Orendacova, Alzbeta; Chen, Yan-Cong; Meng, Zhao-Sha; Tong, Ming-Liang
2015-03-01
Thermodynamic quantities and ESR spectra of Gd(OH)CO3 (I) are reported. The material may be considered to consist of weakly coupled layers with potentially triangular arrangement of exchange paths within each layer. Different bridging groups and distances among Gd3+ ions may be responsible for spatial anisotropy of magnetic coupling. Preliminary analysis of magnetic susceptibility using Curie-Weiss law yielded θ = -1.05 K indicating weak antiferromagnetic coupling and consequently, spin frustration in (I). More detailed simultaneous analysis of specific heat, susceptibility and magnetization studied down to nominally 0.45 K revealed non-negligible role of single-ion anisotropy. Using the model of weakly interacting S =7/2 trimers, the gross features of measured data may be explained while assuming single-ion anisotropy D /kB ~ 0.6 K and effective intratrimer magnetic coupling | J /kB | ~0.3 K. The obtained D value reasonably reproduces the position and shape of ESR line. The performed analysis suggests that magnetism in (I) is governed predominantly by crystal field effects and frustration plays a minor role. Supported by ITMS26220120005 and VEGA 1/0143/13.
Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study
Chandra, V. Ravi; Sahoo, Jyotisman
2018-04-01
We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .
Heisenberg's Invention of Matrices
Indian Academy of Sciences (India)
sent a more appropriate approach for quantum mechanics. A fa- ... of matrix mechanics in early classes, students find quantum me- ... First good quality spectra of hydrogen atom was recorded in 1853 by Anders Ångström. After 32 years, in.
Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction
Huang, Zhiming
2018-02-01
In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Form factors in quantum integrable models with GL(3)-invariant R-matrix
Energy Technology Data Exchange (ETDEWEB)
Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)
2014-04-15
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
The coupled cluster theory of quantum lattice systems
International Nuclear Information System (INIS)
Bishop, R.; Xian, Yang
1994-01-01
The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory
NLIE of Dirichlet sine-Gordon model for boundary bound states
International Nuclear Information System (INIS)
Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco
2008-01-01
We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory
Peric, Mirna; Bales, Barney L; Peric, Miroslav
2012-03-22
The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to
Dynamics of carrions in the spin-fermion model
International Nuclear Information System (INIS)
Kuzemskij, A.L.; Marvakov, D.
1996-01-01
The spectrum of hole quasiparticles (carrions) and the role of magnetic correlations has been considered in the framework of spin-fermion (Kondo-Heisenberg) model by means of the equation-of-motion method. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of for spin-fermion model to determine how the one- and two-magnon processes define the true nature of carriers in HTSC. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, that two-magnon processes can play a role for the formation of the superconducting state. 60 refs
Thermal quantum discord of spins in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan
2011-01-01
In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.
Real time evolution at finite temperatures with operator space matrix product states
International Nuclear Information System (INIS)
Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine
2014-01-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)
Real time evolution at finite temperatures with operator space matrix product states
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Using the J1–J2 quantum spin chain as an adiabatic quantum data bus
International Nuclear Information System (INIS)
Chancellor, Nicholas; Haas, Stephan
2012-01-01
This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J 1 –J 2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so-called Majumdar–Ghosh point. We examine several annealing protocols for this process and find similar results for all of them. The annealing process works well up to a critical frustration threshold. There is also a brief section examining what other models this protocol could be used for, examining its use in the XXZ and XYZ models. (paper)
Properties of linear integral equations related to the six-vertex model with disorder parameter II
International Nuclear Information System (INIS)
Boos, Hermann; Göhmann, Frank
2012-01-01
We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)
Krajniak, Wiktor
2014-01-01
The purpose of this article is the analyses of discussion between Albert Einstein and Werner Heisenberg in the period 1925-1927. Their disputes, relating to the sources of scientific knowledge, its methods and the value of knowledge acquired in this way, are part of the characteristic for the European science discourse between rationalism and empirism. On the basis of some sources and literature on the subject, the epistemological positions of both scholars in the period were reconstructed. This episode, yet poorly known, is a unique example of scientific disputes, whose range covers a broad spectrum of methodological problems associated with the historical development of science. The conducted analysis sheds some light on the source of popularity of logical empirism in the first half of the 20th century. A particular emphasis is placed on the impact of the neopositivist ideas which reflect Heisenberg's research program, being the starting point for the Copenhagen interpretation of quantum mechanics. The main assumption of logical empirism, concerning acquisition of scientific knowledge only by means of empirical procedures and logical analysis of the language of science, in view of the voiced by Einstein arguments, bears little relationship with actual testing practices in the historical aspect of the development of science. The criticism of Heisenberg's program, carried out by Einstein, provided arguments for the main critics of the neopositivist ideal and contributed to the bankruptcy of the idea of logical empirism, thereby starting a period of critical rationalism prosperity, arising from criticism of neopositivism and alluding to Einstein's ideas.
