WorldWideScience

Sample records for heisenberg spin variables

  1. Spin-chirality decoupling in Heisenberg spin glasses and related systems

    OpenAIRE

    Kawamura, Hikaru

    2006-01-01

    Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.

  2. Analytic evidence of the equivalence of the alternating Heisenberg spin chain to the mixed spin (1, 1/2) Heisenberg chain

    International Nuclear Information System (INIS)

    Jiang Jianjun; Liu Yongjun; Tang Fei; Yang Cuihong

    2011-01-01

    We investigated the properties of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain using the spin-wave theory. The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the model are calculated to be compared with the corresponding properties of the mixed spin (1, 1/2) chain for a range of α. The results demonstrate that all the properties show similar behaviours in the small α limit, so the properties of the mixed spin (1, 1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. -- Research Highlights: →The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain are calculated. →In the small α limit, the properties of the mixed spin (1,1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. →The spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain may be of interest for some real quasi-one-dimensional molecular magnetic materials.

  3. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  4. Canonical variables and Heisenberg equations of motion for the spin-3/2 field in the presence of interactions

    International Nuclear Information System (INIS)

    Nagpal, A.K.

    1978-01-01

    Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables

  5. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    International Nuclear Information System (INIS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-01-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.

  6. Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain

    Directory of Open Access Journals (Sweden)

    L. Čanová

    2009-01-01

    Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.

  7. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  8. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  9. Spin Waves in a Classical Compressible Heisenberg Chain

    NARCIS (Netherlands)

    Fivez, J.; Raedt, H. De

    1980-01-01

    The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.

  10. The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory

    International Nuclear Information System (INIS)

    Liu, B.-G.; Pu, F.-C.

    2001-01-01

    The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood

  11. The chirality operators for Heisenberg spin systems

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs

  12. Spin frustration of a spin-1/2 Ising–Heisenberg three-leg tube as an indispensable ground for thermal entanglement

    International Nuclear Information System (INIS)

    Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre

    2016-01-01

    The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles. - Highlights: • Spin-1/2 Ising–Heisenberg three-leg tube is exactly solved in a zero magnetic field. • Thermal entanglement is only present in a frustrated part of the parameter space. • Spin frustration and thermal entanglement show antagonistic reentrance. • Specific heat may display a sharp narrow peak due to massive thermal excitations.

  13. Low temperature spin wave dynamics in classical Heisenberg chains

    International Nuclear Information System (INIS)

    Heller, P.; Blume, M.

    1977-11-01

    A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions

  14. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    International Nuclear Information System (INIS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-01-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.

  15. Field dependent spin transport of anisotropic Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.

  16. Controllable entanglement sudden birth of Heisenberg spins

    International Nuclear Information System (INIS)

    Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou

    2011-01-01

    We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)

  17. Partition functions of classical Heisenberg spin chains with arbitrary and different exchange

    International Nuclear Information System (INIS)

    Cregg, P J; GarcIa-Palacios, J L; Svedlindh, P

    2008-01-01

    The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained

  18. Spin-density functional for exchange anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.

    2009-01-01

    Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.

  19. The 2-dimensional O(4) symmetric Heisenberg ferromagnet in terms of rotation invariant variables

    International Nuclear Information System (INIS)

    Holtkamp, A.

    1981-09-01

    After introduction of rotation invariant auxiliary variables, the integration over all rotation variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet can be performed. The resulting new Hamiltonian involves a sum over closed loops. It is complex and invariant under U(1) gauge transformations. Ruehl's boson representation is used to derive the result. (orig.)

  20. Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model

    Science.gov (United States)

    Sousa, J. Ricardo de

    A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.

  1. Quantum spin circulator in Y junctions of Heisenberg chains

    Science.gov (United States)

    Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.

    2018-06-01

    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.

  2. Green function study of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic model

    International Nuclear Information System (INIS)

    Li Jun; Wei Guozhu; Du An

    2004-01-01

    The magnetic properties of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by a multisublattice Green-function technique which takes into account the quantum nature of Heisenberg spins. This model can be relevant for understanding the magnetic behavior of the new class of organometallic materials that exhibit spontaneous magnetic moments at room temperature. We discuss the spontaneous magnetic moments and the finite-temperature phase diagram. We find that there is no compensation point at finite temperature when only the nearest-neighbor interaction and the single-ion anisotropy are included. When the next-nearest-neighbor interaction between spin-((1)/(2)) is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other values in Hamiltonian fixed. The next-nearest-neighbor interaction between spin-((3)/(2)) has the effect of changing the compensation temperature

  3. New Topological Configurations in the Continuous Heisenberg Spin Chain: Lower Bound for the Energy

    Directory of Open Access Journals (Sweden)

    Rossen Dandoloff

    2015-01-01

    Full Text Available In order to study the spin configurations of the classical one-dimensional Heisenberg model, we map the normalized unit vector, representing the spin, on a space curve. We show that the total chirality of the configuration is a conserved quantity. If, for example, one end of the space curve is rotated by an angle of 2π relative to the other, the Frenet frame traces out a noncontractible loop in SO(3 and this defines a new class of topological spin configurations for the Heisenberg model.

  4. Critical behaviour of magnetic thin film with Heisenberg spin-S model

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Hourmatallah, A.; Benzakour, N.; Benyoussef, A.

    2009-01-01

    The magnetic properties of a ferromagnetic thin film of face centered cubic (FCC) lattice with Heisenberg spin-S are examined using the high-temperature series expansions technique extrapolated with Pade approximations method. The critical reduced temperature of the system τ c is studied as function of thickness of the film and the exchange interactions in the bulk, and within the surfaces J b , J s and J perpendicular respectively. A critical value of surface exchange interaction above which surface magnetism appears is obtained. The dependence of the reduced critical temperature on the film thickness L has been investigated.

  5. Excitation spectrum of Heisenberg spin ladders

    International Nuclear Information System (INIS)

    Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.

    1993-01-01

    Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed

  6. Exactly solved mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-01-01

    The mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration–iteration transformation and the transfer-matrix method. The decoration–iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume–Emery–Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively. - Highlights: • Mixed spin-(1,1/2) Ising–Heisenberg diamond chain is exactly solved. • Quantum ground states with a singlet-dimer state of the Heisenberg spins are found. • Magnetization curve displays intermediate plateaus at zero and half of full magnetization. • Thermal dependences of specific heat may display up to four distinct peaks

  7. Q-operators for the open Heisenberg spin chain

    Directory of Open Access Journals (Sweden)

    Rouven Frassek

    2015-12-01

    Full Text Available We construct Q-operators for the open spin-12 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang–Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  8. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    Science.gov (United States)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  9. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  10. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  11. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons

    International Nuclear Information System (INIS)

    Gauyacq, J-P; Lorente, N

    2014-01-01

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)

  12. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  13. Compensation phenomena of a mixed spin-2 and spin-12 Heisenberg ferrimagnetic model: Green function study

    International Nuclear Information System (INIS)

    Li Jun; Wei Guozhu; Du An

    2005-01-01

    The compensation and critical behaviors of a mixed spin-2 and spin-12 Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by the two-time Green's function technique, which takes into account the quantum nature of Heisenberg spins. The model can be relevant for understanding the magnetic behavior of the new class of organometallic ferromagnetic materials that exhibit spontaneous magnetic properties at room temperature. We carry out the calculation of the sublattice magnetizations and the spin-wave spectra of the ground state. In particular, we have studied the effects of the nearest, next-nearest-neighbor interactions, the crystal field and the external magnetic field on the compensation temperature and the critical temperature. When only the nearest-neighbor interactions and the crystal field are included, no compensation temperature exists; when the next-nearest-neighbor interaction between spin-12 is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other parameters in Hamiltonian fixed. The next-nearest-neighbor interactions between spin-2 and the external magnetic field have the effects of changing the compensation temperature and there is a narrow range of parameters of the Hamiltonian for which the model has the compensation temperatures and compensation temperature exists only for a small value of them

  14. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, V

    2000-03-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.

  15. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    International Nuclear Information System (INIS)

    Chudnovsky, V.

    2000-01-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system

  16. Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Susobhan, E-mail: suso.phy.paul@gmail.com [Department of Physics, Scottish Church College, 1 & 3 Urquhart Square, Kolkata-700006 (India); Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com [Department of Physics, Jadavpur University, 188 Raja S C Mallik Road, Kolkata-700032 (India)

    2016-05-06

    Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.

  17. Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1/2 Heisenberg Antiferromagnet

    Directory of Open Access Journals (Sweden)

    Hui Shao

    2017-12-01

    Full Text Available We study the spin-excitation spectrum (dynamic structure factor of the spin-1/2 square-lattice Heisenberg antiferromagnet and an extended model (the J-Q model including four-spin interactions Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ-function contribution to the structure factor expected from spin-wave (magnon excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu(DCOO_{2}·4D_{2}O, where a broad spectral-weight continuum at wave vector q=(π,0 was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π,0 show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q=(π/2,π/2 (as also seen experimentally. We further investigate the reasons for the small magnon weight at (π,0 and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π,0 in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π,0-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in

  18. Heisenberg (and Schrödinger, and Pauli) on hidden variables

    Science.gov (United States)

    Bacciagaluppi, Guido; Crull, Elise

    In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.

  19. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  20. Deformed Heisenberg algebra and fractional spin field in 2+1 dimensions

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1993-09-01

    With the help of the deformed Heisenberg algebra involving the Klein operator, we construct the minimal set of linear differential equations for the (2+1)-dimensional relativistic field with arbitrary fractional spin, whose value is defined by the deformation parameters. (author). 23 refs

  1. Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass

    OpenAIRE

    Hukushima, K.; Kawamura, H.

    2000-01-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...

  2. Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain

    Science.gov (United States)

    Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami

    2018-01-01

    The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.

  3. Local quantum control of Heisenberg spin chains

    International Nuclear Information System (INIS)

    Heule, Rahel; Bruder, C.; Stojanovic, Vladimir M.; Burgarth, Daniel

    2010-01-01

    Motivated by some recent results of quantum control theory, we discuss the feasibility of local operator control in arrays of interacting qubits modeled as isotropic Heisenberg spin chains. Acting on one of the end spins, we aim at finding piecewise-constant control pulses that lead to optimal fidelities for a chosen set of quantum gates. We analyze the robustness of the obtained results for the gate fidelities to random errors in the control fields, finding that with faster switching between piecewise-constant controls the system is less susceptible to these errors. The observed behavior falls into a generic class of physical phenomena that are related to a competition between resonance- and relaxation-type behavior, exemplified by motional narrowing in NMR experiments. Finally, we discuss how the obtained optimal gate fidelities are altered when the corresponding rapidly varying piecewise-constant control fields are smoothened through spectral filtering.

  4. Anomalous behaviour of the magnetic susceptibility of the mixed spin-1 and spin- 1/2 anisotropic Heisenberg model in the Oguchi approximation

    International Nuclear Information System (INIS)

    Bobak, Andrej; Dely, Jan; Pokorny, Vladislav

    2010-01-01

    The effects of both an exchange anisotropy and a single-ion anisotropy on the magnetic susceptibility of the mixed spin-1 and spin- 1/2 Heisenberg model are investigated by the use of an Oguchi approximation. Particular emphasis is given to the simple cubic lattice with coordination number z = 6 for which the magnetic susceptibility is determined numerically. Anomalous behaviour in the thermal variation of the magnetic susceptibility in the low-temperature region is found due to the applied negative single-ion anisotropy field strength. Also, the difference between the behaviours of the magnetic susceptibility of the Heisenberg and Ising models is discussed.

  5. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  6. A quaternionic map for the steady states of the Heisenberg spin-chain

    International Nuclear Information System (INIS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  7. Signatures of a gearwheel quantum spin liquid in a spin-1/2 pyrochlore molybdate Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.

    2017-12-01

    We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .

  8. Exactly solvable spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    International Nuclear Information System (INIS)

    Hovhannisyan, V V; Ananikian, N S; Strečka, J

    2016-01-01

    The spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. (paper)

  9. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  10. Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2000-01-01

    We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point

  11. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  12. Formation of quadrupolar phase in non-Heisenberg ferromagnets with half-integer spin

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Spirin, D.V.

    2005-01-01

    Possibility of realization of quadrupolar phase in non-Heisenberg ferromagnet with magnetic ion spin 32 is studied. It is shown that such phase state exists only in ferromagnets with high value of biquadratic exchange when external magnetic field is not applied. Phase diagram of the system is built

  13. Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1981-01-01

    The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate

  14. Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief

    2016-01-01

    Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al . [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al ., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase. (paper)

  15. On the Quantum Inverse problem for the continuous Heisenberg spin chain with axial anisotropy

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Chanda, P.K.

    1986-06-01

    We have considered the Quantum Inverse problem for the continuous form of Heisenberg spin chain with anisotropy. The form of quantum R-matrix, the commutation rules for the scattering data, and the explicit structure of the excitation spectrum are obtained. (author)

  16. Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.

    2008-01-01

    The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained

  17. Theory for disordered phase in Heisenberg and non-Heisenberg two-dimensional S=1 ferromagnets

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Yu.A.

    2003-01-01

    We apply a modification of self-consistent spin-wave theory to investigation of two-dimensional S=1 isotropic Heisenberg and non-Heisenberg ferromagnets at nonzero temperatures. We use Hubbard operators method and bosonization technique. We calculated chemical potential and found dependence of correlation length on temperature. Specific heat has Schottky-type peak and decreases at high temperatures. Disordered phase in non-Heisenberg ferromagnet is also studied. The results for such a model differ from those of Heisenberg one

  18. Padé approximations for the magnetic susceptibilities of Heisenberg antiferromagnetic spin chains for various spin values

    International Nuclear Information System (INIS)

    Law, J M; Benner, H; Kremer, R K

    2013-01-01

    The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3

  19. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    Science.gov (United States)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  20. Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions

    Science.gov (United States)

    Blessy, B. S. Gnana; Latha, M. M.

    2017-10-01

    We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.

  1. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar, South Sulawesi 90245 (Indonesia)

    2016-03-11

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  2. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Bansawang, B.J.; Tahir, Dahlang

    2016-01-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  3. Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Wei; Gao, Yi-Tian, E-mail: gaoyt163@163.com; Wang, Qi-Min; Su, Chuan-Qi; Feng, Yu-Jie; Yu, Xin

    2016-01-15

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation is studied, which might describe a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction or an alpha helical protein with higher-order excitations and interactions under continuum approximation. With the aid of auxiliary function, we derive the bilinear forms and corresponding constraints on the variable coefficients. Via the symbolic computation, we obtain the Lax pair, infinitely many conservation laws, one-, two- and three-soliton solutions. We discuss the influence of the variable coefficients on the solitons. With different choices of the variable coefficients, we obtain the parabolic, cubic, and periodic solitons, respectively. We analyse the head-on and overtaking interactions between/among the two and three solitons. Interactions between a bound state and a single soliton are displayed with different choices of variable coefficients. We also derive the quasi-periodic formulae for the three cases of the bound states.

  4. The semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Benyoussef, A.; Boubekri, A.; Ez-Zahraouy, H.; Saber, M.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the phase transitions in the semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet on a simple cubic lattice are examined. For fixed values of the reduced exchange anisotropic parameter, the critical temperature of the system is studied as a function of the ratio R of the surface exchange couplings to the bulk ones. It was found that if R ≤ R c , the system orders at the bulk critical temperature T B c /J and if R ≥ R c , the system exhibits two successive transitions. The surface orders at the surface critical temperature T S c /J which is higher than T B c /J and as the temperature is lowered, in the presence of ordered surface, the bulk orders at T B c /J. (author)

  5. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    International Nuclear Information System (INIS)

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-01-01

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S ^ z , M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed

  6. How to fold a spin chain: Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

    Science.gov (United States)

    De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas

    2017-04-01

    We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.

  7. Entanglement in a two-spin (1/2, 3/2) mixed-spin Heisenberg XXZ chain with an inhomogeneous external magnetic field

    International Nuclear Information System (INIS)

    Guo Ketao; Liang Mingchao; Xu Hongyu; Zhu Chengbo

    2010-01-01

    Using the concept of negativity, we investigate the thermal entanglement of a two-spin (1/2, 3/2) mixed-spin Heisenberg XXZ chain with an inhomogeneous external magnetic field. We obtain the analytical results of entanglement of this model. For the case of uniform magnetic field, we find that the critical temperature increases with the increase of the anisotropy parameter k, and for the same couplings, the critical temperature is higher than the results of the spin-1/2 XXZ chain and (1/2, 1) mixed-spin XXZ chain. Evidence of the quantum phase transition is found, and by adjusting the inhomogeneous magnetic parameter b, one is able to obtain more entanglement at higher temperature.

  8. Spinon decay in the spin-1/2 Heisenberg chain with weak next nearest neighbour exchange

    International Nuclear Information System (INIS)

    Groha, Stefan; Essler, Fabian H L

    2017-01-01

    Integrable models support elementary excitations with infinite lifetimes. In the spin-1/2 Heisenberg chain these are known as spinons. We consider the stability of spinons when a weak integrability breaking perturbation is added to the Heisenberg chain in a magnetic field. We focus on the case where the perturbation is a next nearest neighbour exchange interaction. We calculate the spinon decay rate in leading order in perturbation theory using methods of integrability and identify the dominant decay channels. The decay rate is found to be small, which indicates that spinons remain well-defined excitations even though integrability is broken. (paper)

  9. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    Science.gov (United States)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  10. Heisenberg equations of motion for the spin-3/2 field in the presence of an interaction

    International Nuclear Information System (INIS)

    Nagpal, A.K.

    1977-01-01

    The Rarita-Schwinger spin-3/2 field interacting with a Dirac field and a scalar field (external) is found to satisfy the Heisenberg equations of motion, in the weak-field limit. This is analogous to the result, for the case of spin-3/2 field minimally coupled with external electromagnetic field, recently obtained by Mainland and Sudarshan (Phys. Rev. D. 8:1088 (1973)). (author)

  11. Block spins and chirality in Heisenberg model on Kagome and triangular lattices

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs

  12. Optimal matrix product states for the Heisenberg spin chain

    International Nuclear Information System (INIS)

    Latorre, Jose I; Pico, Vicent

    2009-01-01

    We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian

  13. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  14. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2008-01-01

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing

  15. Heisenberg representation for secondary-quantized fields in nonstationary external fields and dielectric nonlinear medium

    International Nuclear Information System (INIS)

    Lobashev, A.A.; Mostepanenko, V.M.

    1993-01-01

    Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up

  16. Influence of Dzyaloshinskii-Moriya interaction and ballistic spin transport in the two and three-dimensional Heisenberg model

    Science.gov (United States)

    Lima, L. S.

    2018-06-01

    We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.

  17. Improved spin wave theory: An application to the spin-1/2 antiferromagnetic Heisenberg model on a square lattice

    International Nuclear Information System (INIS)

    Tao, Ruibao.

    1991-09-01

    A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs

  18. Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’

    International Nuclear Information System (INIS)

    De Gier, Jan

    2012-01-01

    We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)

  19. Distribution and localization of the harmonic magnon modes in a one-dimensional Heisenberg spin glass

    Science.gov (United States)

    Boukahil, A.; Huber, D. L.

    1989-09-01

    The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-neighbor exchange interactions of fixed magnitude and random sign are investigated. The Lyapounov exponent is calculated for chains of 107-108 spins over the interval 0Stinchcombe and Pimentel using transfer-matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the localization length diverges as ω-2/3. A formal connection is established between the spin glass and the one-dimensional discretized Schrödinger equation. By making use of the connection, it is shown that the theory of Derrida and Gardner, which was developed for weak potential disorder, can account quantitatively for the distribution and localization of the low-frequency magnon modes in the spin-glass model.

  20. One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice

    Science.gov (United States)

    Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.

    2017-11-01

    We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.

  1. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    Science.gov (United States)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  2. Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain

    Directory of Open Access Journals (Sweden)

    S. Paul

    2017-06-01

    Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.

  3. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin -{1/2} Chain Model

    Science.gov (United States)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-03-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  4. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin-1/2 Chain Model

    Science.gov (United States)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-06-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  5. The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)

    2016-02-01

    The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.

  6. Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity

    International Nuclear Information System (INIS)

    Kavitha, L.; Daniel, M.

    2002-07-01

    The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)

  7. Characterisation of spin-waves in copper(II) deuteroformate tetradeuterate: A square ¤S¤=1/2 Heisenberg antiferromagnet

    DEFF Research Database (Denmark)

    Clarke, S.J.; Harrison, A.; Mason, T.E.

    1999-01-01

    Copper(II) formate tetrahydrate (CFTH) is a model square S = 1/2 Heisenberg antiferromagnet with T-N = 16.54 +/- 0.05 K. The dispersion of spin-waves in the magnetic layers of a fully deuterated sample of this material has been mapped at 4.3 K by inelastic neutron scattering from the zone centre ...

  8. The spin-1/2 XXZ Heisenberg chain, the quantum algebra Uq[sl(2)], and duality transformations for minimal models

    International Nuclear Information System (INIS)

    Grimm, Uwe; Schuetz, Gunter

    1992-09-01

    The finite-size spectra of the spin-1/2 XXZ Heisenberg chain with toroidal boundary conditions and an even number of sites provide a projection mechanism yielding the spectra of models with central charge c q [sl(2)] quantum algebra transformations. (author)

  9. Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico

    2018-03-01

    The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .

