WorldWideScience

Sample records for hedgehog tenrec echinops

  1. High inter-individual variation in the gestation length of the hedgehog tenrec, Echinops telfairi (Afrotheria).

    Science.gov (United States)

    Künzle, H; Poulsen Nautrup, C; Schwarzenberger, F

    2007-02-01

    The gestation length (GL) of Tenrecs (Tenrecinae, Afrotheria) is still uncertain. This lack of knowledge also applies to the lesser hedgehog tenrec, Echinops telfairi, the species most commonly bred and maintained in captivity. The animals used in this study were held under controlled conditions (light, temperature and humidity). In order to determine the GL, groups of female tenrecs were subjected to various mating procedures followed by isolation periods of different lengths. A total of n=249 pregnancies were analysed and the number of offspring per litter was 3.29+/-0.09. The length of gestation could be determined in n=199 pregnancies and a mean GL of 67.53+/-0.36 days was calculated. Initial attempts with isolation periods of less than 16 days did not allow to accurately define the GL. Experiments with longer isolation periods and females subjected to only one mating procedure (n=10) revealed a variation in the GLs of 57-79 days. However, in one female a GL of only 50 days was also observed indicating an even greater range in GL variation. There was a statistically significant tendency for shorter GLs in the animals that conceived later in the mating season, but no statistical evidence was found that age, parity or litter size played an essential role in determining the GL. In conclusion, an unexpected high variability in gestation length in E. telfairi was demonstrated although the study animals were kept under controlled environmental conditions. The factors and mechanisms regulating this high intra-species variability in gestation length need further investigations.

  2. Olfactory bulb and retrobulbar regions in the hedgehog tenrec: organization and interconnections.

    Science.gov (United States)

    Radtke-Schuller, S; Künzle, H

    2000-08-01

    The Madagascan lesser hedgehog tenrec (Echinops telfairi) is a terrestrial, nocturnal insectivore with a low encephalization index and a huge olfactory bulb. To gain insight into the organization and evolution of olfactory regions in placental mammals, the cytoarchitecture (Nissl), neurochemical attributes [zinc and acetylcholinesterase stain, nicotinamide adenine dinucleotide phosphate (NADPh)-diaphorase, and calcium-binding proteins], and interconnections (injections of wheat germ agglutinin-horseradish peroxidase and biotinylated dextran amine) of tenrec bulbar and retrobulbar regions were examined. The tenrec has a well-laminated main olfactory bulb, and modified (atypical) glomeruli are found that, to date, have been demonstrated only in murine rodents. Compared with the main olfactory bulb, the accessory bulb is relatively small, with clearly different staining characteristics, particularly with respect to NADPh-diaphorase, anticalbindin, and anticalretinin. External and central anterior olfactory nuclei also show characteristic cytoarchitectural and chemoarchitectural features. The medial olfactory peduncle seems to differ considerably from that in rodents. A small taenial structure can be separated from the hippocampal continuation. This taenia tecti presumably corresponds to the superior part of the tenia tecti in rodents, but no homologue of the rodent's prominent inferior taenia tecti could be found. The connections of bulbar and retrobulbar regions are similar to those seen in other mammals. Interbulbar projection systems connect the two olfactory bulbs through an external (topographic) and central (nontopographic) anterior nucleus; however, the topographic arrangement of the intrabulbar association system seems to differ from that seen in rodents. A reciprocity of direct olfactory bulb connections with the frontal (sulcal/orbital) cortex was found in the tenrec that has not been reported so far in other species.

  3. Prolactin in the Afrotheria: characterization of genes encoding prolactin in elephant (Loxodonta africana), hyrax (Procavia capensis) and tenrec (Echinops telfairi).

    Science.gov (United States)

    Wallis, Michael

    2009-02-01

    Pituitary prolactin shows an episodic pattern of molecular evolution, with occasional short bursts of rapid change imposed on a generally rather slow evolutionary rate. In mammals, episodes of rapid change occurred in the evolution of primates, cetartiodactyls, rodents and the elephant. The bursts of rapid evolution in cetartiodactyls and rodents were followed by duplications of the prolactin gene that gave rise to large families of prolactin-related proteins including placental lactogens, while in primates the burst was followed by corresponding duplications of the related GH gene. The position in elephant is less clear. Extensive data relating to the genomic sequences of elephant and two additional members of the group Afrotheria are now available, and have been used here to characterize the prolactin genes in these species and explore whether additional prolactin-related genes are present. The results confirm the rapid evolution of elephant (Loxodonta africana) prolactin - the sequence of elephant prolactin is substantially different from that predicted for the ancestral placental mammal. Hyrax (Procavia capensis) prolactin is even more divergent but tenrec (Echinops telfairi) prolactin is strongly conserved. No evidence was obtained from searches of public databases for additional genes encoding prolactin-like proteins in any of these species. Detailed analysis of evolutionary rates, and other factors, indicates that the episode of rapid change in hyrax, and probably elephant, was adaptive, though the nature of the associated biological change(s) is not clear.

  4. The adaptational strategies of the hindlimb muscles in the Tenrecidae species including the aquatic web-footed tenrec (Limnogale mergulus).

    Science.gov (United States)

    Endo, Hideki; Yonezawa, Takahiro; Rakotondraparany, Felix; Sasaki, Motoki; Hasegawa, Masami

    2006-07-01

    The hindlimb muscles in four species of Tenrecidae (Oryzoryctinae: Talazac long-tailed tenrec and web-footed tenrec, Tenrecinae: lesser hedgehog tenrec, and streaked tenrec), were examined macroscopically. The weight ratios of the muscles to the body in the oryzoryctinid species are larger than those in Tenrecinae, since the Oryzoryctinae species have an obviously smaller body from the evolutionary point of view. It can be primarily pointed out that the adaptation of the body size is different between the two subfamilies, and secondarily, that functional adaptation to locomotion is complete within each subfamily. The weight data and the morphological findings demonstrate that the web-footed tenrec possesses an extraordinary large M. semimembranosus in comparison to the Talazac long-tailed tenrec in their weight ratios. This muscle may act as a strong flexor motor in the knee joint during the aquatic locomotion of the web-footed tenrec. Since the other muscles of the web-footed tenrec are similar to those of the Talazac long-tailed tenrec regards weight ratio data, we think that the web-footed tenrec may have derived from a terrestrial ancestor such as the long-tailed tenrecs. In Tenrecinae the streaked tenrec is equipped with larger Mm. adductores, M. semimembranosus and M. triceps surae than the lesser hedgehog tenrec. This species is adapted to fossorial life derived from non-specialized ancestors within the evolutionary lines of the spiny tenrecs.

  5. Placental diversity in malagasy tenrecs

    DEFF Research Database (Denmark)

    Enders, A C; Blankenship, T N; Goodman, S M;

    2007-01-01

    Placentation in tenrecs of the subfamily Oryzorictinae, family Tenrecidae, has not been described previously. The structure of the placenta of this group and especially of the genus Microgale was investigated to determine its similarity or dissimilarity to previously described placentas of the te...

  6. Glycosylation at the fetomaternal interface in hemomonochorial placentae from five widely separated species of mammal

    DEFF Research Database (Denmark)

    Jones, Carolyn J. P.; Carter, Anthony M.; Aplin, John D.

    2007-01-01

    Hemomonochorial placentation occurs in diverse species. We have examined placental glycosylation in five widely separated mammals with this type of placentation--lesser hedgehog tenrec (Echinops telfairi), spotted hyena (Crocuta crocuta), nine-banded armadillo (Dasypus novemcinctus), human (Homo...

  7. Placental Diversity in Malagasy Tenrecs: Placentation in Shrew Tenrecs (Microgale spp.), The Mole-Like Rice Tenrec (Oryzorictes hova) and The Web-Footed Tenrec (Limnogale mergulus)

    DEFF Research Database (Denmark)

    Enders, A.C.; Blankenship, T.N.; Goodman, S.M.;

    2006-01-01

    Placentation in tenrecs of the subfamily Oryzorictinae, family Tenrecidae, has not been described previously. The structure of the placenta of this group and especially of the genus Microgale was investigated to determine its similarity or dissimilarity to previously described placentas of the te...

  8. Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

    Directory of Open Access Journals (Sweden)

    Ramazan Erenler

    2014-01-01

    Full Text Available The genus Echinops belonging to the Asteraceae family comprises 130 species. The dried leaves and seeds of Echinops orientalis Trauv. were extracted separately with methanol. Apigenin-7-O-(6"-trans-p-coumaroyl- b -D-glucopyranoside 1, and Apigenin-7-O- b -D glucoside 2 were isolated from leaves and 1-methoxycarbonylindole 3 and beta-sitositerol 4 were isolated from seeds. The compounds were isolated by chromatographic techniques, based on column chromatography, preparative TLC and identified by spectroscopic methods including 1D-, 2D-NMR, UV, IR, HPLC-QTOF/MS. Isolated compounds and extracts were applied to antioxidant activity tests. While s eeds and leaves extracts have high DPPH and moderate ABTS radical scavenging activities, the isolated flavones exhibited high cation radical scavenging activities.

  9. Brown fat in a protoendothermic mammal fuels eutherian evolution

    OpenAIRE

    Oelkrug, Rebecca; Goetze, Nadja; Exner, Cornelia; Lee, Yang; Ganjam, Goutham K.; Kutschke, Maria; Müller, Saskia; Stöhr, Sigrid; Tschöp, Matthias H.; Crichton, Paul G.; Heldmaier, Gerhard; Jastroch, Martin; Meyer, Carola W.

    2013-01-01

    Endothermy has facilitated mammalian species radiation, but the sequence of events leading to sustained thermogenesis is debated in multiple evolutionary models. Here we study the Lesser hedgehog tenrec (Echinops telfairi), a phylogenetically ancient, 'protoendothermic' eutherian mammal, in which constantly high body temperatures are reported only during reproduction. Evidence for nonshivering thermogenesis is found in vivo during periodic ectothermic-endothermic transitions. Anatomical studi...

  10. Evaluation of Anti-ulcer Activity of Echinops Persicus on Experimental Gastric Ulcer Models in Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Farajzadeh-Sheikh

    2010-12-01

    Full Text Available Extract of Echinops persicus is traditionally used for a long time in Iran for treatment of cough and constipation. This extract is produced by activity of bug (Situphilus spp. on the plant. We documented its anti-tussive effect in rats in our previous study.The aim of this study was to assess the anti-ulcer effect of Echinops persicus in an animal model. In this study we evaluated anti-ulcer effect of Echinops persicus by Shay's method in rats. In 3 groups of rats, pylorus was ligatured under anesthesia. The rats were euthanized after 19 hours later and number and level of ulcer in stomach was measured. In group 2 the extract was orally administered 45 minutes before pyloric ligature, and in group 3, it was administered intraperitoneally 20 minutes before pyloric ligature. The number of ulcers in stomach was significantly low in group 2 (P = 0.01 and 3 (P = 0.037 in comparison with group 1. The level of ulcer was significantly decreased in group 2 (P = 0.047 with comparison to group 1. We conclude that, Echinops extract can exhibit potentially cytoprotective and anti-ulcer activity.

  11. [Endoparasites of the hedgehog].

    Science.gov (United States)

    Beck, Wieland

    2007-01-01

    There is an increasing number of sick and young hedgehogs presented to veterinarians each fall. These wild hedgehogs are often heavily infected with parasites. Helminths in the respiratory tract (Crenosoma striatum and Capillaria aerophila) cause lung dysfunction. Intestinal tract of these small mammals is often infected by Capillaria erinacei. Furthermore hedgehogs may be occasionally infected by other nematodes (Physaloptera clausa), trematodes (Brachylaemus erinacei) and cestodes (Hymenolepis erinacei). Occasionally hedgehogs are infected by coccidia (Isospora rastegaiev) and cryptosporidia (Cryptosporidium spp.). Increasing importance of hedgehogs in small animal practice requires adequate knowledge about their parasitoses in order to have a sufficient approach to diagnosis and treatment of those infections.

  12. Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae

    Science.gov (United States)

    2014-01-01

    Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae by Hiroshi Nakano*a)b)c), Abbas...larvicides against Aedes aegypti . Structural differences among compounds 3, 5, and 8 consisted in differing AcO and OH groups attached to C(3’’) and C(4...mg/ml), 4 (LC50 , 17.95 mg/ml), 6 (LC50 , 18.55 mg/ml), and 7 (LC50 , 19.97 mg/ml). These data indicated that A. aegypti larvicidal activities of

  13. Outfoxing the Hedgehog

    Science.gov (United States)

    Barbieri, Richard

    2011-01-01

    Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…

  14. Hedgehog signaling update.

    Science.gov (United States)

    Cohen, M Michael

    2010-08-01

    In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome.

  15. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, R.

    2007-01-01

    Greased hedgehogs: New links between hedgehog signaling and cholesterol metabolism Rainer Breitling * Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands email: Rainer Breitling (r.breitling@rug.nl) *Co

  16. Morphological characters and the range of the species Echinops banaticus Rochel (Asteraceae in the flora of Serbia

    Directory of Open Access Journals (Sweden)

    Diklić Nikola

    2002-01-01

    Full Text Available The species Echinops banaticus Rochel. is one of the five plant species in the genus Echinops L. which have been found to grow in Serbia. The morphological descriptions in our and in foreign floristic literature contain a number of contradictory or incomplete data, which considerably impedes the regular and correct determination and identification of this species. This paper points to the above controversial morphological characters, presents the correct description of the species and the localities where it has so far been found in Serbia, according to field research and the inspection of herbarium material By morphological studies it was found that in the flower region, as correctly reported by Javorka (1925 and Nyarady (1964, pappus scales are joined together throughout their length, and that free tufts appear only at the top The leaves are, after Nyarady (1964, more or less pinnately lobed, green on the adaxial surface, covered with thin, soft, curved, glandular hairs As the range of the species in Serbia has not been sufficiently investigated, it was stated that the species Echinops banaticus Roch. was recorded at 14 localities in Serbia. All the localities are mainly situated in east parts of Serbia, east of the river Velika Morava as far as the borders of Romania and Bulgaria.

  17. GC-MS Analysis of Insecticidal Essential Oil of Aerial Parts of Echinops latifolius Tausch

    Directory of Open Access Journals (Sweden)

    Xin Chao Liu

    2013-01-01

    Full Text Available The roots of Echinops latifolius Tausch (Asteraceae have been used in the traditional medicine. However, no report on chemical composition and insecticidal activities of the essential oil of this plant exists. The aim of this research was to determine chemical composition and insecticidal activities of the essential oil of E. latifolius aerial parts against maize weevils (Sitophilus zeamais Motschulsky for the first time. Essential oil of E. latifolius aerial parts at flowering stage was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS. A total of 35 components of the essential oil of E. latifolius aerial parts were identified. The major compounds in the essential oil were 1,8-cineole (19.63%, (Z-β-ocimene (18.44%, and β-pinene (15.56% followed by β-myrcene (4.75% and carvone (4.39%. The essential oil of E. latifolius possessed contact toxicity against S. zeamais with an LD50 value of 36.40 µg/adult. The essential oil also exhibited fumigant toxicity against S. zeamais with an LC50 value of 9.98 mg/L. The study indicates that the essential oil of E. latifolius aerial parts has a potential for development into a natural insecticide/fumigant for control of insects in stored grains.

  18. Targeting hedgehog in hematologic malignancy.

    Science.gov (United States)

    Irvine, David A; Copland, Mhairi

    2012-03-08

    The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling is associated with malignancy. Hedgehog signaling is critical for early hematopoietic development, but there is controversy over its role in normal hematopoiesis in adult organisms where it may be dispensable. Conversely, hedgehog signaling appears to be an important survival and proliferation signal for a spectrum of hematologic malignancies. Furthermore, hedgehog signaling may be critical for the maintenance and expansion of leukemic stem cells and therefore provides a possible mechanism to selectively target these primitive cell subpopulations, which are resistant to conventional chemotherapy. Indeed, phase 1 clinical trials of hedgehog pathway inhibitors are currently underway to test this hypothesis in myeloid leukemias. This review covers: (1) the hedgehog pathway and its role in normal and malignant hematopoiesis, (2) the recent development of clinical grade small molecule inhibitors of the pathway, and (3) the potential utility of hedgehog pathway inhibition as a therapeutic strategy in hemato-oncology.

  19. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  20. Inhibitors of Hedgehog Acyltransferase Block Sonic Hedgehog Signaling

    OpenAIRE

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J. Fraser; Resh, Marilyn D.

    2013-01-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a novel target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.

  1. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling.

    Science.gov (United States)

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J Fraser; Resh, Marilyn D

    2013-04-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.

  2. Brown fat in a protoendothermic mammal fuels eutherian evolution.

    Science.gov (United States)

    Oelkrug, Rebecca; Goetze, Nadja; Exner, Cornelia; Lee, Yang; Ganjam, Goutham K; Kutschke, Maria; Müller, Saskia; Stöhr, Sigrid; Tschöp, Matthias H; Crichton, Paul G; Heldmaier, Gerhard; Jastroch, Martin; Meyer, Carola W

    2013-01-01

    Endothermy has facilitated mammalian species radiation, but the sequence of events leading to sustained thermogenesis is debated in multiple evolutionary models. Here we study the Lesser hedgehog tenrec (Echinops telfairi), a phylogenetically ancient, 'protoendothermic' eutherian mammal, in which constantly high body temperatures are reported only during reproduction. Evidence for nonshivering thermogenesis is found in vivo during periodic ectothermic-endothermic transitions. Anatomical studies reveal large brown fat-like structures in the proximity of the reproductive organs, suggesting physiological significance for parental care. Biochemical analysis demonstrates high mitochondrial proton leak catalysed by an uncoupling protein 1 ortholog. Strikingly, bioenergetic profiling of tenrec uncoupling protein 1 reveals similar thermogenic potency as modern mouse uncoupling protein 1, despite the large phylogenetic distance. The discovery of functional brown adipose tissue in this 'protoendothermic' mammal links nonshivering thermogenesis directly to the roots of eutherian evolution, suggesting physiological importance prior to sustained body temperatures and migration to the cold.

  3. Placentation in mammals once grouped as insectivores.

    Science.gov (United States)

    Carter, Anthony M; Enders, Allen C

    2010-01-01

    Interest in insectivoran grade mammals has been reawakened by taxonomic changes that place tenrecs and golden moles in a new order and separate hedgehogs from moles, shrews and solenodons. This survey of their placentation shows there is great variation even within families. As an example three subfamilies of tenrec have been examined. The interhemal region is cellular hemomonochorial in Echinops and Microgale but endotheliochorial in Micropotamogale. Golden moles, which are placed in the same order, have hemodichorial placentation. Many insectivores have complex arrangements for histotrophic nutrition involving columnar trophoblast cells. These range from areolae in moles through complexly folded hemophagous regions in tenrecs to the trophoblastic annulus in shrews. Of these placental characters, few offer support to current phylogenies. However, the case for placing hedgehogs and gymnures in a separate order (Erinaceomorpha) is bolstered by the presence of interstitial implantation, amniogenesis by cavitation, a hemochorial barrier and a prominent spongy zone; these features do not occur in shrews, moles or solenodons (Soricomorpha). Three insectivoran grade mammals deserve close attention as they have been selected for genome sequencing. One of these, the European hedgehog (Erinaceus europaeus), has not been studied with current methodology and renewed investigation of this or the closely related genus Atelerix should be a priority.

  4. Greased hedgehogs : new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, Rainer

    2007-01-01

    The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malfo

  5. Hedgehog morphogen in cardiovascular disease

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2006-01-01

    In this review, we focus on the basic biology of the important developmental Hedgehog ( Hh) protein family, its general function in development, pathway mechanisms, and gene discovery and nomenclature. Hh function in cardiovascular development and recent findings concerning Hh signaling in ischemia

  6. Sonic hedgehog signaling during nervous system development

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Peng Xie

    2008-01-01

    The Hedgehog signaling pathway plays a key role in embryonic development and organ formation.Sonic hedgehog signaling participates in nervous system development,regulates proliferation and differentiation of neural stem cells,controls growth and targeting of axons,and contributes to specialization of oligodendrocytes.For further studies of the Sonic hedgehog signaling pathway and for the development of new drugs in the treatment of nervous system diseases,it is beneficial to understand these mechanisms.

  7. Identification of Tenrec ecaudatus, a Wild Mammal Introduced to Mayotte Island, as a Reservoir of the Newly Identified Human Pathogenic Leptospira mayottensis

    Science.gov (United States)

    Lagadec, Erwan; Gomard, Yann; Le Minter, Gildas; Cordonin, Colette; Cardinale, Eric; Ramasindrazana, Beza; Dietrich, Muriel; Goodman, Steven M; Tortosa, Pablo; Dellagi, Koussay

    2016-01-01

    Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis. PMID:27574792

  8. Identification of Tenrec ecaudatus, a Wild Mammal Introduced to Mayotte Island, as a Reservoir of the Newly Identified Human Pathogenic Leptospira mayottensis.

    Directory of Open Access Journals (Sweden)

    Erwan Lagadec

    2016-08-01

    Full Text Available Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae, a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.

  9. Hedgehog signaling in the stomach.

    Science.gov (United States)

    Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana

    2016-12-01

    The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense.

    Science.gov (United States)

    Kuete, Victor; Sandjo, Louis P; Wiench, Benjamin; Efferth, Thomas

    2013-08-26

    Echinops giganteus, Imperata cylindrica, Piper capense and Xylopia aethiopica are four medicinal spices used in Cameroon to treat cancers. The above plants previously displayed cytotoxicity against leukemia CCRF-CEM and CEM/ADR5000 cell lines as well as human pancreatic MiaPaCa-2 cells. The present study aims at emphasizing the study of the cytotoxicity and the modes of action of the above plants on a panel of ten cancer cell lines including various sensitive and drug-resistant phenotypes. The study has been extended to the isolation of the bioactive constituents from Echinops giganteus. The cytotoxicity of the extracts was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with the four extracts. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS). The four tested extracts inhibited the proliferation of all tested cancer cell lines including sensitive and drug-resistant phenotypes. Collateral sensitivity of cancer cells to the extract of Echinops giganteus was generally better than to doxorubicin. The recorded IC50 ranges were 3.29 µg/mL [against human knockout clones HCT116 (p53(-/-)) colon cancer cells] to 14.32 µg/mL (against human liver hepatocellular carcinoma HepG2 cells) for the crude extract from Echinops giganteus, 4.17 µg/mL (against breast cancer cells transduced with control vector MDA-MB231 cells) to 19.45 µg/mL (against MDA-MB-231 BCRP cells) for that of Piper capense, 4.11 µg/mL (against leukemia CCRF-CEM cells) to 30.60 µg/mL (against leukemia HL60AR cells) for Xylopia aethiopica, 3.28 µg/mL [against HCT116 (p53(-/-)) cells] to 33.43 µg/mL (against HepG2 cells) for Imperata cylindica and 0.11 µg/mL (against CCRF-CEM cells) to 132.47 µg/mL (against HL60AR cells) for doxorubicin. The four

  11. Intestinal Hedgehog signaling in tumors and inflammation

    NARCIS (Netherlands)

    Büller, N.V.J.A.