Ordering dynamics of microscopic models with nonconserved order parameter of continuous symmetry
DEFF Research Database (Denmark)
Zhang, Z.; Mouritsen, Ole G.; Zuckermann, Martin J.
1993-01-01
crystals. For both models, which have a nonconserved order parameter, it is found that the linear scale, R(t), of the evolving order, following quenches to below the transition temperature, grows at late times in an effectively algebraic fashion, R(t)∼tn, with exponent values which are strongly temperature......Numerical Monte Carlo temperature-quenching experiments have been performed on two three-dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model [Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a transition...... from a disordered phase to an orientationally ordered phase of continuous symmetry. The Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic transition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in magnetic...
Magnetization and spin gap in two-dimensional organic ferrimagnet BIPNNBNO
International Nuclear Information System (INIS)
Ovchinnikov, A S; Sinitsyn, V E; Bostrem, I G; Hosokoshi, Y; Inoue, K
2012-01-01
A magnetization process in the two-dimensional ferrimagnet BIPNNBNO is analyzed. The compound consists of ferrimagnetic (1,1/2) chains coupled by two sorts of antiferromagnetic interaction. Whereas the behavior of the magnetization curve in higher magnetic fields can be understood within a process for the separate ferrimagnetic chain, the appearance of the singlet plateau at lower fields is an example of non-Lieb-Mattis type ferrimagnetism. By using the exact diagonalization technique for finite clusters of size 4 × 6, 4 × 8 and 4 × 10 we show that the interchain frustration coupling plays an essential role in stabilization of the singlet phase. These results are complemented by an analysis of four cylindrically coupled ferrimagnetic (1,1/2) chains via an Abelian bosonization technique and an effective theory based on the XXZ spin-1/2 Heisenberg model when the interchain interactions are sufficiently weak/strong, respectively. (paper)
International Nuclear Information System (INIS)
Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng
2013-01-01
For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β
Directory of Open Access Journals (Sweden)
Y. V. Tymoshenko
2017-11-01
Full Text Available Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr_{2}Se_{4} with a cubic spinel structure, in which spin-3/2 magnetic Cr^{3+} ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q_{h} ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ∼0.17 meV, emerging from two orthogonal wave vectors (q_{h} 0 0 and (0 q_{h} 0 where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.
Energy Technology Data Exchange (ETDEWEB)
Tutsch, Ulrich; Postulka, Lars; Wolf, Bernd; Lang, Michael; Well, Natalija van; Ritter, Franz; Krellner, Cornelius; Assmus, Wolf [Physikalisches Institut, Goethe-University Frankfurt (Germany)
2015-07-01
The system Cs{sub 2}CuCl{sub 4-x}Br{sub x} (0 ≤ x ≤ 4) is a quasi-two-dimensional Heisenberg antiferromagnet with a triangular in-plane arrangement of the spin-spin couplings. The ratio J{sup '}/J of the corresponding coupling constants determines the degree of frustration in the system and has been found to be 0.34 (x = 0) and 0.74 (x = 4) for the border compounds. One may ask whether for some intermediate Br concentration an even higher degree of frustration can be reached. Indeed, some indications have been reported by Ono et al. Here, we present specific heat C and susceptibility χ measurements below 1 K in magnetic fields B up to 13.5 T for the intermediate compound Cs{sub 2}CuCl{sub 2}Br{sub 2}, which, due to site-selective substitution, shows a well-ordered halide sublattice. Indications for an antiferromagnetic transition are observed around 90 mK for B = 0. A small field of B = 0.14 T is sufficient to fully suppress this anomaly. Taking into account the high saturation field of about 20 T, extrapolated from χ(T = const, B) scans at low temperatures, this small ordered region in the B-T plane clearly indicates a high degree of frustration in Cs{sub 2}CuCl{sub 2}Br{sub 2}.