  10. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  11. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    Science.gov (United States)

    Manojlović, N.; Salom, I.

    2017-10-01

    The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  12. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    International Nuclear Information System (INIS)

    Manojlović, N.; Salom, I.

    2017-01-01

    The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  13. Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet

    Science.gov (United States)

    Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.

    Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.

  14. Criticality of the D=2 anisotropic quantum Heisenberg model

    International Nuclear Information System (INIS)

    Caride, A.O.; Tsallis, C.; Zanette, S.I.

    1983-01-01

    Within a real space renormalization group framework, the square-lattice spin-1/2 Heisenberg ferromagnet in the presence of an Ising-like anisotropy is discussed. The controversial point on how T sub(c) vanishes in the isotropic Heisenberg limit is analyzed: quite strong evidence is presented favoring a continuous function of anisotropy. The crossover from the isotropic Heisenberg model to the pure Ising one is exhibited. (Author) [pt

  15. Constructive interference between disordered couplings enhances multiparty entanglement in quantum Heisenberg spin glass models

    International Nuclear Information System (INIS)

    Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R; Sen, Aditi; Sen, Ujjwal

    2016-01-01

    Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities. (paper)

  16. 3-D quantum Heisenberg ferromagnet with random anisotropy

    International Nuclear Information System (INIS)

    Santos, R.M.Z. dos; Santos, Raimundo R. dos; Mariz, A.M.; Rio Grande do Norte Univ., Natal; Tsallis, C.

    1985-01-01

    Critical properties of the 3-D quantum Heisenberg ferromagnet with random anisotropies; that is, the coupling between any pair of nearest-neighbouring spins can be either isotropic (Heisenberg) or anisotropic (Ising-or XY-like) at random are studied. Within a Migdal-Kadanoff approximation the full critical frontier and correlation length critical exponents are obtained. It is found that the isotropic Heisenberg model is unstable (in the context of universality classes) in the presence of a small concentration of couplings with lower symmetry. (Author) [pt

  17. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    Directory of Open Access Journals (Sweden)

    N. Manojlović

    2017-10-01

    Full Text Available The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  18. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  19. Critical properties of the D=3 bond-mixed quantum Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Stinchcombe, R.B.; Buck, B.

    1983-01-01

    Within a Migdal-Kadanoff-like real-space renormalisation group procedure critical properties of the quenched bond-mixed spin 1/2 Heisenberg ferromagnet in simple cubic lattice are treated. It is verified that it is possible, within a very simple framework, to obtain quite reliable results for the critical temperatures. In addition to that, a general method for renormalising arbitrary clusters of Heisenberg-coupled spins 1/2 is outlined. (Author) [pt

  20. Role of quantum fluctuations on spin liquids and ordered phases in the Heisenberg model on the honeycomb lattice

    Science.gov (United States)

    Merino, Jaime; Ralko, Arnaud

    2018-05-01

    Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.

  1. Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network

    International Nuclear Information System (INIS)

    Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G

    2015-01-01

    Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)

  2. Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain

    International Nuclear Information System (INIS)

    Richter, J; Haertel, M; Ihle, D; Drechsler, S-L

    2009-01-01

    We studied the thermodynamics of the one-dimensional J 1 -J 2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds J 1 2 > 0 using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on J 2 1 |/4 where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J 2 . The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from χ ∝ T -2 at J 2 1 |/4 to χ ∝ T -3/2 at the quantum-critical point J 2 = |J 1 |/4. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat C v (T) for J 2 and |J 1 |/8, indicating its strong influence on the low-energy spectrum.

  3. Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1996-01-01

    Within a group-theoretical approach to the description of (2+1)-dimensional anyons, the minimal covariant set of linear differential equations is constructed for the fractional spin fields with the help of the deformed Heisenberg algebra (DHA), [a - ,a + ]=1+νK, involving the Klein operator K, {K,a ± }=0, K 2 =1. The connection of the minimal set of equations with the earlier proposed open-quote open-quote universal close-quote close-quote vector set of anyon equations is established. On the basis of this algebra, a bosonization of supersymmetric quantum mechanics is carried out. The construction comprises the cases of exact and spontaneously broken N=2 supersymmetry allowing us to realize a Bose endash Fermi transformation and spin-1/2 representation of SU(2) group in terms of one bosonic oscillator. The construction admits an extension to the case of OSp(2 parallel 2) supersymmetry, and, as a consequence, both applications of the DHA turn out to be related. The possibility of open-quote open-quote superimposing close-quote close-quote the two applications of the DHA for constructing a supersymmetric (2+1)-dimensional anyon system is discussed. As a consequential result we point out that the osp(2 parallel 2) superalgebra is realizable as an operator algebra for a quantum mechanical 2-body (nonsupersymmetric) Calogero model. Copyright copyright 1996 Academic Press, Inc

  4. Phase transitions and magnetization of the mixed-spin Ising–Heisenberg double sawtooth frustrated ladder

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2018-04-01

    The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.

  5. Simulation of time-dependent Heisenberg models in one dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.

    2016-01-01

    In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....

  6. Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)

    2017-06-15

    Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.

  7. Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain

    Science.gov (United States)

    Strečka, Jozef; Richter, Johannes; Derzhko, Oleg; Verkholyak, Taras; Karľová, Katarína

    2018-05-01

    Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.

  8. First principle approach to correlation functions of spin-1/2 Heisenberg chain: fourth-neighbor correlators

    International Nuclear Information System (INIS)

    Boos, H.E.; Shiroishi, M.; Takahashi, M.

    2005-01-01

    We show how correlation functions of the spin-1/2 Heisenberg chain without magnetic field in the anti-ferromagnetic ground state can be explicitly calculated using information contained in the quantum Knizhnik-Zamolodchikov equation [qKZ]. We find several fundamental relations which the inhomogeneous correlations should fulfill. On the other hand, it turns out that these relations can fix the form of the correlations uniquely. Actually, applying this idea, we have obtained all the correlation functions on five sites. Particularly by taking the homogeneous limit, we have got the analytic form of the fourth-neighbor pair correlator j z S j+4 z >

  9. Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won

    2016-11-01

    We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.

  10. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  11. Quantum correlations and Bell’s inequality violation in a Heisenberg spin dimer via neutron scattering

    Science.gov (United States)

    Cruz, C.

    The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.

  12. Heisenberg Model in a Rotating Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIN Qiong-Gui

    2005-01-01

    We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.

  13. The Bloch self-consistently renormalized spin wave approximation and behaviour of some thermodynamic quantities of a Heisenberg ferromagnet in the critical region

    International Nuclear Information System (INIS)

    Jezewski, W.

    1979-01-01

    Properties of the Bloch self-consistently renormalized spin wave approximation are analyzed near the zero-field transition temperature Tsub(m). The analysis is carried out on the basis of the application of this approximation to the Heisenberg ferromagnet involving nearest neighbour interaction. Series expansions for the resulting Helmholtz free energy, magnetization, and specific heat in the reduced temperature t=(Tsub(m)-T)/Tsub(m) are derived and the critical exponents β and α' are obtained. The limiting case of infinite spin (the classical limit) is also investigated. (author)

  14. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    Science.gov (United States)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  15. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  16. The Heisenberg antiferromagnet on the square-kagomé lattice

    Directory of Open Access Journals (Sweden)

    J. Richter

    2009-01-01

    Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.

  17. Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Peters, D; Selke, W; McCulloch, I P

    2010-01-01

    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.

  18. Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

    Science.gov (United States)

    Abhinav, Kumar; Guha, Partha

    2018-03-01

    Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

  19. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    Science.gov (United States)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  20. Werner Heisenberg; Werner Heisenberg

    Energy Technology Data Exchange (ETDEWEB)

    Schiemann, G.

    2008-07-01

    This book contains a biography of Heisenberg, a description of the development of quantum mechanics, a consideration of connections of philosophy and physics, and a description of the scientific picture of the world. Finally a list of books written by Heisenberg respectively connected with his work is presented. (HSI)

  1. On the isobaric spin and the scattering matrix

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    The isobaric spin and the scattering matrix are fundamental nuclear physics concepts invented by Werner Heisenberg. The cardinal impact of the Heisenberg concepts on historical developpement of nuclear physics and other quantum and classical physics branches is discussed in this communication. Heisenberg in physics is synonymous to monumental scientific creations, namely: -'Creation of quantum mechanics' (Nobel Prize, 1932), -'Heisenberg relations', or 'Heisenberg inequalities' or 'Uncertainty principle' or 'Indeterminacy principle', - Basis for Copenhagen interpretation of Quantum Mechanics, -'world formula', - Project for a unitary theory representing all existing particles. Heisenberg does signify also important/cardinal contributions to many fields of physics as follows: - hydrodynamical theory of turbulence, (Dissertation, Sommerfeld); - theory of ferromagnetism; - study of cosmic rays; - nuclear physics. Heisenberg has invented two nuclear physics concepts, isobaric spin and scattering matrix which became cornerstones of the two main fields of the nuclear theory, namely, the nuclear structure (nuclear spectroscopy) and the nuclear reactions. This communication intends to illustrate the impact of the Heisenberg concepts on developpement of nuclear physics. (author)

  2. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    Science.gov (United States)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  3. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    Science.gov (United States)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  4. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-01-01

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)

  5. Dynamical properties of dissipative XYZ Heisenberg lattices

    Science.gov (United States)

    Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.

    2018-04-01

    We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.

  6. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  7. Topological term of the antiferromagnetic Heisenberg model in 2+1 dimension

    International Nuclear Information System (INIS)

    Wu Ke; Yu Lu; Zhu Chuanjie

    1988-05-01

    It is shown in this note that the two different ways of introducing the topological term in the discussion of the spin 1/2 antiferromagnetic Heisenberg model are identical to each other. (author). 12 refs

  8. Criticality of the D=2 quantum Heisenberg ferromagnet with quenched random anisotropic

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.

    1985-01-01

    The square-lattice spin 1/2 anisotropic Heisenberg ferromagnet is considered, with interactions whose symmetry can independently (quenched model) and randomly be of two competing types, namely the isotropic Heisenberg type and the Ising one. Within a real space renormalization group framework, a quite precise numerical calculation of the critical frontier is performed, and its main asymptotic behaviour are established. The relevant universality classes are also characterized, through the analysis of the correlation length critical exponent. (Author) [pt

  9. Type-I integrable quantum impurities in the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr

    2013-12-21

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  10. Type-I integrable quantum impurities in the Heisenberg model

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2013-01-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified

  11. The Design of Control Pulses for Heisenberg Always-On Qubit Models

    Science.gov (United States)

    Magyar, Rudolph

    2015-03-01

    One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  12. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    Science.gov (United States)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  13. Criticality of the D=2 bond-dilute anisotropic Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Caride, A.O.

    1984-01-01

    The critical frontier and critical exponents associated with the quenched bond-dilute quantum anisotropic spin 1/2 Heisenberg ferromagnet in square lattice are described. To perform the calculations, an approximate real-space renormalization-group framework recently developed by some of us for the pure model (and analysed with some detail) is extended. Whenever comparison with available exact results is possible, the agreement is either perfect or quite satisfactory. Some effort has been dedicated to extract the main asymptotic behaviours of the critical frontier. Also several interesting quantum effects appearing in the composition laws of (Heisenberg) bond arrays are exhibited. (Author) [pt

  14. Critical properties of the Kitaev-Heisenberg Model

    Science.gov (United States)

    Sizyuk, Yuriy; Price, Craig; Perkins, Natalia

    2013-03-01

    Collective behavior of local moments in Mott insulators in the presence of strong spin-orbit coupling is one of the most interesting questions in modern condensed matter physics. Here we study the finite temperature properties of the Kitaev-Heisenberg model which describe the interactions between the pseudospin J = 1 / 2 iridium moments on the honeycomb lattice. This model was suggested as a possible model to explain low-energy physics of AIr2O3 compounds. In our study we show that the Kitaev-Heisenberg model may be mapped into the six state clock model with an intermediate power-law phase at finite temperatures. In the framework of the Ginsburg-Landau theory, we provide an analysis of the critical properties of the finite-temperature ordering transitions. NSF grant DMR-1005932

  15. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2

    International Nuclear Information System (INIS)

    Babbitt, D.; Thomas, L.

    1977-01-01

    In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de

  16. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    Science.gov (United States)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  17. Three-party quantum teleportation using thermal states in Heisenberg XX model with open boundary condition

    International Nuclear Information System (INIS)

    Bhan, Jaemi; Kwon, Younghun

    2007-01-01

    Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23

  18. Long-range spin deformations around quasiparticles

    International Nuclear Information System (INIS)

    Godfrey, M.; Gunn, M.

    1989-01-01

    The quasi-particle formed by a hole in a Heisenberg antiferromagnet has an associated long-range spin distortion whose amplitude increases with the velocity of the hole. The authors show that the existence and properties of this distortion follow from simple classical arguments based on the long-wavelength equations of motion for the spin system. A similar long-range distortion is found in the quantum-mechanical problem of an electron exchange coupled to a Heisenberg antiferromagnet

  19. Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    International Nuclear Information System (INIS)

    Zhang, Guo-Feng

    2007-01-01

    Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic

  20. Theory of the orthogonal dimer Heisenberg spin model for SrCu sub 2 (BO sub 3) sub 2

    CERN Document Server

    Miyahara, S

    2003-01-01

    The magnetic properties of SrCu sub 2 (BO sub 3) sub 2 are reviewed from a theoretical point of view. SrCu sub 2 (BO sub 3) sub 2 is a new two-dimensional spin gap system and its magnetic properties are well described by a spin-1/2 antiferromagnetic Heisenberg model of the orthogonal dimer lattice. The model has a dimer singlet ground state whose exactness was proven by Shastry and Sutherland for a topologically equivalent model more than 20 years ago. The exactness of the ground state is maintained even if interlayer couplings are introduced for SrCu sub 2 (BO sub 3) sub 2. In the two-dimensional model, quantum phase transitions take place between different ground states for which three phases are expected: a gapped dimer singlet state, a plaquette resonating valence bond state and a gapless magnetic ordered state. Analysis of the experimental data shows that the dimer singlet ground state is realized in SrCu sub 2 (BO sub 3) sub 2. The orthogonality of the dimer bonds, which is the underlying symmetry of th...

  1. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  2. Action-angle variables for the harmonic oscillator : ambiguity spin x duplication spin

    International Nuclear Information System (INIS)

    Oliveira, C.R. de; Malta, C.P.

    1983-08-01

    The difficulties of obtaining for the harmonic oscillator a well defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T.H. Seligman through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. The relation between the ambiguity spin and the duplication spin by introducing these two types of spins in the canonical transformation to action-angle variables is investigated. Doing this it is possible to obtain both well defined unitary transformation and phase operator. (Author) [pt

  3. Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Explanation of the Spectral Shape Anomaly

    Science.gov (United States)

    Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.

    1996-03-01

    We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.

  4. Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hao, Xiang; Zhu, Shiqun

    2008-01-01

    The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...

  5. Quantum decoration transformation for spin models

    Energy Technology Data Exchange (ETDEWEB)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  6. Quantum decoration transformation for spin models

    International Nuclear Information System (INIS)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre

    2016-01-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  7. Susceptibility and specific heat of the Heisenberg antiferromagnet on the Kagome lattice

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Canals, B.; Lacroix, C.

    2001-01-01

    The dynamic susceptibility of the S=((1)/(2)) Heisenberg antiferromagnet is calculated on the Kagome lattice by means of a Green's function decoupling scheme. The spin-spin correlation functions decrease exponentially with distance. The specific heat exhibits a single-peak structure with a T 2 dependence at low temperature and the correct high-temperature behaviour. The calculated total change in entropy indicates a ground-state entropy of 0.46 ln 2

  8. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  9. Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group

    Science.gov (United States)

    de Sousa, J. Ricardo; Fittipaldi, I. P.

    1994-05-01

    A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.

  10. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the ...

  11. Critical behavior in a random field classical Heisenberg model for amorphous systems

    International Nuclear Information System (INIS)

    Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de

    2005-01-01

    By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed

  12. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  13. Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii–Moriya interaction

    International Nuclear Information System (INIS)

    Qiang, Zheng; Xiao-Ping, Zhang; Zhong-Zhou, Ren; Qi-Jun, Zhi

    2009-01-01

    This paper investigates the entanglement dynamics of the system, composed of two qubits A and B with Heisenberg XX spin interactation. There is a third controller qubit C, which only has Dzyaloshinskii–Moriya (DM) spin-orbit interaction with the qubit B. It is found that depending on the initial state of the controller qubit C and DM interaction, the entanglement of the system displays amplification and sudden birth effects. These effects indicate that one can control the entanglement of the system, which may be helpful for quantum information processing. (general)

  14. On the continuum limit of a classical compressible Heisenberg chain

    International Nuclear Information System (INIS)

    Fivez, J.

    1982-01-01

    The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)

  15. Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice

    International Nuclear Information System (INIS)

    Mariz, A.M.; Santos, R.M.Z. dos; Tsallis, C.; Santos, R.R. dos.

    1984-01-01

    Within a Real Space Renormalization group framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in satisfactory agreement with known results whenever available. (Author) [pt

  16. Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.

    1984-11-01

    Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt

  17. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the ... Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. ..... with equal probability. This has a ...

  18. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    Science.gov (United States)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  19. High-field spin dynamics of the one-dimensional spin-1/2 Heisenberg antiferromagnetα-bis (N-methylsalicylaldiminato copper) (II) (α-CuNSal)

    International Nuclear Information System (INIS)

    Azevedo, L.J.; Narath, A.; Richards, P.M.; Soos, Z.G.

    1980-01-01

    Proton spin-lattice relaxation rates in the one-dimensional (1D) spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato) copper (II), α-CuNSal, have been measured in applied fields up to 125 kOe in the temperature range 1-- 4 K. The strong coupling of protons close to the antiferromagnetic (AF) chain serves as a convenient probe to study the dynamics of the AF chain through the field-induced antiferromagnetic to ferromagnetic (F) phase transition. The magnetization of the AF chain, as measured by the proton field shift, is in close agreement with calculations by Bonner and Fisher and yields an exchange interaction J/k/sub B/=3.04 +- 0.04 K. The proton relaxation rate has isotropic (hyperfine coupled) and anisotropic (dipolar) components. We identify the isotropic relaxation rate with a creation or destruction of one-spin excitations (magnons) and the anisotropic rate with two-magnon processes. The measured one-magnon relaxation rate shows an enhancement near the critical field for the AF → F transition and a strong decrease of more than four decades as the critical field is exceeded. A no-adjustable-parameter calculation based on the fermion model quantitatively agrees with the measured one-magnon relaxation rate, both above and below the critical field H/sub c/. The enhanced relaxation at H/sub c/ is correctly predicted as a consequence of the divergence of the 1D density of magnon states, where a gap in the spin-wave spectrum exists. Above H/sub c/ a finite magnon lifetime must be included in order to produce a nonzero one-magnon relaxation rate. This is also calculated with no adjustable parameters. The two-magnon relaxation rate also shows a decrease as the critical field is exceeded and the calculated relaxation rate agrees well with experiment at low temperatures, provided, however, that one uses a boson rather than fermion picture

  20. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    Science.gov (United States)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  1. Quasi-Linear Algebras and Integrability (the Heisenberg Picture

    Directory of Open Access Journals (Sweden)

    Alexei Zhedanov

    2008-02-01

    Full Text Available We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution interpretation of the corresponding integrable systems.

  2. Information transmission and control in a chaotically kicked spin chain

    International Nuclear Information System (INIS)

    Aubourg, Lucile; Viennot, David

    2016-01-01

    We study spin chains submitted to disturbed kick trains described by classical dynamical processes. The spin chains are coupled by Heisenberg and Ising-Z models. We consider chaotic processes by using the kick irregularity in the multipartite system (the spin chain). We show that both couplings transmit the chaos disorder differently along the spin chain but conserve the horizon of coherence (when the disorder into the kick bath is transmitted to the spin chain). An example of information transmission between the spins of the chain coupled by a Heisenberg interaction shows the interest of the horizon of coherence. The use of some chosen stationary kicks disturbed by a chaotic environment makes it possible to modify the information transmission between the spins and to perform a free control during the horizon of coherence. (paper)

  3. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  4. Spin nematic and orthogonal nematic states in S=1 non-Heisenberg magnet

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Klevets, Ph.N.

    2013-01-01

    Phases of S=1 non-Heisenberg magnet at various relationships between the exchange integrals are studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal nematic states. The phase diagram is constructed. It is shown that the phase transitions between the ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra of elementary excitations in all phases are obtained within the mean-field limit. - Highlights: ► We investigated phases of S=1 non-Heisenberg magnet. ► Found four phases: ferromagnetic, antiferromagnetic, nematic, and orthogonal nematic. ► The phase diagram is determined. ► The spectra of elementary excitations are obtained in all phases for the first time.

  5. At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited

    Science.gov (United States)

    Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub

    2018-04-01

    We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.