    2015-01-01

    In this thesis we investigated the role of Hedgehog signaling in tumors and inflammation. By using an inducible Indian Hedgehog (Ihh) knockout mouse we show that Ihh signals via the mesenchyme to the proliferating cells in the crypt to attenuate proliferation. Despite its anti-proliferative role in

  12. Hedgehog signaling pathway and gastric cancer.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2005-10-01

    Hedgehog, WNT, FGF and BMP signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. Aberrant activation of Hedgehog signaling pathway leads to pathological consequences in a variety of human tumors, such as gastric cancer and pancreatic cancer. Endoscopic mucosal resection (EMR), endoscopic submucosal dissection (ESD), surgical gastrectomy and chemotherapy are therapeutic options for gastric cancer; however, prognosis of advanced gastric cancer patient is still poor. Here, Hedgehog signaling pathway in human gastric cancer and its clinical applications will be reviewed. Human SHH, IHH, DHH (Hedgehog homologs), HHAT (Hedgehog acyltransferase), HHIP (Hedgehog-interacting protein), DISP1, DISP2, DISP3 (Dispatched homologs), PTCH1, PTCH2 (Patched homologs), SMO (Smoothened homolog), KIF27, KIF7 (Costal-2 homologs), STK36 (Fused homolog), SUFU (SuFu homolog), DZIP1 (Iguana homolog), GLI1, GLI2 and GLI3 (Cubitus interruptus homologs) are implicated in the Hedgehog signaling. PTCH1, FOXM1 and CCND2 are direct transcriptional targets of Hedgehog signaling. Hedgehog signaling activation leads to cell proliferation through cell cycle regulation. SHH regulates growth and differentiation within gastric mucosa through autocrine loop and FOXL1-mediated epithelial-mesenchymal interaction. SHH is implicated in stem/progenitor cell restitution of damaged gastric mucosa during chronic infection with Helicobacter pylori. SHH up-regulation, IHH upregulation and HHIP down-regulation lead to aberrant activation of Hedgehog signaling through PTCH1 to GLI1 in gastric cancer. Small molecule compounds targeted to SMO (KADD-cyclopamine, SANT1-4, Cur61414) as well as humanized anti-SHH antibodies are potent anti-cancer drugs for gastric cancer. Cocktail of Hedgehog inhibitors would be developed as novel therapeutics for gastric cancer. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of Hedgehog signaling genes would be utilized

  13. Hedgehog Signaling in Endochondral Ossification

    Directory of Open Access Journals (Sweden)

    Shinsuke Ohba

    2016-06-01

    Full Text Available Hedgehog (Hh signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1 chondrocyte differentiation; (2 chondrocyte proliferation; and (3 specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders.

  14. Anomalous dispersions of `hedgehog' particles

    Science.gov (United States)

    Bahng, Joong Hwan; Yeom, Bongjun; Wang, Yichun; Tung, Siu On; Hoff, J. Damon; Kotov, Nicholas

    2015-01-01

    Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles' surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these `hedgehog' particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.

  15. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  16. Hedgehog signaling and gastrointestinal cancer

    Science.gov (United States)

    Saqui-Salces, Milena; Merchant, Juanita L.

    2017-01-01

    Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis. PMID:20307590

  17. Hedgehog inhibitors from Withania somnifera.

    Science.gov (United States)

    Yoneyama, Tatsuro; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-09-01

    The hedgehog (Hh) signaling pathway performs an important role in embryonic development and in cellular proliferation and differentiation. However, aberrant activation of the Hh signaling pathway is associated with tumorigenesis. Hh signal inhibition was evaluated using a cell-based assay system that targets GLI1-mediated transcription. Activity-guided isolation of the Withania somnifera MeOH extract led to the isolation of six compounds: withaferin A (1) and its derivatives (2-6). Compounds 1 and 2 showed strong inhibition of Hh/GLI1-mediated transcriptional activity with IC50 values of 0.5 and 0.6 μM, respectively. Compounds 1, 2, 3, and 6 were cytotoxic toward human pancreatic (PANC-1), prostate (DU145) and breast (MCF7) cancer cells. Furthermore, 1 also inhibited GLI1-DNA complex formation in EMSA.

  18. Cloning and functional analysis of a high DP fructan:fructan 1-fructosyl transferase from Echinops ritro (Asteraceae): comparison of the native and recombinant enzymes.

    Science.gov (United States)

    Van den Ende, Wim; Clerens, Stefan; Vergauwen, Rudy; Boogaerts, David; Le Roy, Katrien; Arckens, Lutgarde; Van Laere, André

    2006-01-01

    Inulin-type fructans are the simplest and most studied fructans and have become increasingly popular as prebiotic health-improving compounds. A natural variation in the degree of polymerization (DP) of inulins is observed within the family of the Asteraceae. Globe thistle (Echinops ritro), artichoke (Cynara scolymus), and Viguiera discolor biosynthesize fructans with a considerably higher DP than Cichorium intybus (chicory), Helianthus tuberosus (Jerusalem artichoke), and Dahlia variabilis. The higher DP in some species can be explained by the presence of special fructan:fructan 1-fructosyl transferases (high DP 1-FFTs), different from the classical low DP 1-FFTs. Here, the RT-PCR-based cloning of a high DP 1-FFT cDNA from Echinops ritro is described, starting from peptide sequence information derived from the purified native high DP 1-FFT enzyme. The cDNA was successfully expressed in Pichia pastoris. A comparison is made between the mass fingerprints of the native, heterodimeric enzyme and its recombinant, monomeric counterpart (mass fingerprints and kinetical analysis) showing that they have very similar properties. The recombinant enzyme is a functional 1-FFT lacking invertase and 1-SST activities, but shows a small intrinsic 1-FEH activity. The enzyme is capable of producing a high DP inulin pattern in vitro, similar to the one observed in vivo. Depending on conditions, the enzyme is able to produce fructo-oligosaccharides (FOS) as well. Therefore, the enzyme might be suitable for both FOS and high DP inulin production in bioreactors. Alternatively, introduction of the high DP 1-FFT gene in chicory, a crop widely used for inulin extraction, could lead to an increase in DP which is useful for a number of specific industrial applications. 1-FFT expression analysis correlates well with high DP fructan accumulation in vivo, suggesting that the enzyme is responsible for high DP fructan formation in planta.

  19. Human Plasma Very Low Density Lipoprotein Carries Indian Hedgehog

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Tio, Rene A.; Zeebregts, Clark J.; Bijlsma, Maarten F.; Zijlstra, Felix; Badlou, Bahram; de Vries, Marcel; Ferreira, Carmen V.; Spek, C. Arnold; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2010-01-01

    Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for

  20. Identification and characterization of rat Desert hedgehog and Indian hedgehog genes in silico.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2005-02-01

    Sonic hedgehog (SHH), Desert hedgehog (DHH) and Indian hedgehog (IHH) bind to Patched family receptors (PTCH1 and PTCH2) to transduce signals to GLI1, GLI2 and GLI3. GLI family transcription factors then activate transcription of Hedgehog target genes, such as FOXE1 and FOXM1 encoding Forkhead-box transcription factors. Hedgehog signaling pathway plays a pivotal role in a variety of human tumors, such as gastric cancer, pancreatic cancer, colorectal cancer, breast cancer, prostate cancer, basal cell carcinoma and brain tumors. Rat orthologs for human DHH and IHH remain to be identified. Here, we identified and characterized rat Dhh and Ihh genes by using bioinformatics. Rat Dhh complete coding sequence (CDS) was determined by assembling nucleotide positions 426397-426963, 429715-429976 and 430244-430898 of the AC114446.3 genome sequence. Rat Ihh complete CDS was determined by assembling nucleotide positions 63433-64033, 66432-66693 and 68242-69169 of AC095777.6 genome sequence. Rat Dhh mRNA was expressed in prostate, duodenum and dorsal root ganglia, while rat Ihh mRNA was expressed in cartilage. Rat Dhh showed 99.7% total-amino-acid identity with mouse Dhh, and 96.5% total-amino-acid identity with human DHH. Rat Ihh and human IHH were shorter than mouse Ihh by 38 amino acids. Rat Ihh showed 97.6% total-amino-acid identity with mouse Ihh and 94.4% total-amino-acid identity with human IHH. Hedgehog family proteins consist of signal peptide, Hedgehog ligand peptide and C-terminal peptide. Hedgehog ligand peptides derived from mammalian Hedgehog family proteins were conserved well, while C-terminal peptides were relatively divergent. The HPLGMXXXXS motif in the C-terminus was conserved in Shh orthologs and Ihh orthologs, but not in Dhh orthologs.

  1. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells.

    Science.gov (United States)

    Wijgerde, Mark; Ooms, Marja; Hoogerbrugge, Jos W; Grootegoed, J Anton

    2005-08-01

    Follicle development in the mammalian ovary requires interactions among the oocyte, granulosa cells, and theca cells, coordinating gametogenesis and steroidogenesis. Here we show that granulosa cells of growing follicles in mouse ovary act as a source of hedgehog signaling. Expression of Indian hedgehog and desert hedgehog mRNAs initiates in granulosa cells at the primary follicle stage, and we find induced expression of the hedgehog target genes Ptch1 and Gli1, in the surrounding pre-theca cell compartment. Cyclopamine, a highly specific hedgehog signaling antagonist, inhibits this induced expression of target genes in cultured neonatal mouse ovaries. The theca cell compartment remains a target of hedgehog signaling throughout follicle development, showing induced expression of the hedgehog target genes Ptch1, Ptch2, Hip1, and Gli1. In periovulatory follicles, a dynamic synchrony between loss of hedgehog expression and loss of induced target gene expression is observed. Oocytes are unable to respond to hedgehog because they lack expression of the essential signal transducer Smo (smoothened). The present results point to a prominent role of hedgehog signaling in the communication between granulosa cells and developing theca cells.

  2. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  3. Primary cilia and graded Sonic Hedgehog signaling.

    Science.gov (United States)

    Sasai, Noriaki; Briscoe, James

    2012-01-01

    Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.

  4. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review).

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2006-12-01

    Hedgehog, BMP/TGFbeta, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network, which plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis. Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) bind to PTCH1/PTCH or PTCH2 receptor to release Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1, JAG2 and SFRP1. GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to transient proliferation of Hedgehog target cells. Iguana homologs (DZIP1 and DZIP1L) and Costal-2 homologs (KIF7 and KIF27) are identified by comparative integromics. SHH-dependent parietal cell proliferation is implicated in gastric mucosal repair during chronic Helicobacter pylori infection. BMP-RUNX3 signaling induces IHH expression in surface differentiated epithelial cells of stomach and intestine. Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. Hedgehog signaling is frequently activated in esophageal cancer, gastric cancer and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of HHIP1/HHIP gene, encoding the Hedgehog inhibitor. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics. Small-molecule inhibitors for SMO or STK36 are suitable to be used for

  5. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus

    Directory of Open Access Journals (Sweden)

    Stephane L. Ngahang Kamte

    2017-07-01

    Full Text Available Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50 values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  6. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

    Science.gov (United States)

    Katoh, Y; Katoh, M

    2009-09-01

    Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.

  7. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma.

    Science.gov (United States)

    Lo, Winnie W; Wunder, Jay S; Dickson, Brendan C; Campbell, Veronica; McGovern, Karen; Alman, Benjamin A; Andrulis, Irene L

    2014-02-15

    During development, the Hedgehog pathway plays important roles regulating the proliferation and differentiation of chondrocytes, providing a template for growing bone. In this study, the authors investigated the components of dysregulated Hedgehog signaling as potential therapeutic targets for osteosarcoma. Small-molecule agonists and antagonists that modulate the Hedgehog pathway at different levels were used to investigate the mechanisms of dysregulation and the efficacy of Hedgehog blockade in osteosarcoma cell lines. The inhibitory effect of a small-molecule Smoothened (SMO) antagonist, IPI-926 (saridegib), also was examined in patient-derived xenograft models. An inverse correlation was identified in osteosarcoma cell lines between endogenous glioma-associated oncogene 2 (GLI2) levels and Hedgehog pathway induction levels. Cells with high levels of GLI2 were sensitive to GLI inhibition, but not SMO inhibition, suggesting that GLI2 overexpression may be a mechanism of ligand-independent activation. In contrast, cells that expressed high levels of the Hedgehog ligand gene Indian hedgehog (IHH) and the target genes patched 1 (PTCH1) and GLI1 were sensitive to modulation of both SMO and GLI, suggesting ligand-dependent activation. In 2 xenograft models, active autocrine and paracrine, ligand-dependent Hedgehog signaling was identified. IPI-926 inhibited the Hedgehog signaling interactions between the tumor and the stroma and demonstrated antitumor efficacy in 1 of 2 ligand-dependent models. The current results indicate that both ligand-dependent and ligand-independent Hedgehog dysregulation may be involved in osteosarcoma. It is the first report to demonstrate Hedgehog signaling crosstalk between the tumor and the stroma in osteosarcoma. The inhibitory effect of IPI-926 warrants additional research and raises the possibility of using Hedgehog pathway inhibitors as targeted therapeutics to improve treatment for osteosarcoma. © 2013 American Cancer Society.

  8. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    Science.gov (United States)

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  9. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  10. Hedgehog Signalling in the Embryonic Mouse Thymus

    OpenAIRE

    Barbarulo, Alessandro; Lau, Ching-In; Mengrelis, Konstantinos; Ross, Susan; Solanki, Anisha; Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate\\ud specification, and for the differentiation of multipotent progenitor cells into major histocompatibility\\ud complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog\\ud signalling pathway in T cell development, thymic epithelial cell (TEC) development, and\\ud thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation.\\ud

  11. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC......) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh...

  12. [Endoparasitic infestation of wild hedgehogs and hedgehogs in human care with a contribution to therapy].

    Science.gov (United States)

    Barutzki, D; Laubmeier, E; Forstner, M J

    1987-01-01

    In order to confirm the prevalence of endoparasites fecal samples from 127 hedgehogs living outdoors as well as from 85 in an animal home and from 542 hedgehogs hibernating in private homes were examined. 52.0%-72.3% of the animals from natural surroundings proved to be infested with the lung worm and 72.3%-74.0% with Capillaria species of the intestine, respectively. Capillaria aerophila were found in 15.1%-40.7%, whereas coccidia (1.4%-12.9%) were less frequent. In animal homes and private care hibernating hedgehogs excreted larvae of Crenosoma striatum (23.5% and 21.0%, respectively), eggs of Capillaria species of the intestine (47.1% and 37.1%), and eggs of Capillaria aerophila (7.1% and 19.4%), but oocysts of Isospora rastegaievae were found to be predominant (44.7% and 32.3%). Proglottides of Hymenolepis erinacei and eggs of Brachylaemus erinacei appeared only in the faeces of 3 and 2 hedgehogs, respectively. Helminths of the lung and gut were already found in May, therefore it must be concluded that these parasites are able to survive the winter in the host during the hibernation period. Even young hedgehogs (400-500 g) were infected with Crenosoma and/or Capillaria spp. of the intestine, however, compared with the adults the excretion of eggs and larvae was rather low. The antiparasitic agent Ivermectin (0.3 mg/100 g body-weight) was effective against Crenosoma striatum (efficacy: 95.9%) and Capillaria spp. (100%); therefore it can be recommended as a new, well tolerated anthelmintic against nematodes of the hedgehog.

  13. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  14. Hexane Extract of Echinops spinosissimus Turra subsp. spinosus from Tunisia: A Potential Source of Acetylated Sterols - Investigation of its Biological Activities.

    Science.gov (United States)

    Bouattour, Emna; Fakhfakh, Jawhar; Frikha Dammak, Donyez; Jabou, Khaled; Damak, Mohamed; Mezghani Jarraya, Raoudha

    2016-12-01

    The hexane extract of Echinops spinosissimus Turra subsp. spinosus flower heads was analyzed for its fatty acid and sterol composition. Its physicochemical characteristics were also studied. The saponification, iodine and peroxide values were determined as 255 mg KOH/g, 42.57 g I2 /100 g and 110 m equiv. O2 /kg of oil, respectively. The oleic (C18:1; 61.14%), palmitic (C16:0; 21.36%) and linoleic (C18:2; 10.45%) acids were the dominant fatty acids. This extract was also found to contain high levels of β-sitosterol and stigmasterol (44.97% and 34.95% of total sterols, respectively). On the other hand, the identification of terpenoid compounds was investigated by using GC/MS, which revealed fourteen major terpenoids mainly taraxasterol, lupeol, pseudotaraxasterol, lup-22(29)-en-3-yl acetate, taraxasteryl acetate, α-amyrin, β-amyrin, pseudotaraxasteryl acetate, hop-20(29)-en3-β-ol, α-amirenone, along with β-sitosterol and stigmasterol. Moreover, we have evaluated the in vitro antibacterial and antifungal activities of the unsaponifiable matter and a fraction isolated from this extract. These activities were conducted using the diffusion disc methods and broth microdilution assay. The resulted fraction from this extract showed the highest antibacterial activity with significant minimum inhibitory concentrations (MIC) values 125.0 μg/ml against Staphylococcus aureus, Micrococcus luteus and Bacillus cereus. However, it did exhibit no substantial antifungal activity. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  15. Hypoxia induces a hedgehog response mediated by HIF-1 alpha

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Groot, Angelique P.; Oduro, Jeremiah P.; Franken, Rutger J.; Schoenmakers, Saskia H. H. F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2009-01-01

    Recently, it has become clear that the developmental hedgehog pathway is activated in ischaemic adult tissue where it aids in salvaging damaged tissue. The exact driving force for the initial hedgehog response is unclear and as most physiological and cellular processes are disturbed in ischaemic tis

  16. [The role of sonic hedgehog pathway in skin carcinogenesis].

    Science.gov (United States)

    Lesiak, Aleksandra; Sysa-Jedrzejowska, Anna; Narbutt, Joanna

    2010-08-01

    Non melanoma skin cancers (NMSC) involving basal (BCC)--and squamosus cell carcinomas (SCC) and are the most frequent skin cancers in Caucasians. Ultraviolet radiation is the main environmental risk factor for NMSC development. The aim of this paper is to review the latest opinions concerning the role of sonic hedgehog pathway in non-melanoma skin cancers development. Experimental data indicate that sonic hedgehog pathway might be involved in skin carcinogenesis. Under physiological conditions sonic hedgehog pathway is responsible for normal embryogenesis, regeneration of damaged tissues and for regulation of cell proliferation. It was revealed that UVR caused inactivated mutation in PATCHED gene encoding Ptch1 protein. These events lead to deregulation of sonic hedgehog pathway trough activation of Smo protein and Gli transcriptional factors what stimulates cell proliferation and in consequence NMSC development. Literature data indicate that understanding of molecular background of skin cancers might be a reason for introduction of new therapeutic approaches including sonic hedgehog pathway inhibitors.

  17. Sonic hedgehog elevates N-myc gene expression in neural stem cells.

    Science.gov (United States)

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-08-05

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

  18. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    Science.gov (United States)

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  19. Semiclassical projection of hedgehog models with quarks

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D.; Broniowski, W.

    1986-12-01

    A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.

  20. Endocannabinoids are conserved inhibitors of the Hedgehog pathway.

    Science.gov (United States)

    Khaliullina, Helena; Bilgin, Mesut; Sampaio, Julio L; Shevchenko, Andrej; Eaton, Suzanne

    2015-03-17

    Hedgehog ligands control tissue development and homeostasis by alleviating repression of Smoothened, a seven-pass transmembrane protein. The Hedgehog receptor, Patched, is thought to regulate the availability of small lipophilic Smoothened repressors whose identity is unknown. Lipoproteins contain lipids required to repress Smoothened signaling in vivo. Here, using biochemical fractionation and lipid mass spectrometry, we identify these repressors as endocannabinoids. Endocannabinoids circulate in human and Drosophila lipoproteins and act directly on Smoothened at physiological concentrations to repress signaling in Drosophila and mammalian assays. Phytocannabinoids are also potent Smo inhibitors. These findings link organismal metabolism to local Hedgehog signaling and suggest previously unsuspected mechanisms for the physiological activities of cannabinoids.

  1. Hedgehog turns lipoproteins into janus-faced particles

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Spek, C. Arnold; Peppelenbosch, Maikel P.

    2006-01-01

    Hedgehog is an important morphogenetic signal during embryonic development. The molecule contains several hydrophobic moieties, including cholesterol and palmitoyl groups, apparently incompatible with long-range functioning. Very recent research, however, performed in the fruitfly Drosophila melanog

  2. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  3. Impacts of removing badgers on localised counts of hedgehogs.

    Directory of Open Access Journals (Sweden)

    Iain D Trewby

    Full Text Available Experimental evidence of the interactions among mammalian predators that eat or compete with one another is rare, due to the ethical and logistical challenges of managing wild populations in a controlled and replicated way. Here, we report on the opportunistic use of a replicated and controlled culling experiment (the Randomised Badger Culling Trial to investigate the relationship between two sympatric predators: European badgers Meles meles and western European hedgehogs Erinaceus europaeus. In areas of preferred habitat (amenity grassland, counts of hedgehogs more than doubled over a 5-year period from the start of badger culling (from 0.9 ha-1 pre-cull to 2.4 ha-1 post-cull, whereas hedgehog counts did not change where there was no badger culling (0.3-0.3 hedgehogs ha-1. This trial provides experimental evidence for mesopredator release as an outcome of management of a top predator.

  4. Targeting sonic hedgehog signaling in neurological disorders.

    Science.gov (United States)

    Patel, Sita Sharan; Tomar, Sunil; Sharma, Diksha; Mahindroo, Neeraj; Udayabanu, Malairaman

    2017-03-01

    Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.

  5. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    Science.gov (United States)

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway.

  6. Sonic hedgehog elevates N-myc gene expression in neural stem cells★

    OpenAIRE

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-01-01

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgeho...

  7. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    Science.gov (United States)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  8. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Reck, A; Beck, H C

    2017-01-01

    of repressors of the hedgehog-signaling pathway such as Patched 1 (PTCH1), Suppressor of Fused (SUFU), and Parathyroid Hormone-Related Peptide (PTHrP). Previous studies suggested that hedgehog proteins induce the osteogenic differentiation of mesenchymal stem cells via a paracrine pathway. Indian hedgehog (IHH...

  9. Hedgehog signaling pathway and ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Qi Chen; Guolan Gao; Shiwen Luo

    2013-01-01

    Epithelial ovarian carcinoma (EOC) is the most common form of ovarian malignancies and the most lethal gynecologic malignancy in the United States.To date,in spite of treatment to it with the extensive surgical debulking and chemotherapy,the prognosis of EOC remains dismal.Recently,it has become increasingly clear that in many instances,the signaling and molecular players that control development are the same,and when inappropriately regulated,drive tumorigenesis and cancer development.Here,we discuss the possible involvement of Hedgehog (Hh) pathway in the cellular regulation and development of cancer in the ovaries.Using the in vitro and in vivo assays developed has facilitated the dissection of the mechanisms behind Hh-driven ovarian cancers formation and growth.Based on recent studies,we propose that the inhibition of Hh signaling may interfere with spheroid-like structures in ovarian cancers.The components of the Hh signaling may provide novel drug targets,which could be explored as crucial combinatorial strategies for the treatment of ovarian cancers.