The Calogero model - anyonic representation, fermionic extension and supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Brink, L [Inst. of Theoretical Physics, Goeteborg (Sweden); Hansson, T H [Inst. of Theoretical Physics, Univ. of Stockholm (Sweden); Konstein, S [Dept. of Theoretical Physics, P.N. Lebedev Inst., Moscow (Russian Federation); Vasiliev, M A [Dept. of Theoretical Physics, P.N. Lebedev Inst., Moscow (Russian Federation)
1993-07-26
We discuss several applications and extensions of our previous operator solution of the N-body quantum-mechanical Calogero problem, i.e. N particles in one dimension subject to a two-body interaction of the form 1/2[Sigma][sub i,j] (x[sub i]-x[sub j])[sup 2]+g/(x[sub i]-x[sub j])[sup 2]. Using a complex representation of the deformed Heisenberg algebra underlying the Calogero model, we explicitly establish the equivalence between this system and anyons in the lowest Landau level. A construction based on supersymmetry is used to extend our operator method to include fermions, and we obtain an explicit solution of the supersymmetric Calogero model constructed by Freedman and Mende. We also show how the dynamical OSp(2; 2) supersymmetry is realized by bilinears of modified creation and annihilation operators, and how to construct a supersymmetric extension of the deformed Heisenberg algebra. (orig.)
Renormalized trajectory for non-linear sigma model and improved scaling behaviour
International Nuclear Information System (INIS)
Guha, A.; Okawa, M.; Zuber, J.B.
1984-01-01
We apply the block-spin renormalization group method to the O(N) Heisenberg spin model. Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(infinite) in two dimensions. Four finite N models, we choose a four-parameter action near the large-N renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum limit by performing Monte Carlo simulation of O(3) and O(4) models. (orig.)
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.
2015-01-01
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...
Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
Belliard, Samuel; Pimenta, Rodrigo A.
2015-12-01
We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.
International Nuclear Information System (INIS)
Li Yanchao
2010-01-01
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J 3 anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3
Chaloupka, Jiří; Khaliullin, Giniyat
2016-08-01
We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the interactions. The results show that the moment direction is a sensitive probe of the model parameters in real materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available neutron-diffraction and resonant x-ray-diffraction data on Na2IrO3 and RuCl3 and discuss the parameter regimes plausible in these Kitaev-Heisenberg model systems.
Resilience of hidden order to symmetry-preserving disorder
Strinati, Marcello Calvanese; Rossini, Davide; Fazio, Rosario; Russomanno, Angelo
2017-12-01
We study the robustness of nonlocal string order in two paradigmatic disordered spin-chain models, a spin-1/2 cluster-Ising and a spin-1 XXZ Heisenberg chain. In the clean case, they both display a transition from antiferromagnetic to string order. Applying a disorder, which preserves the Hamiltonian symmetries, we find that the transition persists in both models. In the disordered cluster-Ising model, we can study the transition analytically—by applying the strongest coupling renormalization group —and numerically—by exploiting integrability to study the antiferromagnetic and string order parameters. We map the model into a quadratic fermion chain, where the transition appears as a change in the number of zero-energy edge modes. We also explore its zero-temperature-singularity behavior and find a transition from a nonsingular to a singular region, at a point that is different from the one separating nonlocal and local ordering. The disordered Heisenberg chain can be treated only numerically: by means of MPS-based simulations, we are able to locate the existence of a transition between antiferromagnetic and string-ordered phase, through the study of order parameters. Finally, we discuss possible connections of our findings with many-body localization.
Continuum-time Hamiltonian for the Baxter's model
International Nuclear Information System (INIS)
Libero, V.L.
1983-01-01
The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt
Ohsugi, S.; Tokunaga, Y.; Ishida, K.; Kitaoka, Y.; Azuma, M.; Fujishiro, Y.; Takano, M.