  6. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  7. Experimentally measuring a quantum state by the Heisenberg exchange interaction in a single apparatus

    International Nuclear Information System (INIS)

    Peng Xinhua; Du Jiangfeng; Suter, D.

    2005-01-01

    Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)

  8. Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model

    Directory of Open Access Journals (Sweden)

    Yin-Chen He

    2017-07-01

    Full Text Available The antiferromagnetic spin-1/2 Heisenberg model on a kagome lattice is one of the most paradigmatic models in the context of spin liquids, yet the precise nature of its ground state is not understood. We use large-scale density matrix renormalization group simulations (DMRG on infinitely long cylinders and find indications for the formation of a gapless Dirac spin liquid. First, we use adiabatic flux insertion to demonstrate that the spin gap is much smaller than estimated from previous DMRG simulation. Second, we find that the momentum-dependent excitation spectrum, as extracted from the DMRG transfer matrix, exhibits Dirac cones that match those of a π-flux free-fermion model [the parton mean-field ansatz of a U(1 Dirac spin liquid].

  9. Neutron Scattering from the Heisenberg Ferromagnets EuO and EuS

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Als-Nielsen, Jens Aage; Passell, L.

    1976-01-01

    Inelastic neutron scattering has been used to investigate the spin dynamics of the isotropic Heisenberg ferromagnet EuO over a wide range of wave vectors and over a temperature range extending from 0.14 to 1.9TC. Below the ordering temperature spin-wave renormalization is found to agree well...... with the predictions of Dyson-Maleev theory (including the dynamical but not the kinematical interaction) when both exchange and dipolar couplings between the Eu2+ ions are taken into account. At temperatures near TC broadening of the spin-wave lines was observed. For hydrodynamic spin waves, the wave......-vector dependence of the linewidths is found to be consistent with the expectations of microscopic spin-wave theory and the temperature dependence with predictions based on dynamical scaling. At TC, linewidths were found to deviate from the q5/2 wave-vector dependence expected on the basis of dynamical scaling...

  10. Quantum spin correction scheme based on spin-correlation functional for Kohn-Sham spin density functional theory

    International Nuclear Information System (INIS)

    Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi

    2007-01-01

    We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly

  11. The 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings

    International Nuclear Information System (INIS)

    Zhan-Hai, Dong

    2009-01-01

    In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property

  12. A thermodynamic approximation of the groundstate of antiferromagnetic Heisenberg spin-1/2 lattices

    NARCIS (Netherlands)

    Tielen, G.I.; Iske, P.L.; Caspers, W.J.; Caspers, W.J.

    1991-01-01

    The exact ground state of finite Heisenberg spin−1/2 lattices isstudied. The coefficients of the so-called Ising configurations contributing to the ground state are approximated by Boltzmann-like expressions. These expressions contain a parameter that may be related to an inverse temperature.

  13. Entanglement entropy in random quantum spin-S chains

    International Nuclear Information System (INIS)

    Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.

    2007-01-01

    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach

  14. Evolution of topological features in finite antiferromagnetic Heisenberg chains

    International Nuclear Information System (INIS)

    Chen Changfeng

    2003-01-01

    We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed

  15. Werner Karl Heisenberg (1901-1976)

    International Nuclear Information System (INIS)

    Kvasnica, J.

    1992-01-01

    The life's career of Werner Karl Heisenberg is described with emphasis on his creative development and cooperation with many other prominent physicists in the field of the quantum theory of atoms. In 1925, Heisenberg modified Bohr's quantum rule; in 1927 he formulated the uncertainty principle which puts some restrictions on the simultaneous determination of the position and momentum. In 1928, Heisenberg set up the quantum theory of ferromagnetism, which still underlies all theories of magnetic properties of substances. Soon after Chadwick's discovery of the neutron (1932), Heisenberg introduced the concept of the isospin - he interpreted the proton and the neutron as one particle (nucleon) in two charge states. Heisenberg's professional and pedagogical activities during and after the 2nd world war are also described. (Z.S.). 5 refs

  16. Influence of Dzyaloshinskii–Moriya interaction on measurement-induced disturbance in a mixed-spin Heisenberg XXZ model with an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Zhou, Chao-Biao; Xiao, Shu-Yuan; Zhang, Cong; Wu, Gang; Ran, Yang-Qiang

    2015-01-01

    In this paper, by comparing with the thermal entanglement measured by negativity (N), we investigate the measurement-induced disturbance (MID) in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii–Moriya (DM) interaction and an inhomogeneous external magnetic field. We make a comparison between MID and N, and find that their behaviors present obvious differences following the changes of the exchange constant J, DM interaction D, the uniform magnetic field B and the inhomogeneity of magnetic field b. It is found that J and D broaden the region of MID. At the same time, we notice that, for the case of small D, MID can detect the quantum phase transition near J=0, but not for N. It is also observed that DM interaction and the inhomogeneous external magnetic field play competing roles in enhancing the N and MID in our system. Moreover, we also note D is a more efficient parameter than B and b when adjusting MID under the higher temperature. In addition, we discover that, for the same parameters, the region of MID in our system is larger than the result in mixed-spin (1/2, 1) system.

  17. Dynamics of carrions in the spin-fermion model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.; Marvakov, D.

    1996-01-01

    The spectrum of hole quasiparticles (carrions) and the role of magnetic correlations has been considered in the framework of spin-fermion (Kondo-Heisenberg) model by means of the equation-of-motion method. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of for spin-fermion model to determine how the one- and two-magnon processes define the true nature of carriers in HTSC. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, that two-magnon processes can play a role for the formation of the superconducting state. 60 refs

  18. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    Science.gov (United States)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  19. Spin lattice coupling in multiferroic hexagonal YMnO3

    Indian Academy of Sciences (India)

    phonon and spin waves involving deviations out of the spiral magnetic plane. This ... collimations were used to fully benefit from the focusing effects. ... following spin Hamiltonian based on the Heisenberg model H = JSiSj − hSini +. DSz i Sz.

  20. Heisenberg's heirs exploit loopholes in his law

    International Nuclear Information System (INIS)

    Taubes, G.

    1994-01-01

    This article describes research into Heisenberg's Uncertainty Principle. Loopholes in the principle have led to a series of experiments using sophisticated optical techniques to extract information from a quantum system without disturbing the variable being measured. The experiments are based on a technique called back-action evasion, which exploits the possibility of channeling all the uncertainty generated by measuring one quantum variable (e.g. laser beam intensity) onto a related variable known as the conjugate observable (beam phase). These experiments and others are described

  1. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  2. The spin-Peierls chain revisited

    International Nuclear Information System (INIS)

    Hager, Georg; Weisse, Alexander; Wellein, Gerhard; Jeckelmann, Eric; Fehske, Holger

    2007-01-01

    We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gapless to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes

  3. Scalable Spin-Qubit Circuits with Quantum Dots

    Science.gov (United States)

    2006-12-31

    Anisotropic Heisenberg Spin Rings” cond-mat/0608642. 13. Karyn Le Hur (Yale), Pascal Simon, and Daniel Loss, “Transport through a quantum dot with SU(4...Daniel Loss, “Nuclear spin state narrowing via gate--controlled Rabi oscillations in a double quantum dot” Phys. Rev. B 73, 205302 (2006). 27. Jörg...single spin read out (Delft), sqrt-of-swap (Harvard) and single spin Rabi oscillations. At the end of this program and based on our theoretical

  4. Un-equivalency theorem between deformed and undeformed Heisenberg-Weyl's algebras

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2006-01-01

    Two fundamental issues about the relation between the deformed Heisenberg-Weyl algebra in noncommutative space and the undeformed one in commutative space are elucidated. First the un-equivalency theorem between two algebras is proved: the deformed algebra related to the undeformed one by a non-orthogonal similarity transformation is explored; furthermore, non-existence of a unitary similarity transformation which transforms the deformed algebra to the undeformed one is demonstrated. Secondly the uniqueness of realizing the deformed phase space variables via the undeformed ones is elucidated: both the deformed Heisenberg-Weyl algebra and the deformed bosonic algebra should be maintained under a linear transformation between two sets of phase space variables which fixes that such a linear transformation is unique. Elucidation of this un-equivalency theorem has basic meaning both in theory and experiment

  5. Interplay of nonsymmorphic symmetry and spin-orbit coupling in hyperkagome spin liquids: Applications to Na4Ir3O8

    Science.gov (United States)

    Huang, Biao; Kim, Yong Baek; Lu, Yuan-Ming

    2017-02-01

    Na4Ir3O8 provides a material platform to study three-dimensional quantum spin liquids in the geometrically frustrated hyperkagome lattice of Ir4 + ions. In this work, we consider quantum spin liquids on a hyperkagome lattice for generic spin models, focusing on the effects of anisotropic spin interactions. In particular, we classify possible Z2 and U (1 ) spin liquid states, following the projective symmetry group analysis in the slave-fermion representation. There are only three distinct Z2 spin liquids, together with 2 different U (1 ) spin liquids. The nonsymmorphic space group symmetry of the hyperkagome lattice plays a vital role in simplifying the classification, forbidding "π -flux" or "staggered-flux" phases in contrast to symmorphic space groups. We further prove that both U (1 ) states and one Z2 state among all 3 are symmetry-protected gapless spin liquids, robust against any symmetry-preserving perturbations. Motivated by the "spin-freezing" behavior recently observed in Na4Ir3O8 at low temperatures, we further investigate the nearest-neighbor spin model with the dominant Heisenberg interaction subject to all possible anisotropic perturbations from spin-orbit couplings. We find that a U (1 ) spin liquid ground state with spinon Fermi surfaces is energetically favored over Z2 states. Among all spin-orbit coupling terms, we show that only the Dzyaloshinskii-Moriya interaction can induce spin anisotropy in the ground state when perturbing from the isotropic Heisenberg limit. Our work paves the way for a systematic study of quantum spin liquids in various materials with a hyperkagome crystal structure.

  6. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    Science.gov (United States)

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  7. Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets

    Science.gov (United States)

    Belemuk, A. M.; Stishov, S. M.

    2018-04-01

    Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.

  8. Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet

    DEFF Research Database (Denmark)

    Lefmann, K.; Hedegård, P.

    1994-01-01

    In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...

  9. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  10. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    Science.gov (United States)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  11. Long-wavelength spin-effective actions for the infinite U Hubbard model

    Science.gov (United States)

    Braghin, Fábio L.

    2013-04-01

    The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.

  12. Renormalization group treatment for spin waves in the randomly disordered Heisenberg chain

    International Nuclear Information System (INIS)

    Chaves, C.M.; Koiller, B.

    1983-03-01

    Local densities of states in the randomly disordered binary quantum Heisenberg chain using a generalization of a recently developed approach based on renormalization group ideas are calculated. It envolves decimating alternate apins along the chain in such a way as to obtain recursion relations to describe the renormalized set of Green's function equations of motion. The densities of states are richly structured, indicating that the method takes into account compositional fluctuations of arbitrary range. (Author) [pt

  13. Computationally inexpensive interpretation of magnetic data for finite spin clusters

    DEFF Research Database (Denmark)

    Thuesen, Christian Aagaard; Weihe, Høgni; Bendix, Jesper

    2010-01-01

    We show that high-temperature expansion of the partition function is a computationally convenient tool to interpretation of magnetic properties of spin clusters wherein the spin centers are interacting via an isotropic Heisenberg exchange operator. High-temperature expansions up to order 12 are u...

  14. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  15. Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes: Green's function approach

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)

    2016-01-15

    The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.

  16. Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model

    International Nuclear Information System (INIS)

    Si-Lakhal, B.; Abada, A.

    2003-11-01

    Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)

  17. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    Science.gov (United States)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  18. Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

    Science.gov (United States)

    Poilblanc, Didier

    2017-09-01

    A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

  19. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field

    Science.gov (United States)

    Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu

    2017-06-01

    The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.

  20. Current-induced magnetic switching of a single molecule magnet on a spin valve

    International Nuclear Information System (INIS)

    Zhang, Xiao; Wang, Zheng-Chuan; Zheng, Qing-Rong; Zhu, Zheng-Gang; Su, Gang

    2015-01-01

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs

  1. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  2. Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer

    Science.gov (United States)

    Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib

    2018-05-01

    In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.

  3. Spin Accumulation of Spinor Atoms in Optical Lattices

    International Nuclear Information System (INIS)

    Li Hong; Jiang Zhanfeng

    2007-01-01

    We obtain an effective spin correlation Hamiltonian describing the interaction of light with a two-level atom, then we investigate the classical trajectory of the two-level atom system by numerical integration of the Heisenberg equation of motion. Our results show that the spin accumulation is a very popular phenomenon as long as the spin character cannot be ignored in the Hamiltonian. We propose experimental protocol to observe this new phenomenon in further experiments.

  4. 133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4

    Science.gov (United States)

    Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.

    2006-10-01

    We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.

  5. Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions

    Science.gov (United States)

    Keleş, Ahmet; Zhao, Erhai

    2018-05-01

    The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.

  6. Entropic uncertainty relations in the Heisenberg XXZ model and its controlling via filtering operations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-04-01

    The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.

  7. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  8. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  9. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  10. Werner Heisenberg - Life and Work

    CERN Multimedia

    2002-01-01

    Werner Heisenberg (centre) with Wolfgang Pauli and Enrico Fermi, 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 30 July*. German theoretical physicist Werner Karl Heisenberg (1901 - 1976) was one of the leading scientists of the 20th century. Nobel Prize in Physics in 1932, his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles can be determined simultaneously. Heisenberg was a keen supporter of CERN, and was as the first chairman of CERN's Scientific Policy Committee in October 1954. A related celebration will take place in the TH Amphitheatre (4/3-006), on Thursday 18 July at 16:00. After an introduction from the Director-General Luciano Maiani, his daughter, Barbara Blum, his last postgraduate, Helmut Rechenberg and Valentin Telegdi will evoke memories of the life and work ...

  11. Werner Heisenberg - Life and Work

    CERN Multimedia

    2002-01-01

    Werner Heisenberg (centre) with Wolfgang Pauli (left) and Enrico Fermi on Lake Como, September 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 23 July. The exhibition was produced by the University Archive of Leipzig University (Gerald Wiemers) and the Max-Planck-Institut für Physik in Munich (Helmut Rechenberg) to mark the centenary of Heisenberg's birth in 1901. German theoretical physicist Werner Karl Heisenberg (5 December 1901 - 1 February 1976) was one of the leading scientists of the 20th century. He carried out important work in nuclear and particle physics, but his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles - such as position and linear momentum - can be determined simultaneously. In 1932 he was awarded the Noble Prize in Physics 'for the creation of q...

  12. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    Science.gov (United States)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1place at J2c2/J1=0.610 (2 ) to the conventional Stripe phase. We compare our results with earlier DMRG and PEPS studies and suggest future directions for resolving remaining issues.

  13. Magnetic Properties of One-Dimensional Ferromagnetic Mixed-Spin Model within Tyablikov Decoupling Approximation

    International Nuclear Information System (INIS)

    Chen Yuan; Song Chuangchuang; Xiang Ying

    2010-01-01

    In this paper, we apply the two-time Green's function method, and provide a simple way to study the magnetic properties of one-dimensional spin-(S,s) Heisenberg ferromagnets. The magnetic susceptibility and correlation functions are obtained by using the Tyablikov decoupling approximation. Our results show that the magnetic susceptibility and correlation length are a monotonically decreasing function of temperature regardless of the mixed spins. It is found that in the case of S=s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropic ferromagnetic Heisenberg chain in the whole temperature region. Our results for the susceptibility are in agreement with those obtained by other theoretical approaches. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Quantum correlations in a bipartite multiqubit spin ring system

    International Nuclear Information System (INIS)

    Doronin, S I; Fel’dman, E B; Kuznetsova, E I

    2015-01-01

    We consider a spin ring with an arbitrary number of spins on the ring and one spin in its center in a strong external magnetic field. The spins on the ring are connected by the secular dipole–dipole interactions and interact with the central spin through the Heisenberg zz-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for an arbitrary number of the spins in the high-temperature approximation. We demonstrate the evolution of quantum correlations at different numbers of the spins. The contributions of longitudinal and transversal spin interactions to the quantum discord are discussed. (paper)

  15. Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets

    International Nuclear Information System (INIS)

    Zinke, R; Richter, J; Drechsler, S-L

    2010-01-01

    We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.

  16. Phase transition in Ising, XY and Heisenberg magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid - BP 63 46000 Safi (Morocco); LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Benyoussef, A. [LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco)

    2012-01-01

    The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system {tau}{sub c} is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces J{sub b}, J{sub s} and J{sub Up-Tack }, respectively. It is found that {tau}{sub c} increases with the exchange interactions of surface. The magnetic phase diagrams ({tau}{sub c} versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures T{sub c}(l) from the bulk value (T{sub c}({infinity})/T{sub c}(l) - 1) can be described by a power law l{sup -{lambda}}, where {lambda} = 1/{upsilon} is the inverse of the correlation length exponent.

  17. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  18. Remark on Heisenberg's principle

    International Nuclear Information System (INIS)

    Noguez, G.

    1988-01-01

    Application of Heisenberg's principle to inertial frame transformations allows a distinction between three commutative groups of reciprocal transformations along one direction: Galilean transformations, dual transformations, and Lorentz transformations. These are three conjugate groups and for a given direction, the related commutators are all proportional to one single conjugation transformation which compensates for uniform and rectilinear motions. The three transformation groups correspond to three complementary ways of measuring space-time as a whole. Heisenberg's Principle then gets another explanation [fr

  19. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    International Nuclear Information System (INIS)

    Zhang Kai-Cheng; Liu Yong; Chi Feng

    2014-01-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Thermal entanglement in an orthogonal dimer-plaquette chain with alternating Ising–Heisenberg coupling

    International Nuclear Information System (INIS)

    Paulinelli, H G; De Souza, S M; Rojas, Onofre

    2013-01-01

    In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising–Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet–triplet disordered and one triplet–singlet disordered phase, beside a dimer ferromagnetic–antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers. (paper)

  1. J{sub 1x}-J{sub 1y}-J{sub 2} square-lattice anisotropic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Pires, A.S.T., E-mail: antpires@frisica.ufmg.br

    2017-08-01

    Highlights: • We use the SU(3) Schwinger boson formalism. • We present the phase diagram at zero temperature. • We calculate the quadrupole structure factor. - Abstract: The spin one Heisenberg model with an easy-plane single-ion anisotropy and spatially anisotropic nearest-neighbor coupling, frustrated by a next-nearest neighbor interaction, is studied at zero temperature using a SU(3) Schwinger boson formalism (sometimes also referred to as flavor wave theory) in a mean field approximation. The local constraint is enforced by introducing a Lagrange multiplier. The enlarged Hilbert space of S = 1 spins lead to a nematic phase that is ubiquitous to S = 1 spins with single ion anisotropy. The phase diagram shows two magnetically ordered phase, separated by a quantum paramagnetic (nematic) phase.

  2. Large field-induced gap of Kitaev-Heisenberg paramagnons in $\\alpha$-RuCl$_{3}$

    OpenAIRE

    Hentrich, Richard; Wolter, Anja U. B.; Zotos, Xenophon; Brenig, Wolfram; Nowak, Domenic; Isaeva, Anna; Doert, Thomas; Banerjee, Arnab; Lampen-Kelley, Paula; Mandrus, David G.; Nagler, Stephen E.; Sears, Jennifer; Kim, Young-June; Büchner, Bernd; Hess, Christian

    2017-01-01

    The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $\\alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $\\kappa$ of $\\alpha$-RuCl$_{3}$: beyond a magnetic field of $B_c\\approx$ 7.5 T, $\\kappa$ increases by about one order of magnitude, resulting in a large magnetic field depen...

  3. Classical ground states of Heisenberg and X Y antiferromagnets on the windmill lattice

    Science.gov (United States)

    Jeevanesan, Bhilahari; Orth, Peter P.

    2014-10-01

    We investigate the classical Heisenberg and planar (X Y ) spin models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations, and analytical calculations, we determine the complete ground-state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate noncoplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.

  4. Deformation quantization of the Heisenberg group

    International Nuclear Information System (INIS)

    Bonechi, F.

    1994-01-01

    After reviewing the way the quantization of Poisson Lie Groups naturally leads to Quantum Groups, the existing quantum version H(1) q of the Heisenberg algebra is used to give an explicit example of this quantization on the Heisenberg group. (author) 6 refs

  5. Berry phase in Heisenberg representation

    Science.gov (United States)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  6. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  7. I grandi della fisica da Platone a Heisenberg

    CERN Document Server

    Von Weizsäcker, Carl Friedrich

    2002-01-01

    Parmenide ; Platone ; Aristotele ; Copernico, Keplero, Galilei ; Galileo Galilei ; Cartesio ; Gottfried Wilhelm Leibniz ; Cartesio, Newton, Leibniz, Kant ; Immanuel Kant ; Johann Wolfgang Goethe ; Robert Meyer ; Albert Einstein ; Niels Bohr ; Paul Adrien Maurice Dirac ; Niels Bohr e Werner Heisenberg, un ricordo del 1932 ; Werner Heisenberg ; Heisenberg, fisico e filosofo ; l'interpretazione filosofica della fisica moderna.