  10. The dawn of hedgehog inhibitors: Vismodegib

    Directory of Open Access Journals (Sweden)

    Selvarajan Sandhiya

    2013-01-01

    Full Text Available Cancer, one of the leading causes of death worldwide is estimated to increase to approximately 13.1 million by 2030. This has amplified the research in oncology towards the exploration of novel targets. Recently there has been lots of interest regarding the hedgehog (Hh pathway, which plays a significant role in the development of organs and tissues during embryonic and postnatal periods. In a normal person, the Hh signaling pathway is under inhibition and gets activated upon the binding of Hh ligand to a transmembrane receptor called Patched (PTCH1 thus allowing the transmembrane protein, smoothened (SMO to transfer signals through various proteins. One of the newer drugs namely vismodegib involves the inhibition of Hh pathway and has shown promising results in the treatment of advanced basal-cell carcinoma as well as medulloblastoma. It has been granted approval by US Food and Drug Administration′s (US FDA priority review program on January 30, 2012 for the treatment of advanced basal-cell carcinoma. The drug is also being evaluated in malignancies like medulloblastoma, pancreatic cancer, multiple myeloma, chondrosarcoma and prostate cancer. Moreover various Hh inhibitors namely LDE 225, saridegib, BMS 833923, LEQ 506, PF- 04449913 and TAK-441 are also undergoing phase I and II trials for different neoplasms. Hence this review will describe briefly the Hh pathway and the novel drug vismodegib.

  11. Aberrant Hedgehog Signaling and Clinical Outcome in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Winnie W. Lo

    2014-01-01

    Full Text Available Despite the importance of Hedgehog signaling in bone development, the relationship between Hedgehog pathway expression and osteosarcoma clinical characteristics and outcome has not been investigated. In this study of 43 high-grade human osteosarcoma samples, we detected high expression levels of the Hedgehog ligand gene, IHH, and target genes, PTCH1 and GLI1, in most samples. Further analysis in tumors of patients with localized disease at diagnosis identified coexpression of IHH and PTCH1 exclusively in large tumors. Higher levels of IHH were observed more frequently in males and patients with higher levels of GLI1 were more responsive to chemotherapy. Subgroup analysis by tumor size and IHH expression indicated that the well-known association between survival and tumor size was further refined when IHH levels were taken into consideration.

  12. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells.

    Science.gov (United States)

    Nakamura, Masafumi; Ogo, Ayako; Yamura, Masahiro; Yamaguchi, Yoshiyuki; Nakashima, Hiroshi

    2014-04-01

    Metformin use has previously been associated with decreased cancer risk. The Hedgehog signaling pathway is a well-characterized early and late mediator of pancreatic cancer oncogenesis. The aim of the present study was to clarify the effect of metformin on factors involved in Hedgehog signaling. BxPC3 human pancreatic cancer cells were treated with metformin, and Sonic hedgehog (Shh) mRNA and protein levels were examined by real time reverse transcription-polymerase chain reaction, immunohistochemistry and immunoblotting, respectively. The effect of metformin on Shh levels was also examined in three other cancer cell lines. Shh protein and mRNA expression was suppressed by metformin in BxPC3 cells. This phenomenon was further confirmed in three other cancer cell lines. Shh mRNA expression was inhibited by metformin in a concentration-dependent manner in two cancer cell lines. Metformin reduces the expression of Shh in several cancer cell lines including pancreatic cancer cell.

  13. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  14. Beyond the scalpel: targeting hedgehog in skin cancer prevention.

    Science.gov (United States)

    Rudin, Charles M

    2010-01-01

    This perspective places the article by Tang et al. in this issue of the journal (beginning on page 25) in the context of recent work defining the hedgehog signaling pathway as a central etiologic factor and as a therapeutic target in basal cell cancer. Tang et al. show that inhibition of cyclooxygenase activity, either genetically (in a relevant mouse model) or pharmacologically (in the mouse and in patients highly predisposed to develop basal cell skin cancers), may suppress basal cell carcinogenesis. This new study of cyclooxygenase inhibition, together with recent data on the efficacy of hedgehog pathway inhibition, offers new hope for patients at a high risk for basal cell cancer.

  15. The Hedgehog Effect The Secrets of Building High Performance Teams

    CERN Document Server

    Kets de Vries, Manfred F R

    2011-01-01

    In The Hedgehog Effect, Manfred Kets de Vries presents the case for leadership group coaching as an experiential training ground for learning to function as a high performance team. His group coaching model, incorporating living case studies, has been developed over more than 20 years of delivering programs to top-level executives and sets the standard in the field of leadership group coaching. Written for coaches, consultants, leadership development directors, and anyone working in or with teams, The Hedgehog Effect begins with an in-depth analysis of what teams and groups are all about. The

  16. The Hedgehog signaling pathway in ovarian teratoma is stimulated by Sonic Hedgehog which induces internalization of Patched.

    Science.gov (United States)

    Sabol, Maja; Car, Diana; Musani, Vesna; Ozretic, Petar; Oreskovic, Slavko; Weber, Igor; Levanat, Sonja

    2012-10-01

    The Hedgehog-Gli (Hh-Gli) signaling pathway was examined in ovarian dermoids, which show characteristics of both tumors and developmental malformations. Dermoids are classified as mature teratomas that present differentiation into various tissues, mostly epidermal elements such as glands, multilayered epithelium, hair follicles and occasionally bone and cartilage. Their development is attributed to aberrant meiosis of germinal cells within the ovary. We showed activation of the Hh-Gli signaling in ovarian dermoid primary cultures. Cyclopamine treatment slows down cell proliferation, while the Sonic Hedgehog (Shh) protein stimulates cell proliferation and induces internalization of the Patched (Ptch) protein, which accumulates in the form of granules in the cytoplasm, colocalized with the Shh protein. Cyclopamine treatment decreases Gli1 localization in the nucleus compared to non-treated cells. Based on our observations, the mechanism of Hedgehog activation in the ovarian dermoids could be the ligand-dependent autocrine pathway, which can also be stimulated by paracrine signals.

  17. Sonic Hedgehog Signaling in Limb Development

    Science.gov (United States)

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  18. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    Full Text Available BACKGROUND: Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. CONCLUSIONS/SIGNIFICANCE: This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  19. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Institute of Scientific and Technical Information of China (English)

    Gang Ma; Jiang Yu; Yue Xiao; Danny Chan; Bo Gao; Jianxin Hu; Yongxing He

    2011-01-01

    Brachydactyly type A1 (BDA1),the first recorded Mendelian autosomal dominant disorder in humans,is characterized by a shortening or absence of the middle phalanges.Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however,the biochemical consequences of these mutations are unclear.In this paper,we analyzed three BDA1 mutations (E95K,D100E,and E131K)in the N-terminal fragment of Indian Hedgehog (IhhN).Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove,and that the D100E mutation changes the local tertiary structure.Furthermore,we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of lhhN,which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome.Notably,all three mutations affected Hh binding to the receptor Patched1 (PTC1),reducing its capacity to induce cellular differentiation.We propose that these are common features of the mutations that cause BDA1,affecting the Hh tertiary structure,intracellular fate,binding to the receptor/partners,and binding to extracellular components.The combination of these features alters signaling capacity and range,but the impact is likely to be variable and mutation-dependent.The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation,but not the E131K mutation.Taken together,our results suggest that these IHH mutations affect Hh signaling at multiple levels,causing abnormal bone development and abnormal digit formation.

  20. Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development

    Science.gov (United States)

    Barsoum, Ivraym Boshra

    2009-01-01

    Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…

  1. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinical responses leading to the approval of the Smoothened inhibitor, vismodegib, for the treatment of advanced basal cell carcinoma. Aberrant Hedgehog pathway signaling has also been noted in prostate cancer with evidence suggesting that it may render prostate epithelial cells tumorigenic, drive the epithelial-to-mesenchymal transition, and contribute towards the development of castration-resistance through autocrine and paracrine signaling within the tumor microenvironment and cross-talk with the androgen pathway. In addition, there are emerging clinical data suggesting that inhibition of the Hedgehog pathway may be effective in the treatment of recurrent and metastatic prostate cancer. Here we will review these data and highlight areas of active clinical research as they relate to Hedgehog pathway inhibition in prostate cancer.

  2. Helminth parasites found in hedgehogs (Erinaceus concolor) from Turkey.

    Science.gov (United States)

    Cirak, Veli Y; Senlik, Bayram; Aydogdu, Ali; Selver, Melih; Akyol, Volkan

    2010-10-01

    Hedgehog diseases are becoming important issues for veterinary surgeons due to growing interest in this animal species among pet owners and an increase in cases of rescued hedgehogs requiring veterinary care. A parasitological study was carried out on hedgehogs (Erinaceus concolor) in the Bursa province of Turkey, found dead mainly due to road casualties, to determine their helminth parasite burden. The detected helminths and their prevalences were as follows: Physaloptera clausa (72.2%), Crenosoma striatum (55.5%), Aonchotheca erinacei (55.5%), Hymenolepis erinacei (55.5%), Nephridiorhynchus major (50%) and Eucoleus aerophilus (22.2%). The number of parasites in infected animals varied from 1 to 203. The highest mean intensity of infection was observed with C. striatum, and the lowest was observed with N. major. The mean abundance of different species varied from 0.7 to 41.8, where E. aerophilus and C. striatum had the lowest and highest abundance, respectively. This study represents the first time N. major and E. aerophilus have been reported in hedgehogs in Turkey. The presence of E. aerophilus and its potential role as a zoonotic agent are discussed.

  3. Skink predation by hedgehogs at Macraes Flat, Otago, New Zealand

    NARCIS (Netherlands)

    Spitzen-van der Sluijs, A.; Spitzen, J.; Houston, D.; Stumpel, A.H.P.

    2009-01-01

    The stomach contents of 158 hedgehogs captured at Macraes Flat, Otago, New Zealand, over two summers in 2000 and 2001 were examined for the occurrence of lizards. The remains of at least 43 skinks (both Oligosoma nigriplantare polychroma and O. maccanni) and one gecko (Hoplodactylus sp.) were found.

  4. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  5. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems

    Science.gov (United States)

    Hedgehog signaling is involved in regulation of ovarian function in Drosophila but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or the...

  6. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    Science.gov (United States)

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  7. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene.

    Science.gov (United States)

    Zhang, Yi; Zhao, Shu; Dong, Weiren; He, Suifen; Wang, Haihong; Zhang, Lihua; Tang, Yinjuan; Guo, Jiasong; Guo, Suiqun

    2013-01-25

    The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.

  8. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene

    Institute of Scientific and Technical Information of China (English)

    Yi Zhang; Shu Zhao; Weiren Dong; Suifen He; Haihong Wang; Lihua Zhang; Yinjuan Tang; Jiasong Guo; Suiqun Guo

    2013-01-01

    The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.

  9. Small?molecule Hedgehog inhibitor attenuates the leukemia?initiation potential of acute myeloid leukemia cells

    OpenAIRE

    Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

    2016-01-01

    Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF?04449913 (PF?913) is a selective, small?molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof?of?concept and mechanism of action of PF?913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signali...

  10. A preliminary investigation into the endoparasite load of the European hedgehog (Erinaceus europaeus) in Ireland

    OpenAIRE

    Haigh, Amy; O'Keeffe, Joanne; O' Riordan, Ruth M; Butler, Fidelma

    2013-01-01

    The European hedgehog is strictly protected in the Republic of Ireland but has been little studied. Carcasses, such as road kill casualties, can provide valuable information on population demographics, parasite load and general body condition. This study aimed to examine the species of endoparasites present in hedgehogs, their prevalence and intensities and whether differences occurred depending on the age and sex of the hedgehog. Carcasses were collected and examined from around Ireland, ove...

  11. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis

    National Research Council Canada - National Science Library

    Yu, Jeffrey C; Fox, Zachary D; Crimp, James L; Littleford, Hana E; Jowdry, Andrea L; Jackman, William R

    2015-01-01

    ... cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. Results...

  12. Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus in Urmia city, Iran: First report

    Directory of Open Access Journals (Sweden)

    Tahmineh Gorgani-Firouzjaee

    2013-09-01

    Full Text Available Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70% were infested with ticks (Rhipicephalus turanicus. Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%. There was no significant differences between sex of ticks (p > 0.05 but found in fleas (p 0.05. Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p < 0.05. The result of our survey revealed that infestation rate in hedgehog was high. According to zoonotic importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran.

  13. Ecology of the Daurian Hedgehog ( Hemiechinus dauuricus in Ikh Nart Nature Reserve, Mongolia: Preliminary Findings

    Directory of Open Access Journals (Sweden)

    James D. Murdoch

    2006-12-01

    Full Text Available The Daurian hedgehog ranges across northern Mongolia, southern Siberia, and northern China. However, few details of the species’ behavior, ecology, or distribution are known. We conducted a pilot study of the ranging behavior and diet of Daurian hedgehogs in Ikh Nart Nature Reserve, Mongolia. We captured and radio-tagged eight hedgehogs (six males/two females between June and September 2006. We tracked their movements until hibernation to estimate home range sizes and daytime nest characteristics. We also analyzed scats ( N = 38 to gain a preliminary understanding of the food habits of the species. During the study, we collected 237 hedgehog locations, including 91 night, 141 day, and fi ve hibernation sites. Hedgehogs were followed a mean of 53.43 ± 4.35 SE days from capture before entering hibernation. Mean home range size for seven hedgehogs was 422.72 ± 94.07 SE ha. Daytime nest sites had one, rarely two entrances, and usually occurred in rocky outcrops or at the base of shrubs. The most frequently occurring prey groups in scats included beetles (47%, cockroaches (28%, and grasshoppers (20%. Scats also included bird (3%, reptile (1%, and rodent (1% remains. Daurian hedgehogs in Ikh Nart were generally larger in size, occupied larger home ranges, and ate similar foods compared to Daurian hedgehogs in other regions. The presence of Daurian hedgehogs in Ikh Nart also represents a range extension for the species.

  14. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA.

    Science.gov (United States)

    Niewiadomski, Pawel; Zhujiang, Annie; Youssef, Mary; Waschek, James A

    2013-11-01

    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (cGCPs) and its aberrant activation causes a cerebellar cancer medulloblastoma. Pituitary adenylate cyclase activating polypeptide (PACAP) inhibits Shh-driven proliferation of cGCPs and acts as tumor suppressor in murine medulloblastoma. We show that PACAP blocks canonical Shh signaling by a mechanism that involves activation of protein kinase A (PKA) and inhibition of the translocation of the Shh-dependent transcription factor Gli2 into the primary cilium. PKA is shown to play an essential role in inhibiting gene transcription in the absence of Shh, but global PKA activity levels are found to be a poor predictor of the degree of Shh pathway activation. We propose that the core Shh pathway regulates a small compartmentalized pool of PKA in the vicinity of primary cilia. GPCRs that affect global PKA activity levels, such as the PACAP receptor, cooperate with the canonical Shh signal to regulate Gli protein phosphorylation by PKA. This interaction serves to fine-tune the transcriptional and physiological function of the Shh pathway.

  15. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs.

    Directory of Open Access Journals (Sweden)

    Shungo Kano

    Full Text Available Hedgehog (Hh genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional changes in the intronic/regulatory sequences.

  16. Equine cryptosporidial infection associated with Cryptosporidium hedgehog genotype in Algeria.

    Science.gov (United States)

    Laatamna, Abd Elkarim; Wagnerová, Pavla; Sak, Bohumil; Květoňová, Dana; Aissi, Miriem; Rost, Michael; Kváč, Martin

    2013-10-18

    Faecal samples from two horse farms in Algeria keeping Arabian, Thoroughbred, and Barb horses were examined for the presence of Cryptosporidium in 2010-2011. A total of 138 faecal samples (16 from a farm keeping 50 animals and 122 from a farm with 267 horses) were screened for Cryptosporidium spp. infection using molecular tools. DNA was extracted from all samples. Nested PCR was performed to amplify fragments of the SSU rDNA and gp60 genes to determine the presence of Cryptosporidium species and genotypes. Sequence analyses of SSU and gp60 genes revealed four animals positive for the presence of subtype XIIIa A22R9 of the Cryptosporidium hedgehog genotype. The infections were not associated with diarrhoea. This study reports, for the first time, the occurrence of Cryptosporidium in Algeria and the first occurrence of the hedgehog genotype in horses. These findings support the potential role of infected horses in sylvatic-domestic transmission of Cryptosporidium.

  17. Hedgehog pathway activity in the LADY prostate tumor model

    OpenAIRE

    Kasper Susan; Crylen Curtis; Gu Guangyu; Gipp Jerry; Bushman Wade

    2007-01-01

    Abstract Background Robust Hedgehog (Hh) signaling has been implicated as a common feature of human prostate cancer and an important stimulus of tumor growth. The role of Hh signaling has been studied in several xenograft tumor models, however, the role of Hh in tumor development in a transgenic prostate cancer model has never been examined. Results We analyzed expression of Hh pathway components and conserved Hh target genes along with progenitor cell markers and selected markers of epitheli...

  18. Targeting the hedgehog pathway for gallbladder cancer therapy?

    Science.gov (United States)

    Mittal, Balraj; Yadav, Saurabh

    2016-02-01

    Gallbladder carcinoma is a fatal malignancy of hepatobiliary tract that is generally diagnosed at advanced stages of cancer because of its asymptomatic nature. Advanced GBC tumors are unresectable with poor prognosis. Improvement in GBC patient care requires better understanding of the biological signaling pathways and application of newly discovered drugs for cancer therapy. Herein, we discuss the possibilities and challenges in targeting the hedgehog pathway in gallbladder cancer therapy based on recent developments in the area.

  19. OSTEOSARCOMA IN AFRICAN HEDGEHOGS (ATELERIX ALBIVENTRIS): FIVE CASES.

    Science.gov (United States)

    Reyes-Matute, Alonso; Méndez-Bernal, Adriana; Ramos-Garduño, Liliana-Aurora

    2017-06-01

    Osteosarcomas are unusual neoplasms in African hedgehogs ( Atelerix albiventris ) and have been reported in extraskeletal and skeletal locations, including mandible, ribs, and vertebra. Five hedgehogs with osteosarcoma submitted to the Pathology Department at Facultad de Medicina Veterinaria y Zootecnia, National Autonomous University of Mexico are reported. In two cases, the neoplasm arose from the skull; one case arose from the ribs with associated compression of the thoracic and abdominal cavity, and another case involved the vertebrae. In the last case, the neoplasm arose from the scapula. Histologic lesions were similar in all cases and consisted of well-demarcated nodules in which neoplastic cells were arranged in sheets of polyhedral to spindle-shaped cells with interspersed areas of necrosis. Numerous trabeculae of osteoid were present throughout the tumors. No metastases were detected. The predominant histologic pattern was osteoblastic, but a telangiectatic-like pattern was observed in the vertebral osteosarcoma. Electron microscopy was performed in two cases, and malignant osteoblasts had features consistent with descriptions in other species, including deposits of hydroxyapatite in osteoid. According to these cases and previously published data, axial osteosarcomas are more frequent in contrast to appendicular osteosarcomas in African hedgehogs, and metastases are rare.

  20. Primary Cilia Integrate Hedgehog and Wnt Signaling during Tooth Development

    Science.gov (United States)

    Liu, B.; Chen, S.; Cheng, D.; Jing, W.; Helms, J.A.

    2014-01-01

    Many ciliopathies have clinical features that include tooth malformations but how these defects come about is not clear. Here we show that genetic deletion of the motor protein Kif3a in dental mesenchyme results in an arrest in odontogenesis. Incisors are completely missing, and molars are enlarged in Wnt1Cre+Kif3afl/fl embryos. Although amelogenesis and dentinogenesis initiate in the molar tooth bud, both processes terminate prematurely. We demonstrate that loss of Kif3a in dental mesenchyme results in loss of Hedgehog signaling and gain of Wnt signaling in this same tissue. The defective dental mesenchyme then aberrantly signals to the dental epithelia, which prompts an up-regulation in the Hedgehog and Wnt responses in the epithelia and leads to multiple attempts at invagination and an expanded enamel organ. Thus, the primary cilium integrates Hedgehog and Wnt signaling between dental epithelia and mesenchyme, and this cilia-dependent integration is required for proper tooth development. PMID:24659776

  1. Sortilin regulates sorting and secretion of Sonic hedgehog.

    Science.gov (United States)

    Campbell, Charles; Beug, Shawn; Nickerson, Philip E B; Peng, Jimmy; Mazerolle, Chantal; Bassett, Erin A; Ringuette, Randy; Jama, Fadumo A; Morales, Carlos; Christ, Annabel; Wallace, Valerie A

    2016-10-15

    Sonic Hedgehog (Shh) is a secreted morphogen that is an essential regulator of patterning and growth. The Shh full-length protein undergoes autocleavage in the endoplasmic reticulum to generate the biologically active N-terminal fragment (ShhN), which is destined for secretion. We identified sortilin (Sort1), a member of the VPS10P-domain receptor family, as a new Shh trafficking receptor. We demonstrate that Sort-Shh interact by performing coimmunoprecipitation and proximity ligation assays in transfected cells and that they colocalize at the Golgi. Sort1 overexpression causes re-distribution of ShhN and, to a lesser extent, of full-length Shh to the Golgi and reduces Shh secretion. We show loss of Sort1 can partially rescue Hedgehog-associated patterning defects in a mouse model that is deficient in Shh processing, and we show that Sort1 levels negatively regulate anterograde Shh transport in axons in vitro and Hedgehog-dependent axon-glial interactions in vivo Taken together, we conclude that Shh and Sort1 can interact at the level of the Golgi and that Sort1 directs Shh away from the pathways that promote its secretion.

  2. Canonical Sonic Hedgehog Signaling in Early Lung Development

    Directory of Open Access Journals (Sweden)

    Hugo Fernandes-Silva

    2017-03-01

    Full Text Available The canonical hedgehog (HH signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.

  3. Sonic hedgehog signaling in kidney fibrosis: a master communicator.

    Science.gov (United States)

    Zhou, Dong; Tan, Roderick J; Liu, Youhua

    2016-09-01

    The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.

  4. Hedgehog signalling controls eye degeneration in blind cavefish.

    Science.gov (United States)

    Yamamoto, Yoshiyuki; Stock, David W; Jeffery, William R

    2004-10-14

    Hedgehog (Hh) proteins are responsible for critical signalling events during development but their evolutionary roles remain to be determined. Here we show that hh gene expression at the embryonic midline controls eye degeneration in blind cavefish. We use the teleost Astyanax mexicanus, a single species with an eyed surface-dwelling form (surface fish) and many blind cave forms (cavefish), to study the evolution of eye degeneration. Small eye primordia are formed during cavefish embryogenesis, which later arrest in development, degenerate and sink into the orbits. Eye degeneration is caused by apoptosis of the embryonic lens, and transplanting a surface fish embryonic lens into a cavefish optic cup can restore a complete eye. Here we show that sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh) gene expression is expanded along the anterior embryonic midline in several different cavefish populations. The expansion of hh signalling results in hyperactivation of downstream genes, lens apoptosis and arrested eye growth and development. These features can be mimicked in surface fish by twhh and/or shh overexpression, supporting the role of hh signalling in the evolution of cavefish eye regression.