1999-08-01
We report characteristics of impurity-induced staggered polarization (IISP) and antiferromagnetic long-range order (AF-LRO) in the gapped spin-1/2 Heisenberg two-leg ladder compound SrCu2O3 (Sr123). We have carried out comprehensive NMR and NQR investigations on three impurity-doped systems, Sr(Cu1-xMx)2O3 (M=Zn, Ni) with xIISP along the leg was found to be much longer than ξ0/a in x=0.001 and 0.005. The notable result is that ξs/a that was found to be T independent is scaled to mean distances DAV=1/(2x) between the Zn and Ni impurities and DAV=1/x between the La impurities. When DAV=500 for x=0.001 (Zn doping), ξs/a~50 is estimated. The significantly broadened NQR spectrum has provided unambiguous evidence for the AF-LRO in the Zn and Ni doping (x=0.01 and 0.02). Rather uniform AF moments at the middle Cu sites between the impurities are estimated to be about 0.04μB at 1.4 K along the a axis. By assuming that exponential decay constants of AF moments are equivalent to ξs/a's for the IISP, the size of an AF moment next to the impurity is deduced as SAF~1/4. We propose that these exponential distributions of IISP and AF moments along the two-leg suggest that an interladder interaction is in a weakly coupled quasi-one-dimensional (WC-Q1D) regime. The formula of TN=J0exp(-DAV/(ξs/a)) based on the WC-Q1D model explains TN(exp)=3 K (x=0.01) and 5.8 K (x=0.02) quantitatively and predicts to be as small as TN=0.09 K for x=0.001 using J0=2000 K. On the other hand, there is no evidence of AF-LRO for the La doping (x=0.02 and 0.03) down to 1.4 K, nevertheless their ξs/a's are almost equivalent to those in the Zn and Ni doping (x=0.01 and 0.02). We remark that the Q1D-IISP is dramatically enhanced by the interladder interaction even though so weak, once the impurity breaks up the quantum coherence in the short-range resonating valence bond (RVB) state with the gap. On the one hand, we propose that TN is determined by a strength of the interladder interaction and a size
International Nuclear Information System (INIS)
Chen Yuan; Song Chuangchuang; Xiang Ying
2010-01-01
In this paper, we apply the two-time Green's function method, and provide a simple way to study the magnetic properties of one-dimensional spin-(S,s) Heisenberg ferromagnets. The magnetic susceptibility and correlation functions are obtained by using the Tyablikov decoupling approximation. Our results show that the magnetic susceptibility and correlation length are a monotonically decreasing function of temperature regardless of the mixed spins. It is found that in the case of S=s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropic ferromagnetic Heisenberg chain in the whole temperature region. Our results for the susceptibility are in agreement with those obtained by other theoretical approaches. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Quantum lattice model solver HΦ
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Theoretical modeling of diluted antiferromagnetic systems
International Nuclear Information System (INIS)
Pozo, J; Elgueta, R; Acevedo, R
2000-01-01
Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak
Categories of relations as models of quantum theory
Directory of Open Access Journals (Sweden)
Chris Heunen
2015-11-01
Full Text Available Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspondence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal'cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quantum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.
An introduction to the Hubbard model
International Nuclear Information System (INIS)
Ercolessi, E.; Morandi, G.; Pieri, P.
1997-01-01
In these notes we review some of the basic features of the 2D Hubbard model, thought of as the appropriate model for the description of the Cu - O planes in the cuprate superconductors. We discuss breifly the weak-coupling regime of the model and, in the opposite limit, the mapping of the one band Hubbard model onto an AFM Heisenberg model at half filling and onto the t - J model below half filling. We discuss next Emery's three band model and its mapping onto the so-called ''spin-fermion'' model. Its continuum limit is discussed by making use of an adiabatic followed by a gradient expansion. We review briefly how the model maps onto a nonlinear sigma model and some of the features of the latter. (orig.)
Dynamic structure factor for liquid He4 and quantum lattice model
International Nuclear Information System (INIS)
Lee, M.H.
1975-01-01
It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)
Pre-relaxation in weakly interacting models
Bertini, Bruno; Fagotti, Maurizio
2015-07-01
We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.
Representations of the Virasoro algebra from lattice models
International Nuclear Information System (INIS)
Koo, W.M.; Saleur, H.
1994-01-01
We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))
Finite temperature CPN-1 model and long range Neel order
International Nuclear Information System (INIS)
Ichinose, Ikuo; Yamamoto, Hisashi.
1989-09-01
We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)
Magnetization plateaux in an extended Shastry-Sutherland model
International Nuclear Information System (INIS)
Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic
2009-01-01
We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .
Topological Poisson Sigma models on Poisson-Lie groups
International Nuclear Information System (INIS)
Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David
2003-01-01
We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)
International Nuclear Information System (INIS)
Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander
2016-01-01
Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.
International Nuclear Information System (INIS)
Miller, William H.; Cotton, Stephen J.
2016-01-01
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.