  8. Quantum stability for the Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Bargheer, Till; Beisert, Niklas; Gromov, Nikolay

    2008-01-01

    Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.

  9. The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation

    International Nuclear Information System (INIS)

    Azakov, S.; Dilaver, M.; Oztas, A.M.

    1999-09-01

    Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)

  10. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  11. Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Geremia, J M; Stockton, John K; Doherty, Andrew C; Mabuchi, Hideo [Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California, 91125 (United States)

    2003-12-19

    The shot-noise detection limit in current high-precision magnetometry [I. Kominis, T. Kornack, J. Allred, and M. Romalis, Nature (London) 422, 596 (2003)]10.1038/nature01484 is a manifestation of quantum fluctuations that scale as 1/{radical}(N) in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [V. Belavkin, Rep. Math. Phys. 43, 405 (1999)] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.

  12. The q-deformed SU(2) Heisenberg model in 3-dimensions

    International Nuclear Information System (INIS)

    Lu Zhongyi; Yan Hong.

    1991-07-01

    A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs

  13. Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model

    Science.gov (United States)

    Orth, Peter P.

    2014-03-01

    In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.

  14. Modulated spin waves and robust quasi-solitons in classical Heisenberg rings

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Schroeder, Christian; Luban, Marshall

    2011-01-01

    We investigate the dynamical behavior of finite rings of classical spin vectors interacting via nearest-neighbor isotropic exchange in an external magnetic field. Our approach is to utilize the solutions of a continuum version of the discrete spin equations of motion (EOM) which we derive by assuming continuous modulations of spin wave solutions of the EOM for discrete spins. This continuum EOM reduces to the Landau-Lifshitz equation in a particular limiting regime. The usefulness of the continuum EOM is demonstrated by the fact that the time-evolved numerical solutions of the discrete spin EOM closely track the corresponding time-evolved solutions of the continuum equation. It is of special interest that our continuum EOM possesses soliton solutions, and we find that these characteristics are also exhibited by the corresponding solutions of the discrete EOM. The robustness of solitons is demonstrated by considering cases where initial states are truncated versions of soliton states and by numerical simulations of the discrete EOM equations when the spins are coupled to a heat bath at finite temperatures. (paper)

  15. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    Science.gov (United States)

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  16. Heisenberg coupling constant predicted for molecular magnets with pairwise spin-contamination correction

    Energy Technology Data Exchange (ETDEWEB)

    Masunov, Artëm E., E-mail: amasunov@ucf.edu [NanoScience Technology Center, Department of Chemistry, and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Gangopadhyay, Shruba [Department of Physics, University of California, Davis, CA 95616 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States)

    2015-12-15

    New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals.

  17. Large-n limit of the Heisenberg model: The decorated lattice and the disordered chain

    International Nuclear Information System (INIS)

    Khoruzhenko, B.A.; Pastur, L.A.; Shcherbina, M.V.

    1989-01-01

    The critical temperature of the generalized spherical model (large-component limit of the classical Heisenberg model) on a cubic lattice, whose every bond is decorated by L spins, is found. When L → ∞, the asymptotics of the temperature is T c ∼ aL -1 . The reduction of the number of spherical constraints for the model is found to be fairly large. The free energy of the one-dimensional generalized spherical model with random nearest neighbor interaction is calculated

  18. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    Science.gov (United States)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  19. A Poisson type formula for Hardy classes on Heisenberg's group

    Directory of Open Access Journals (Sweden)

    Lopushansky O.V.

    2010-06-01

    Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.

  20. Nontrivial ac spin response in the effective Luttinger model

    International Nuclear Information System (INIS)

    Hu Liangbin; Zhong Jiansong; Hu Kaige

    2006-01-01

    Based on the three-dimensional effective Luttinger Hamiltonian and the exact Heisenberg equations of motion and within a self-consistent semiclassical approximation, we present a theoretical investigation on the nontrivial ac spin responses due to the intrinsic spin-orbit coupling of holes in p-doped bulk semiconductors. We show that the nontrivial ac spin responses induced by the combined action of an ac external electric field and the intrinsic spin-orbit coupling of holes may lead to the generation of a nonvanishing ac spin Hall current in a p-doped bulk semiconductor, which shares some similarities with the dissipationless dc spin Hall current conceived previously and also exhibits some interesting new features that was not found before

  1. Topological superconductivity in the extended Kitaev-Heisenberg model

    Science.gov (United States)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  2. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  3. The spinning minimal surfaces without the Grassmann variables

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1988-01-01

    Generalizing the model of the spinning Dirac electron with Zitterbewegung we give a theory of spinning strings, membranes and p-branes in curved background spaces of arbitrary dimensions. The dynamical variables are surface co-ordinates x μ (ξ α ) and a single c-number spinor z(ξ α ). We use a phase space action which reduces in the limit to that of spinless membranes. A Hamiltonian formulation is also given. (author). 8 refs

  4. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    International Nuclear Information System (INIS)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.

  5. Barrier functions for Pucci-Heisenberg operators and applications

    OpenAIRE

    Cutri , Alessandra; Tchou , Nicoletta

    2007-01-01

    International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...

  6. Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

    Directory of Open Access Journals (Sweden)

    Samuel Belliard

    2013-11-01

    Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.

  7. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  8. Cosmological implications of Heisenberg's principle

    CERN Document Server

    Gonzalo, Julio A

    2015-01-01

    The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.

  9. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    Science.gov (United States)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-05-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  10. Heisenberg, his wife s account

    International Nuclear Information System (INIS)

    Heisenberg, E.

    1990-01-01

    A wife tells about her husband life, Werner Heisenberg, Physics Nobel Price in 1932. After a happy childhood, this brilliant student was Albert Einstein, Niels Bohr, Arnold Sommerfeld s student. But at the nazism time, the great physician refused to leave his country, guaranteeing the Hitler regime and taking part in effort of war, that is to say the run to the bomb. The account of Elisabeth Heisenberg, although subjective, allows to understand the scientist s behaviour face terrifying realities of his time. (N.C.)

  11. Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    Fariba Masoudi

    2017-11-01

    Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of  Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for  cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid

  12. Microscopic theory of ultrafast spin linear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G P, E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)

    2011-05-25

    A recent experiment (Vahaplar et al 2009 Phys. Rev. Lett. 103 117201) showed that a single femtosecond laser can reverse the spin direction without spin precession, or spin linear reversal (SLR), but its microscopic theory has been missing. Here we show that SLR does not occur naturally. Two generic spin models, the Heisenberg and Hubbard models, are employed to describe magnetic insulators and metals, respectively. We find analytically that the spin change is always accompanied by a simultaneous excitation of at least two spin components. The only model that has prospects for SLR is the Stoner single-electron band model. However, under the influence of the laser field, the orbital angular momenta are excited and are coupled to each other. If a circularly polarized light is used, then all three components of the orbital angular momenta are excited, and so are their spins. The generic spin commutation relation further reveals that if SLR exists, it must involve a complicated multiple state excitation.

  13. Quantum Heisenberg groups and Sklyanin algebras

    International Nuclear Information System (INIS)

    Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.

    1993-05-01

    We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs

  14. Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain

    International Nuclear Information System (INIS)

    Nayyar, A.H.; Murtaza, G.

    1981-08-01

    As an example of interaction between two solitons belonging to different species, a semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin systems are taken with their respective nonlinear interactions. The lattice soliton is shown to introduce spatial inhomogeneities into the propagation of the magnetic soliton resulting in (a) the trapping of the magnetic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the width of the magnetic soliton becoming time-dependent. (author)

  15. Studies on spin waves

    International Nuclear Information System (INIS)

    Prets, A.

    1998-07-01

    In the present Ph. D. thesis we are considering a special form of scaling limits, namely the hydrodynamic limit. Such limits are considered to explain macroscopic behavior of matter by means of microscopic dynamic laws. In this procedure a rescaling of space and time plays a central role. The limit will be formulated in a quantum mechanical way. Within this framework we study derivations of the Landau Lifshitz equation for ferromagnets. This equation is a macroscopic equation of motion for the magnetization vector and results into the theory of spin waves. Since we have no exact knowledge of the Heisenberg operator's time evolution no definitive statement an how to regain the Landau Lifshitz equation from the microscopic dynamics can be given. In contrast to the Heisenberg operator, for an Ising type interaction inside a ferromagnet one is able to recover macroscopically a solution of a linearized Landau Lifschitz equation. (author)

  16. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Pu Qiurong; Chen Yuan

    2013-01-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  17. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    Science.gov (United States)

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.

  18. Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity

    KAUST Repository

    Kim, Sanghoon

    2018-04-19

    Chiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii–Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal in addition to Heisenberg exchange. The density functional theory and the tight-binding model calculations reveal that inversion symmetry breaking with spin–orbit coupling gives rise to the orbital-related correlation. Our study provides the experimental connection between the orbital physics and the spin–orbit-related phenomena, such as DMI.

  19. Low-field susceptibility of classical Heisenberg chains with arbitrary and different nearest-neighbour exchange

    International Nuclear Information System (INIS)

    Cregg, P J; Murphy, K; Garcia-Palacios, J L; Svedlindh, P

    2008-01-01

    Interest in molecular magnets continues to grow, offering a link between the atomic and nanoscale properties. The classical Heisenberg model has been effective in modelling exchange interactions in such systems. In this, the magnetization and susceptibility are calculated through the partition function, where the Hamiltonian contains both Zeeman and exchange energy. For an ensemble of N spins, this requires integrals in 2N dimensions. For two, three and four spin nearest-neighbour chains these integrals reduce to sums of known functions. For the case of the three and four spin chains, the sums are equivalent to results of Joyce. Expanding these sums, the effect of the exchange on the linear susceptibility appears as Langevin functions with exchange term arguments. These expressions are generalized here to describe an N spin nearest-neighbour chain, where the exchange between each pair of nearest neighbours is different and arbitrary. For a common exchange constant, this reduces to the result of Fisher. The high-temperature expansion of the Langevin functions for the different exchange constants leads to agreement with the appropriate high-temperature quantum formula of Schmidt et al, when the spin number is large. Simulations are presented for open linear chains of three, four and five spins with up to four different exchange constants, illustrating how the exchange constants can be retrieved successfully

  20. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  1. Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions

    Science.gov (United States)

    Xie, Yu-Xia; Sun, Yu-Hang; Li, Zhao

    2018-01-01

    We investigate the well-defined measures of measurement-induced nonlocality (MIN) for thermal states of the transverse field XX model, with the addition of three-spin interaction terms being introduced. The results showed that the MINs are very sensitive to system parameters of the chain. The three-spin interactions can serve as flexible parameters for enhancing MINs of the boundary spins, and the maximum enhancement achievable by varying strengths of the three-spin interactions are different for the chain with different number of spins.

  2. Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field

    International Nuclear Information System (INIS)

    Sato, Masahiro; Oshikawa, Masaki

    2002-01-01

    We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)

  3. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  4. Magnetic properties of a classical XY spin dimer in a “planar” magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)

    2016-10-15

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.

  5. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α-RuCl_{3}.

    Science.gov (United States)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α-RuCl_{3} is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α-RuCl_{3} undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the ab plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α-RuCl_{3}.

  6. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3

    Science.gov (United States)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .

  7. Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Science.gov (United States)

    Mohammady, M. Hamed; Choi, Hyeongrak; Trusheim, Matthew E.; Bayat, Abolfazl; Englund, Dirk; Omar, Yasser

    2018-04-01

    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

  8. Quantum Critical Scaling and Temperature-Dependent Logarithmic Corrections in the Spin-Half Heisenberg Chain

    International Nuclear Information System (INIS)

    Starykh, O.; Singh, R.; Sandvik, A.

    1997-01-01

    Low temperature dynamics of the S=(1)/(2) Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T 1 and 1/T 2G are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and ω/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results. copyright 1997 The American Physical Society

  9. On the spectrum of the polyallyl spin chain

    International Nuclear Information System (INIS)

    Zhikol, O.A.; Cheranovskij, V.O.

    1996-01-01

    A study of the exact initial energy levels of the model organic ferromagnet, namely, polyallyl spin chain, has been performed for various values of exchange integral λ describing interaction between radical centers and polyene chain. Perturbation theory analyses and the estimations based on the extrapolation of the results of exact numerical calculations for the finite chain clusters have shown that there exist three types of excitations in the exact polyallyl spectra. The first type is of a gapless character and similar to magnon excitations of the uniform ferromagnet Heisenberg spin chain, which reduce the total chain spin. The second type causes the total spin increase and has the gap character for any values of λ. The third type does not affect the value of the total spin and has gap character for large values of λ

  10. Extended Heisenberg principle: Tentative analysis of its applications

    International Nuclear Information System (INIS)

    Golbbiewski, A.; Witko, M.

    1988-01-01

    The paper examines the extension of the Heisenberg principle for a larger number of simultaneously discussed observables. The possibilities of the extended Heisenberg principle are discussed for evaluation of the average value of the square of the selected operator and for evaluation of the standard deviation of the selected operator

  11. Remarks on Heisenberg-Euler-type electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  12. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  13. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  14. Werner Heisenberg, 5 December 1901 - 1 February 1976

    International Nuclear Information System (INIS)

    Mott, N.; Peierls, R.

    1977-01-01

    An account is given of the life and work of Werner Heisenberg, with particular reference to his contribution to quantum mechanics and the formulation of the uncertainty principle. The development of atomic energy in Germany during the war is described, and the part played by Heisenberg in German post-war science. (U.K.)

  15. Systematic classical continuum limits of integrable spin chains and emerging novel dualities

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia; Sfetsos, Konstadinos

    2010-01-01

    We examine certain classical continuum long wave-length limits of prototype integrable quantum spin chains. We define the corresponding construction of classical continuum Lax operators. Our discussion starts with the XXX chain, the anisotropic Heisenberg model and their generalizations and extends to the generic isotropic and anisotropic gl n magnets. Certain classical and quantum integrable models emerging from special 'dualities' of quantum spin chains, parametrized by c-number matrices, are also presented.

  16. Effects of surface exchange anisotropy in Heisenberg ferromagnetic insulators

    International Nuclear Information System (INIS)

    Selzer, S.; Majlis, N.

    1982-03-01

    We consider an fcc semi-infinite ferromagnetic insulator displaying an anisotropic exchange interaction between spins on the (111) surface plane of the form Jsub(parallel)[Ssub(i)sup(x)Ssub(j)sup(x)+Ssub(i)sup(y)Ssub(j)sup(y )+etaSsub(i)sup(z)Ssub(j)sup(z)], assuming all other interactions isotropic. A self-consistent RPA calculation is performed, with a Green function method valid for any spin S, up to the bulk transition temperature Tsub(c)sup(b), by imposing that the magnetization of the third layer equals the bulk value. For eta sufficiently large, the surface magnetization is non-zero for T>Tsub(c)sup(b), up to a transition temperature Tsub(c)sup(s)(eta) whenever eta>=etasub(c)>1, where Tsub(c)sup(s)(etasub(c))=Tsub(c)sup(b). For T>Tsub(c)sup(b) the system is equivalent to a film of three layers, where the magnetization of the third one is identically zero as a boundary condition. A discontinuity of the derivative in the curve of the magnetization of the first two layers vs. temperature is found at Tsub(c)sup(b). The results show clearly a cross-over from Heisenberg to Ising behaviour at the surface. (author)

  17. Non-Hermitian Heisenberg representation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015

  18. The Heisenberg picture for single photon states

    International Nuclear Information System (INIS)

    Pienaar, Jacques; Myers, Casey; Ralph, Timothy C.

    2011-01-01

    In the context of quantum field theory, the Heisenberg picture has a distinct advantage over the Schrodinger picture because the Schrodinger picture requires us to transform the vacuum state itself, which can be intractable in the case of non-inertial reference frames, whereas the Heisenberg picture allows us to keep the same vacuum state and only transform the operators. However, the Heisenberg calculation requires the operators to already be expressed as a function of creation and annihilation operators acting on the original vacuum, whereas calculations in quantum information and quantum computation use operators that act on qubit states, necessarily containing particles. The relationship between the operators acting on these states and the operators acting on the vacuum state has remained elusive. We derive such an expression using an explicit model for single-particle production from the vacuum.

  19. Heisenberg and Ferromagnetism

    Indian Academy of Sciences (India)

    how Heisenberg identified the quantum mechan- ical exchange ... condensed matter physics from the Indian ... electrons per atom and 'm,' is the electronic mass. Dia- magnetism is .... what is the origin of this ordering field Hint = aM, that gives rise to a ... the case with magnetism, where the fundamental Inech- anism for the ...

  20. On precanonical quantization of gravity in spin connection variables

    Energy Technology Data Exchange (ETDEWEB)

    Kanatchikov, I. V. [National Center of Quantum Information in Gdansk (KCIK), 81-824 Sopot (Poland)

    2013-02-21

    The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.

  1. Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling

    Science.gov (United States)

    Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun

    2018-05-01

    Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.

  2. Heisenberg lecture: Supersymmetry in the spectra of atomic nuclei

    International Nuclear Information System (INIS)

    Graw, Gerhard

    2003-01-01

    Talk given at the Symposium: 'Werner Heisenberg und die Wissenschaft, das Denken und die Kunst', Alexander von Humboldt Club, Bucharest, October 16 - 17, 2001, Goethe-Institut, Bucharest, Romania. This Symposium of the Humboldt Club in Bucharest was dedicated to the work of Werner Heisenberg. With the occasion of the hundredth anniversary of his birthday the aim was to recall the impact of Heisenberg's work not only on physics and related fields but also on philosophy and on our present understanding of science. Werner Heisenberg discovered and formulated the laws of quantum physics, the concepts and the tools one uses at present. These discoveries resulted from his ambitious goal to reveal the fundamental laws of physics and to understand these laws within the logical and structural aspects they imply for the understanding of nature and of thinking. In this way he was aware of the potential of this fundamental new approach and applied the concept of quantum phenomena to physics, chemistry, biology, and to logical-philosophical questions. Being invited here as first speaker of this Symposium the author considered as appropriate, first to recall a few dates out of his vita and essentials of his work, and then to address to a timely subject, which is, hopefully, related to the work of Werner Heisenberg. (author)

  3. Cluster algorithms with empahsis on quantum spin systems

    International Nuclear Information System (INIS)

    Gubernatis, J.E.; Kawashima, Naoki

    1995-01-01

    The purpose of this lecture is to discuss in detail the generalized approach of Kawashima and Gubernatis for the construction of cluster algorithms. We first present a brief refresher on the Monte Carlo method, describe the Swendsen-Wang algorithm, show how this algorithm follows from the Fortuin-Kastelyn transformation, and re=interpret this transformation in a form which is the basis of the generalized approach. We then derive the essential equations of the generalized approach. This derivation is remarkably simple if done from the viewpoint of probability theory, and the essential assumptions will be clearly stated. These assumptions are implicit in all useful cluster algorithms of which we are aware. They lead to a quite different perspective on cluster algorithms than found in the seminal works and in Ising model applications. Next, we illustrate how the generalized approach leads to a cluster algorithm for world-line quantum Monte Carlo simulations of Heisenberg models with S = 1/2. More succinctly, we also discuss the generalization of the Fortuin- Kasetelyn transformation to higher spin models and illustrate the essential steps for a S = 1 Heisenberg model. Finally, we summarize how to go beyond S = 1 to a general spin, XYZ model

  4. On spin chains and field theories

    International Nuclear Information System (INIS)

    Roiban, Radu

    2004-01-01

    We point out that the existence of global symmetries in a field theory is not an essential ingredient in its relation with an integrable model. We describe an obvious construction which, given an integrable spin chain, yields a field theory whose 1-loop scale transformations are generated by the spin chain hamiltonian. We also identify a necessary condition for a given field theory to be related to an integrable spin chain. As an example, we describe an anisotropic and parity-breaking generalization of the XXZ Heisenberg spin chain and its associated field theory. The system has no nonabelian global symmetries and generally does not admit a supersymmetric extension without the introduction of more propagating bosonic fields. For the case of a 2-state chain we find the spectrum and the eigenstates. For certain values of its coupling constants the field theory associated to this general type of chain is the bosonic sector of the q-deformation of N = 4 SYM theory. (author)

  5. Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain

    Science.gov (United States)

    Radha, R.; Kumar, V. Ramesh

    2007-11-01

    In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.

  6. Heisenberg's uncertainty relation: Violation and reformulation

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2014-01-01

    The uncertainty relation formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable so that their product should be no less than a limit set by Planck's constant. In 1980, Braginsky, Vorontsov, and Thorne claimed that this relation leads to a sensitivity limit for gravitational wave detectors. However, in 1988 a model of position measurement was constructed that breaks both this limit and Heisenberg's relation. Here, we discuss the problems as to how we reformulate Heisenberg's relation to be universally valid and how we experimentally quantify the error and the disturbance to refute the old relation and to confirm the new relation.