  5. Transcriptional activation of Hedgehog pathway components in aggressive haemangioma.

    Science.gov (United States)

    Wendling-Keim, Danielle S; Wanie, Lynn; von Schweinitz, Dietrich; Grantzow, Rainer; Kappler, Roland

    2017-10-01

    Infantile hemangioma is a vascular neoplasm and is one of the most common tumors diagnosed in young children. Although most hemangiomas are harmless and involute spontaneously, some show severe progression, leading to serious complications, such as high-output cardiac failure, ulcerations, compression of the trachea or deprivation amblyopia, depending on their size and localization. However, the pathogenesis and cause of hemangioma are largely unknown to date. The goal of this study was to identify markers that could predict hemangiomas with aggressive growth and severe progression that would benefit from early intervention. By using a PCR-based screening approach, we first confirmed that previously known markers of hemangioma, namely FGF2 and GLUT1, are highly expressed in hemangioma. Nevertheless, these genes did not show any differential expression between severely progressing tumors and mild tumors. However, transcriptional upregulation of several Hedgehog signalling components, comprising the ligand Sonic Hedgehog (SHH), the transcription factor GLI2 and its target gene FOXA2 were detected in extremely aggressive hemangioma specimens during the proliferation phase. Notably, GLI2 was even overexpressed in involuting hemangiomas if they showed an aggressive growth pattern. In conclusion, our data suggest that overexpression of the Hedgehog components SHH, GLI2 and FOXA2 might be used as markers of an aggressive hemangioma that would benefit from too early intervention, while FGF2 and GLUT1 are more general markers of hemangiomas. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. 131-Iodine-Labeled Derivatives of the Sonic Hedgehog Protein

    Directory of Open Access Journals (Sweden)

    Jennifer Sims-Mourtada

    2012-01-01

    Full Text Available Activation of hedgehog (HH pathway signaling is observed in many tumors. Due to a feedback loop, the HH receptor Patched (PTCH-1 is overexpressed in tumors with activated HH signaling. Therefore, we sought to radiolabel the PTCH-1 ligand sonic (SHH for detection of cancer cells with canonical HH activity. Receptor binding of 131I-SHH was increased in cell lines with high HH pathway activation. Our findings also show that PTCH-1 receptor expression is decreased upon treatment with HH signaling inhibitors, and receptor binding of 131I-SHH is significantly decreased following treatment with cyclopamine. In vivo imaging and biodistribution studies revealed significant accumulation of 131I-SHH within tumor tissue as compared to normal organs. Tumor-to-muscle ratios were approximately 8 : 1 at 5 hours, while tumor to blood and tumor to bone were 2 : 1 and 5 : 1, respectively. Significant uptake was also observed in liver and gastrointestinal tissue. These studies show that 131I-SHH is capable of in vivo detection of breast tumors with high HH signaling. We further demonstrate that the hedgehog receptor PTCH-1 is downregulated upon treatment with hedgehog inhibitors. Our data suggests that radiolabeled SHH derivatives may provide a method to determine response to SHH-targeted therapies.

  7. Primary cilia integrate hedgehog and Wnt signaling during tooth development.

    Science.gov (United States)

    Liu, B; Chen, S; Cheng, D; Jing, W; Helms, J A

    2014-05-01

    Many ciliopathies have clinical features that include tooth malformations but how these defects come about is not clear. Here we show that genetic deletion of the motor protein Kif3a in dental mesenchyme results in an arrest in odontogenesis. Incisors are completely missing, and molars are enlarged in Wnt1(Cre+)Kif3a(fl/fl) embryos. Although amelogenesis and dentinogenesis initiate in the molar tooth bud, both processes terminate prematurely. We demonstrate that loss of Kif3a in dental mesenchyme results in loss of Hedgehog signaling and gain of Wnt signaling in this same tissue. The defective dental mesenchyme then aberrantly signals to the dental epithelia, which prompts an up-regulation in the Hedgehog and Wnt responses in the epithelia and leads to multiple attempts at invagination and an expanded enamel organ. Thus, the primary cilium integrates Hedgehog and Wnt signaling between dental epithelia and mesenchyme, and this cilia-dependent integration is required for proper tooth development.

  8. The Hedgehog signaling pathway in ovarian teratoma is stimulated by Sonic Hedgehog which induces internalization of Patched

    OpenAIRE

    SABOL, MAJA; Car, Diana; MUSANI, VESNA; Ozretić, Petar; Orešković, Slavko; Weber, Igor; Levanat, Sonja

    2012-01-01

    The Hedgehog-Gli (Hh-Gli) signaling pathway was examined in ovarian dermoids, which show characteristics of both tumors and developmental malformations. Dermoids are classified as mature teratomas that present differentiation into various tissues, mostly epidermal elements such as glands, multilayered epithelium, hair follicles and occasionally bone and cartilage. Their development is attributed to aberrant meiosis of germinal cells within the ovary. We showed activation of the Hh-Gli signali...

  9. Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Leenders, Peter J. A.; Janssen, Ben J. A.; Peppelenbosch, Maikel P.; Ten Cate, Hugo; Spek, C. Arnold

    2008-01-01

    The developmentally important hedgehog (Hh) pathway is activated in ischemic tissue, and exogenously administered Sonic hedgehog (Shh) supports tissue repair after cardiac ischemia. Hence, it is currently assumed that the endogenous increase in Shh during ischemia serves a beneficial role in limitin

  10. Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus) in Urmia city, Iran: First report.

    Science.gov (United States)

    Gorgani-Firouzjaee, Tahmineh; Pour-Reza, Behzad; Naem, Soraya; Tavassoli, Mousa

    2013-01-01

    Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of ticks (p > 0.05) but found in fleas (p ticks and fleas did not show significant differences (p > 0.05). Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran.

  11. The Hedgehog receptor patched functions in multidrug transport and chemotherapy resistance.

    Science.gov (United States)

    Bidet, Michel; Tomico, Amandine; Martin, Patrick; Guizouarn, Hélène; Mollat, Patrick; Mus-Veteau, Isabelle

    2012-11-01

    Most anticancer drugs fail to eradicate tumors, leading to the development of drug resistance and disease recurrence. The Hedgehog signaling plays a crucial role during embryonic development, but is also involved in cancer development, progression, and metastasis. The Hedgehog receptor Patched (Ptc) is a Hedgehog signaling target gene that is overexpressed in many cancer cells. Here, we show a link between Ptc and resistance to chemotherapy, and provide new insight into Ptc function. Ptc is cleared from the plasma membrane upon interaction with its ligand Hedgehog, or upon treatment of cells with the Hedgehog signaling antagonist cyclopamine. In both cases, after incubation of cells with doxorubicin, a chemotherapeutic agent that is used for the clinical management of recurrent cancers, we observed an inhibition of the efflux of doxorubicin from Hedgehog-responding fibroblasts, and an increase of doxorubicin accumulation in two different cancer cell lines that are known to express aberrant levels of Hedgehog signaling components. Using heterologous expression system, we stringently showed that the expression of human Ptc conferred resistance to growth inhibition by several drugs from which chemotherapeutic agents such as doxorubicin, methotrexate, temozolomide, and 5-fluorouracil. Resistance to doxorubicin correlated with Ptc function, as shown using mutations from Gorlin's syndrome patients in which the Ptc-mediated effect on Hedgehog signaling is lost. Our results show that Ptc is involved in drug efflux and multidrug resistance, and suggest that Ptc contributes to chemotherapy resistance of cancer cells.

  12. Helminth Parasites of Eastern European Hedgehog (Erinaceus concolor in Northern Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Youssefi

    2013-12-01

    Full Text Available Recently there is a high tendency among exotic pet owners for keeping hedgehogs. This mammal can transfer some significant zoonotic pathogens to human. Hence, the present study was conducted for the first time to prepare a list of helminth parasites of hedgehogs (Erinaceus concolor in North of Iran.Ten (four males and six females road killed hedgehogs were collected during April to January 2011 in rural areas of Babol city, Mazandaran province, Iran. All of internal organs were scrutinized for helminth burden. The extracted specimens were fixed and preserved in 70% ethanol and then cleared in Lacto-phenol solution. Helminth identification was carried out according to available systematic keys.All the examined hedgehogs (100% were infected with parasitic helminth as following: two hedgehogs (20% were infected with Crenosoma striatum, four hedgehogs (40% harbored Physaloptera clausa, one (10% host had Hymenolepis erinacei and three (30% of them were infected with Nephridiacanthus major.This is noteworthy that the current survey is the first report of helminth parasites fauna of Eastern European Hedgehog in Iran. Since, this is the first such investigation in our country, more researches are required to perform on unexplored areas of Iran in order to increase our knowledge regarding hedgehog parasitic diseases.

  13. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    inhibition of hedgehog signaling by decreasing the production of Smoothened, translating into a significant reduction in sonic hedgehog-induced chemotaxis and downregulation of downstream targets in CSCs and the surrounding stroma. Our study demonstrates that via to date unreported effects, chloroquine...

  14. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hedgehog signaling sensitizes glioma stem cells to endogenous nano-irradiation

    NARCIS (Netherlands)

    Morgenroth, Agnieszka; Vogg, Andreas T J; Ermert, Katja; Zlatopolskiy, Boris; Mottaghy, Felix M

    2014-01-01

    The existence of therapy resistant glioma stem cells is responsible for the high recurrence rate and incurability of glioblastomas. The Hedgehog pathway activity plays an essential role for self-renewal capacity and survival of glioma stem cells. We examined the potential of the Sonic hedgehog ligan

  16. Hedgehogs in Wilson loops and phase transition in SU(2) Yang-Mills theory

    CERN Document Server

    Belavin, V A; Kozlov, I E

    2006-01-01

    We suggest that the gauge-invariant hedgehogs-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang-Mills theory. The trajectories of these hedgehogs are closed curves which correspond to center-valued (untraced) Wilson loops and are characterized by the center charge and by the winding number. We show numerically in SU(2) Yang-Mills theory that the density of the hedgehogs in the thermal Wilson-Polyakov line is very sensitive to the finite temperature phase transition. The (additively normalized) hedgehog density behaves as an order parameter: the density is almost independent of the temperature in the confinement phase and changes substantially as the system gets into the deconfinement phase. Our results suggest in particular that the (static) hedgehogs may be relevant degrees of freedom around the deconfinement transition, and thus affect evolution of the quark-gluon plasma in high-energy heavy ion collisions.

  17. Hedgehogs in Wilson loops and phase transition in SU(2) Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, V.A. [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, RU-117259 Moscow (Russian Federation); Chernodub, M.N. [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, RU-117259 Moscow (Russian Federation) and Department of Theoretical Physics, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden)]. E-mail: maxim.chernodub@itep.ru; Kozlov, I.E. [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, RU-117259 Moscow (Russian Federation); Faculty of Physics, Moscow State University, RU-119992 Moscow (Russian Federation)

    2006-08-07

    We suggest that the gauge-invariant hedgehog-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang-Mills theory. The trajectories of these 'hedgehog loops' are closed curves corresponding to center-valued (untraced) Wilson loops and are characterized by the center charge and winding number. We show numerically in the SU(2) Yang-Mills theory that the density of hedgehog structures in the thermal Wilson-Polyakov line is very sensitive to the finite-temperature phase transition. The (additively normalized) hedgehog line density behaves like an order parameter: The density is almost independent of the temperature in the confinement phase and changes substantially as the system enters the deconfinement phase. In particular, our results suggest that the (static) hedgehog lines may be relevant degrees of freedom around the deconfinement transition and thus affect evolution of the quark-gluon plasma in high-energy heavy-ion collisions.

  18. Trade in hedgehogs (Mammalia: Erinaceidae in Morocco, with an overview of their trade for medicinal purposes throughout Africa and Eurasia

    Directory of Open Access Journals (Sweden)

    Vincent Nijman

    2015-04-01

    Full Text Available Hedgehogs are traded locally and often in relatively small num--bers throughout Eurasia and Africa.  We here report on the trade in North African Hedgehog Atelerix algirus and to a smaller extent possibly the Desert Hedgehog Paraechinus aethiopicus in Morocco, and provide an overview of the global trade in hedgehogs for medicinal purposes.  In 2013 and 2014 we surveyed 20 Moroccan cities for a total of 48 times.  We recorded 114 hedgehogs (32 alive and 82 skins for sale in 25 shops in 10 cities, with the largest numbers recorded in Casablanca and Marrakesh.  All live hedgehogs were identified as North African Hedgehog but skins could additionally have been of the Desert Hedgehog.  Shops often displayed only single hedgehog skins, but occasionally up to 48 skins, and live individuals were mostly traded singly or in pairs.  Over 80% of the shops selling hedgehogs were herbalists, selling herbs, spices, oils and animal parts, and both skins and live hedgehogs were intended to supply the demand for traditional (‘folk’ medicine.  At a global scale we found an additional 34 reports of trade in 12 or possibly 13 species of hedgehogs from 23 countries; five studies involving three species in China, South Africa and Benin, included data on the frequency and abundance of hedgehogs in trade, whereas the other studies were qualitative in nature.  Market data have limited value in gauging the off-take of hedgehogs from the wild to supply the traditional medicine trade, but we nevertheless urge the continuation of monitoring the trade in hedgehogs in Morocco and indeed elsewhere to ensure it does not become a threat to their survival in the foreseeable future. 

  19. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog.

    Science.gov (United States)

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-10-04

    The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.

  20. Infection with Crenosoma striatum lungworm in Long-eared Hedgehog (Hemiechinus auritus) in Kerman province southeast of Iran.

    Science.gov (United States)

    Mirzaei, Mohammad

    2014-12-01

    Hedgehogs are distributed in different areas of Iran. Unfortunately, clinical and parasitological studies on parasites of hedgehogs are very few. Crenosoma striatum is a common lungworm in hedgehogs. C. striatum infection can cause weight loss, dry cough, bronchitis with ulcerous reactions based on secondary bacterial infections, pulmonary damage, thickening of the tracheal wall, and pulmonary emphysema up to cardiovascular failure. In this survey, six dead hedgehogs (Hemiechinus auritus) were investigated for lungworm infection. All the six hedgehogs had C. striatum infection in their lungs.

  1. Research advances in Hedgehog signaling pathway in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    LIU Jia

    2015-02-01

    Full Text Available Hedgehog (Hh signaling pathway is present in many animals and plays an important role in regulating embryonic development and differentiation. Aberrant activation of Hh signaling contributes to the pathogenesis of many malignancies. Recent studies have shown that dysregulated Hh signaling pathway participates in the tumorigenesis, tumor invasion, and metastasis of hepatocellular carcinoma (HCC. Investigation of the relationship between Hh signaling pathway and HCC will help elucidate the molecular mechanism of pathogenesis of HCC and provide a new insight into the development of novel anticancer therapy and therapeutic target.

  2. The Hedgehog response network: sensors, switches, and routers.

    Science.gov (United States)

    Lum, Lawrence; Beachy, Philip A

    2004-06-18

    The Hedgehog (Hh) signaling pathway is intimately linked to cell growth and differentiation, with normal roles in embryonic pattern formation and adult tissue homeostasis and pathological roles in tumor initiation and growth. Recent advances in our understanding of Hh response have resulted from the identification of new pathway components and new mechanisms of action for old pathway components. The most striking new finding is that signal transmission from membrane to cytoplasm proceeds through recruitment, by the seven-transmembrane protein Smoothened, of an atypical kinesin, which routes pathway activation by interaction with other components of a complex that includes the latent zinc finger transcription factor, Ci.

  3. Influencia de la ruta Hedgehog-Gli en tumores gliales

    OpenAIRE

    Peris Celda, María

    2011-01-01

    Introducción Los astrocitomas de alto grado son los tumores intrínsecos más frecuentes en el cerebro adulto con una supervivencia media alrededor de 14,2 meses. Desde el aislamiento de las células madre tumorales (CMT) de glioblastomas (GBM) como población minoritaria implicada en el origen y mantenimiento de la masa tumoral, hay un interés creciente en el estudio de la ruta clásicamente implicada en desarrollo Hedgehog-Gli (Hh-Gli) con gran controversia en la literatura en cuanto a su ...

  4. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution.

    Science.gov (United States)

    Keys, D N; Lewis, D L; Selegue, J E; Pearson, B J; Goodrich, L V; Johnson, R L; Gates, J; Scott, M P; Carroll, S B

    1999-01-22

    The origin of new morphological characters is a long-standing problem in evolutionary biology. Novelties arise through changes in development, but the nature of these changes is largely unknown. In butterflies, eyespots have evolved as new pattern elements that develop from special organizers called foci. Formation of these foci is associated with novel expression patterns of the Hedgehog signaling protein, its receptor Patched, the transcription factor Cubitus interruptus, and the engrailed target gene that break the conserved compartmental restrictions on this regulatory circuit in insect wings. Redeployment of preexisting regulatory circuits may be a general mechanism underlying the evolution of novelties.

  5. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Science.gov (United States)

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  6. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  7. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Directory of Open Access Journals (Sweden)

    Lamia Ghezali

    Full Text Available Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  8. Identification of Larvicidal Constituents of the  Essential Oil of Echinops grijsii Roots against the  Three Species of Mosquitoes

    Directory of Open Access Journals (Sweden)

    Mei Ping Zhao

    2017-01-01

    Full Text Available The screening of Chinese medicinal herbs for insecticidal principles showed that the essential oil of Echinops grijsii Hance roots possessed significant larvicidal activity against mosquitoes. The essential oil was extracted via hydrodistillation and its constituents were determined by gas chromatography‐mass spectrometry (GC‐MS analysis. GC‐MS analyses revealed the presence of 31 components, with 5‐(3‐buten‐1‐yn‐1‐yl‐2,2′‐bithiophene (5‐BBT, 27.63%, αterthienyl (α‐T, 14.95%,1,8‐cineole (5.56% and cis‐β‐ocimene (5.01% being the four major constituents. Based bioactivity‐directed chromatographic separation of the essential oil led to the isolation of 5‐BBT, 5‐(4‐isovaleroyloxybut‐1‐ynyl‐2,2′‐bithiophene (5‐IBT and αT as active compounds. The essential oil of E. grijsii exhibited larvicidal activity against the fourth instar larvae of Aedes albopictus, Anopheles sinensis and Culex pipiens pallens with LC50 values of 2.65 μg/mL, 3.43 μg/mL and 1.47 μg/mL, respectively. The isolated thiophenes, 5‐BBT and 5‐IBT, possessed strong larvicidal activity against the fourth instar larvae of Ae. albopictus(LC50 = 0.34 μg/mL and 0.45 μg/mL, respectively and An. sinensis(LC50 = 1.36 μg/mL and 5.36 μg/mL, respectively. The two isolated thiophenes also had LC50 values against the fourth instar larvae of C. pipiens pallens of 0.12 μg/mL and 0.33 μg/mL, respectively. The findings indicated that the essential oil of E. grijsii roots and the isolated thiophenes have an excellent potential for use in the control of Ae.albopictus, An. sinensis and C. pipiens pallens larvae and could be used in the search for new, safer and more effective natural compounds as larvicides.

  9. The Haller's organ roof and anterior pit setae of Argas ticks (Ixodoidea: Argasidae). Subgenera Secretargas and Ogadenus.

    Science.gov (United States)

    Hoogstraal, H; Clifford, C M; Roshdy, M A

    1984-06-01

    Adults of the Argas subgenera Secretargas (3 species) and Ogadenus (1 species) were studied by scanning electron microscopy. In each species, the anterior pit and Haller's organ are situated in a large dorsal hump of Tarsus I and the 9 setae of the anterior pit are characteristic of the genus Argas in structure and numbers. In A. (S.) transgariepinus, an Ethiopian-Palearctic crevice-dwelling parasite of bats, the Haller's organ capsule roof is solid with a slitlike transverse aperture. In A. (S.) hoogstraali and A. (S.) echinops, Malagasy soil-dwelling parasites of Oplurus (Varanidae) lizards and the hedgehog-tenrec (Insectivora: Tenrecidae), respectively, the Haller's organ is virtually unroofed but partially screened by arborescent dorsal projections from the posterior wall of the capsule, and the open capsule contains numerous fine pleomorphs. In A. (O.) brumpti, a soil-dwelling parasite of the hyrax (Procavia), other terrestrial mammals, and lizards in the Ethiopian Region, the capsule is also virtually unroofed and contains numerous fine pleomorphs. The unroofed capsule is probably phylogenetically primitive and occurs only in these 3 and 2 other Argas species. The soil microhabitat (in Argas confined to 3 of the 4 species recorded here), and the reptile or ancient mammal hosts of these 3 species, as well as the zoogeographical isolation of 2 of the species in the Malagasy Region, are distinctive in this genus of 56 species. The interrelationships between an unroofed Haller's organ capsule and unusual biological properties remain to be determined.

  10. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ram Kumar, Ram Mohan, E-mail: rkumar@research.balgrist.ch; Fuchs, Bruno [Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008 (Switzerland)

    2015-05-13

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.

  11. Sonic hedgehog signaling in the lung. From development to disease.

    Science.gov (United States)

    Kugler, Matthias C; Joyner, Alexandra L; Loomis, Cynthia A; Munger, John S

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.

  12. Sonic hedgehog-Gli1 pathway in colorectal adenocarcinomas

    Institute of Scientific and Technical Information of China (English)

    Yue-Hong Bian; Shu-Hong Huang; Ling Yang; XiaoLi Ma; Jing-Wu Xie; Hong-Wei Zhang

    2007-01-01

    AIM: To determine the role of Sonic hedgehog (Shh) pathway in colorectal adenocarcinomas through analysis of the expression of Shh pathway-related molecules, Shh, Ptchl, hedgehog-interacting protein (Hip), Gli1, Gli3 and PDGFRα.METHODS: Expression of Shh in 25 colorectal adenocarcinomas was detected by RT-PCR, in situ hybridization and immunohistochemistry. Expression of Ptchl was observed by in situ hybridization and immunohistochemistry. Expression of Hip, Glil, Gli3 and PDGFRa was analyzed by in situ hybridization.RESULTS: Expression of cytokeratin AE1/AE3 was observed in the cytoplasm of colorectal crypts. Members of the Hh signaling pathway were expressed in colorectal epithelium. Shh was expressed in cytoplasm of dysplastic epithelial cells, while expression of Ptchl, Hip and Glil were mainly detected in the malignant crypts of adenocarcinomas. In contrast, PDGFRa was expressed highly in aberrant crypts and moderately in the stroma. Expression of Gli3 could not be detected in colorectal adenocarcinomas.CONCLUSION: These data suggest that Shh-Ptchl-Gli1 signaling pathway may play a role in the progression of colorectal tumor.