  7. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  8. The Einstein A-coefficient of spontaneous emission: A relativistic calculation in the Heisenberg representation

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1989-07-01

    We present a simple approach to the relativistic calculation of the rates of spontaneous emission starting from the Heisenberg picture formula for the power radiated by a charged particle undergoing acceleration, and evaluate atomic decay rates using relativistic Dirac-Coulomb wavefunctions. The spin of the electron, embedded in its relativistic wavefunction, is shown to correctly provide the two polarization states of the emitted radiation. We discuss selection rules and calculate the Hydrogen 2 P → 1 S transition rate, among others, to be Γ = (6.2650 ± 0.0007)x10 8 s -1 in good agreement with the full field theory calculation as well as with experiment. (author). 14 refs

  9. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  10. Realistic Approach of the Relations of Uncertainty of Heisenberg

    Directory of Open Access Journals (Sweden)

    Paul E. Sterian

    2013-01-01

    Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.

  11. Rigorous decoupling between edge states in frustrated spin chains and ladders

    Science.gov (United States)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  12. Quantum communication through an unmodulated spin chain

    International Nuclear Information System (INIS)

    Bose, Sougato

    2003-01-01

    We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short distance quantum communications. The state to be transmitted is placed on one spin of the chain and received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can be directly transmitted with better than classical fidelity across the full length of chains of up to 80 spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances

  13. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  14. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  15. Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain

    International Nuclear Information System (INIS)

    Wu, F; Wang, W Z

    2006-01-01

    Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain

  16. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  17. Comments on 'On a proposed new test of Heisenberg's principle'

    International Nuclear Information System (INIS)

    Home, D.; Sengupta, S.

    1981-01-01

    A logical fallacy is pointed out in Robinson's analysis (J. Phys. A.; 13:877 (1980)) of a thought experiment purporting to show violation of Heisenberg's uncertainty principle. The real problem concerning the interpretation of Heisenberg's principle is precisely stated. (author)

  18. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  19. Higher spin black holes with soft hair

    Energy Technology Data Exchange (ETDEWEB)

    Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-10-21

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  20. Effect of interionic anisotropy on the phase states and spectra of a non-Heisenberg magnet with S = 1

    Energy Technology Data Exchange (ETDEWEB)

    Kosmachev, O. A.; Krivtsova, A. V.; Fridman, Yu. A., E-mail: yuriifridman@gmail.com [Vernadskii Crimea Federal University (Russian Federation)

    2016-02-15

    We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.

  1. Heisenberg's principle of uncertainty and the uncertainty relations

    International Nuclear Information System (INIS)

    Redei, Miklos

    1987-01-01

    The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs

  2. Microscopic theory of the nearest-neighbor valence bond sector of the spin-1/2 kagome antiferromagnet

    Science.gov (United States)

    Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis

    2018-03-01

    The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.

  3. Magnetisation switching in a ferromagnetic Heisenberg nanoparticle with uniaxial anisotropy: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Ledue, D.; Berche, P.E.; Patte, R.

    2004-01-01

    We investigate the thermal-activated magnetisation reversal in a single ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo simulations. The aim of this work is to reproduce the reversal magnetisation by uniform rotation at very low temperature in the high-energy barrier hypothesis, that is to realize the Neel-Brown model. For this purpose we have considered a simple cubic nanoparticle where each site is occupied by a classical Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a single-ion anisotropy term and a Zeeman interaction term. Our numerical data of the thermal variation of the switching field are compared to an approximated expression and previous experimental results on Co nanoparticles

  4. Finite Heisenberg groups and Seiberg dualities in quiver gauge theories

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.

    2006-01-01

    A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers

  5. Density of states and phase diagram of the antiferromagnetic spin chain with Dzyaloshinsky-Moriya interaction and spin-phonon coupling

    International Nuclear Information System (INIS)

    Wang Qin; Chen Hong; Zheng Hang

    2007-01-01

    The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization

  6. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)

    2016-05-06

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.

  7. Momentum conservation decides Heisenberg's interpretation of the uncertainty formulas

    International Nuclear Information System (INIS)

    Angelidis, T.D.

    1977-01-01

    In the light of Heisenberg's interpretation of the uncertainty formulas, the conditions necessary for the derivation of the quantitative statement or law of momentum conservation are considered. The result of such considerations is a contradiction between the formalism of quantum physics and the asserted consequences of Heisenberg's interpretation. This contradiction decides against Heisenberg's interpretation of the uncertainty formulas on upholding that the formalism of quantum physics is both consistent and complete, at least insofar as the statement of momentum conservation can be proved within this formalism. A few comments are also included on Bohr's complementarity interpretation of the formalism of quantum physics. A suggestion, based on a statistical mode of empirical testing of the uncertainty formulas, does not give rise to any such contradiction

  8. Effect of anisotropy on the entanglement of quantum states in a spin chain

    NARCIS (Netherlands)

    Kartsev, PF; Kashurnikov, VA

    2004-01-01

    The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a magnetic field increases above the value reached in the absence of the field. The

  9. Spin diffusion from an inhomogeneous quench in an integrable system.

    Science.gov (United States)

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-13

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  10. First-Order Polynomial Heisenberg Algebras and Coherent States

    International Nuclear Information System (INIS)

    Castillo-Celeita, M; Fernández C, D J

    2016-01-01

    The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)

  11. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    Directory of Open Access Journals (Sweden)

    J.M.P. Carmelo

    2017-01-01

    Full Text Available Whether in the thermodynamic limit, vanishing magnetic field h→0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h→0 in the thermodynamic limit of chain length L→∞, at high temperatures T→∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L−2S spins 1/2 that are paired within Msp=L/2−S spin–singlet pairs. The Bethe-ansatz strings of length n=1 and n>1 describe a single unbound spin–singlet pair and a configuration within which n pairs are bound, respectively. In the case of n>1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T→∞, vanishing magnetic field h→0 and within the grand-canonical ensemble.

  12. Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase

    Science.gov (United States)

    Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.

    2015-12-01

    Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

  13. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  14. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    Science.gov (United States)

    Carmelo, J. M. P.; Prosen, T.

    2017-01-01

    Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L - 2 S spins 1/2 that are paired within Msp = L / 2 - S spin-singlet pairs. The Bethe-ansatz strings of length n = 1 and n > 1 describe a single unbound spin-singlet pair and a configuration within which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing magnetic field h → 0 and within the grand-canonical ensemble.

  15. Hilbert schemes of points and Heisenberg algebras

    International Nuclear Information System (INIS)

    Ellingsrud, G.; Goettsche, L.

    2000-01-01

    Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)

  16. Quantum Fourier transform, Heisenberg groups and quasi-probability distributions

    International Nuclear Information System (INIS)

    Patra, Manas K; Braunstein, Samuel L

    2011-01-01

    This paper aims to explore the inherent connection between Heisenberg groups, quantum Fourier transform (QFT) and (quasi-probability) distribution functions. Distribution functions for continuous and finite quantum systems are examined from three perspectives and all of them lead to Weyl-Gabor-Heisenberg groups. The QFT appears as the intertwining operator of two equivalent representations arising out of an automorphism of the group. Distribution functions correspond to certain distinguished sets in the group algebra. The marginal properties of a particular class of distribution functions (Wigner distributions) arise from a class of automorphisms of the group algebra of the Heisenberg group. We then study the reconstruction of the Wigner function from the marginal distributions via inverse Radon transform giving explicit formulae. We consider some applications of our approach to quantum information processing and quantum process tomography.

  17. Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study

    Science.gov (United States)

    Chandra, V. Ravi; Sahoo, Jyotisman

    2018-04-01

    We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .

  18. Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    DEFF Research Database (Denmark)

    Stone, M.B.; Reich, D.H.; Broholm, C.

    2003-01-01

    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...

  19. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  20. Heisenberg Groups as Platform for the AAG key-exchange protocol

    OpenAIRE

    Kahrobaei, Delaram; Lam, Ha T.

    2014-01-01

    Garber, Kahrobaei, and Lam studied polycyclic groups generated by number field as platform for the AAG key-exchange protocol. In this paper, we discuss the use of a different kind of polycyclic groups, Heisenberg groups, as a platform group for AAG by submitting Heisenberg groups to one of AAG's major attacks, the length-based attack.

  1. High-field study of the spin-Peierls system CuGeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L P [CEA Centre d` Etudes de Grenoble, 38 (France)

    1997-04-01

    The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.

  2. Quantum gates controlled by spin chain soliton excitations

    Energy Technology Data Exchange (ETDEWEB)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.

  3. Alternating spin chain compound AgVOAsO4 probed by 75As NMR

    Science.gov (United States)

    Ahmed, N.; Khuntia, P.; Ranjith, K. M.; Rosner, H.; Baenitz, M.; Tsirlin, A. A.; Nath, R.

    2017-12-01

    75As NMR measurements were performed on a polycrystalline sample of spin-1/2 alternating spin chain Heisenberg antiferromagnet AgVOAsO4. The temperature-dependent NMR shift K (T ) , which is a direct measure of the intrinsic spin susceptibility, agrees very well with the spin-1/2 alternating-chain model, justifying the assignment of the spin lattice. From the analysis of K (T ) , magnetic exchange parameters were estimated as follows: the leading exchange J /kB≃38.4 K and the alternation ratio α =J'/J ≃0.69 . The transferred hyperfine coupling between the 75As nucleus and V4 + spins obtained by comparing the NMR shift with the bulk susceptibility amounts to Ahf≃3.3 TμB. The effect of interchain couplings on the low-temperature activated behavior of K (T ) and the spin-lattice relaxation rate 1 /T1 is identified.

  4. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    Science.gov (United States)

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  5. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  6. Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain

    NARCIS (Netherlands)

    Brockmann, M.; Wouters, B.; Fioretto, D.; De Nardis, J.; Vlijm, R.; Caux, J.-S.

    2014-01-01

    The steady state after a quantum quench from the Néel state to the anisotropic Heisenberg model for spin chains is investigated. Two methods that aim to describe the postquench non-thermal equilibrium, the generalized Gibbs ensemble and the quench action approach, are discussed and contrasted. Using

  7. You spin me right round: Cross-relationship variability in interpersonal emotion regulation

    Directory of Open Access Journals (Sweden)

    Karen eNiven

    2012-10-01

    Full Text Available Individuals use a range of interpersonal emotion regulation strategies to influence the feelings of others, e.g., friends, family members, romantic partners, work colleagues. But little is known about whether people vary their strategy use across these different relational contexts. We characterize and measure this variability as ‘spin’, i.e., the extent of dispersion in a person’s interpersonal emotion regulation strategy use across different relationships, and focus on two key questions. First, is spin adaptive or maladaptive with regard to personal well-being and relationship quality? Second, do personality traits that are considered important for interpersonal functioning (i.e., empathy, attachment style predict spin? The data used in this study is drawn from a large online survey. A key contribution of this study is to reveal that people who varied the type of strategies they used across relationships (i.e., those with high spin had lower positive mood, higher emotional exhaustion and less close relationships. A further key contribution is to show that spin was associated with low empathic concern and perspective taking and high anxious attachment style. High variability in interpersonal emotion regulation strategies across relationships therefore appears to be maladaptive both personally and socially.

  8. Impurity modes in the one-dimensional XXZ Heisenberg model

    International Nuclear Information System (INIS)

    Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.

    2014-01-01

    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  9. Integrable higher order deformations of Heisenberg supermagnetic model

    International Nuclear Information System (INIS)

    Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong

    2009-01-01

    The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.

  10. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field

    Science.gov (United States)

    Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu

    2017-08-01

    In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.

  11. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P., E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Si, M. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); George, Thomas F. [Office of the Chancellor and Center for Nanoscience, Departments of Chemistry and Biochemistry and Physics and Astronomy, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2015-05-07

    When a laser pulse excites a ferromagnet, its spin undergoes a dramatic change. The initial demagnetization process is very fast. Experimentally, it is found that the demagnetization time is related to the spin moment in the sample. In this study, we employ the first-principles method to directly simulate such a process. We use the fixed spin moment method to change the spin moment in ferromagnetic nickel, and then we employ the Liouville equation to couple the laser pulse to the system. We find that in general the dependence of demagnetization time on the spin moment is nonlinear: It decreases with the spin moment up to a point, after which an increase with the spin moment is observed, followed by a second decrease. To understand this, we employ an extended Heisenberg model, which includes both the exchange interaction and spin-orbit coupling. The model directly links the demagnetization rate to the spin moment itself and demonstrates analytically that the spin relaxes more slowly with a small spin moment. A future experimental test of our predictions is needed.

  12. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  13. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  14. Dynamical properties of the S =1/2 random Heisenberg chain

    Science.gov (United States)

    Shu, Yu-Rong; Dupont, Maxime; Yao, Dao-Xin; Capponi, Sylvain; Sandvik, Anders W.

    2018-03-01

    We study dynamical properties at finite temperature (T ) of Heisenberg spin chains with random antiferromagnetic exchange couplings, which realize the random singlet phase in the low-energy limit, using three complementary numerical methods: exact diagonalization, matrix-product-state algorithms, and stochastic analytic continuation of quantum Monte Carlo results in imaginary time. Specifically, we investigate the dynamic spin structure factor S (q ,ω ) and its ω →0 limit, which are closely related to inelastic neutron scattering and nuclear magnetic resonance (NMR) experiments (through the spin-lattice relaxation rate 1 /T1 ). Our study reveals a continuous narrow band of low-energy excitations in S (q ,ω ) , extending throughout the q space, instead of being restricted to q ≈0 and q ≈π as found in the uniform system. Close to q =π , the scaling properties of these excitations are well captured by the random-singlet theory, but disagreements also exist with some aspects of the predicted q dependence further away from q =π . Furthermore we also find spin diffusion effects close to q =0 that are not contained within the random-singlet theory but give non-negligible contributions to the mean 1 /T1 . To compare with NMR experiments, we consider the distribution of the local relaxation rates 1 /T1 . We show that the local 1 /T1 values are broadly distributed, approximately according to a stretched exponential. The mean 1 /T1 first decreases with T , but below a crossover temperature it starts to increase and likely diverges in the limit of a small nuclear resonance frequency ω0. Although a similar divergent behavior has been predicted and experimentally observed for the static uniform susceptibility, this divergent behavior of the mean 1 /T1 has never been experimentally observed. Indeed, we show that the divergence of the mean 1 /T1 is due to rare events in the disordered chains and is concealed in experiments, where the typical 1 /T1 value is accessed.

  15. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  16. On the fermionic Heisenberg group and its Q-representation

    International Nuclear Information System (INIS)

    Frydryszak, A.

    1992-01-01

    A nonstandard way of representing the canonical anticommutation relations is presented. It is connected with a generalization of the Heisenberg group to a graded phase space. It is shown how Grassmann harmonic analysis can be performed and what are the Q-representations of such a generalized Heisenberg group. As in the conventional case, the Schroedinger and Bargmann-Fock realizations were shown to exist. Grassmann-Hermite polynomials are obtained via the generalized Bargmann transform and new Grassmann-Laguerre polynomials are introduced. (author). 10 refs

  17. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  18. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    International Nuclear Information System (INIS)

    Miller, William H.; Cotton, Stephen J.

    2016-01-01

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  19. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  20. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  1. Multi parametric deformed Heisenberg algebras: a route to complexity

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Rego-Monteiro, M.A.

    2000-09-01

    We introduce a generalized of the Heisenberg which is written in terms of a functional of one generator of the algebra, f(J 0 ), that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for q 2 = tan θ. The case where f is polynomial of order n in J 0 corresponds to a n-parameter Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J 0 , the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that ca not be continuously deformed to representations of Heisenberg algebra. (author)

  2. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.

  3. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  4. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Dilger, H.; Martyniak, A.; Scheuermann, R.; Vujosevic', D.; Tucker, I.M.; McKenzie, I.; Roduner, E.

    2006-01-01

    The Avoided Level Crossing muon spin resonance (ALC-μSR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni 2+ in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni 2+ is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L α ) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L β ) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers

  5. Considerations on Bohr's, Heisenberg's and Schroedinger's philosophy

    International Nuclear Information System (INIS)

    Shimony, A.

    1981-01-01

    In denying that the words 'physical reality' are meaningful without reference to an experimental arrangement, Bohr renounces any knowledge of the 'thing-in-itself'. However, the relation of his epistemology to both idealism and positivism remains obscure. Heisenberg departs from Bohr in enunciating a metaphysical implication of quantum mechanics. Heisenberg asserts that there is an intermediate modality -potentiality- between logical possibility and existence. His attempts to explain the transition from potentiality to existence are not convincing. Schroedinger rejects Bohr's interpretation of quantum mechanics as a positivist exercise and seeks instead a realist interpretation. Nevertheless, the metaphysics of Schroedinger is fundamentally idealistic, maintaining that the material aspect of the world is composed of the same elements as mind, but in a different order [fr

  6. Irreversible Markov chains in spin models: Topological excitations

    Science.gov (United States)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  7. Polarizability tensor and Kramers-Heisenberg induction

    NARCIS (Netherlands)

    Wijers, Christianus M.J.

    2004-01-01

    A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical

  8. Thermodynamics of Inozemtsev's elliptic spin chain

    International Nuclear Information System (INIS)

    Klabbers, Rob

    2016-01-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  9. Uncertainty Einstein, Heisenberg, Bohr, and the struggle for the soul of science

    CERN Document Server

    Lindley, David

    2007-01-01

    The uncertainty in this delightful book refers to Heisenberg's Uncertainty Principle, an idea first postulated in 1927 by physicist Werner Heisenberg in his attempt to make sense out of the developing field of quantum mechanics. As Lindley so well explains it, the concept of uncertainty shook the philosophical underpinnings of science. It was Heisenberg's work that, to a great extent, kept Einstein from accepting quantum mechanics as a full explanation for physical reality. Similarly, it was the Uncertainty Principle that demonstrated the limits of scientific investigation: if Heisenberg is correct there are some aspects of the physical universe that are to remain beyond the reach of scientists. As he has done expertly in books like Boltzmann's Atom, Lindley brings to life a critical period in the history of science, explaining complex issues to the general reader, presenting the major players in an engaging fashion, delving into the process of scientific discovery and discussing the interaction between scien...

  10. Large spin limit of AdS5xS5 string theory and low energy expansion of ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Kruczenski, M.; Ryzhov, A.V.; Tseytlin, A.A.

    2004-01-01

    By considering AdS 5 xS 5 string states with large S 5 angular momenta one can provide non-trivial quantitative checks of the AdS/CFT duality. A string rotating in S 5 with two angular momenta J 1 , J 2 is dual to an operator in N=4 SYM theory whose conformal dimension can be computed by diagonalizing a (generalization of) spin 1/2 Heisenberg chain Hamiltonian. It was recently argued and verified to lowest order in a large J=J 1 +J 2 expansion, that the Heisenberg chain can be described using a non-relativistic low energy effective 2d action for a unit vector field n i which exactly matches the corresponding large J limit of the classical AdS 5 xS 5 string action. In this paper we show that this agreement extends to the next order and develop a systematic procedure for computing higher orders in such large angular momentum expansion. This involves several non-trivial steps. On the string side, we need to choose a special gauge with a non-diagonal world-sheet metric which insures that the angular momentum is uniformly distributed along the string, as indeed is the case on the spin chain side. We need also to implement an order by order redefinition of the field n i to get an action linear in the time derivative. On the spin chain side, it turns out to be crucial to include the effects of integrating out short wave-length modes. In this way we gain a better understanding of how (a subsector of) the string sigma model emerges from the dual gauge theory, allowing us to demonstrate the duality beyond comparing particular examples of states with large J

  11. Heisenberg in the atomic age science and the public sphere

    CERN Document Server

    Carson, Cathryn

    2010-01-01

    The end of the Second World War opened a new era for science in public life. Heisenberg in the Atomic Age explores the transformations of science's public presence in the postwar Federal Republic of Germany. It shows how Heisenberg's philosophical commentaries, circulating in the mass media, secured his role as science's public philosopher, and it reflects on his policy engagements and public political stands, which helped redefine the relationship between science and the state. With deep archival grounding, the book tracks Heisenberg's interactions with intellectuals from Heidegger to Habermas and political leaders from Adenauer to Brandt. It also traces his evolving statements about his wartime research on nuclear fission for the National Socialist regime. Working between the history of science and German history, the book's central theme is the place of scientific rationality in public life - after the atomic bomb, in the wake of the Third Reich.

  12. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  13. An ALC study of spin exchange of a muoniated cosurfactant in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, H. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: h.dilger@ipc.uni-stuttgart.de; Martyniak, A. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Vujosevic' , D. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral, CH63 3JW (United Kingdom); McKenzie, I. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2006-03-31

    The Avoided Level Crossing muon spin resonance (ALC-{mu}SR) technique has been used to measure the Heisenberg spin exchange rate between the Mu adducts of 2-phenylethanol (PEA) and Ni{sup 2+} in a concentrated lamellar phase dispersion composed of the dichain cationic surfactant 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and water. Ni{sup 2+} is only dissolved in the aqueous phase, therefore information about the local environment of the PEA can be extracted from the spin exchange rate. In the high-temperature (L{sub {alpha}}) phase the spin exchange is very slow, revealing that PEA preferentially resides in the headgroup regime of the surfactant. In the low-temperature (L{sub {beta}}) phase the spin exchange is diffusion controlled, because the PEA is expelled into the water region between the bilayers.

  14. Magnetic Transport in Spin Antiferromagnets for Spintronics Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Azzouz

    2017-10-01

    Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.

  15. Polynomial Heisenberg algebras

    International Nuclear Information System (INIS)

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

    2004-01-01

    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  16. Direct calculation of the spin stiffness on square, triangular and cubic lattices using the coupled cluster method

    OpenAIRE

    Krüger, S. E.; Darradi, R.; Richter, J.; Farnell, D. J. J

    2006-01-01

    We present a method for the direct calculation of the spin stiffness by means of the coupled cluster method. For the spin-half Heisenberg antiferromagnet on the square, the triangular and the cubic lattices we calculate the stiffness in high orders of approximation. For the square and the cubic lattices our results are in very good agreement with the best results available in the literature. For the triangular lattice our result is more precise than any other result obtained so far by other a...

  17. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    Science.gov (United States)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  18. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  19. The Finite Heisenberg-Weyl Groups in Radar and Communications

    Directory of Open Access Journals (Sweden)

    Calderbank AR

    2006-01-01

    Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

  20. Applications of the Heisenberg magnetic model in nanoscience

    International Nuclear Information System (INIS)

    Labuz, M.; Kuzma, M.; Wal, A.

    2003-01-01

    The theoretical Heisenberg magnet model and its solution given by Bethe and Hulthen (B.H.) known as Bethe Ansatz (BA) is widely applied in physics (solid state physics, quantum dots, statistical physics, high-temperatures superconductivity, low-dimensional systems, etc.), chemistry (polymers, organic metals and magnets), biology (biological molecular arrays and chains), etc. In most of the applications, the Heisenberg model is applied to infinite chains (asymptotic case), which is a good reality approximation for objects of macroscopic size. In such a case, the solutions of the model are well known. However, for objects of nanoscale size, one has to find solutions of the Heisenberg model of a finite chain consisting of N nodes. For such a chain, the problem of solving of B.H. equations is very complicated (because of the strange nonlinearity of these equations) even for very small objects N N (combinatorial explosion). In such cases, even numerical methods are helpless. In our paper, we propose an approach in which numerical methods could be adapted to such a large numerical problem, as B.H. solutions for objects consisting of N>100, which responds to nanoscale physical or biological objects. This method is based on the 'experimental' observation that B.H. solutions change in a quasi-continuous way with respect to N

  1. Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)

    International Nuclear Information System (INIS)

    Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S

    2012-01-01

    We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).

  2. Critical properties of the classical XY and classical Heisenberg models: A renormalization group study

    Science.gov (United States)

    de Sousa, J. Ricardo; de Albuquerque, Douglas F.

    1997-02-01

    By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.

  3. Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables

    Energy Technology Data Exchange (ETDEWEB)

    Niccoli, G. [YITP, Stony Brook University, New York 11794-3840 (United States)

    2013-05-15

    The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operators by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.

  4. Baxter Q-operator and separation of variables for the open SL(2, R) spin chain

    International Nuclear Information System (INIS)

    Derkachov, Sergey E.; Korchemsky, Gregory P.; Manashov, Alexander N.

    2003-01-01

    We construct the Baxter Q-operator and the representation of the Separated Variables (SoV) for the homogeneous open SL(2, R) spin chain. Applying the diagrammatical approach, we calculate Sklyanin's integration measure in the separated variables and obtain the solution to the spectral problem for the model in terms of the eigenvalues of the Q-operator. We show that the transition kernel to the SoV representation is factorized into the product of certain operators each depending on a single separated variable. As a consequence, it has a universal pyramid-like form that has been already observed for vari- ous quantum integrable models such as periodic Toda chain, closed SL(2, R) and SL(2, C) spin chains. (author)

  5. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  6. Variational principles and Heisenberg matrix mechanics

    International Nuclear Information System (INIS)

    Klein, A.; Li, C.-T.

    1979-01-01

    If in Heisenberg's equations of motion for a problem in quantum mechanics (or quantum field theory) one studies matrix elements in the energy representation and by use of completeness conditions expresses the equations solely in terms of matrix elements of the canonical variables, and if one does likewise with the associated kinematical constraints (commutation relations), one arrives at a formulation - largely unexplored hitherto - which can be exploited for both practical and theoretical development. In this contribution, the above theme is developed within the framework of one-dimensional problems. It is shown how this formulation, both dynamics and kinematics, can be derived from a new variational principle, indeed from an entire class of such principles. A powerful method of diagonalizing the Hamiltonians by means of computations utilizing these equations is described. The variational method is shown to be particularly useful for the study of the regime of large quantum numbers. The usual WKB approximation is seen to be contained as well as a basis for the study of systematic corrections to it. Further applications in progress are mentioned. (Auth.)

  7. Magnon–magnon interactions in O(3) ferromagnets and equations of motion for spin operators

    International Nuclear Information System (INIS)

    Radošević, Slobodan M.

    2015-01-01

    The method of equations of motion for spin operators in the case of O(3) Heisenberg ferromagnet is systematically analyzed starting from the effective Lagrangian. It is shown that the random phase approximation and the Callen approximation can be understood in terms of perturbation theory for type B magnons. Also, the second order approximation of Kondo and Yamaji for one dimensional ferromagnet is reduced to the perturbation theory for type A magnons. An emphasis is put on the physical picture, i.e. on magnon–magnon interactions and symmetries of the Heisenberg model. Calculations demonstrate that all three approximations differ in manner in which the magnon–magnon interactions arising from the Wess–Zumino term are treated, from where specific features and limitations of each of them can be deduced.

  8. Magnon–magnon interactions in O(3) ferromagnets and equations of motion for spin operators

    Energy Technology Data Exchange (ETDEWEB)

    Radošević, Slobodan M., E-mail: slobodan@df.uns.ac.rs

    2015-11-15

    The method of equations of motion for spin operators in the case of O(3) Heisenberg ferromagnet is systematically analyzed starting from the effective Lagrangian. It is shown that the random phase approximation and the Callen approximation can be understood in terms of perturbation theory for type B magnons. Also, the second order approximation of Kondo and Yamaji for one dimensional ferromagnet is reduced to the perturbation theory for type A magnons. An emphasis is put on the physical picture, i.e. on magnon–magnon interactions and symmetries of the Heisenberg model. Calculations demonstrate that all three approximations differ in manner in which the magnon–magnon interactions arising from the Wess–Zumino term are treated, from where specific features and limitations of each of them can be deduced.

  9. Quantum entanglement and thermal reduced density matrices in fermion and spin systems on ladders

    International Nuclear Information System (INIS)

    Chen, Xiao; Fradkin, Eduardo

    2013-01-01

    Numerical studies of the reduced density matrix of a gapped spin-1/2 Heisenberg antiferromagnet on a two-leg ladder find that it has the same form as the Gibbs density matrix of a gapless spin-1/2 Heisenberg antiferromagnetic chain at a finite temperature determined by the spin gap of the ladder. We investigate this interesting result by considering a model of free fermions on a two-leg ladder (gapped by the inter-chain tunneling operator) and in spin systems on a ladder with a gapped ground state using exact solutions and several controlled approximations. We calculate the reduced density matrix and the entanglement entropy for a leg of the ladder (i.e. a cut made between the chains). In the fermionic system we find the exact form of the reduced density matrix for one of the chains and determine the entanglement spectrum explicitly. Here we find that in the weak tunneling limit of the ladder the entanglement entropy of one chain of the gapped ladder has a simple and universal form dictated by conformal invariance. In the case of the spin system, we consider the strong coupling limit by using perturbation theory and get the reduced density matrix by the Schmidt decomposition. The entanglement entropies of a general gapped system of two coupled conformal field theories (in 1 + 1 dimensions) are discussed using the replica trick and scaling arguments. We show that (1) for a system with a bulk gap the reduced density matrix has the form of a thermal density matrix, (2) the long-wavelength modes of one subsystem (a chain) of a gapped coupled system are always thermal, (3) the von Neumann entropy equals the thermodynamic entropy of one chain, and (4) the bulk gap plays the role of effective temperature. (paper)

  10. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2011-07-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  11. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    International Nuclear Information System (INIS)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.

    2011-01-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  12. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  13. Heisenberg-limited interferometry with pair coherent states and parity measurements

    International Nuclear Information System (INIS)

    Gerry, Christopher C.; Mimih, Jihane

    2010-01-01

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  14. Correlation functions of heisenberg-mattis model in one dimension

    International Nuclear Information System (INIS)

    Azeeem, W.

    1991-01-01

    The technique of real-space renormalization to the dynamics of Heisenberg-Mattis model, which represents a random magnetic system with competing ferromagnetic and antiferromagnetic interactions has been applied. The renormalization technique, which has been in use for calculating density of states, is extended to calculate dynamical response function from momentum energy dependent Green's functions. Our numerical results on density of states and structure function of one-dimensional Heisenberg-Mattis model come out to be in good agreement with computer simulation results. The numerical scheme worked out in this thesis has the advantage that it can also provide a complete map of momentum and energy dependence of the structure function. (author)

  15. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  16. Surface effects in quantum spin chains

    International Nuclear Information System (INIS)

    Parkinson, J B

    2004-01-01

    Chains of quantum spins with open ends and isotropic Heisenberg exchange are studied. By diagonalizing the Hamiltonian for chains of finite length N and obtaining all the energy eigenvalues, the magnetic susceptibility χ, the specific heat C v , and the partition function Z can be calculated exactly for these chains. The high-temperature series expansions of these are then evaluated. For χ and C v it is found that the terms in the series consist of three parts. One is the normal high-T series already known in great detail for the N → infinity ring(chain with periodic boundary conditions). The other two consist of a 'surface' term and a correction term of order (1/T) N . The surface term is found as a series up to and including (1/T) 8 for spin S = 1/2 and 1. Simple Pade approximant formulae are given to extend the range of validity below T = 1

  17. Heisenberg picture and measurement operation

    International Nuclear Information System (INIS)

    D'Espagnat, B.

    1992-01-01

    The idea is discussed according to which, in the Heisenberg picture, differently from the Schroedinger picture, the operators correspond exactly to the dynamic properties and the role of the density matrix is merely to describe our passive knowledge thereof. It is shown that the idea in question cannot be consistently kept as it is, and hints are given as to how it could be refined. (from author). 2 refs

  18. Uncertainty inequalities for the Heisenberg group

    Indian Academy of Sciences (India)

    where φ is an admissible wavelet and kφ is an appropriate positive constant. For more on the history and the relevance of the uncertainty inequality, we refer the readers to the survey [5], the books [6,8], and the papers [2,10,11]. For the Heisenberg group Hn, Thangavelu [16] proved the following theorem. Theorem 1.1.

  19. Degenerate and chiral states in the extended Heisenberg model on the kagome lattice

    Science.gov (United States)

    Gómez Albarracín, F. A.; Pujol, P.

    2018-03-01

    We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.

  20. Thermodynamics of Inozemtsev's elliptic spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Klabbers, Rob, E-mail: rob.klabbers@desy.de

    2016-06-15

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  1. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3

    Science.gov (United States)

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-01

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.

  2. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  3. On the magnetism of Heisenberg double-layer antiferromagnets

    International Nuclear Information System (INIS)

    Uijen, C.M.J. van.

    1980-01-01

    The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)

  4. Nature de la phase basse temperature des verres de spin Heisenberg en dimension 3

    OpenAIRE

    PETIT , Dorothée

    2002-01-01

    I. A Campbell (Directeur) D.R. Grempel F. Hippert (rapporteur) O. Martin P. Norblad (rapporteur) E. Vincent; La question de l'existence d'une réelle transition de phase entre l'état paramagnétique et l'état verre de spin est une question qui a été débattue pendant de nombreuses années. Il semble dorénavant admis que le gel des spins à basse température ne se fasse pas de façon progressive, et l'existence d'une véritable transition à T9. finie est communément acceptée, mais de nombreuses quest...

  5. Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains

    International Nuclear Information System (INIS)

    Longo, Paolo; Greentree, Andrew D.; Busch, Kurt; Cole, Jared H.

    2013-01-01

    The dynamics of two magnons in a Heisenberg spin chain under the influence of a non-uniform magnetic field is investigated by means of a numerical wave-function-based approach using a Holstein–Primakoff transformation. The magnetic field is localized in space such that it supports exactly one single-particle bound state. We study the interaction of this bound mode with an incoming spin wave and the interplay between transmittance, energy and momentum matching. We find analytic criteria for maximizing the interconversion between propagating single-magnon modes and true propagating two-magnon states. The manipulation of bound and propagating magnons is an essential step towards quantum magnonics.

  6. On modeling of statistical properties of classical 3D spin glasses

    International Nuclear Information System (INIS)

    Gevorkyan, A.S.; Abajyan, H.G.; Ayryan, E.A.

    2011-01-01

    We study statistical properties of 3D classical spin glass layer of certain width and infinite length. The 3D spin glass is represented as an ensemble of disordered 1D spatial spin chains (SSC) where interactions are random between spin chains (nonideal ensemble of 1D SSCs). It is proved that in the limit of Birkhoff's ergodic hypothesis performance, 3D spin glasses can be generated by Hamiltonian of disordered 1D SSC with random environment. Disordered 1D SSC is defined on a regular lattice where one randomly oriented spin is put on each node of lattice. Also, it is supposed that each spin randomly interacts with six nearest-neighboring spins (two spins on lattice and four in the environment). The recurrent transcendental equations are obtained on the nodes of spin-chain lattice. These equations, combined with the Silvester conditions, allow step-by-step construction of spin chain in the ground state of energy where all spins are in the minimal energy of a classical Hamiltonian. On the basis of these equations an original high-performance parallel algorithm is developed for 3D spin glasses simulation. Distributions of different parameters of unperturbed spin glass are calculated. In particular, it is analytically proved and numerical calculations show that the distribution of spin-spin interaction constant in Heisenberg nearest-neighboring Hamiltonian model, as opposed to widely used Gauss-Edwards-Anderson distribution, satisfies the Levy alpha-stable distribution law which does not have variance. A new formula is proposed for construction of partition function in the form of a one-dimensional integral on the energy distribution of 1D SSCs

  7. Quantizing higher-spin gravity in free-field variables

    Science.gov (United States)

    Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris

    2018-02-01

    We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.

  8. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  9. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  10. Heisenberg and the framework of science policy

    International Nuclear Information System (INIS)

    Carson, C.

    2002-01-01

    In the decades after 1945, new structures were created for science policy in the Federal Republic. To the establishment of the postwar framework Heisenberg contributed as much as any other figure. This was true even though, on the whole, he took no great pleasure in the venture, nor was he always particularly adept at it. His conceptions revolved around certain key notions: autonomy and centralization, elite advisory bodies and relationships of trust, modernization and international standards. These show up at many levels of his activity, from the Max Planck Society to national and international advisory committees to the Humboldt Foundation itself. His opinions were shaped by encounters in the Federal Republic, but they also grew out of his experience of the Third Reich. At a moment like the present, when the postwar settlement is under review, it is interesting to reflect on the inherited system: on the extent to which it reflects the situation of the postwar decades and the intuitions of those who, like Heisenberg, created it. (orig.)

  11. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    Science.gov (United States)

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  12. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  13. Heisenberg vortex for light-weight refrigeration of liquid hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — Only 83 years ago Werner Karl Heisenberg was awarded the Nobel Prize in physics. His work led to the creation of quantum mechanics, the application of which has,...

  14. Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8

    Science.gov (United States)

    Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.

    2002-03-01

    The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.

  15. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    Science.gov (United States)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  16. Werner Heisenberg. The language of the atoms. Life and work - a scientific biography - the ''joyous science'' (youth until Nobel price); Werner Heisenberg. Die Sprache der Atome. Leben und Wirken - Eine wissenschaftliche Biographie - Die ''froehliche Wissenschaft'' (Jugend bis Nobelpreis)

    Energy Technology Data Exchange (ETDEWEB)

    Rechenberg, Helmut [MPI fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2010-07-01

    With his discovery that measuring values of complementary fundamental quantities in the microscopic world cannot by arbitrarily precisely determined cutted Werner Heisenberg the Gordian knot for the finishing of quantum theory developed by Planck, Einstein, and others and opened by this a new ''golden era'' in the physics of the 20th century. On the base of the documents from his life and work, i. e. deeds, letters and reports of contemporaries, as well as the published and unpublished essays, books, and articles of Heisenberg - also the later on found, publications or manuscripts mainly coming from the inheritance - resulted this systematic biography of Heisenberg. The author, the last doctoral candidate of Heisenberg relied furthermore on factual and personal knowledges, mainly own remembrances on his doctoral father and his teachers, colleagues, and students. Because of the interest of an authentical biography of the theoretical physicist Heisenberg the presentation of the mathematical approaches and the corresponding derivations could not completely be abandoned. This biography appeals by this both to a scientifically cultivated as a wider in science interested audience and covers the first phase of Heisenberg's life until his Nobel price 1933. [German] Mit seiner Entdeckung, dass sich Messwerte komplementaerer Groessen in der mikroskopischen Welt nicht beliebig genau bestimmen lassen, durchschnitt Werner Heisenberg den Gordischen Knoten zur Vollendung der von Planck, Einstein und anderen entwickelten Quantentheorie und eroeffnete damit ein neues ''goldenes Zeitalter'' in der Physik des 20. Jahrhunderts. Auf der Grundlage der Dokumente aus seinem Leben und Wirken, d.h. der Urkunden, Briefe und Berichte von Zeitzeugen sowie der publizierten und unpublizierten Abhandlungen, Buecher und Artikel Heisenbergs - auch der spaeter aufgefundenen, ueberwiegend aus dem Nachlass Heisenbergs stammenden Veroeffentlichungen oder

  17. Heisenberg 1901-1976 : le témoignage de sa femme

    CERN Document Server

    Heisenberg, Elisabeth

    1990-01-01

    Une femme raconte la vie de son mari, Werner Heisenberg, Prix Nobel de Physique 1932. Après une enfance heureuse, ce brillant étudiant fut l'élève d'Albert Einstein, Niels Bohr, Arnold Sommerfeld. Mais à l'époque de la montée du nazisme, le grand physicien refusa de quitter son pays, cautionnant ainsi le régime d'Hitler et participant à "l'effort de guerre", c'est-à-dire à la course à la bombe. Le témoignage d'Elisabeth Heisenberg bien que naturellement subjectif, permet de saisir les ressorts psychologiques du comportement d'un savant face aux terrifiantes réalités de son époque.

  18. Radiation emission as a virtually exact realization of Heisenbergs microscope

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K.K., E-mail: kka@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark); Brock, S. [Department of Culture and Society, Aarhus University, Jens Chr. Skous Vej 5, 8000 Aarhus C (Denmark); Esberg, J.; Thomsen, H.D.; Uggerhøj, U.I. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)

    2013-11-15

    Through the concept of ‘formation length’, recently observed directly in the radiation emission from ultrarelativistic electrons and an essential component in the interpretation of strong field radiation from electrons penetrating single crystals, we discuss the indeterminacy in the location of radiation emission. The analogy with the indeterminacy in the Heisenberg microscope Gedanken experiment is demonstrated from a number of viewpoints to be almost exact. The positive attitude regarding photon emission as a process that is somehow located in space and time is emphasized. We therefore interpret the measurements of formation lengths in radiation emission as a practically realizable version – using virtual incident photons instead of real – of the Heisenberg microscope Gedanken experiment.

  19. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  20. Pseudo-Goldstone Magnons in the Frustrated S=3/2 Heisenberg Helimagnet ZnCr_{2}Se_{4} with a Pyrochlore Magnetic Sublattice

    Directory of Open Access Journals (Sweden)

    Y. V. Tymoshenko

    2017-11-01

    Full Text Available Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr_{2}Se_{4} with a cubic spinel structure, in which spin-3/2 magnetic Cr^{3+} ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q_{h} ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ∼0.17  meV, emerging from two orthogonal wave vectors (q_{h} 0 0 and (0 q_{h} 0 where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.

  1. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  2. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    International Nuclear Information System (INIS)

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  3. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    International Nuclear Information System (INIS)

    Malrieu, Jean-Paul

    2012-01-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  4. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    Science.gov (United States)

    Malrieu, Jean-Paul

    2012-06-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  5. On the Clebsch-Gordan series for some Heisenberg groups

    International Nuclear Information System (INIS)

    Raszillier, H.

    1984-11-01

    We suggest the use of the Stone-von Neumann theorem for a simple insight into the Clebsch-Gordan series of the Heisenberg groups of quantum mechanics, constructed over the abelian groups Rsup(n) and Fsub(p)sup(n). (orig.)

  6. Spin dynamics and absence of a central peak anomaly in La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Rhyne, J. J.; Kaiser, H.; Stumpe, L.; Mitchell, J. F.; McCloskey, T.; Chourasia, A. R.