  13. Targeting hedgehog signaling in cancer: research and clinical developments

    Directory of Open Access Journals (Sweden)

    Xie J

    2013-10-01

    Full Text Available Jingwu Xie, Christopher M Bartels, Scott W Barton, Dongsheng GuWells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN, USAAbstract: Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus in 1980, hedgehog (Hh signaling has been implicated in regulation of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of Gorlin syndrome in 1996 by two independent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we will summarize major advances in the last 3 years in our understanding of Hh signaling activation in human cancer, and recent developments in preclinical and clinical studies using Hh signaling inhibitors.Keywords: hedgehog, smoothened, PTCH1, cancer, signal transduction, clinical trials, animal model

  14. Yin-Yang strands of PCAF/Hedgehog axis in cancer control.

    Science.gov (United States)

    Infante, Paola; Canettieri, Gianluca; Gulino, Alberto; Di Marcotullio, Lucia

    2014-08-01

    PCAF (p300/CBP associated factor) harbors acetyltransferase and a recently identified ubiquitylation activity that regulates gene expression in response to genotoxic stress or mitogenic signals. We highlight the dual role of PCAF in the control of Hedgehog signaling, a master regulator of tissue development, stemness, and tumorigenesis. By promoting histone acetylation at Hedgehog/GLI1 target gene promoters or direct ubiquitylation and proteolysis of GLI1, the PCAF/GLI1 axis stands as a promising therapeutic target for Hedgehog-dependent tumors.

  15. Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals

    Science.gov (United States)

    Kumari, Veena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eaton, Suzanne

    2013-01-01

    Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses. PMID:23554573

  16. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling

    Science.gov (United States)

    Das, Shamik; Jackson, William P.; Prasain, Jeevan K.; Hanna, Ann; Bailey, Sarah K.; Tucker, J. Allan; Bae, Sejong; Wilson, Landon S.; Samant, Rajeev S.; Barnes, Stephen; Shevde, Lalita A.

    2017-01-01

    The tumor suppressor protein Merlin is proteasomally degraded in breast cancer. We undertook an untargeted metabolomics approach to discern the global metabolomics profile impacted by Merlin in breast cancer cells. We discerned specific changes in glutathione metabolites that uncovered novel facets of Merlin in impacting the cancer cell metabolome. Concordantly, Merlin loss increased oxidative stress causing aberrant activation of Hedgehog signaling. Abrogation of GLI-mediated transcription activity compromised the aggressive phenotype of Merlin-deficient cells indicating a clear dependence of cells on Hedgehog signaling. In breast tumor tissues, GLI1 expression enhanced tissue identification and discriminatory power of Merlin, cumulatively presenting a powerful substantiation of the relationship between these two proteins. We have uncovered, for the first time, details of the tumor cell metabolomic portrait modulated by Merlin, leading to activation of Hedgehog signaling. Importantly, inhibition of Hedgehog signaling offers an avenue to target the vulnerability of tumor cells with loss of Merlin. PMID:28112165

  17. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy

    National Research Council Canada - National Science Library

    Kinglun Kingston Mak; Henry M. Kronenberg; Pao-Tien Chuang; Susan Mackem; Yingzi Yang

    2008-01-01

    .... Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression...

  18. Hedgehog pathway does not play a role in hidradenitis suppurativa pathogenesis

    DEFF Research Database (Denmark)

    Mozeika, E.; Jemec, G.B.E.; Nürnberg, B.M.

    2011-01-01

    Hidradenitis suppurativa is a chronically relapsing skin disorder with onset after puberty and is characterized by inflammatory lesions in hair follicle and apocrine sweat gland-bearing skin that manifests as abscesses with formation of cysts and sinus tracts. Hedgehog family genes are required...... in normal embryonic skin, hair follicle, sebaceous and sweat gland development. Mutations of hedgehog pathway in adult skin have previously been found in basal cell carcinomas and in alopecia as well as in epidermal cysts and in odontogenic keratocysts. Therefore, we suggested that the hedgehog pathway...... might play a role in formation of sinus tracts and cysts as newly formed structures in hidradenitis suppurativa patients. None of the sinus tracts or cysts in 81 hidradenitis suppurativa histological slides from 34 patients showed positive finding for sonic hedgehog mutation. According to our findings...

  19. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    Science.gov (United States)

    2007-02-01

    HCV replicon , we detected an additional increase in the sonic hedgehog promoter activity, suggesting that HCV somehow activates the sonic hedgehog...are derived from Huh7 cells, containing HCV replicons . The Shh promoter activity in Huh7 and HepG2 cells is consistent with the level of Shh...transcript (see Figure 2E for comparison). In the presence of HCV replicons , we observed an increase in the Shh reporter activity. We concluded from

  20. The European hedgehog (Erinaceus europaeus), as a reservoir for helminth parasites in Iran

    OpenAIRE

    Naem, Soraya; Pourreza, Behzad; Gorgani-Firouzjaee, Tahmineh

    2015-01-01

    From April 2009 to December 2011, 44 dead hedgehogs (Erinaceus europaeus) were collected incidentally from areas of Urmia, Iran. The overall prevalence of helminth infections was 95.0%. Specific parasites and their prevalences were: Physaloptera clausa (93.0%), Crenosoma striatum (61.0%), Capillaria aerophila (9.0%), Capillarias spp. (4.0%), Brachylaemus erinacei (2.0%) and Hymenolepis erinacei (16.0%). There were no significant differences in helminth occurrence between hedgehog sexes, eithe...

  1. The anatomy and histology of the atrioventricular conducting system in the hedgehog (Hemiechinus auritus) heart

    OpenAIRE

    NABIPOUR, Abolghasem

    2010-01-01

    This study examined the atrioventricular conducting system in 4 adult male hedgehogs (Hemiechinus auritus). The histological structure of these components was studied using routine histological methods. The AVN was located at the lower and anterior part of the interatrial septum, near the root of the aorta. It was almost oval and consisted of twisted cells. Internodal pathways in the hedgehog heart were not observed, but there were numerous purkinje-like fibers within the myocardium of the at...

  2. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis

    Science.gov (United States)

    Yu, Jeffrey C.; Fox, Zachary D.B.; Crimp, James L.; Littleford, Hana E.; Jowdry, Andrea L.; Jackman, William R.

    2015-01-01

    Background Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. Results We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. Conclusions We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. PMID:25645398

  3. Ticks and Fleas Infestation on East Hedgehogs (Erinaceus concolor in Van Province, Eastern Region of Turkey

    Directory of Open Access Journals (Sweden)

    Yaşar Goz

    2015-10-01

    Full Text Available Background: Ixodid ticks (Acari: İxodidae and fleas (Siphonaptera are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor with ticks and fleas in Van Province, eastern region of Turkey.Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer.Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively.Conclusion: We detected ticks (R. turanicus and fleas (A. erinacei in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. 

  4. Ticks of four-toed elephant shrews and Southern African hedgehogs

    Directory of Open Access Journals (Sweden)

    Ivan G. Horak

    2011-02-01

    Full Text Available Several studies on ticks infesting small mammals, including elephant shrews, have been conducted in South Africa; however, these studies have included only a single four-toed elephant shrew and no hedgehogs. This study thus aimed to identify and quantify the ixodid ticks infesting four-toed elephant shrews and Southern African hedgehogs. Four-toed elephant shrews (Petrodromus tetradactylus were trapped in dense shrub undergrowth in a nature reserve in north-eastern KwaZulu-Natal. They were separately housed, first in cages and later in glass terraria fitted with wire-mesh bases to allow detached ticks to fall through for collection. Southern African hedgehogs (Atelerix frontalis were hand caught on a farm in the eastern region of the Northern Cape Province and all visible ticks were collected by means of tweezers while the animals were anaesthetised. The ticks from each animal were preserved separately in 70% ethanol for later identification and counting. The immature stages of five ixodid tick species were collected from the elephant shrews, of which Rhipicephalus muehlensi was the most common. It has not been recorded previously on any species of elephant shrew. Three ixodid tick species were collected from the hedgehogs. Large numbers of adult Haemaphysalis colesbergensis, which has not been encountered previously on hedgehogs, were collected from these animals. Four-toed elephant shrews are good hosts of the larvae and nymphs of R. muehlensi, and Southern African hedgehogs are good hosts of adult H. colesbergensis.

  5. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis.

    Science.gov (United States)

    Stopper, Geffrey F; Richards-Hrdlicka, Kathryn L; Wagner, Günter P

    2016-03-01

    The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.

  6. Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors.

    Science.gov (United States)

    Locker, Morgane; Agathocleous, Michalis; Amato, Marcos A; Parain, Karine; Harris, William A; Perron, Muriel

    2006-11-01

    Hedgehog signaling has been linked to cell proliferation in a variety of systems; however, its effects on the cell cycle have not been closely studied. In the vertebrate retina, Hedgehog's effects are controversial, with some reports emphasizing increased proliferation and others pointing to a role in cell cycle exit. Here we demonstrate a novel role for Hedgehog signaling in speeding up the cell cycle in the developing retina by reducing the length of G1 and G2 phases. These fast cycling cells tend to exit the cell cycle early. Conversely, retinal progenitors with blocked Hedgehog signaling cycle more slowly, with longer G1 and G2 phases, and remain in the cell cycle longer. Hedgehog may modulate cell cycle kinetics through activation of the key cell cycle activators cyclin D1, cyclin A2, cyclin B1, and cdc25C. These findings support a role for Hedgehog in regulating the conversion from slow cycling stem cells to fast cycling transient amplifying progenitors that are closer to cell cycle exit.

  7. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis.

    Science.gov (United States)

    Yu, Jeffrey C; Fox, Zachary D; Crimp, James L; Littleford, Hana E; Jowdry, Andrea L; Jackman, William R

    2015-04-01

    Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation, we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. © 2015 Wiley Periodicals, Inc.

  8. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    Science.gov (United States)

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  9. Sonic hedgehog expression during early tooth development in Suncus murinus.

    Science.gov (United States)

    Miyado, Mami; Ogi, Hidenao; Yamada, Gen; Kitoh, Junzo; Jogahara, Takamichi; Oda, Sen-Ichi; Sato, Iwao; Miyado, Kenji; Sunohara, Masataka

    2007-11-16

    Tooth development is a highly organized process characterized by reciprocal interactions between epithelium and mesenchyme. However, the expression patterns and functions of molecules involved in mouse tooth development are unclear from the viewpoint of explaining human dental malformations and anomalies. Here, we show the expression of sonic hedgehog (Shh), a potent initiator of morphogenesis, during the early stages of tooth development in Suncus murinus. Initially, symmetrical, elongated expression of suncus Shh (sShh) was observed in the thin layer of dental epithelial cells along the mesial-distal axis of both jaws. As the dental epithelium continued to develop, sShh was strictly restricted to the predicted leading parts of the growing, invaginating epithelium corresponding to tooth primordia and enamel knots. We propose that some aspects of Shh function in tooth development are widely conserved in mammalian phylogeny.

  10. Sonic Hedgehog Signaling and Development of the Dentition

    Directory of Open Access Journals (Sweden)

    Maisa Seppala

    2017-05-01

    Full Text Available Sonic hedgehog (Shh is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.

  11. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial

    OpenAIRE

    2011-01-01

    Abstract Background Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the ta...

  12. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    Science.gov (United States)

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib.

  13. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia.

    Science.gov (United States)

    Chaklader, Malay; Law, Sujata

    2015-03-01

    Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

  14. Hedgehog pathway as a drug target: Smoothened inhibitors in development

    Directory of Open Access Journals (Sweden)

    Lin TL

    2012-03-01

    Full Text Available Tara L Lin1, William Matsui21Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas, Kansas City, MO, USA; 2Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Emerging laboratory and clinical investigations demonstrate that Hedgehog signaling (Hh represents a novel therapeutic target in various human cancers. This conserved signaling pathway precisely regulates self-renewal and terminal differentiation in embryonic development, but is typically silenced in adult tissues, with reactivation usually only during tissue repair. Aberrant Hh pathway signaling has been implicated in the pathogenesis, self-renewal, and chemotherapy resistance of a growing number of solid and hematologic malignancies. Major components of the Hh pathway include the Hh ligands (Sonic, Desert, and Indian, the transmembrane receptor Patched, the signal transducer Smoothened (Smo, and transcription factors Gli1–3 which regulate the transcription of Hh target genes. Mutations in Hh pathway genes, increased Hh signaling in tumor stroma, and Hh overexpression in self-renewing cells (cancer stem cells have been described, and these different modes of Hh signaling have implications for the design of Hh pathway inhibitors and their integration into conventional treatment regimens. Discovery of a naturally-occurring Smo inhibitor, cyclopamine, and the identification of Hh pathway mutations and over expression in cancer cells prompted the development of several cyclopamine derivatives. Encouraging laboratory and in vivo data has resulted in Phase I and II clinical trials of Smo inhibitors. In this review, we will discuss the current understanding of Hh pathway signaling in malignancy and Smo antagonists in development. Recent data with these agents shows that they are well-tolerated and may be effective for subsets of patients. Challenges remain

  15. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  16. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle

    Directory of Open Access Journals (Sweden)

    Bildsoe Heidi

    2004-07-01

    Full Text Available Abstract Background Secreted Hedgehog (Hh signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known. Results We show that Sonic hedgehog (Shh can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis. Conclusions Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for

  17. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  18. Mutations in Hedgehog acyltransferase (Hhat perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects.

    Directory of Open Access Journals (Sweden)

    Jennifer F Dennis

    Full Text Available Holoprosencephaly (HPE is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17% cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized that a graded series of facial anomalies occurs within the clinical spectrum of HPE, as HPE is often found in patients together with other malformations such as acrania, anencephaly, and agnathia. However, it is not known if these phenotypes arise through a common etiology and pathogenesis. Here we demonstrate for the first time using mouse models that Hedgehog acyltransferase (Hhat loss-of-function leads to holoprosencephaly together with acrania and agnathia, which mimics the severe condition observed in humans. Hhat is required for post-translational palmitoylation of Hedgehog (Hh proteins; and, in the absence of Hhat, Hh secretion from producing cells is diminished. We show through downregulation of the Hh receptor Ptch1 that loss of Hhat perturbs long-range Hh signaling, which in turn disrupts Fgf, Bmp and Erk signaling. Collectively, this leads to abnormal patterning and extensive apoptosis within the craniofacial primordial, together with defects in cartilage and bone differentiation. Therefore our work shows that Hhat loss-of-function underscrores HPE; but more importantly it provides a mechanism for the co-occurrence of acrania, holoprosencephaly, and agnathia. Future genetic studies should include HHAT as a potential candidate in the etiology and pathogenesis of HPE and its associated disorders.

  19. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Directory of Open Access Journals (Sweden)

    Stock David W

    2010-11-01

    Full Text Available Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  20. Hedgehog signaling is required at multiple stages of zebrafish tooth development.

    Science.gov (United States)

    Jackman, William R; Yoo, James J; Stock, David W

    2010-11-30

    The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  1. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Science.gov (United States)

    2010-01-01

    Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution. PMID:21118524

  2. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise

    2015-01-01

    of Hedgehog signalling, including Smoothened, Patched-1, and GLI2, which are involved in regulating Leydig cell differentiation. Stimulation of Hedgehog signalling increases the localization of Smoothened to the cilium, which is followed by transactivation of the Hedgehog target genes, Gli1 and Ptch1. Our...... findings provide new information on the spatiotemporal formation of primary cilia in the testis and show that primary cilia in immature Leydig cells mediate Hedgehog signalling....

  3. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  4. Role of the Drosophila non-visual ß-arrestin kurtz in hedgehog signalling.

    Directory of Open Access Journals (Sweden)

    Cristina Molnar

    2011-03-01

    Full Text Available The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms.

  5. Prognostic value of hedgehog signaling pathway in patients with colon cancer.

    Science.gov (United States)

    Xu, Meihua; Li, Xinhua; Liu, Ting; Leng, Aimin; Zhang, Guiying

    2012-06-01

    Hedgehog signaling pathway plays an important role in normal mammalian gastrointestinal development and is implicated in the oncogenesis of various tumors. However, its correlation with progression and prognosis of colon cancer has not been well documented. This study was designed to investigate expression patterns of related proteins in hedgehog signaling pathway in colon cancer to elucidate its prognostic value in this tumor. Using human colon cancer and their corresponding non-diseased colon from 228 patients' biopsies, the expression of sonic hedgehog, its receptor Patched, and downstream transcription factor Gli1 was investigated by immunohistochemical staining to assess their association with the clinicopathological characteristics of colon cancer. Disease-free survival and overall survival were examined by Kaplan-Meier estimates and the log-rank test. Prognostic factors were determined by multivariate Cox analysis. One hundred and thirty-eight patients (59.6%) had sonic hedgehog-positive tumors and that the disease-free survival (43.5 vs. 73.3%, P colon cancer (50.0 vs. 89.3%, P colon cancer. This is the first report describing about the relationship between hedgehog signaling pathway and the prognosis of colon cancer.

  6. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus)

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Claire V., E-mail: claire.dowding@naturalengland.org.u [School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG (United Kingdom); Shore, Richard F.; Worgan, Andrew [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Baker, Philip J.; Harris, Stephen [School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG (United Kingdom)

    2010-01-15

    Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low-level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques. - Exposure of insectivorous hedgehogs to anticoagulant rodenticides in Britain is similar to predatory birds and mammals that specialise in eating small mammals, and hitherto exposure levels have been under-estimated using HPLC techniques.

  7. Gravitational field of a hedgehog and the evolution of vacuum bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, E.I. (Department of Nuclear Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)); Rabinowitz, A. (Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel))

    1991-11-15

    The gravitational field produced by a spherically symmetric hedgehog'' configuration in scalar field theories with global SO(3) symmetry (or higher) is studied in the limit in which these models become nonlinear {sigma} models. The same gravitational effect can be generated by a set of cosmic strings intersecting at a point, in the limit that one considers a continuous distribution of such intersecting strings in a spherically symmetric configuration (to be referred to as the string hedgehog''). When the energy densities associated with the hedgehog are small, we obtain a static geometry, but for higher values, the resulting geometry is that of an anisotropic cosmology. The evolution of bubbles joining two phases, one of which contains a hedgehog (as defined above) is investigated. The role of such configurations in processes that lead to classical false-vacuum destabilization and in the evolution of inflationary bubbles is discussed. The generalization of our results to the gauged case, i.e., to magnetic-monopole hedgehogs, is discussed.

  8. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion

    Science.gov (United States)

    Nochioka, Katsunori; Okuda, Hiroaki; Tatsumi, Kouko; Morita, Shoko; Ogata, Nahoko; Wanaka, Akio

    2016-01-01

    Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration. PMID:27239075

  9. Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation.

    Science.gov (United States)

    Borday, Caroline; Cabochette, Pauline; Parain, Karine; Mazurier, Nicolas; Janssens, Sylvie; Tran, Hong Thi; Sekkali, Belaïd; Bronchain, Odile; Vleminckx, Kris; Locker, Morgane; Perron, Muriel

    2012-10-01

    Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/β-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.

  10. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    Science.gov (United States)

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis.

  11. Expression and clinical significance of the genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor of the jaw bones

    Institute of Scientific and Technical Information of China (English)

    Kong Li; Yuan Rong-tao; Jia Mu-yun; Wang Ke; Wang Bingchao; Yang Yinhui

    2015-01-01

    PURPOSE It was to study the role of genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor (KCOT)of the jaw bones.METHODS Fresh specimens of sporadic KCOT and the same patient 's normal oral mucosa were obtained.Then RNA was extracted.Gene chip was used to detect the genes of Hedgehog signaling pathway.RESULTS Com-pared to normal oral mucosa,there were five genes of Hedgehog signaling pathway in KCOT changed,including PRKX ,WNT5a,PTCH1 up -regulated.CONCLUSION There were abnormal ex-pressions of genes of Hedgehog pathway in sporadicKCOT.Genes of Hedgehog pathway played roles in sporadic KCOT.

  12. [The Cytoskelrtal Protein Zvxin Interacts with the Hedgehog Receptor Patched].

    Science.gov (United States)

    Martynova, N U; Ermolina, L V; Eroshkin, F M; Zarayskiy, A G

    2015-01-01

    Earlier, we demonstrated Zyxin influence upon Hedgehog (Hh)-signaling pathway during early patterning of the central neural system (CNS) anlage of the Xenopus laevis embryo. Now we show that Zyxin can physically interact with the transmembrane receptor of Hh, Patched2 (Ptc2). Binding of Hh by this receptor activates signaling pathway, which regulates many events, including numerous types of cell differentiation during the embryonic development. In particular, patterning of the CNS anlage. The ability of Zyxin to interact with Ptc2 have been confirmed by immunoprecipitation experiments, in which we tested mutual binding affinity of Zyxin and Ptc2, as well as mutual affinity of their deletion mutants. As a result, we have established that in Xenopus levis, Zyxin binding to Ptc2 is due to the interaction of Zyxin 2nd LIM-domain (530-590 aa) with the under-membrane region of the cytoplasmic C-terminus of Ptc2 (1159-1412 aa). We have also demonstrated that similar interaction is valid for the homologous regions of the human Zyxin and human Hh receptor, Ptc1. The data obtained allow to hypothesize existence of evolutionary conserved mechanism that modulates Hh-signaling and based on the interaction of Zyxin with Ptc.

  13. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor

    Science.gov (United States)

    Larsen, Andrew R.; Bai, Ren-Yuan; Chung, Jon H.; Borodovsky, Alexandra; Rudin, Charles M.; Riggins, Gregory J.; Bunz, Fred

    2014-01-01

    The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here we show that mebendazole (MBZ), a benzamidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, MBZ avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, MBZ suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by MBZ was unaffected by mutants in the gene that encodes the Hh pathway signaling protein SMO, which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and MBZ resulted in additive Hh signaling inhibition. Because MBZ can be safely administered to adults and children at high doses over extended time periods, we propose that MBZ could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling. PMID:25376612

  14. Sonic Hedgehog signaling pathway in primary liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lian-Yi Guo; Pei Liu; Ying Wen; Wei Cui; Ying Zhou

    2014-01-01

    Objective:To investigate clinical significance ofSonicHedgehog(SHH) signaling pathway molecularShh,Smo andGli2 in primary hepatocellular carcinoma(HCC) tissue.Methods:A total of30HCC tissue samples were collected.Protein expression ofSHH signaling pathway moleculesShh,Smo andGli2 inHCC tissues and para - carcinoma tissue were detected by using immunohistochemical method.Cirrhosis and normal liver tissue specimens were observed as control to analyze the expression ofSHH signaling pathway molecularShh,Smo andGli2 mRNA inHCC tissues and corresponding para-carcinoma tissues and its relationship with the onset of HCC.Results:There was no expression ofShh,Smo andGli2 protein in normal liver tissue, while their positive rates were63.3%,76.7% and66.7% inHCC tissues, respectively, with asignificantly higher expression level than that in the para - carcinoma tissue(P0.05);Shh andSmo protein was detected in part of cirrhosis with positive expression, butGli2 protein was not observable in cirrhosis tissues.Conclusions:InHCC tissues, the high expression level ofSHH signaling pathway molecules signal peptide(Shh), membrane protein receiptor(Smo) and nuclear transcription molecular(Gli2) can be indicators of the onset of liver cancer.