    2000-01-01

    Low-angle inelastic neutron scattering was used to study the temperature and wave vector dependence of the spin waves in La 0.67 Ca 0.33 MnO 3 perovskite-based colossal magnetoresistance material. At low q the spin waves show Heisenberg ferromagnetic dispersion (E=Dq 2 +Δ) where D is the spin stiffness, q is the wave vector, and Δ is the energy gap. However, the temperature renormalization of the spin stiffness D is anomalous, and as T increases toward T c , D does not show the expected power law collapse, but rather exhibits a sudden sharp drop suggestive of a first-order phase transition. Detailed neutron measurements of the order parameter in zero applied field showed a similar first-order-like transition. However, no temperature hysteresis was observed in either D or in the magnetization. (c) 2000 American Institute of Physics

  7. Integrable systems on so(4) related to XXX spin chains with boundaries

    International Nuclear Information System (INIS)

    Tsiganov, A V; Goremykin, O V

    2004-01-01

    We consider two-site XXX Heisenberg magnets with different boundary conditions, which are integrable systems on so(4) possessing additional cubic and quartic integrals of motion. The separated variables for these models are constructed using the Sklyanin method

  8. An equilibrium for frustrated quantum spin systems in the stochastic state selection method

    International Nuclear Information System (INIS)

    Munehisa, Tomo; Munehisa, Yasuko

    2007-01-01

    We develop a new method to calculate eigenvalues in frustrated quantum spin models. It is based on the stochastic state selection (SSS) method, which is an unconventional Monte Carlo technique that we have investigated in recent years. We observe that a kind of equilibrium is realized under some conditions when we repeatedly operate a Hamiltonian and a random choice operator, which is defined by stochastic variables in the SSS method, to a trial state. In this equilibrium, which we call the SSS equilibrium, we can evaluate the lowest eigenvalue of the Hamiltonian using the statistical average of the normalization factor of the generated state. The SSS equilibrium itself has already been observed in unfrustrated models. Our study in this paper shows that we can also see the equilibrium in frustrated models, with some restriction on values of a parameter introduced in the SSS method. As a concrete example, we employ the spin-1/2 frustrated J 1 -J 2 Heisenberg model on the square lattice. We present numerical results on the 20-, 32-, and 36-site systems, which demonstrate that statistical averages of the normalization factors reproduce the known exact eigenvalue to good precision. Finally, we apply the method to the 40-site system. Then we obtain the value of the lowest energy eigenvalue with an error of less than 0.2%

  9. Generalized Heisenberg algebra and (non linear) pseudo-bosons

    Science.gov (United States)

    Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.

    2018-04-01

    We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.

  10. The Bohr-Heisenberg correspondence principle viewed from phase space

    DEFF Research Database (Denmark)

    Dahl, Jens Peder

    2002-01-01

    Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...

  11. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  12. Unceratainty of Heisenberg in Universe Destruction

    Directory of Open Access Journals (Sweden)

    Sri Jumini

    2017-12-01

    Full Text Available The Qur'an is a guidence which explaines all about the universe to human being. The discovery of science has been able to explain the truth of the Qur'an scientifically. One of which is the principle of Heisenberg's uncertainty in the event of the universe destruction. The purpose of this research is to know: 1 Science's view of the event of the universe destruction (Big Crunch in Qur’an [Al Infithaar]: 1-3, and How the relation of Heisenberg’s uncertainty principles and the law of thermodynamics II toward  the collapse of the universe (Big Crunch based on Scientific views and the Quran. This research is a qualitative research using library research method which analyzes the related books directly or indirectly. The results of the analysis stated that: 1 The concentration of mass, which is big enough, relates to some of the laws of physics, those are: Relativity, Heisenberg's uncertainty principles, and the law of Thermodynamic II; 2 The universe will return at its sole point, i.e; the absence of the universe; 3 The destruction of the universe is the destruction of the order of the universe which then the stars fall scatteredly because of the gravitational force that prevents them disappears, the balance of the universe diminishes, decreases and becomes uncertain, and eventually disappears.

  13. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    Science.gov (United States)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  14. Equilibration in long-range quantum spin systems from a BBGKY perspective

    International Nuclear Information System (INIS)

    Paškauskas, Rytis; Kastner, Michael

    2012-01-01

    The time evolution of l-spin reduced density operators is studied for a class of Heisenberg-type quantum spin models with long-range interactions. In the framework of the quantum Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, we introduce an unconventional representation, different from the usual cluster expansion, which casts the hierarchy into the form of a second-order recursion. This structure suggests a scaling of the expansion coefficients and the corresponding time scales in powers of N 1/2 with the system size N, implying a separation of time scales in the large-system limit. For special parameter values and initial conditions, we can show analytically that closing the BBGKY hierarchy by neglecting l-spin correlations never leads to equilibration, but gives rise to quasi-periodic time evolution with at most l/2 independent frequencies. Moreover, for the same special parameter values and in the large-N limit, we solve the complete recursion relation (the full BBGKY hierarchy), observing a superexponential decay to equilibrium in rescaled time τ = tN −1/2

  15. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    International Nuclear Information System (INIS)

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  16. Supersymmetric Dirac particles in Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Rumpf, H.

    1981-01-01

    A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)

  17. Toward (car)borane-based molecular magnets

    Czech Academy of Sciences Publication Activity Database

    Oliva, J. M.; Alcoba, D. R.; Ona, O. B.; Torre, A.; Lain, L.; Michl, Josef

    2015-01-01

    Roč. 134, č. 2 (2015), 9/1-9/8 ISSN 1432-881X Institutional support: RVO:61388963 Keywords : carboranes * spin population * Heisenberg spin Hamiltonian * Heisenberg coupling constatns Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.806, year: 2015

  18. Equivalence of the spinning superparticle descriptions with Grassmann variables or with c-number spinors

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1988-05-01

    A remarkable equivalence is established between the theories of spinning particles or superparticles using anticommuting Grassmann variables on the one hand and commuting c-number spinors on the other. We consider both real and complex Grassmann variables and map the equations of motion and the supersymmetry transformation from one theory to another. The more intuitive c-number theory allows us to generalize the notion of Zitterbewegung to strings and membranes. (A hidden supersymmetry exists in the classical model of the Dirac electron.) (author). 12 refs

  19. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  20. Pauli and The Spin-Statistics Theorem

    International Nuclear Information System (INIS)

    Duck, Ian; Sudarshan, E.C.G.

    1998-03-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others

  1. New construction of eigenstates and separation of variables for SU( N) quantum spin chains

    Science.gov (United States)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor; Sizov, Grigory

    2017-09-01

    We conjecture a new way to construct eigenstates of integrable XXX quantum spin chains with SU( N) symmetry. The states are built by repeatedly acting on the vacuum with a single operator B good( u) evaluated at the Bethe roots. Our proposal serves as a compact alternative to the usual nested algebraic Bethe ansatz. Furthermore, the roots of this operator give the separated variables of the model, explicitly generalizing Sklyanin's approach to the SU( N) case. We present many tests of the conjecture and prove it in several special cases. We focus on rational spin chains with fundamental representation at each site, but expect many of the results to be valid more generally.

  2. Resolvent kernel for the Kohn Laplacian on Heisenberg groups

    Directory of Open Access Journals (Sweden)

    Neur Eddine Askour

    2002-07-01

    Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.

  3. Un'estrema solitudine la vita e l'opera di Werner Heisenberg

    CERN Document Server

    Cassidy, David C

    1996-01-01

    Il genio di Werner Heisenberg attraversa l'orizzonte della fisica del nostro secolo come una meteora. Testimoniano della fecondità e dell'originalità del suo pensiero non solo il Nobel che gli fu assegnato a soli 32 anni, ma soprattutto i decisivi impulsi da lui dati alla fisica quantistica, alla teoria delle particelle elementari, alla teoria del nucleo. Si deve a Heisenberg quel "principio di indeterminazione" che ha rivoluzionato non solo il corso della fisica ma il modo di concepire la posizione dell'uomo nell'universo. L'interesse del libro, però, vuole andare oltre la fisica, giacché il curriculum del "ragazzo di campagna dei biondi capelli" rispecchia in forma emblematica l'ambiguo rapporto della scienza col potere.

  4. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    Science.gov (United States)

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

  5. Flocking from a quantum analogy: spin-orbit coupling in an active fluid

    Science.gov (United States)

    Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.

    2018-01-01

    Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.

  6. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  7. Heisenberg and the German atomic project

    International Nuclear Information System (INIS)

    Hermann, A.

    1988-01-01

    The discovery of nuclear fusion 50 years ago, man's entry into the new atomic age, occurred in a fateful era, marked by the Munich Agreement shortly before and the outbreak of World War II shortly afterwards. Werner Heisenberg, Germany's Number One Physicist, was, on the one hand, respected as a competent and 'useful' theoretician, but on the other, was reviled as a 'white Jew, the spirit of Einstein's spirit'. He plays a key role in answering the question of whether research at that time could have resulted in a German atomic bomb. (orig.) [de

  8. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  9. Simulations of the low-dimensional molecular-based spin systems: dodecanuclear nickel ring

    International Nuclear Information System (INIS)

    Kamieniarz, G.; Haglauer, M.; Caramico D'Auria, A.; Esposito, F.; Gatteschi, D.

    2005-01-01

    The numerical exact diagonalization technique exploiting the point-group symmetry is worked out for the anisotropic Heisenberg spin Hamiltonian with the ring geometry. It is applied in large-scale simulations to the supramolecule Ni 12 (O 2 CMe) 12 (chp) 12 (H 2 O) 6 (THF) 6 , yielding the low-level energy spectra as a function of the single-ion anisotropy D and the thermodynamic functions. The strength of the constant D is analysed and estimated at D/k B =1.5K. The results for the zero-field susceptibility and the field-dependent magnetization are presented and compared with experimental data

  10. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2005-04-08

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.

  11. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong

    2005-01-01

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains

  12. General topological features and instanton vacuum in quantum Hall and spin liquids

    International Nuclear Information System (INIS)

    Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen

    2005-01-01

    We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid

  13. Anisotropy, magnetic field and stress influences on the phase transitions on spin-flop-type antiferromagnets

    International Nuclear Information System (INIS)

    Machado, S.F.; Espirito Santo Univ., Vitoria; Tsallis, C.

    1983-01-01

    Within a mean field approximation, the influences of anisotropy (in the spin space) and external uniaxial stress on the Heisenberg antiferromagnet in the presence of magnetic field are discussed. The phase diagram evolution (as function of anisotropy and stress) which is obtained, enables a satisfactory overall interpretation of recent experiments on Mn(Br sub(1-x) Cl sub(x)) 2 .4H 2 O, K 2 [FeCl 5 (H 2 O)], CoCl 2 .6H 2 O and (C 2 H 5 NH 3 ) 2 CuCl 4 . (Author) [pt

  14. Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution

    DEFF Research Database (Denmark)

    Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel

    2009-01-01

    ) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...

  15. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  16. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  17. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  18. On the quantum inverse scattering problem

    International Nuclear Information System (INIS)

    Maillet, J.M.; Terras, V.

    2000-01-01

    A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains

  19. What is the phase variable in superconductors ?: theory of superconductivity based on the spin-vortex formation

    International Nuclear Information System (INIS)

    Koizumi, Hiroyasu

    2013-01-01

    When Schrödinger solved the Schrödinger equation for the hydrogen atom, he assumed the single-valuedness of the electronic wave function. Thereafter, this assumption has been one of the fundamental postulates of quantum mechanics. When wave functions are multi-component, however, the imposing of the single-valued condition may become nontrivial. The spin-degree-of-freedom of electron makes electronic wave functions two-component. When spin-vortices are created by the conduction electrons and they move in the self-consistent field with the spin-vortices, the twisting of the spin basis occurs; then, the imposing of the single-valued condition becomes nontrivial, and a vector potential is induced. As a consequence, the effective vector potential becomes the sum of the vector potential from the induced one and that originates from the electric current. This effective vector potential is gauge invariant and the persistent current is generated by it. In the present work, we argue that if interactions that are omitted in the BCS reduced Hamiltonian are included, spin-vortices may be generated upon the application of a magnetic field. Then, the vector potential is induced and provides with the phase variable, θ, of the electron pair amplitude. The appearance of the spin-vortex provides with a new origin of θ; it originates from the induced gauge potential. This origin is compatible with the superselection rule for charge in contrast to the currently-accepted origin.

  20. Quantization of spin-two field in terms of Fierz variables the linear case

    International Nuclear Information System (INIS)

    Novello, M.; Freitas, L.R. de; Neto, N.P.; Svaiter, N.F.

    1991-01-01

    We give a complete self-contained presentation of the description of spin-two fields using Fierz variables A sub(α β μ) instead of the conventional standard approach which deals with second order symmetric tensor φ sub(μ ν). After a short review of the classical properties of the Gierz field we present the quantization procedure. The theory presents a striking similitude with electrodynamics which induced us to follow analogy with the Fermi-Gupta-Breuler scheme of quantization. (author)

  1. An addendum to the Heisenberg-Euler effective action beyond one loop

    Energy Technology Data Exchange (ETDEWEB)

    Gies, Holger; Karbstein, Felix [Helmholtz-Institut Jena,Fröbelstieg 3, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Abbe Center of Photonics,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2017-03-21

    We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.

  2. Corrections to scaling for block entanglement in massive spin chains

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Cardy, John; Peschel, Ingo

    2010-01-01

    We consider the Rényi entropies S n in one-dimensional massive integrable models diagonalizable by means of corner transfer matrices (such as Heisenberg and Ising spin chains). By means of explicit examples and using the relation of the corner transfer matrix with the Virasoro algebra, we show that close to a conformally invariant critical point, when the correlation length ξ is finite but large, the corrections to the scaling are of the unusual form ξ −x/n , with x the dimension of a relevant operator in the conformal theory. This is reminiscent of the results for gapless chains and should be valid for any massive one-dimensional model close to a conformal critical point

  3. Influence of magnetic field on swap operation in Heisenberg XXZ model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.c [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2009-05-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  4. Influence of magnetic field on swap operation in Heisenberg XXZ model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2009-01-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  5. Monte Carlo simulations of a ferromagnetic-FeF2 system

    International Nuclear Information System (INIS)

    Billoni, Orlando V.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-01-01

    In this work, we perform Monte Carlo simulations to study the magnetization reversal mechanism in ferromagnetic thin films on FeF 2 . In particular, we emulate a bilayer AFM/FM structure, where the AFM interface corresponds to an uncompensated (100) plane. The magnetic moments are modeled by classical Heisenberg spin variables. Our analysis focus on the role of the exchange interaction J AF between the FM spins and the spins belonging to the AFM interface on the reversal mechanisms of the magnetization. By simulating hysteresis loops we study the effect of temperature on the bias field

  6. Spin-wave dispersion relations in disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Nakai, Y.; Schibuya, N.; Kunitomi, N.; Wakabayashi, N.; Cooke, J.F.

    1982-01-01

    The spin-wave dispersion relations of the ferromagnetic disordered alloys Fe/sub 1-x/V/sub x/(x = 0.076, 0.135, 0.160, and 0.187) were studied by means of the inelastic scattering of neutrons. The observed dispersion relations are adequately represented by the power law, E = Dq 2 (1-βq 2 ), in a wide energy range up to 80 meV. The concentration dependence of the exchange stiffness constant D shows good agreement with previous results obtained by means of the small-angle scattering of neutrons and by the analysis of the temperature dependence of the bulk magnetization. The observed results can be explained by the Heisenberg model and, to some extent, by the itinerant-electron model

  7. Simulations of the low-dimensional molecular-based spin systems: dodecanuclear nickel ring

    Energy Technology Data Exchange (ETDEWEB)

    Kamieniarz, G. [Computational Physics Division, Institute of Physics, A. Mickiewicz University, ul. Umultowska 85, Poznan 61-614 (Poland)]. E-mail: gjk@amu.edu.pl; Haglauer, M. [Computational Physics Division, Institute of Physics, A. Mickiewicz University, ul. Umultowska 85, Poznan 61-614 (Poland); Caramico D' Auria, A. [Dipartimento di Scienze Fisiche, Universita di Napoli, Naples (Italy) and INFM Unita di Naples (Italy); Esposito, F. [Dipartimento di Scienze Fisiche, Universita di Napoli, Naples (Italy) and INFM Unita di Naples (Italy); Gatteschi, D. [Dipartimento di Chimica, Universita di Firenze, Sesto Fiorentino (Italy)

    2005-04-15

    The numerical exact diagonalization technique exploiting the point-group symmetry is worked out for the anisotropic Heisenberg spin Hamiltonian with the ring geometry. It is applied in large-scale simulations to the supramolecule Ni{sub 12}(O{sub 2}CMe){sub 12}(chp){sub 12}(H{sub 2}O){sub 6}(THF){sub 6}, yielding the low-level energy spectra as a function of the single-ion anisotropy D and the thermodynamic functions. The strength of the constant D is analysed and estimated at D/k{sub B}=1.5K. The results for the zero-field susceptibility and the field-dependent magnetization are presented and compared with experimental data.

  8. Measurement of variable magnetic reversal paths in electrically contacted pseudo-spin-valve rings

    International Nuclear Information System (INIS)

    Hayward, T J; Llandro, J; Schackert, F D O; Morecroft, D; Balsod, R B; Bland, J A C; Castano, F J; Ross, C A

    2007-01-01

    In this work we show that the measurement of single magnetic reversal events is of critical importance in order to correctly characterize the switching of magnetic microstructures. Magnetoresistance measurements are performed on two pseudo-spin-valve ring structures with high enough signal to noise to allow the probing of single reversal events. Using this technique we acquire 'switching spectra' which demonstrate that the rings exhibit a range of variable reversal paths, including a bistable reversal mechanism of the hard layer, where the two switching routes have substantially different switching fields. The signature of the variable reversal paths would have been obscured in field cycle averaged data and in the bistable case would cause a fundamental misinterpretation of the reversal behaviour

  9. Bimodule structure in the periodic gℓ(1|1) spin chain

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.

    2013-01-01

    This paper is the second in a series devoted to the study of periodic super-spin chains. In our first paper (Gainutdinov et al., 2013 [3]), we have studied the symmetry algebra of the periodic gℓ(1|1) spin chain. In technical terms, this spin chain is built out of the alternating product of the gℓ(1|1) fundamental representation and its dual. The local energy densities — the nearest neighbour Heisenberg-like couplings — provide a representation of the Jones–Temperley–Lieb (JTL) algebra JTL N . The symmetry algebra is then the centralizer of JTL N , and turns out to be smaller than for the open chain, since it is now only a subalgebra of U q sℓ(2) at q=i — dubbed U q odd sℓ(2) in Gainutdinov et al. (2013) [3]. A crucial step in our associative algebraic approach to bulk logarithmic conformal field theory (LCFT) is then the analysis of the spin chain as a bimodule over U q odd sℓ(2) and JTL N . While our ultimate goal is to use this bimodule to deduce properties of the LCFT in the continuum limit, its derivation is sufficiently involved to be the sole subject of this paper. We describe representation theory of the centralizer and then use it to find a decomposition of the periodic gℓ(1|1) spin chain over JTL N for any even N and ultimately a corresponding bimodule structure. Applications of our results to the analysis of the bulk LCFT will then be discussed in the third part of this series

  10. Achieving the Heisenberg limit in quantum metrology using quantum error correction.

    Science.gov (United States)

    Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang

    2018-01-08

    Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

  11. Heisenberg's war. The secret history of the German bomb

    International Nuclear Information System (INIS)

    Powers, T.

    1993-01-01

    The history of Second World War Germany's 'Uranium Project', which often is referred to as the 'myth of the German atomic bomb', has been attracting the mind's of secret service men, futurologists, historians and journalists since after the end of the war it has become possible to lift the veil of secrecy. Powers book adds another one to the many investigations published since them. His approach to the piece of history starts with Heisenberg's visit to the U.S.A. in summer 1939, describes the plans of the German Heereswaffenamt pursued with the Uranium Project, and their counterpart on the side of the Allied Forces where German scientists, as immigrants in England and in the U.S.A., were doing their best to launch research for the development of an atomic bomb. The end of this 'competition' is marked by the internment of the ten German scientists and bomb specialists in Fall Hall. The leading story of the book centers on the small group of scientists around Heisenberg, who cleverly 'torpedoed' the development of the German atomic bomb in the years from 1939 until 1944. (HP) [de

  12. Studies of particles statistics in one and two dimensions, based on the quantization methods of Heisenberg, Schroedinger and Feynman

    International Nuclear Information System (INIS)

    Myrheim, J.

    1993-06-01

    The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs

  13. Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy

    Science.gov (United States)

    Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph

    A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.

  14. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  15. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    Science.gov (United States)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  16. Topics on frustrated spin systems and high-temperature superconductors

    International Nuclear Information System (INIS)

    Lu, Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  17. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  18. Electron spin exchange of shallow donor muonium states

    International Nuclear Information System (INIS)

    Senba, Masayoshi

    2005-01-01

    Shallow donor muonium states with small hyperfine frequencies, recently observed in II-VI semiconductor compounds, have a number of unique features that present both opportunities and challenges in understanding muon spin dynamics in the presence of Heisenberg spin exchange. First, the shallow muonium state in CdSe with hyperfine frequency ω 0 /2π ∼ 0.1 MHz is already in the high field regime even in the earth's magnetic field, where only two precession frequencies are observable by the muon spin rotation (μSR) technique. Second, unlike in the case of more conventional muonium species with a larger hyperfine frequency, the μSR signal of shallow muonium states can be observed even in the transition region, between the slow spin-flip regime and the fast spin-flip regime, where the spin-flip rate and the hyperfine frequency are comparable. The muon spin dynamics in the transition region has not been theoretically explored previously, mainly because normal muonium in vacuum gives no observable signal in this region. Third, in the case of shallow muonium states, the incoherent process defined to be those spin-flip collisions that cause changes in muon spin precession frequencies, becomes crucially important in the transition region, where the incoherent process is entirely negligible in more conventional muonium species. By taking incoherent multiple collisions into account, an analytical expression for the time evolution of the muon spin polarization in Mu is derived, where Mu undergoes repeated spin-flip collisions. Comparisons with Monte Carlo calculations show that the analytical expression obtained in this work can reliably be used to analyse experimental data for shallow donor states not only in the slow spin-flip regime, but also in the transition region up to the onset of the fast regime. The present work confirms a recent experimental finding that, in the transition region, the initial phases of the two precession components of shallow donor states

  19. Using the J1–J2 quantum spin chain as an adiabatic quantum data bus

    International Nuclear Information System (INIS)

    Chancellor, Nicholas; Haas, Stephan

    2012-01-01

    This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J 1 –J 2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so-called Majumdar–Ghosh point. We examine several annealing protocols for this process and find similar results for all of them. The annealing process works well up to a critical frustration threshold. There is also a brief section examining what other models this protocol could be used for, examining its use in the XXZ and XYZ models. (paper)

  20. Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory

    International Nuclear Information System (INIS)

    Li Liangsheng; Li Li; Chen Xiaosong

    2009-01-01

    The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ 3 = 0.224 and the reduced temperature T* = kT/ element of = 1.87 (σ is the diameter of Heisenberg hard sphere and element of is the coupling constant).

  1. Chaotic properties between the nonintegrable discrete nonlinear Schroedinger equation and a nonintegrable discrete Heisenberg model

    International Nuclear Information System (INIS)

    Ding Qing

    2007-01-01

    We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model

  2. Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations

    Science.gov (United States)

    Bernaschi, M.; Bisson, M.; Salvadore, F.

    2014-10-01

    We present and compare the performances of two many-core architectures: the Nvidia Kepler and the Intel MIC both in a single system and in cluster configuration for the simulation of spin systems. As a benchmark we consider the time required to update a single spin of the 3D Heisenberg spin glass model by using the Over-relaxation algorithm. We present data also for a traditional high-end multi-core architecture: the Intel Sandy Bridge. The results show that although on the two Intel architectures it is possible to use basically the same code, the performances of a Intel MIC change dramatically depending on (apparently) minor details. Another issue is that to obtain a reasonable scalability with the Intel Phi coprocessor (Phi is the coprocessor that implements the MIC architecture) in a cluster configuration it is necessary to use the so-called offload mode which reduces the performances of the single system. As to the GPU, the Kepler architecture offers a clear advantage with respect to the previous Fermi architecture maintaining exactly the same source code. Scalability of the multi-GPU implementation remains very good by using the CPU as a communication co-processor of the GPU. All source codes are provided for inspection and for double-checking the results.

  3. Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC

    International Nuclear Information System (INIS)

    Bakheit, M.A.

    1974-01-01

    Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H 0 >2kG, it clearly decreases for H 0 [fr

  4. Spin-1/2 Triangular-Lattice Heisenberg Antiferromagnet with √{3} × √{3} -Type Distortion — Behavior around the Boundaries of the Intermediate Phase

    Science.gov (United States)

    Shimada, Alisa; Nakano, Hiroki; Sakai, Tôru; Yoshimura, Kazuyoshi

    2018-03-01

    The S = 1/2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-diagonalization method. The examined distortion type is √{3} × √{3} . We study the case when the distortion connects the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which shows a marked peak structure related to the appearance of the intermediate state.

  5. Spin dynamics of EuS in the paramagnetic phase

    International Nuclear Information System (INIS)

    Chaudhury, R.; Shastry, B.S.

    1988-07-01

    The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first neighbour shell, anti-ferromagnetic interaction in the second neighbour shell and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1 T c using the Monte-Carlo molecular dynamics technique. The important quantities calculated are the dynamic structure function S(q-vector,ω) and the spin auto-correlation function i (O)·S-vector i (t)>. Our results for S(q-vector,ω) show the existence of purely diffusive modes in the low q regime. For q-vector close to the zone boundary, our calculated S(q-vector,ω) shows multi-peaked structure, signifying damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry and also of Lindgard. Our results for S(q-vector,ω) in the entire q-vector-space are in good qualitative and quantitative agreement with the recent neutron scattering experiments of Boni et al. and also Bohn et al. Our calculated auto-correlation function shows a diffusive behaviour temporally. (author). 15 refs, 5 figs

  6. Thermodynamic investigations of the quasi-2d triangular Heisenberg antiferromagnet Cs{sub 2}CuCl{sub 2}Br{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tutsch, Ulrich; Postulka, Lars; Wolf, Bernd; Lang, Michael; Well, Natalija van; Ritter, Franz; Krellner, Cornelius; Assmus, Wolf [Physikalisches Institut, Goethe-University Frankfurt (Germany)

    2015-07-01

    The system Cs{sub 2}CuCl{sub 4-x}Br{sub x} (0 ≤ x ≤ 4) is a quasi-two-dimensional Heisenberg antiferromagnet with a triangular in-plane arrangement of the spin-spin couplings. The ratio J{sup '}/J of the corresponding coupling constants determines the degree of frustration in the system and has been found to be 0.34 (x = 0) and 0.74 (x = 4) for the border compounds. One may ask whether for some intermediate Br concentration an even higher degree of frustration can be reached. Indeed, some indications have been reported by Ono et al. Here, we present specific heat C and susceptibility χ measurements below 1 K in magnetic fields B up to 13.5 T for the intermediate compound Cs{sub 2}CuCl{sub 2}Br{sub 2}, which, due to site-selective substitution, shows a well-ordered halide sublattice. Indications for an antiferromagnetic transition are observed around 90 mK for B = 0. A small field of B = 0.14 T is sufficient to fully suppress this anomaly. Taking into account the high saturation field of about 20 T, extrapolated from χ(T = const, B) scans at low temperatures, this small ordered region in the B-T plane clearly indicates a high degree of frustration in Cs{sub 2}CuCl{sub 2}Br{sub 2}.

  7. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  8. Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions

    Directory of Open Access Journals (Sweden)

    Tomaž Prosen

    2014-09-01

    Full Text Available A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ spin-1/2 chain for periodic (or twisted boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian transfer operator in fundamental representation (with auxiliary spin s=1/2, and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations we propose a simple explicit construction of infinite time averages of local operators such as the spin current.

  9. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    Science.gov (United States)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  10. A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties

    International Nuclear Information System (INIS)

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F

    2009-01-01

    A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations

  11. Extended Weyl-Heisenberg algebra and Rubakov-Spiridonov superalgebra: Anyonic realizations

    International Nuclear Information System (INIS)

    Daoud, M.; Douari, J.

    2001-09-01

    We give the realizations of the extended Weyl-Heisenberg (WH) algebra and the Rubakov-Spiridonov (RS) superalgebra in terms of anyons, characterized by the statistical parameter ν is an element of [0,1], on two-dimensional lattice. The construction uses anyons defined from usual fermionic oscillators (Lerda-Sciuto construction). The anyonic realization of the superalgebra sl(1/1) is also presented. (author)

  12. Deformed supersymmetric quantum mechanics with spin variables

    Science.gov (United States)

    Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan

    2018-01-01

    We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.

  13. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  14. Strongly gapped spin-wave excitation in the insulating phase of NaOsO3

    International Nuclear Information System (INIS)

    Calder, S.; Vale, J. G.; Bogdanov, N.; Donnerer, C.

    2017-01-01

    NaOsO_3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d"3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J_1 = J_2 = 13.9 meV). As a result, the observed behavior places NaOsO_3 on the boundary between localized and itinerant magnetism.

  15. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  16. Correlation functions of the spin chains. Algebraic Bethe Ansatz approach

    International Nuclear Information System (INIS)

    Kitanine, N.

    2007-09-01

    Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)

  17. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  18. Correlation functions of the spin chains. Algebraic Bethe Ansatz approach; Fonctions de correlation des chaines de spin. Approche de l'ansatz de Bethe algebrique

    Energy Technology Data Exchange (ETDEWEB)

    Kitanine, N

    2007-09-15

    Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)

  19. Cloning transformations in spin networks without external control

    International Nuclear Information System (INIS)

    De Chiara, Gabriele; Fazio, Rosario; Montangero, Simone; Macchiavello, Chiara; Palma, G. Massimo

    2005-01-01

    In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1→2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N→M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore, we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner

  20. Highly anisotropic magnon dispersion in Ca{sub 2}RuO{sub 4}. Evidence for strong spin orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Khomskii, Daniel; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Steffens, Paul; Piovano, Andrea [Institut Laue Langevin, Grenoble (France); Nugroho, Augustinus Agung [Institut Teknologi Bandung (Indonesia)

    2016-07-01

    Ca{sub 2}RuO{sub 4} is a key material for the understanding of the impact of spin-orbit coupling in 4d and 5d compounds, which is intensively studied at present. We have studied the magnon dispersion in Ca{sub 2}RuO{sub 4} by inelastic neutron scattering on large single crystals containing 1% of Ti. With this unmagnetic substitution large single crystals could be obtained with the floating zone method. The magnon dispersion can be well described with the simple conventional Heisenberg model. Ca{sub 2}RuO{sub 4} reveals a large anisotropy gap of 13 meV, which shows that spin-orbit coupling and some in-plane orbital ordering are both important parameters for the description of the electronic and magnetic properties of Ca{sub 2}RuO{sub 4}.

  1. Topological phase transition in the two-dimensional anisotropic Heisenberg model: A study using the Replica Exchange Wang-Landau sampling

    Science.gov (United States)

    Figueiredo, T. P.; Rocha, J. C. S.; Costa, B. V.

    2017-12-01

    Although the topological Berezinskii-Kosterlitz-Thouless transition was for the first time described by 40 years ago, it is still a matter of discussion. It has been used to explain several experiments in the most diverse physical systems. In contrast with the ordinary continuous phase transitions the BKT-transition does not break any symmetry. However, in some contexts it can easily be confused with other continuous transitions, in general due to an insufficient data analysis. The two-dimensional XY (or sometimes called planar rotator) spin model is the fruit fly model describing the BKT transition. As demonstrated by Bramwell and Holdsworth (1993) the finite-size effects are more important in two-dimensions than in others due to the logarithmic system size dependence of the properties of the system. Closely related is the anisotropic two dimensional Heisenberg model (AH). Although they have the same Hamiltonian the spin variable in the former has only two degrees of freedom while the AH has three. Many works treat the AH model as undergoing a transition in the same universality class as the XY model. However, its characterization as being in the BKT class of universality deserve some investigation. This paper has two goals. First, we describe an analytical evidence showing that the AH model is in the BKT class of universality. Second, we make an extensive simulation, using the numerical Replica Exchange Wang-Landau method that corroborate our analytical calculations. From our simulation we obtain the BKT transition temperature as TBKT = 0 . 6980(10) by monitoring the susceptibility, the two point correlation function and the helicity modulus. We discuss the misuse of the fourth order Binder's cumulant to locate the transition temperature. The specific heat is shown to have a non-critical behavior as expected in the BKT transition. An analysis of the two point correlation function at low temperature, C(r) ∝r - η(T), shows that the exponent, η, is consistent

  2. Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (B i1 -xB ax) (F e1 -xT ix ) O3 system

    Science.gov (United States)

    Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai

    2018-03-01

    For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all

  3. The role of topological spin defects in magnetotransport of CrO2

    International Nuclear Information System (INIS)

    Yanagihara, H; Salamon, M B

    2007-01-01

    We investigated the temperature dependence of the resistivity for a wide temperature range for CrO 2 (100) epitaxial films. The temperature derivative dρ/dT definitely shows the same character as the magnetic heat capacity anomaly in the critical regime even in a finite magnetic field and the critical exponents (α) deduced are consistent with those of 3D Heisenberg ferromagnets. In addition, we found that the spin dependent resistivity over a wide temperature range can be simply proportional to the density of diluted topological spin defects (Skyrmion strings) suggesting that those nontrivial topological defects scatter conduction electrons just like impurities. The excitation energy of such topological defects is quite comparable to that obtained by anomalous Hall effect analysis of the Ye et al model based on the Berry phase. The overall results give a simple picture wherein the density of the topological defects can be a dominant mechanism of resistivity, like the anomalous Hall effect. The results concerning the critical exponent analysis and intuition concerning scattering centres of magnetic disorder suggest a specific picture of the Fisher-Langer model

  4. Influence of magnetoelastic coupling on the phase transitions in two-dimensional non-Heisenberg magnetics with biquadratic interaction

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Klevets, Ph.N.; Kozhemyako, O.V.

    2003-01-01

    Influence of magnetoelastic (ME) interaction on the phase transitions in two-dimensional non-Heisenberg ferromagnets is investigated. It is shown that if the constant of Heisenberg exchange interaction is large, the ferromagnetic phase is implemented in a system. When the value of biquadratic exchange interaction increases there is a phase transition to the quadrupolar phase characterized by the tensor order parameters. Thus, ME interaction plays an essential role, not only stabilizing the long-range magnetic order in the system, but also determining the order of the phase transition

  5. Unusual magnetic excitations in the weakly ordered spin- 12 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode

    International Nuclear Information System (INIS)

    Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.

    2017-01-01

    We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.

  6. Effects of Rashba and Dresselhaus spin–orbit interactions on the ground state of two-dimensional localized spins

    International Nuclear Information System (INIS)

    Oh, J H; Shin, M; Lee, K-J; Lee, Hyun-Woo

    2014-01-01

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin–orbit interactions, we derive the Dzyaloshinskii–Moriya interaction of localized spins. The strength of the Dzyaloshinskii–Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field–temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system. (paper)

  7. Observation of the spin gap in a S=1/2 alternating chain compound, high pressure phase of (VO)2P2O7

    International Nuclear Information System (INIS)

    Saito, Takashi; Azuma, Masaki; Fujita, Masaki; Takano, Mikio

    2001-01-01

    Inelastic neutron scattering data were collected on the high pressure phase of (VO) 2 P 2 O 7 , a S=1/2 Heisenberg antiferromagnetic alternating chain compound. The existence of a spin gap was confirmed, and the size was determined to be Δ=2.15(6) meV (=25.0(7) K). The theoretically predicted second gap (Δ'=2Δ) owing to a 2-magnon bound state was not observed. This is consistent with the high field magnetization measurement reported previously. (author)

  8. Statistical Average of Spin Operators for Calculation of Three-Component Magnetization (II): Solution of Equation

    International Nuclear Information System (INIS)

    Wang Huaiyu; Long Yao; Chen Nanxian

    2006-01-01

    In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.

  9. Introduction to integrable many-body systems II

    International Nuclear Information System (INIS)

    Samaj, L.

    2010-01-01

    This is the second part of a three-volume introductory course about integrable systems of interacting bodies. The models of interest are quantum spin chains with nearest-neighbor interactions between spin operators, in particular Heisenberg spin- 2 models. The Ising model in a transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transformation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ Heisenberg chain and the determination of its absolute ground state in various regions of the anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermodynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations are analyzed in high-temperature and low-temperature limits. An alternative derivation of the thermodynamics without using strings, leading to a non-linear integral equation determining the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Section 18. Section 19 deals with integrable cases of isotropic spin chains with an arbitrary spin. (Author)

  10. Key role of orbital anisotropy in geometrically frustrated electron system

    International Nuclear Information System (INIS)

    Onishi, Hiroaki; Hotta, Takashi

    2005-01-01

    By using the density matrix renormalization group method, we investigate ground- and excited-state properties of the e g -orbital degenerate Hubbard model at quarter filling for two kinds of lattices, zigzag chain and ladder. In the zigzag chain, the system is effectively regarded as a decoupled double chain of the S=12 antiferromagnetic Heisenberg model, and the spin gap is approximately zero, similar to the case of weakly coupled Heisenberg chains. On the other hand, in the ladder, the spin correlation on the rung remains robust and the spin gap exists

  11. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  12. Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gamil.com

    2016-11-01

    Using linear response theory, Heisenberg model Hamiltonian and Green's function technique, the influences of Dzyaloshinskii–Moriya interaction (DMI), external magnetic field and next-nearest-neighbor (NNN) coupling on the density of magnon modes (DMM), the magnetic susceptibility (MS) and the magnon heat capacity (MHC) of a spin Lieb lattice, a face-centered square lattice, are investigated. The results reveal a band gap in the DMM and we witness an extension in the bandwidth and an increase in the number of van-Hove singularities as well. As a notable point, besides the magnetic nature which includes ferromagnetism in spin Lieb-based nanosystems, MS is investigated. Further, we report a Schottky anomaly in the MHC. The results show that the effects of the magnetic field on the MHC and MS have different behaviors in two temperature regions. In the low temperature region, MHC and MS increase when the magnetic field strength increases. On the other hand, the MHC and MS reduce with increasing the magnetic field strength in the high temperature region. Also comprehensive numerical modelling of the DMM, the MS and the MHC of a spin Lieb lattice yields excellent qualitative agreement with the experimental data. - Highlights: • Theoretical calculation of density of states of the spin Lieb lattice. • The investigation of the effect of external magnetic field on the magnon heat capacity and magnetic susceptibility. • The investigation of the effect of NNN coupling and the DMI strength on the magnon heat capacity and magnetic susceptibility.

  13. Quantum communication through a spin chain with interaction determined by a Jacobi matrix

    International Nuclear Information System (INIS)

    Chakrabarti, R; Van der Jeugt, J

    2010-01-01

    We obtain the time-dependent correlation function describing the evolution of a single spin excitation state in a linear spin chain with isotropic nearest-neighbour XY coupling, where the Hamiltonian is related to the Jacobi matrix of a set of orthogonal polynomials. For the Krawtchouk polynomial case, an arbitrary element of the correlation function is expressed in a simple closed form. Its asymptotic limit corresponds to the Jacobi matrix of the Charlier polynomial, and may be understood as a unitary evolution resulting from a Heisenberg group element. Correlation functions for Hamiltonians corresponding to Jacobi matrices for the Hahn, dual Hahn and Racah polynomials are also studied. For the Hahn polynomials we obtain the general correlation function, some of its special cases and the limit related to the Meixner polynomials, where the su(1, 1) algebra describes the underlying symmetry. For the cases of dual Hahn and Racah polynomials, the general expressions of the correlation functions contain summations which are not of hypergeometric type. Simplifications, however, occur in special cases.

  14. Superconductivity in doped antiferromagnets

    International Nuclear Information System (INIS)

    Lagos, M.

    1990-09-01

    The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs

  15. Study into critical properties of 3D frustrated Heisenberg model on triangular lattice by the use of Monte Carlo methods

    International Nuclear Information System (INIS)

    Murtazaev, A.K.; Ramazanov, M.K.; Badiev, M.K.

    2009-01-01

    The critical properties of the 3D frustrated antiferromagnetic Heisenberg model on a triangular lattice are investigated by the replica Monte Carlo method. The static magnetic and chiral critical exponents of heat capacity a = 0.05(2), magnetization Β 0.30(1), Β k = 0.52(2), susceptibility Γ = 1.36(2), Γ k = 0.93(3), and correlation radius Ν 0.64(1), Ν k = 0.64(2) are calculated by using the finitesize scaling theory. The critical Fisher exponents η = - 0.06(3), η k = 0.63(4) for this model are estimated for the first time. A new universality class of the critical behavior is shown to be formed by the 3D frustrated Heisenberg model on the triangular lattice. A type of the interlayer exchange interaction is found to influence the universality class of antiferromagnetic Heisenberg model on the a triangular lattice.

  16. From linear optical quantum computing to Heisenberg-limited interferometry

    International Nuclear Information System (INIS)

    Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P

    2004-01-01

    The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level

  17. Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study

    International Nuclear Information System (INIS)

    Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu

    1999-04-01

    Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)

  18. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Syed [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Zaz, Zaid [Department of Electronics and Communication Engineering, University of Kashmir, Srinagar, Kashmir, 190006 (India); Ali, Ahmed Farag [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Raza, Jamil [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Shah, Mushtaq B. [Department of Physics, National Institute of Technology, Srinagar, Kashmir, 190006 (India)

    2016-12-10

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  19. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Masood, Syed; Faizal, Mir; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B.

    2016-01-01

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  20. Two-dimensional variable range hopping in the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3

    International Nuclear Information System (INIS)

    Čulo, M.; Tafra, E.; Basletić, M.; Tomić, S.; Hamzić, A.; Korin-Hamzić, B.; Dressel, M.; Schlueter, J.A.

    2015-01-01

    We present the measurements of the magnetotransport properties of the spin liquid candidate κ-(BEDT-TTF) 2 Cu 2 (CN) 3 . The temperature dependencies of dc resistivity and Hall coefficient R H as well as magnetoresistance at fixed temperatures in magnetic fields up to 5 T suggest that the charge transport takes place via 2D variable range hopping among localized states