  15. Ontogenetic expression of Sonic Hedgehog in the chicken subpallium

    Directory of Open Access Journals (Sweden)

    Sylvia M Bardet

    2010-07-01

    Full Text Available Sonic hedgehog (SHH is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS, somites and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatio-temporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1 and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.

  16. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation.

    Science.gov (United States)

    Wang, Li-Chun; Almazan, Guillermina

    2016-12-01

    During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.

  17. Influenza NS1 directly modulates Hedgehog signaling during infection.

    Directory of Open Access Journals (Sweden)

    Margery G Smelkinson

    2017-08-01

    Full Text Available The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.

  18. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  19. Stromal response to Hedgehog signaling restrains pancreatic cancer progression.

    Science.gov (United States)

    Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A

    2014-07-29

    Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.

  20. Hedgehog pathway activity in the LADY prostate tumor model

    Directory of Open Access Journals (Sweden)

    Kasper Susan

    2007-03-01

    Full Text Available Abstract Background Robust Hedgehog (Hh signaling has been implicated as a common feature of human prostate cancer and an important stimulus of tumor growth. The role of Hh signaling has been studied in several xenograft tumor models, however, the role of Hh in tumor development in a transgenic prostate cancer model has never been examined. Results We analyzed expression of Hh pathway components and conserved Hh target genes along with progenitor cell markers and selected markers of epithelial differentiation during tumor development in the LADY transgenic mouse model. Tumor development was associated with a selective increase in Ihh expression. In contrast Shh expression was decreased. Expression of the Hh target Patched (Ptc was significantly decreased while Gli1 expression was not significantly altered. A survey of other relevant genes revealed significant increases in expression of Notch-1 and Nestin together with decreased expression of HNF3a/FoxA1, NPDC-1 and probasin. Conclusion Our study shows no evidence for a generalized increase in Hh signaling during tumor development in the LADY mouse. It does reveal a selective increase in Ihh expression that is associated with increased expression of progenitor cell markers and decreased expression of terminal differentiation markers. These data suggest that Ihh expression may be a feature of a progenitor cell population that is involved in tumor development.

  1. Implications of hedgehog signaling antagonists for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jingwu Xie

    2008-01-01

    The hedgehog(Hh)pathway,initially discovered inDrosophila by two Nobel laureates,Dr.Eric Wieschaus and Dr.Christiane Nusslein-Volhard,is a major regulator for cell differentiation,tissue polarity and cell proliferation.Studies from many laboratories,including ours,reveal activation of this pathway in most basal cell carcinomas and in approximately 30% of extracutaneous human cancers,including medulloblastomas,gastrointestinal,lung,breast and prostate cancers.Thus,it is believed that targeted inhibition of Hh signaling may be effective in treating and preventing many types of human cancers.Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway,which have significant clinical implications in novel cancer therapeutics.This review discusses the major advances in the current understanding of Hh signaling activation in different types of human cancers,the molecular basis of Hh signaling activation,the major antagonists for Hh signaling inhibition and their potential clinical application in human cancer therapy.

  2. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  3. Prognostic value of hedgehog signal component expressions in hepatoblastoma patients

    Directory of Open Access Journals (Sweden)

    Li Ying-Cun

    2010-11-01

    Full Text Available Abstract Objective Activation of hedgehog (Hh pathway has been implicated in the development of human malignancies. Hh as well as related downstream target genes has been extensively studied in many kinds of malignant tumours for clinical diagnostic or prognostic utilities. This study aimed at investigating whether Hh molecules provides a molecular marker of hepatoblastoma malignancy. Methods We obtained tissue sections from 32 patients with hepatoblastoma as well as cholestasis and normal control. Immunohistochemical analysis were performed to determine Hh signal components in human hepatoblastoma. The prognostic significance of single expression of Hh signal components were evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis for statistical analysis. Results Expression of Hh signal components showed an increase in hepatoblastoma compared with chole stasis and normal tissues. There was a positive correlation between Smo or Gli1 expression and tumor clinicopathological features, such as histological type, tumor grade, tumor size and clinical stage. Both Smo or Gli1 protein high expression was significantly associated with poor prognosis by univariate analyses and multivariate analyses. Conclusions Abnormal Hh signaling activation plays important roles in the malignant potential of hepatoblastoma. Gli1 expression is an independent prognostic marker.

  4. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  5. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  6. Acylthiourea, acylurea, and acylguanidine derivatives with potent hedgehog inhibiting activity.

    Science.gov (United States)

    Solinas, Antonio; Faure, Hélène; Roudaut, Hermine; Traiffort, Elisabeth; Schoenfelder, Angèle; Mann, André; Manetti, Fabrizio; Taddei, Maurizio; Ruat, Martial

    2012-02-23

    The Smoothened (Smo) receptor is the major transducer of the Hedgehog (Hh) signaling pathway. On the basis of the structure of the acylthiourea Smo antagonist (MRT-10), a number of different series of analogous compounds were prepared by ligand-based structural optimization. The acylthioureas, originally identified as actives, were converted into the corresponding acylureas or acylguanidines. In each series, similar structural trends delivered potent compounds with IC(50) values in the nanomolar range with respect to the inhibition of the Hh signaling pathway in various cell-based assays and of BODIPY-cyclopamine binding to human Smo. The similarity of their biological activities, in spite of discrete structural differences, may reveal the existence of hydrogen-bonding interactions between the ligands and the receptor pocket. Biological potency of compounds 61, 72, and 86 (MRT-83) were comparable to those of the clinical candidate GDC-0449. These findings suggest that these original molecules will help delineate Smo and Hh functions and can be developed as potential anticancer agents.

  7. Sonic hedgehog in oral squamous cell carcinoma: An immunohistochemical study

    Science.gov (United States)

    Srinath, Sahana; Iyengar, Asha R; Mysorekar, Vijaya

    2016-01-01

    Background: Recent studies have revealed the involvement of hedgehog (Hh) signaling component in proliferation and invasive behavior of many carcinomas. Aim: This study aims to identify the expression of sonic Hh (SHH) protein of SHH pathway in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC) using SHH (H-160) (Santa Cruz, sc-9042) which could have therapeutic implication in future. Materials and Methods: A total of 250 cases comprising 50 normal oral mucosa, 50 cases of oral epithelial dysplasia, 50 well, 50 moderate and 50 poorly differentiated OSCCs were included in the study. Immunohistochemical evaluation of SHH protein expression was conducted using monoclonal antibody. Interpretation of the expression was done by immunoreactive score of Remmele and Stegner (IRS) scoring method. Statistical Analysis: Chi-Square test was used to analyze the results. Results: The study showed that SHH signaling molecules are highly expressed in OSCC, and their expression was mainly in the cytoplasm of epithelial cells. Conclusion: The SHH signaling component is associated with the pathological parameter in OSCC and oral epithelial dysplasia. PMID:27721600

  8. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  9. Decoding the phosphorylation code in Hedgehog signal transduction

    Institute of Scientific and Technical Information of China (English)

    Yongbin Chen; Jin Jiang

    2013-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis,and its deregulation leads to numerous human disorders including cancer.Binding of Hh to Patched (Ptc),a twelve-transmembrane protein,alleviates its inhibition of Smoothened (Smo),a seven-transmembrane protein related to G-proteincoupled receptors (GPCRs),leading to Smo phosphorylation and activation.Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a fulllength activator,leading to derepression/activation of Hh target genes.Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli,and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities.In this review,we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction,and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.

  10. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis.

    Directory of Open Access Journals (Sweden)

    Vanina G Da Ros

    Full Text Available Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer.

  11. Streptococcus pyogenes Infection in a Free-Living European Hedgehog (Erinaceus europaeus).

    Science.gov (United States)

    Franklinos, Lydia H V; Efstratiou, Androulla; Macgregor, Shaheed K; John, Shinto K; Hopkins, Timothy; Cunningham, Andrew A; Lawson, Becki

    2015-12-01

    Streptococcus pyogenes, a common pathogen of humans, was isolated from the carcass of a free-living European hedgehog (Erinaceus europaeus) found in northern England in June 2014. The animal had abscessation of the deep right cervical lymph node, mesenteric lymph nodes and liver. The S. pyogenes strain isolated from the lesions, peritoneal and pleural cavities was characterised as emm 28, which can be associated with invasive disease in humans. This is the first known report of S. pyogenes in a hedgehog and in any free-living wild animal that has been confirmed by gene sequencing. As close associations between wild hedgehogs and people in England are common, we hypothesise that this case might have resulted from anthroponotic infection.

  12. Histopathologic study of eosinophilic bronchointerstitial pneumonia caused by Crenosoma striatum in the hedgehog.

    Science.gov (United States)

    Hoseini, Seyed Mohammad; Youssefi, Mohammad Reza; Mousapour, Aliasghar; Dozouri, Rohollah; Eshkevari, Shahab Ramezanpour; Nikzad, Mohammad; Nikzad, Reza; Omidzahir, Shila

    2014-06-01

    Crenosoma striatum is a species of parasitic nematodes from the family Crenosomatidae responsible for pathologic lung lesions in the hedgehog (Erinaceus europaeus). Infection with C. striatum can cause weight loss, dry cough, and bronchitis. In the present study, hedgehogs killed by road accidents, or trapped and found dead on farms in different parts of Mazandaran province (Iran), were transferred to the laboratory. After dissection, parasite samples collected from the lung were placed into 70% alcohol. After clarification with lactophenol and subsequent staining, the nematodes were identified as C. striatum according to previously published guidelines. For histopathologic examination, lung samples were collected. The tissues were fixed and following routine processing, sections were stained with hematoxylin and eosin. Microscopic diagnoses included hyperemia, eosinophilic bronchointerstitial pneumonia, thickening of the interstitium, and eosinophilic microabscesses in bronchial airways. Eosinophilic pneumonia was characterized by eosinophil and other mononuclear leukocyte infiltration within the lung interstitium. Crenosoma striatum can lead to mortality in hedgehogs.

  13. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter.

    Directory of Open Access Journals (Sweden)

    John K Mich

    Full Text Available The Hedgehog (Hh pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.

  14. Hedgehog信号通路与骨发育%Hedgehog signaling pathway and bone development

    Institute of Scientific and Technical Information of China (English)

    邹沙沙; 胡洪亮

    2011-01-01

    背景:Hedgehog作为骨发育中一种重要调控因子,近几年其在骨生长中作用机制的研究备受关注.目的:介绍Hedgehog在软骨组织和骨组织发育中的作用机制及其与骨疾病的关系,从而分析Hedgehog信号通路与骨发育的研究现状及发展趋势.方法:应用计算机检索中国期刊全文数据库和PubMed 数据库,以"Hedgehog,骨发育,间充质干细胞,软骨,成骨,骨缺陷"和"Hedgehog,bone development,mesenchymal stem cells,cartilage,osteogenesis,bone defects"为检索词.最终共纳入31篇文献进行综述.结果与结论:Hedgehog信号与骨发育各阶段密切相关,包括间充质细胞向骨细胞分化,软骨组织和骨组织形成等各方面.其信号通路传导异常会导致各种骨畸形或骨缺陷.但是Hedgehog信号在骨发育中的详细作用机制体系尚未完善,相关动物实验技术尚未成熟,国内外尚未出现相关临床实验.由于Hedgehog即参与骨发育,又参与某些胚胎组织的血管重新形成和成年哺乳动物的血管发生,因而有望在修复骨缺损的同时解决骨组织工程血管化的问题.Hedgehog信号通路的研究在骨组织工程及临床基因干预治疗等领域有广阔的前景.%BACKGROUND: Hedgehog, as an important regulatory factor in bone growth, has been recently focused for its mechanism inbone growth.OBJECTIVE: To introduce the mechanisms of Hedgehog in cartilage and skeleton development and the relationship between thehedgehog signalling pathway and bone disease and to investigate the research progress in Hedgehog signalling pathway in bonedevelopment.METHODS: A computer-based online search in PubMed and CNKI database was performed using key words of “Hedgehog, bonedevelopment, mesenchymal stem cells, cartilage, osteogenesis, bone defects” in English and Chinese respecti vely. The publisheddates are limited between January 1994 and December 2010. Researches related to this review purpose were included

  15. Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus)

    DEFF Research Database (Denmark)

    Jones, Carolyn J P; Carter, A M; Allen, W R

    2016-01-01

    INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology and immunocyt......INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology...... glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION: New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures...

  16. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld

    2009-01-01

    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine......, an inhibitor of Smoothened, blocks hedgehog signaling in P19.CL6 cells, as well as differentiation of the cells into beating cardiomyocytes. E11.5 embryos of the Ift88(tm1Rpw) (Ift88-null) mice, which form no cilia, have ventricular dilation, decreased myocardial trabeculation and abnormal outflow tract...

  17. Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pillai-Kastoori

    2014-07-01

    Full Text Available Ocular coloboma is a sight-threatening malformation caused by failure of the choroid fissure to close during morphogenesis of the eye, and is frequently associated with additional anomalies, including microphthalmia and cataracts. Although Hedgehog signaling is known to play a critical role in choroid fissure closure, genetic regulation of this pathway remains poorly understood. Here, we show that the transcription factor Sox11 is required to maintain specific levels of Hedgehog signaling during ocular development. Sox11-deficient zebrafish embryos displayed delayed and abnormal lens formation, coloboma, and a specific reduction in rod photoreceptors, all of which could be rescued by treatment with the Hedgehog pathway inhibitor cyclopamine. We further demonstrate that the elevated Hedgehog signaling in Sox11-deficient zebrafish was caused by a large increase in shha transcription; indeed, suppressing Shha expression rescued the ocular phenotypes of sox11 morphants. Conversely, over-expression of sox11 induced cyclopia, a phenotype consistent with reduced levels of Sonic hedgehog. We screened DNA samples from 79 patients with microphthalmia, anophthalmia, or coloboma (MAC and identified two novel heterozygous SOX11 variants in individuals with coloboma. In contrast to wild type human SOX11 mRNA, mRNA containing either variant failed to rescue the lens and coloboma phenotypes of Sox11-deficient zebrafish, and both exhibited significantly reduced transactivation ability in a luciferase reporter assay. Moreover, decreased gene dosage from a segmental deletion encompassing the SOX11 locus resulted in microphthalmia and related ocular phenotypes. Therefore, our study reveals a novel role for Sox11 in controlling Hedgehog signaling, and suggests that SOX11 variants contribute to pediatric eye disorders.

  18. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions

    DEFF Research Database (Denmark)

    Chang, Shu-Chun; Mulloy, Barbara; Magee, Anthony I

    2011-01-01

    Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs......) for their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed...

  19. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer

    OpenAIRE

    Tao, Yajun; Mao, Jun; Zhang, Qingqing; Li, Lianhong

    2011-01-01

    The purpose of this study was to investigate the activation of Hedgehog (Hh) signaling molecules and its involvement in triple-negative breast cancer (TNBC). A total of 123 cases of paraffin blocks, including 83 cases of primary breast carcinoma, 30 cases of mammary hyperplasia and 10 cases of normal breast tissue, were immunohistochemically analyzed for Sonic Hedgehog (SHH), Patched-1 (PTCH1), Smoothened (SMO) and glioma-associated oncogene homoglog 1 (GLI1) expression. The expression of SMO...

  20. Effects of salt stress on ion distribution in different Echinops gmelini organs%盐胁迫对砂蓝刺头不同器官中离子分布的影响

    Institute of Scientific and Technical Information of China (English)

    杨小菊; 赵昕; 石勇; 李新荣

    2013-01-01

    砂蓝刺头为广泛分布于北方沙漠的一年生草本植物.本研究以砂蓝刺头幼苗为试材,采用营养液培养法研究了不同浓度NaCl胁迫下(盐浓度分别为0,100,200,300,400 mmol/L)砂蓝刺头幼苗胁迫6d后植株含水量变化,测定不同器官中Na+、Cl-、Si4+、K+、Ca2+的含量,并分析了K+/Na+、Ca2+/Na+、Si4+/Na+值的变化.研究结果表明,盐胁迫下,砂蓝刺头幼苗含水量在盐处理浓度为100,200,300,400 mmol/L时分别比对照升高了9.86%,1.41%,4.23%,8.45%,说明盐胁迫下植株提高了组织含水量,这将在一定程度上稀释了体内盐离子,减弱盐胁迫造成的生理干旱.盐胁迫下砂蓝刺头根部的Na+和Cl-含量高于叶片,这有利于渗透调节,同时减弱了盐胁迫对地上部的毒害;根系Si4+”、K+、Ca2+的含量及K+/Na+、Ca2+/Na+、Si4+/Na+值比对照显著性下降,叶部Si4+、K+的含量和K+/Na+,Ca2+/Na+,Si4+/Na+值比对照有所增加或差异不显著,这有利于维持地上部分离子稳定.分析离子选择性吸收的SNa+,K+数据发现,盐胁迫下砂蓝刺头根部拦截了部分Na+减缓了对地上部分的伤害,叶片对K+吸收具有很好的选择性,对于维持地上部分离子平衡和正常的光合作用具有重要意义.%Echinops gmelini is an annual wild plant distributed in arid desert areas of North China.The changes of water content,Na+,Cl-,Si4+,K+,Ca2+ contents and the K+/Na+,Ca2+/Na+,Si4+/Na+ ratios were measured in E.gmelini seedlings in a water control and under different concentrations (100,200,300,400 mmol/L) of NaCl stress:the water contents were found to increase by 9.86%,1.41%,4.23%,and 8.45%,respectively.Therefore the ability to absorb water was enhanced under salt stress,resulting in dilution of the cell's salt ion concentration to reduce physiological drought caused by salt ions.Na+ and Cl-contents of roots were higher than those of leaves under salt stress,so the salt ion damage on the leaves was

  1. Potential role of Hedgehog pathway in liver response to radiation.

    Directory of Open Access Journals (Sweden)

    Sihyung Wang

    Full Text Available Radiation-induced fibrosis constitutes a major problem that is commonly observed in the patients undergoing radiotherapy; therefore, understanding its pathophysiological mechanism is important. The Hedgehog (Hh pathway induces the proliferation of progenitors and myofibroblastic hepatic stellate cells (MF-HSCs and promotes the epithelial-to-mesenchymal transition (EMT, thereby regulating the repair response in the damaged liver. We examined the response of normal liver to radiation injury. Male mice were sacrificed at 6 weeks and 10 weeks after exposure to a single dose of 6 Gy and the livers were collected for biochemical analysis. Irradiated (IR and control mice were compared for progenitors, fibrosis, Hh pathway, and EMT at 6 and 10 weeks post irradiation. Fatty hepatocytes were observed and the expressions of Hh ligand, Indian Hh. were greater in the livers at 6 weeks, whereas expression of another Hh ligand, Sonic Hh, increased at 10 weeks post irradiation. Both Smoothened, Hh receptor, and Gli2, Hh-target gene, were up-regulated at 6 and 10 weeks after irradiation. Accumulation of progenitors (CD44, Pan-cytokeratin, and Sox9 was significant in IR livers at 6 and 10 weeks. RNA analysis showed enhanced expression of the EMT-stimulating factor, tgf-β, in the IR livers at 6 weeks and the upregulation of mesenchymal markers (α-SMA, collagen, N-cadherin, and s100a4, but down-regulation of EMT inhibitors, in IR mouse livers at 6 and 10 weeks. Increased fibrosis was observed in IR mouse livers at 10 weeks. Treatment of mice with Hh inhibitor, GDC-0449, suppressed Hh activity and block the proliferation of hepatic progenitor and expression of EMT-stimulating genes in irradiated mice. Therefore, those results demonstrated that the Hh pathway increased in response to liver injury by radiation and promoted a compensatory proliferation of MF-HSCs and progenitors, thereby regulating liver remodeling.

  2. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation.

    Science.gov (United States)

    Gerardo Valadez, J; Grover, Vandana K; Carter, Melissa D; Calcutt, M Wade; Abiria, Sunday A; Lundberg, Christopher J; Williams, Thomas V; Cooper, Michael K

    2013-01-28

    The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.

  3. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. CONCLUSION/SIGNIFICANCE: Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway

  4. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc.

    Directory of Open Access Journals (Sweden)

    Marcos Nahmad

    2009-09-01

    Full Text Available Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh forms an extracellular gradient that organizes patterning along the anterior-posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial "overshoot" of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc. In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.

  5. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Bolaños, Alfredo Lozano; Milla, Criselda Mendoza; Lira, José Cisneros; Ramírez, Remedios; Checa, Marco; Barrera, Lourdes; García-Alvarez, Jorge; Carbajal, Verónica; Becerril, Carina; Gaxiola, Miguel; Pardo, Annie; Selman, Moisés

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology and uncertain pathogenic mechanisms. Recent studies indicate that the pathogenesis of the disease may involve the abnormal expression of certain developmental pathways. Here we evaluated the expression of Sonic Hedgehog (SHH), Patched-1, Smoothened, and transcription factors glioma-associated oncogene homolog (GLI)1 and GLI2 by RT-PCR, as well as their localization in IPF and normal lungs by immunohistochemistry. The effects of SHH on fibroblast proliferation, migration, collagen and fibronectin production, and apoptosis were analyzed by WST-1, Boyden chamber chemotaxis, RT-PCR, Sircol, and annexin V-propidium iodide binding assays, respectively. Our results showed that all the main components of the Sonic signaling pathway were overexpressed in IPF lungs. With the exception of Smoothened, they were also upregulated in IPF fibroblasts. SHH and GLI2 localized to epithelial cells, whereas Patched-1, Smoothened, and GLI1 were observed mainly in fibroblasts and inflammatory cells. No staining was detected in normal lungs. Recombinant SHH increased fibroblast proliferation (P < 0.05), collagen synthesis, (2.5 ± 0.2 vs. 4.5 ± 1.0 μg of collagen/ml; P < 0.05), fibronectin expression (2-3-fold over control), and migration (190.3 ± 12.4% over control, P < 0.05). No effect was observed on α-smooth muscle actin expression. SHH protected lung fibroblasts from TNF-α/IFN-γ/Fas-induced apoptosis (14.5 ± 3.2% vs. 37.3 ± 7.2%, P < 0.0001). This protection was accompanied by modifications in several apoptosis-related proteins, including increased expression of X-linked inhibitor of apoptosis. These findings indicate that the SHH pathway is activated in IPF lungs and that SHH may contribute to IPF pathogenesis by increasing the proliferation, migration, extracellular matrix production, and survival of fibroblasts.

  6. Tumor shrinkage by cyclopamine tartrate through inhibiting hedgehog signaling

    Institute of Scientific and Technical Information of China (English)

    Qipeng Fan; Arash Garrossian; Massoud Garrossian; Dale Gardner; Jingwu Xie; Dongsheng Gu; Miao He; Hailan Liu; Tao Sheng; Guorui Xie; Ching-xin Li; Xiaoli Zhang; Brandon Wainwright

    2011-01-01

    The link of hedgehog (Hh) signaling activation to human cancer and synthesis of a variety of Hh signaling inhibitors raise great expectation that inhibiting Hh signaling may be effective in human cancer treatment. Cyclopamine (Cyc), an alkaloid from the Veratrum plant, is a specific natural product inhibitor of the Hh pathway that acts by targeting smoothened (SMO) protein. However, its poor solubility, acid sensitivity, and weak potency relative to other Hh antagonists prevent the clinical development of Cyc as a therapeutic agent. Here, we report properties of cyclopamine tartrate salt (CycT) and its activities in Hh signaling-mediated cancer in vitro and in vivo. Unlike Cyc, CycT is water soluble (5-10 mg/mL). The median lethal dose (LD) of CycT was 62.5 mg/kg body weight compared to 43.5 mg/kg for Cyc, and the plasma half-life (T) of CycT was not significantly different from that of Cyc. We showed that CycT had a higher inhibitory activity for Hh signaling-dependent motor neuron differentiation than did Cyc (IC = 50nmol/L for CycT vs. 300 nmol/L for Cyc). We also tested the antitumor effectiveness of these Hh inhibitors using two mouse models of basal cell carcinomas (K14cre:Ptch1and K14cre:SmoM2). After topical application of CycT or Cyc daily for 21 days, we found that all CycT-treated mice had tumor shrinkage and decreased expression of Hh target genes. Taken together, we found that CycT is an effective inhibitor of Hh signaling-mediated carcinogenesis.

  7. 青岛文昌鱼hedgehog及两个hedgehog-like片段的克隆%CLONING OF HEDGEHOG GENE AND TWO HEDGEHOG-LIKE FRAGMENTS IN QINGDAO AMPHIOXUS

    Institute of Scientific and Technical Information of China (English)

    张燕君; 梁恺龙; 黄向炜; 张红卫

    2001-01-01

    采用RT-PCR方法获得了青岛文昌鱼2497bp长的hedgehog基因片段,其所编码的氨基酸序列与多种生物hh基因家族成员的相应片段显示了较高的同源性.同时获得2个含有部分hedgehog基因片段的序列hedgehog-like-1和hedgehog-like-2,提示文昌鱼中发生hedgehog基因倍增过程和有多拷贝hh基因存在的可能性.为研究hh基因的分子进化提供了线索.

  8. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    Science.gov (United States)

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  9. Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway.

    NARCIS (Netherlands)

    Koudijs, M.J.; den Broeder, M.J.; Groot, E.; van Eeden, F.

    2008-01-01

    BACKGROUND: Aberrant activation of the Hedgehog (Hh) signaling pathway in different organisms has shown the importance of this family of morphogens during development. Genetic screens in zebrafish have assigned specific roles for Hh in proliferation, differentiation and patterning, but mainly as a r

  10. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response.

    NARCIS (Netherlands)

    Sims-Mourtada, J.; Izzo, J.G.; Apisarnthanarax, S.; Wu, T.T.; Malhotra, U.; Luthra, R.; Liao, Z.; Komaki, R.; Kogel, A.J. van der; Ajani, J.; Chao, K.S.

    2006-01-01

    PURPOSE: Despite aggressive chemotherapy, radiotherapy, surgery, or combination approaches, the survival rate of patients with esophageal cancer remains poor. Recent studies have suggested that constitutive activation of the Hedgehog (Hh) pathway in cancers of the digestive tract may contribute to t

  11. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice

    NARCIS (Netherlands)

    Büller, Nikè V J A; Rosekrans, Sanne L.; Metcalfe, Ciara; Heijmans, Jarom; Van Dop, Willemijn A.; Fessler, Evelyn; Jansen, Marnix; Ahn, Christina; Vermeulen, Jacqueline L M; Westendorp, B. Florien; Robanus-Maandag, Els C.; Offerhaus, G. Johan; Medema, Jan Paul; D'Haens, Geert R A M; Wildenberg, Manon E.; De Sauvage, Frederic J.; Muncan, Vanesa; Van Den Brink, Gijs R.

    2015-01-01

    BACKGROUND & AIMS: Indian hedgehog (IHH) is an epithelial-derived signal in the intestinal stroma, inducing factors that restrict epithelial proliferation and suppress activation of the immune system. In addition to these rapid effects of IHH signaling, IHH is required to maintain a stromal phenotyp

  12. Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Borensztajn, Keren S.; Roelink, Henk; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2007-01-01

    Sonic hedgehog (Shh) is a morphogen pivotal for development and tissue maintenance. Biological effects of Shh are mediated through a pathway that involves binding to patched1 (Ptch1), thereby releasing Smoothened (Smo) from inhibition resulting in the activation of Gli transcription factors, which m

  13. Hedgehog signalling as an antagonist of ageing and its associated diseases

    NARCIS (Netherlands)

    Dashti, Monireh; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2012-01-01

    Hedgehog is an important morphogenic signal that directs pattern formation during embryogenesis, but its activity also remains present through adult life. It is now becoming increasingly clear that during the reproductive phase of life and beyond it continues to direct cell renewal (which is essenti

  14. Sonic Hedgehog: A Good Gene Gone Bad? Detection and Treatment of Genetic Abnormalities.

    Science.gov (United States)

    Yaich, Lauren E.

    2001-01-01

    Presents a case of a baby born with the genetic condition holoprosencephaly in which students explore the "Sonic hedgehog" gene, signal transduction, and the ethics of body and tissue donation. Presents a two-part assignment that features students writing an informed consent document that explains the science behind this congenital abnormality,…

  15. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development.

    Science.gov (United States)

    DeSouza, Kristin R; Saha, Monalee; Carpenter, Ashley R; Scott, Melissa; McHugh, Kirk M

    2013-01-01

    In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.

  16. Characterization of two patched receptors for the vertebrate hedgehog protein family.

    Science.gov (United States)

    Carpenter, D; Stone, D M; Brush, J; Ryan, A; Armanini, M; Frantz, G; Rosenthal, A; de Sauvage, F J

    1998-11-10

    The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule with sequence homology to PTCH, has been identified. To characterize both PTCH molecules with respect to the various Hedgehog proteins, we have isolated the human PTCH2 gene. Biochemical analysis of PTCH and PTCH2 shows that they both bind to all hedgehog family members with similar affinity and that they can form a complex with SMO. However, the expression patterns of PTCH and PTCH2 do not fully overlap. While PTCH is expressed throughout the mouse embryo, PTCH2 is found at high levels in the skin and in spermatocytes. Because Desert Hedgehog (Dhh) is expressed specifically in the testis and is required for germ cell development, it is likely that PTCH2 mediates its activity in vivo. Chromosomal localization of PTCH2 places it on chromosome 1p33-34, a region deleted in some germ cell tumors, raising the possibility that PTCH2 may be a tumor suppressor in Dhh target cells.

  17. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation.

    Directory of Open Access Journals (Sweden)

    Andrew D Hoffmann

    2014-10-01

    Full Text Available The Second Heart Field (SHF has been implicated in several forms of congenital heart disease (CHD, including atrioventricular septal defects (AVSDs. Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome transcriptional profiling and GLI-chromatin interaction studies. The Forkhead box transcription factors Foxf1a and Foxf2 were identified as SHF Hedgehog targets. Compound haploinsufficiency for Foxf1a and Foxf2 caused atrioventricular septal defects, demonstrating the biological relevance of this regulatory network. We identified a Foxf1a cis-regulatory element that bound the Hedgehog transcriptional regulators GLI1 and GLI3 and the T-box transcription factor TBX5 in vivo. GLI1 and TBX5 synergistically activated transcription from this cis-regulatory element in vitro. This enhancer drove reproducible expression in vivo in the posterior SHF, the only region where Gli1 and Tbx5 expression overlaps. Our findings implicate Foxf genes in atrioventricular septation, describe the molecular underpinnings of the genetic interaction between Hedgehog signaling and Tbx5, and establish a molecular model for the selection of the SHF gene regulatory network for cardiac septation.

  18. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation.

    Science.gov (United States)

    Hoffmann, Andrew D; Yang, Xinan Holly; Burnicka-Turek, Ozanna; Bosman, Joshua D; Ren, Xiaomeng; Steimle, Jeffrey D; Vokes, Steven A; McMahon, Andrew P; Kalinichenko, Vladimir V; Moskowitz, Ivan P

    2014-10-01

    The Second Heart Field (SHF) has been implicated in several forms of congenital heart disease (CHD), including atrioventricular septal defects (AVSDs). Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome transcriptional profiling and GLI-chromatin interaction studies. The Forkhead box transcription factors Foxf1a and Foxf2 were identified as SHF Hedgehog targets. Compound haploinsufficiency for Foxf1a and Foxf2 caused atrioventricular septal defects, demonstrating the biological relevance of this regulatory network. We identified a Foxf1a cis-regulatory element that bound the Hedgehog transcriptional regulators GLI1 and GLI3 and the T-box transcription factor TBX5 in vivo. GLI1 and TBX5 synergistically activated transcription from this cis-regulatory element in vitro. This enhancer drove reproducible expression in vivo in the posterior SHF, the only region where Gli1 and Tbx5 expression overlaps. Our findings implicate Foxf genes in atrioventricular septation, describe the molecular underpinnings of the genetic interaction between Hedgehog signaling and Tbx5, and establish a molecular model for the selection of the SHF gene regulatory network for cardiac septation.

  19. A Bisindole Alkaloid with Hedgehog Signal Inhibitory Activity from the Myxomycete Perichaena chrysosperma.

    Science.gov (United States)

    Shintani, Akinori; Toume, Kazufumi; Rifai, Yusnita; Arai, Midori A; Ishibashi, Masami

    2010-10-22

    6-Hydroxy-9'-methoxystaurosporinone (1), a new bisindole alkaloid, was isolated from field-collected fruiting bodies of the myxomycete Perichaena chrysosperma, together with two known compounds. The structure of the new alkaloid was elucidated from spectral data, and compound 1 was shown to have hedgehog signal inhibitory activity. A related new alkaloid, 6,9'-dihydroxystaurosporinone (4), was also isolated from Arcyria cinerea.

  20. Life on the edge : hedgehog traffic victims and mitigation strategies in an anthropogenic landscape

    NARCIS (Netherlands)

    Huijser, M.P.

    2000-01-01

    This study focused on the most frequently recorded mammal species in road-kill surveys in western Europe: the hedgehog (Erinaceus europaeus). Investigations were conducted in an anthropogenic landscape and had two major aims:

    1. to quantify the effects of traffic

  1. Ectoparasites infestation of free-ranging hedgehog (Etelerix algirus in north western Libya

    Directory of Open Access Journals (Sweden)

    M.M. Hosni

    2014-02-01

    Full Text Available The aim of this study was to assess the prevalence of ectoparasites in hedgehogs (Etelerix algirus in north western region of Libya. Seventy hedgehogs were sampled, and 39 (55.7% were infested with external parasites. A total of 44 ticks, 491 fleas were collected from the infested hedgehogs and four species of ectoparasites were identified, one mite (Sarcoptes scabiei, one tick (Rhipicephalus appendiculatus and two fleas (Xenopsylla cheopis and Ctenocephalides canis. For ectoparasites, 10/39 (25.6% were infested by S. scabiei, 8/39 (20.5% by Rh. appendiculatus and 11/39 (28.2% by fleas. The prevalence of mixed infestation with S. scabiei and C. canis was 3(7.7%, Rh. appendiculatus and C. canis was 2 (5.1% and infestation by two species of fleas was 5 (12.8%. The overall mixed infestation was 10 (25.6%. We concluded that the hedgehogs may play an important role in spreading external parasites and transmission of diseases from one region to another and from wildlife animals to domestic animals and human.

  2. Hedgehog信号通路与肿瘤%Relationship between Hedgehog signaling pathway and related tumors

    Institute of Scientific and Technical Information of China (English)

    王琪琳; 苏玲; 刘相国

    2011-01-01

    Hedgehog 信号通路在胚胎发育中细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用.同时,Hedgehog信号通路与wnt信号通路、Notch信号通路等相互作用,密切联系,在肿瘤的发生、发展过程中也起到关键作用.论文综述了Hedgehog信号通路的作用机理,与其他信号通路、蛋白质因子的相互联系,以及在肿瘤研究中所关注的靶位点和小分子化合物抑制剂,对于癌症的预防和治疗具有一定的参考价值.%Hedgehog signaling plays an essential role in embryonic differentiation, pattern formation and adult cell homeostasis. Simultaneously hedgehog signaling has closd correlation with Wnt signaling and Notch signaling, and plays a critical role in tumor initiation and progression. This review focuses on the regulatory mechanism and physiological functions of Hedgehog signaling, and the relationship with other signaling pathways and protein factors. The target sites and small molecular inhibitors in tumor have also been summarized, which might be beneficial to cancer therapeutic intervention.

  3. Hedgehog 信号通路在胆囊癌中的研究进展

    Institute of Scientific and Technical Information of China (English)

    封彦青(综述); 李勇(审校)

    2014-01-01

    Hedgehog 信号通路是调节动物胚胎正常发育的经典信号通路之一,其对哺乳动物的器官发育、维持成熟组织内环境稳定、慢性炎症的组织修复、癌症的发生等发挥重要作用。Hedgehog 信号通路在胆囊胚胎发育过程中起着枢纽作用,并参与成体众多组织的再生过程,但其信号分子蛋白在正常胆囊组织中无表达或低表达,随着对Hedgehog 信号通路的不断深入研究,发现 Hedgehog 信号通路传导异常可导致胆囊癌的发生,并与肿瘤侵袭,转移密切相关。

  4. Life on the edge : Hedgehog traffic victims and mitigation strategies in an anthropogenic landscape

    NARCIS (Netherlands)

    Huijser, M.P.

    2000-01-01

    This study focused on the most frequently recorded mammal species in road-kill surveys in western Europe: the hedgehog (Erinaceus europaeus). Investigations were conducted in an anthropogenic landscape and had two major aims:

    1. to quantify the effects of traffic mortality at individual, populat

    2. Ectoparasites infestation of free-ranging hedgehog (Etelerix algirus) in north western Libya

      Science.gov (United States)

      Hosni, M.M.; Maghrbi, A.A. El

      2014-01-01

      The aim of this study was to assess the prevalence of ectoparasites in hedgehogs (Etelerix algirus) in north western region of Libya. Seventy hedgehogs were sampled, and 39 (55.7%) were infested with external parasites. A total of 44 ticks, 491 fleas were collected from the infested hedgehogs and four species of ectoparasites were identified, one mite (Sarcoptes scabiei), one tick (Rhipicephalus appendiculatus) and two fleas (Xenopsylla cheopis and Ctenocephalides canis). For ectoparasites, 10/39 (25.6%) were infested by S. scabiei, 8/39 (20.5%) by Rh. appendiculatus and 11/39 (28.2%) by fleas. The prevalence of mixed infestation with S. scabiei and C. canis was 3(7.7%), Rh. appendiculatus and C. canis was 2 (5.1%) and infestation by two species of fleas was 5 (12.8%). The overall mixed infestation was 10 (25.6%). We concluded that the hedgehogs may play an important role in spreading external parasites and transmission of diseases from one region to another and from wildlife animals to domestic animals and human. PMID:26623333

    3. Life on the edge : hedgehog traffic victims and mitigation strategies in an anthropogenic landscape

      NARCIS (Netherlands)

      Huijser, M.P.

      2000-01-01

      This study focused on the most frequently recorded mammal species in road-kill surveys in western Europe: the hedgehog (Erinaceus europaeus). Investigations were conducted in an anthropogenic landscape and had two major aims:

      1. to quantify the effects of traffic m

      2. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.

        Science.gov (United States)

        Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

        2016-10-01

        Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF-04449913 (PF-913) is a selective, small-molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof-of-concept and mechanism of action of PF-913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signaling pathway in AML cells, and evaluated the in vitro and in vivo effects of the Smoothened inhibitor PF-913. In primary AML cells, activation of the Hedgehog signaling pathway was more pronounced in CD34(+) cells than CD34(-) cells. In vitro treatment with PF-913 induced a decrease in the quiescent cell population accompanied by minimal cell death. In vivo treatment with PF-913 attenuated the leukemia-initiation potential of AML cells in a serial transplantation mouse model, while limiting reduction of tumor burden in a primary xenotransplant system. Comprehensive gene set enrichment analysis revealed that PF-913 modulated self-renewal signatures and cell cycle progression. Furthermore, PF-913 sensitized AML cells to cytosine arabinoside, and abrogated resistance to cytosine arabinoside in AML cells cocultured with HS-5 stromal cells. These findings imply that pharmacologic inhibition of Hedgehog signaling attenuates the leukemia-initiation potential, and also enhanced AML therapy by sensitizing dormant leukemia stem cells to chemotherapy and overcoming resistance in the bone marrow microenvironment. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

      3. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

        Energy Technology Data Exchange (ETDEWEB)

        Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

        2012-08-17

        Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

      4. Expression and significance of sonic hedgehog signaling pathway-related components in brainstem and supratentorial astrocytomas

        Institute of Scientific and Technical Information of China (English)

        XIN Yu; HAO Shu-yu; TIAN Yong-ji; ZHANG Jun-ting; WU Zhen; WAN Hong; LI Jun-hua; JIANG Jian; ZHANG Li-wei

        2011-01-01

        Background Studies have shown that abnormal activation of the sonic hedgehog pathway is closely related to tumorigenesis in central nervous system.This study aimed to investigate the role of the sonic hedgehog signaling pathway in the occurrence of brainstem and supratentorial glioma.Methods Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of sonic hedgehog-related components in 5 specimens of normal brain tissue,10 of grade Ⅱ brainstem glioma,and 10 of grade Ⅱ supratentorial glioma.The significance of differences between two groups was determined using the Mann-Whitney U test or the two-sample test according to the results of normality distribution tests.Results The mRNA expression levels of sonic hedgehog-related genes were higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue.The level of protein patched homolog 1 (PTCH1) was significantly higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue (P <0.01).Immunohistochemistry semi-quantitative analysis was consistent with the qRT-PCR result that PTCH1 expression was increased significantly in brainstem astrocytomas at the protein level (P <0.05).Conclusions Enhanced PTCH1 expression and activation of the sonic hedgehog pathway are involved in brainstem glioma.This may be related to the difference in malignant biological behavior between brainstem and hemispheric glioma,and could be an ideal therapeutic target in brainstem glioma.

      5. Morphological study of the European hedgehog (Erinaceus europaeus) tongue by SEM and LM.

        Science.gov (United States)

        Akbari, Ghasem; Babaei, Mohammad; Hassanzadeh, Belal

        2017-02-03

        The hedgehog tongue is a tactile and taste organ which carries out various functions. Detailed functional and morphological studies are required to clearly define the relationship of the hedgehog tongue with taste, food palatability, mastication and swallowing of food, as well as the production of sounds. The aim of this study was to determine the relationship between the morphological characteristics of the European hedgehog tongue and the lifestyle of this animal, as well as to compare findings with the results of studies on other vertebrates. Gross and micro-anatomical light and scanning electron microscopy studies revealed that the hedgehog tongue could be divided in three areas, namely the apex, body and root. A keratinized stratified squamous epithelium, which was smooth on the ventral surface but bore four types of papillae on the dorsal surface, lined the tongue. Three types of these papillae were found to have gustatory functions and to express their activity in close relation with the salivary glands. These simple conical filiform papillae were situated caudally and distributed one after the other without a break. The dome-shaped fungiform papillae on the apex, with the highest distribution rate on the apex edge, were small, but those on the body and root were large. The three circular vallate papillae were arranged in a triangular shape. The foliate papillae with a few tiny projections, found in a shallow furrow, were situated between the root and the body. Most of the nerve fibers observed in different sections of the tongue tissue were of the unmyelinated type, confirming that the main task of the hedgehog tongue was its gustatory function.

      6. Distinct roles of PTCH2 splice variants in Hedgehog signalling.

        Science.gov (United States)

        Rahnama, Fahimeh; Toftgård, Rune; Zaphiropoulos, Peter G

        2004-03-01

        The human PTCH2 gene is highly similar to PTCH1, a tumour suppressor gene frequently mutated in basal cell carcinoma and several other tumour types. PTCH1 is a transmembrane protein believed to inhibit another transmembrane protein SMO (Smoothened), which mediates HH (Hedgehog) signalling. In this study, we analysed the biological properties of several PTCH2 splice variants. An mRNA form that lacked the last exon was abundantly expressed in all tissues examined, in contrast with the one that included it. Moreover, a transcript lacking exon 9, which is a part of a conserved sterol-sensing domain, was identified in intestine, prostate and cerebellum. In ovary, spleen, testis, cerebellum and skin, an mRNA lacking both exons 9 and 10 could also be observed. The different PTCH2 isoforms localized in the cytoplasm were capable of internalizing the N-terminal fragment of Sonic HH (Shh-N). Additionally, the PTCH2 gene was found to be a target of HH signalling. PTCH2 promoter regulation assays demonstrated that only one of the PTCH2 variants could inhibit the activity of SHH-N, whereas none was capable of inhibiting the activated form of SMO (SMO-M2) and this contrasts with PTCH1. Despite the fact that the PTCH2 isoforms lacked the ability to inhibit SMO-M2 activity, all PTCH2 variants as well as PTCH1, on co-transfection with Smo, were able to change Smo localization from being largely dispersed in the cytoplasm to the juxtanuclear region. Furthermore, the PTCH2 isoforms and PTCH1 co-localized in doubly transfected cells and an interaction between them was confirmed using immunoprecipitation assays. Using Ptch1-/- mouse cells, it was shown that the PTCH2 variants and PTCH1 differentially act to reconstitute not only the SHH but also the Desert HH-dependent transcriptional response. We conclude that in spite of their structural similarities, the PTCH2 isoforms have distinct functional properties when compared with PTCH1.

      7. Macroscopic and microscopic examination of pulmonary Crenosoma striatum in hedgehog.

        Science.gov (United States)

        Naem, S; Tavakoli, M; Javanbakht, J; Alimohammadi, S; Farshid, A A; Mohammad Hassan, M A

        2014-06-01

        The aim of study was to necropsy and histopathology evaluation of lung Crenosoma striatum in hedgehog. In July 2012, 10 porcupines were collected from Urmia city and transferred to parasitology lab of the veterinary faculty where they were euthanized by ketamine (over 40-90 mg/kg) intraperitoneally. In this study the lungs were assessed through naked eyes regarding parasite presence upon washing. The lung tissue was examined under loop microscope in order to finding small worms in lung parenchyma. The worms were removed by Anse forceps and kept in AFA solution, and collected for diagnosis. In order to carrying out pathological tests, some samples prepared and placed in formalin 10 % for fixation. The counted worms frequency in high severe and moderate lungs were as 86 (50 females and 36 males) and 19 (13 females and 16 males) worms respectively. But no worms were observed in healthy lungs. The infestation severity was as; low infestation (1-7 worms), moderate infestation (8-20), severe infestation (21-50) and very severe infestation (more than 50 worms). The lung examinations of non-infested lungs indicated that the lung tissues had no parasite. In addition, no inflammation reactions as inflammatory cells presence were observed, and the air spaces with alveoles' wall in some regions were observable. On histopathological examination, the observed alteration was primarily inflammatory changes, and in some cases the proliferation was also observable. Hyperemia and inflammatory cell infiltration, somehow the alveolar space was filled, representing bronchopneumonia reaction. The bronchioles had various changes as hypertrophy and hyperplastic in different parts of respiratory system. Hyperemia and hemorrhage were very severe in some cases caused hemosiderosis in the lung. In severe inflammations the pneumonia along with increasing of bronchial cells in the lumen rose as well, leading to severe verminous infestation of the lung. In regard to the obtained results, the

      8. Home Range Characteristics and Habitat Selection by Daurian Hedgehogs ( Mesechinus dauuricus in Ikh Nart Nature Reserve, Mongolia

        Directory of Open Access Journals (Sweden)

        Mirka Zapletal

        2012-12-01

        Full Text Available We examined home range characteristics and habitat selection of Daurian hedgehogs in Ikh Nart Nature Reserve, Mongolia. Home ranges of hedgehogs varied from 113.15 ha to 2,171.97 ha, and were larger in early summer than late summer. Hedgehogs showed relative preference for rocky outcrops and low-density shrub habitats, and relative avoidance of high- density shrub areas. Habitat selection also changed between early and late summer, shifting to greater use of low-density shrub areas and decreased use of forb-dominated short grass. Our baseline data on home ranges and habitat selection expand understanding of hedgehog ecology and provide guidance for future management decisions in Ikh Nart Nature Reserve and elsewhere in Mongolia.

      9. Efficacy of a combination of 10% imidacloprid and 1% moxidectin against Caparinia tripilis in African pygmy hedgehog (Atelerix albiventris

        Directory of Open Access Journals (Sweden)

        Kim Kyu-Rim

        2012-08-01

        Full Text Available Abstract Background The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany was tested in 40 African pygmy hedgehogs (Atelerix albiventris naturally infested with Caparinia tripilis. Methods The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w., and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Results Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. Conclusions This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs.

      10. Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma

        OpenAIRE

        Bhatia, Bobby; Potts, Chad R.; Guldal, Cemile; Choi, SunPhil; Korshunov, Andrey; Pfister, Stefan; Kenney, Anna M.; Nahlé, Zaher A.

        2012-01-01

        Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, su...

      11. Vismodegib hedgehog-signaling inhibition and treatment of basal cell carcinomas as well as keratocystic odontogenic tumors in Gorlin syndrome

        OpenAIRE

        Booms, Patrick; Harth, Marc; Sader, Robert; Ghanaati, Shahram

        2015-01-01

        Vismodegib hedgehog signaling inhibition treatment has potential for reducing the burden of multiple skin basal cell carcinomas and jaw keratocystic odontogenic tumors. They are major criteria for the diagnosis of Gorlin syndrome, also called nevoid basal cell carcinoma syndrome. Clinical features of Gorlin syndrome are reported, and the relevance of hedgehog signaling pathway inhibition by oral vismodegib for maxillofacial surgeons is highlighted. In summary, progressed basal cell carcinoma ...

      12. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems.

        Science.gov (United States)

        Aad, Pauline Y; Echternkamp, Sherrill E; Sypherd, David D; Schreiber, Nicole B; Spicer, Leon J

        2012-10-01

        Hedgehog signaling is involved in regulation of ovarian function in Drosophila, but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or theca (TC) cells of small (1-5 mm) antral follicles by in situ hybridization and of larger (5-17 mm) antral follicles by real-time RT-PCR from ovaries of cyclic cows genetically selected (Twinner) or not selected (control) for twin ovulations. Expression of IHH mRNA was localized to GC and cumulus cells, whereas PTCH1 mRNA was greater in TC than in GC. Estrogen-active (E-A; follicular fluid concentration of estradiol > progesterone) versus estrogen-inactive follicles had a greater abundance of mRNA for IHH in GC and PTCH1 in TC. Abundance of IHH mRNA in GC was not affected by cow genotype, whereas TC PTCH1 mRNA was less in large E-A follicles of Twinners than in controls. In vitro, estradiol and wingless-type (WNT) 3A increased IHH mRNA in IGF1-treated GC. IGF1 and BMP4 treatments decreased PTCH1 mRNA in small TC. Estradiol and LH increased PTCH1 mRNA in IGF1-treated TC from large and small follicles, respectively. In summary, functional status of ovarian follicles was associated with differences in hedgehog signaling in GC and TC. We hypothesize that as follicles grow and develop, increased free IGF1 may suppress expression of IHH mRNA by GC and PTCH1 mRNA by TC, and these effects are regulated in a paracrine way by estradiol and other intra- and extragonadal factors.

      13. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung

        OpenAIRE

        Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.

        2003-01-01

        Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 i...

      14. Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets.

        Science.gov (United States)

        Choe, Youngshik; Huynh, Trung; Pleasure, Samuel J

        2015-10-12

        Dentate neural stem cells produce neurons throughout life in mammals. Sonic hedgehog (Shh) is critical for maintenance of these cells; however, the perinatal source of Shh is enigmatic. In the present study, we examined the role of Shh expressed by hair follicles (HFs) that expand perinatally in temporal concordance with the proliferation of Shh-responding dentate stem cells. Specific inhibition of Shh from HFs or from epithelial sources in general hindered development of Shh-responding dentate stem cells. We also found that the blood-brain barrier (BBB) of the perinatal dentate gyrus (DG) is leaky with stem cells in the dentate exposed to blood-born factors. In attempting to identify how Shh might be transported in blood, we found that platelets contain epithelial Shh, provide Shh to the perinatal DG and that inhibition of platelet generation reduced hedgehog-responsive dentate stem cells.

      15. A hedgehog-like signal is involved in slow muscle differentation in Sepia officinalis

        Directory of Open Access Journals (Sweden)

        A Grimaldi

        2007-01-01

        Full Text Available In the tentacle of Sepia officinalis, smooth-like, helical and cross-striated fibres deriving from different populations of myoblasts are present. Myoblasts appear at different times during the development and express two muscle-specific transcription factors: Myf5-like and MyoD-like factors. Myoblasts expressing Myf5 give rise to slow fibres, whereas fast fibres derive from MyoD+ myoblasts. We found that a Hedgehog (Hh-like signal was present in the central nerve cord of the tentacle from the early stages of development and in a specific population of myoblasts which are the precursors of slow muscle fibres. The model showed interesting similarities with vertebrates, in which Sonic hedgehog is a protein secreted by axial structures (the notochord and neurotube and is involved in slow muscle differentiation and in survival of muscle precursors.

  1. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease.

    Science.gov (United States)

    Christ, Annabel; Herzog, Katja; Willnow, Thomas E

    2016-05-01

    To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.

  2. The European hedgehog (Erinaceus europaeus), as a reservoir for helminth parasites in Iran.

    Science.gov (United States)

    Naem, Soraya; Pourreza, Behzad; Gorgani-Firouzjaee, Tahmineh

    2015-01-01

    From April 2009 to December 2011, 44 dead hedgehogs (Erinaceus europaeus) were collected incidentally from areas of Urmia, Iran. The overall prevalence of helminth infections was 95.0%. Specific parasites and their prevalences were: Physaloptera clausa (93.0%), Crenosoma striatum (61.0%), Capillaria aerophila (9.0%), Capillarias spp. (4.0%), Brachylaemus erinacei (2.0%) and Hymenolepis erinacei (16.0%). There were no significant differences in helminth occurrence between hedgehog sexes, either in single or in mixed infections (p > 0.05). The mixed infection involving Crenosoma striatum and P. clausa occurred significantly more frequently than other mixed infection (p < 0.05). There were significant differences in prevalence among seasons, with the highest prevalence in summer and spring especially among P. clausa and C. striatum (p < 0.05).

  3. Sonic Hedgehog Signaling Switches the Mode of Division in the Developing Nervous System

    Directory of Open Access Journals (Sweden)

    Murielle Saade

    2013-08-01

    Full Text Available The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis, and these regulatory processes are subverted in tumor formation. Here, we developed markers that provided the single-cell resolution necessary to quantify the three modes of division taking place in the developing nervous system in vivo: self-expanding, PP; self-replacing, PN; and self-consuming, NN. Using these markers and a mathematical model that predicts the dynamics of motor neuron progenitor division, we identify a role for the morphogen Sonic hedgehog in the maintenance of stem cell identity in the developing spinal cord. Moreover, our study provides insight into the process linking lineage commitment to neurogenesis with changes in cell-cycle parameters. As a result, we propose a challenging model in which the external Sonic hedgehog signal dictates stem cell identity, reflected in the consequent readjustment of cell-cycle parameters.

  4. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling

    DEFF Research Database (Denmark)

    Riveiro, Alba; Mariani, Luca; Malmberg, Kim Emily

    2017-01-01

    Components of the KDM7 family of histone demethylases are implicated in neuronal development and one member, PHF8, is often found to be mutated in cases of X-linked mental retardation. However, how PHF8 regulates neurodevelopmental processes and contributes to the disease is still largely unknown...... study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration........ Here, we show that the catalytic activity of a PHF8 homolog in Caenorhabditis elegans, JMJD-1.2, is required non-cell-autonomously for proper axon guidance. Loss of JMJD-1.2 dysregulates transcription of the Hedgehog-related genes wrt-8 and grl-16, the overexpression of which is sufficient to induce...

  5. Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma

    Science.gov (United States)

    Vanner, Robert J.; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J.; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D.; Li, Yisu; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Jones, Steven J.M.; Marra, Marco A.; Malkin, David; Northcott, Paul A.; Kool, Marcel; Pfister, Stefan M.; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D.; Dirks, Peter B.

    2015-01-01

    SUMMARY Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2+ cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2+ cells produce rapidly cycling doublecortin+ progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2+ cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2+ cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2+ cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2+ cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  6. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Dworkin

    2016-08-01

    Full Text Available Craniofacial defects (CFD are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh, a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla and lower jaw (mandible.

  7. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    OpenAIRE

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary prote...

  8. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice

    OpenAIRE

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet...

  9. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma

    OpenAIRE

    KANDA, SHIORI; MITSUYASU, TAKESHI; NAKAO, YU; Kawano, Shintaro; GOTO, YUICHI; Matsubara, Ryota; Nakamura, Seiji

    2013-01-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma ce...

  10. Sonic Hedgehog Mutations Identified in Holoprosencephaly Patients Can Act in a Dominant Negative Manner

    OpenAIRE

    Singh, Samer; Tokhunts, Robert; Baubet, Valerie; Goetz, John A.; Huang, Zhen Jane; Schilling, Neal S.; Black, Kendall E.; MacKenzie, Todd A.; Dahmane, Nadia; Robbins, David J.

    2008-01-01

    Sonic Hedgehog (SHH) plays an important instructional role in vertebrate development, as exemplified by the numerous developmental disorders that occur when the SHH pathway is disrupted. Mutations in the SHH gene are the most common cause of sporadic and inherited Holoprosencephaly (HPE), a developmental disorder that is characterized by defective prosencephalon development. SHH HPE mutations provide a unique opportunity to better understand SHH biogenesis and signaling, and to decipher its r...

  11. Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis

    OpenAIRE

    Ding, Hong; Zhou, Dong; Hao, Sha; Zhou, Lili; He, Weichun; Nie, Jing; Hou, Fan Fan; Liu, Youhua

    2012-01-01

    Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1lacZ knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh prote...

  12. Characterization of two patched receptors for the vertebrate hedgehog protein family

    OpenAIRE

    1998-01-01

    The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule wit...

  13. Hedgehog pathway activation in human transitional cell carcinoma of the bladder

    OpenAIRE

    2012-01-01

    Background: The Hedgehog (Hh) signalling pathway functions as an organiser in embryonic development. Recent studies have shown constitutive activation of this pathway in various malignancies, but its role in bladder cancer remains poorly studied. Methods: Expression levels of 31 genes and 9 microRNAs (miRNAs) involved in the Hh pathway were determined by quantitative real-time RT–PCR in 71 bladder tumour samples (21 muscle-invasive (MIBC) and 50 non-muscle-invasive (NMIBC) bladder cancers), a...

  14. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review

    OpenAIRE

    Klieser, Eckhard; SWIERCZYNSKI, STEFAN; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; KIESSLICH, TOBIAS; Illig, Romana

    2016-01-01

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a prote...

  15. Controlled Delivery of Sonic Hedgehog with a Heparin-Based Coacervate.

    Science.gov (United States)

    Johnson, Noah Ray; Wang, Yadong

    2015-01-01

    Here we describe the preparation of a delivery vehicle for controlled release of Sonic hedgehog (Shh). The vehicle contains a synthetic polycation and heparin which interact by polyvalent charge attraction and rapidly self-assemble into liquid coacervate droplets. The coacervate loads Shh with high efficiency, protects its bioactivity, and provides sustained and localized release at the site of application. Shh coacervate may be injected directly or coated onto a polymeric scaffold for tissue engineering approaches, as described here.

  16. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.

    Science.gov (United States)

    Pereira, Joana; Johnson, Warren E; O'Brien, Stephen J; Jarvis, Erich D; Zhang, Guojie; Gilbert, M Thomas P; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  17. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Calivarathan Latchoumycandane

    Full Text Available Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh and Indian hedgehog (Ihh expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not

  18. Inositol hexakisphosphate kinase-2 acts as an effector of the vertebrate Hedgehog pathway

    OpenAIRE

    Sarmah, Bhaskarjyoti; Wente, Susan R.

    2010-01-01

    Inositol phosphate (IP) kinases constitute an emerging class of cellular kinases linked to multiple cellular activities. Here, we report a previously uncharacterized cellular function in Hedgehog (Hh) signaling for the IP kinase designated inositol hexakisphosphate kinase-2 (IP6K2) that produces diphosphoryl inositol phosphates (PP-IPs). In zebrafish embryos, IP6K2 activity was required for normal development of craniofacial structures, somites, and neural crest cells. ip6k2 depletion in both...

  19. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    Science.gov (United States)

    2006-11-01

    Biol Anim 1995; 31(11):840–845. 13. Salm SN, Koikawa Y, Ogilvie V, Tsujimura A, Coetzee S, Moscatelli D, Moore E, Lepor H, Shapiro E, Sun TT, Wilson...R, Thrasher JB, Bushman W. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004;145(8):3961–3970. 27. Sherr CJ, Roberts JM ...Zylstra CR, Koeman JM , Swiatek PJ, Teh BT, Williams BO. Spectral karyotyping of sarcomas and fibroblasts derived from Ink4a/ Arf-deficient mice reveals

  20. Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and Medulloblastoma

    OpenAIRE

    Bhatia, Bobby; Hsieh, Michael; Kenney, Anna Marie; Nahlé, Zaher

    2010-01-01

    Deregulation of the Rb/E2F tumor suppressor complex and aberrantion of Sonic hedgehog (Shh) signaling are documented across the spectrum of human malignancies. Exaggerated de novo lipid synthesis is also found in certain highly proliferative, aggressive tumors. Here, we show that in Shh-driven medulloblastomas, Rb is inactivated and E2F1 is up-regulated, promoting lipogenesis. Extensive lipid accumulation and elevated levels of the lipogenic enzyme FASN mark those tumors. In primary cerebella...

  1. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  2. Altered canonical hedgehog-gli signalling axis in pesticide-induced bone marrow aplasia mouse model.

    Science.gov (United States)

    Chaklader, Malay; Das, Prosun; Pereira, Jacintha Archana; Chaudhuri, Samaresh; Law, Sujata

    2012-09-01

    The mechanistic interplay between pesticide exposure and development of marrow aplasia is not yet well established but there are indices that chronic pesticide exposure in some instances causes marrow aplasia like haematopoietic degenerative condition in human beings. Canonical Hedgehog (Hh) signalling has multiple roles in a wide range of developmental processes, including haematopoiesis. The present study was designed to explore the status of four important components of the canonical Hedgehog signalling cascade, the Sonic Hedgehog (Shh), Ptch1, Smo, and Gli1, in a mouse model of chronic pesticide-induced bone marrow aplasia. We used 5 % aqueous mixture of pesticides (chlorpyriphos, prophenophos, cypermethrin, alpha-methrin, and hexaconazole) for inhalation and dermal exposure of 6 hours per day and 5 days a week up to 90 days. Murine bone marrow aplasia related to chronic pesticide treatment was confirmed primarily by haemogram, bone marrow cellularity, short term bone marrow explant culture for cellular kinetics, bone marrow smear, and fl ow cytometric Lin-Sca-1+C-kit+ extracellular receptor expression pattern. Later, components of hedgehog signalling were analysed in the bone marrow of both control and pesticide-treated aplastic groups of animals. The results depicted pancytopenic feature of peripheral blood, developmental anomaly of neutrophils, depression of primitive stem and progenitor population along with Shh, Ptch1, Smo and Gli1 expression in aplasia group. This investigation suggests that pesticide-induced downregulation of two critically important proteins--Ptch1 and Gli1--inside the haematopoietic stem and progenitor cell population impairs haematopoietic homeostasis and regeneration mechanism in vivo concurrent with bone marrow aplasia.

  3. A Smoothened-Evc2 Complex Transduces the Hedgehog Signal at Primary Cilia

    OpenAIRE

    Dorn, Karolin V.; Hughes, Casey E.; Rohatgi, Rajat

    2012-01-01

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that...

  4. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    Science.gov (United States)

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  5. HEDGEHOG SIGNALING IS CRITICAL FOR NORMAL LIVER REGENERATION AFTER PARTIAL HEPATECTOMY IN MICE

    OpenAIRE

    Ochoa, Begoña; Syn, Wing-Kin; Delgado, Igotz; Karaca, Gamze F.; Jung, Youngmi; Wang, Jiangbo; Zubiaga, Ana M.; Fresnedo, Olatz; Omenetti, Alessia; Zdanowicz, Marzena; Choi, Steve S.; Diehl, Anna Mae

    2010-01-01

    Distinct mechanisms are believed to regulate growth of the liver during fetal development and after injury in adults because the former relies on progenitors while the latter generally involves replication of mature hepatocytes. However, chronic liver injury in adults increases production of Hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and orchestrate various aspects of tissue construction during embryogenesis. This raises the possibility that similar Hh-d...

  6. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    OpenAIRE

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M.

    2014-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three ...

  7. Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors.

    Science.gov (United States)

    Infante, Paola; Mori, Mattia; Alfonsi, Romina; Ghirga, Francesca; Aiello, Federica; Toscano, Sara; Ingallina, Cinzia; Siler, Mariangela; Cucchi, Danilo; Po, Agnese; Miele, Evelina; D'Amico, Davide; Canettieri, Gianluca; De Smaele, Enrico; Ferretti, Elisabetta; Screpanti, Isabella; Uccello Barretta, Gloria; Botta, Maurizio; Botta, Bruno; Gulino, Alberto; Di Marcotullio, Lucia

    2015-01-13

    Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo-dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1-mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog-dependent tumor cells in vitro and in vivo as well as the self-renewal ability and clonogenicity of tumor-derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling.

  8. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden); Astorga-Wells, Juan [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Biomotif AB, Enhagsvägen 7, SE-182 12 Danderyd (Sweden); Zubarev, Roman A. [Karolinska Institutet, Scheeles väg 2, SE-171 77 Stockholm (Sweden); Del Campo, Mark; Criswell, Angela R. [Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Sanctis, Daniele de [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Jovine, Luca, E-mail: luca.jovine@ki.se; Toftgård, Rune, E-mail: luca.jovine@ki.se [Karolinska Institutet, Novum, Hälsovägen 7, SE-141 83 Huddinge (Sweden)

    2013-12-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.

  9. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways.

    Science.gov (United States)

    Zhu, Jian-Yun; Yang, Xue; Chen, Yue; Jiang, Ye; Wang, Shi-Jia; Li, Yuan; Wang, Xiao-Qian; Meng, Yu; Zhu, Ming-Ming; Ma, Xiao; Huang, Cong; Wu, Rui; Xie, Chun-Feng; Li, Xiao-Ting; Geng, Shan-Shan; Wu, Jie-Shu; Zhong, Cai-Yun; Han, Hong-Yu

    2017-02-15

    Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/β-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/β-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/β-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.

  10. TEST & EVALUATION REPORT FOR THE HEDGEHOG-II PACKAGING SYSTEMS DOT-7A TYPE A CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, D.L.

    2003-12-29

    This report documents the US. Department of Transportation Specification 7A (DOT-7A) Type A compliance test and evaluation results for the Hedgehog-II packaging systems. The approved Hedgehog-II packaging configurations provide primary and secondary containment. The approved packaging configurations described within this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids transported in the approved 1 L glass bottle assembly shall have a specific gravity of less than or equal to 1.6. Liquids transported in all other approved configurations shall have a specific gravity of less than or equal to 2.0. The solid contents, including packaging, are limited in weight to the gross weight of the as-tested liquids and bottles. The approved Hedgehog-II packaging configurations described in this report may be transported by air, and have been evaluated as meeting the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT requirements.

  11. Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish

    Directory of Open Access Journals (Sweden)

    Ahlberg Per

    2007-06-01

    Full Text Available Abstract Background Little is known about the control of the development of vertebrate unpaired appendages such as the caudal fin, one of the key morphological specializations of fishes. Recent analysis of lamprey and dogshark median fins suggests the co-option of some molecular mechanisms between paired and median in Chondrichthyes. However, the extent to which the molecular mechanisms patterning paired and median fins are shared remains unknown. Results Here we provide molecular description of the initial ontogeny of the median fins in zebrafish and present several independent lines of evidence that Sonic hedgehog signaling emanating from the embryonic midline is essential for establishment and outgrowth of the caudal fin primordium. However, gene expression analysis shows that the primordium of the adult caudal fin does not harbor a Sonic hedgehog-expressing domain equivalent to the Shh secreting zone of polarizing activity (ZPA of paired appendages. Conclusion Our results suggest that Hedgehog proteins can regulate skeletal appendage outgrowth independent of a ZPA and demonstrates an unexpected mechanism for mediating Shh signals in a median fin primordium. The median fins evolved before paired fins in early craniates, thus the patterning of the median fins may be an ancestral mechanism that controls the outgrowth of skeletogenic appendages in vertebrates.

  12. Morpholoical Study of the Brandt’s Hedgehog, Paraechinus hypomelas (Eulipotyphla, Erinaceidae, Tongue

    Directory of Open Access Journals (Sweden)

    Goodarzi N.

    2016-10-01

    Full Text Available The morphology and histological structure of two adult Brandt’s hedgehog, Paraechinus hypomelas, (Brandt, 1836 tongue were examined by light and scanning electron microscopy. On the dorsal surface of the tongue, three types of papillae were observed: filiform, fungiform and vallate papillae. Apex and corpus of the tongue as well as the lateral surface of the corpus were covered with numerous filiform papillae with bifurcated tip, while the epithelium lining the ventral lingual surface was free from papillae. Discoid shape fungiform papillae were scattered over the entire surface of the lingual apex, corpus and lateral surface uniformly between the filiform ones without regional variation in number and size. Three elliptical or oval vallate papillae in an inverted triangle form were found on the root of the tongue. Each papilla had a lobulated and very irregular dorsal surface. Both fungiform and vallate papillae contain taste buds. The foliate papillae was absent. Overall, the present findings reveal that despite some similarities, the lingual papillae of the Brandt’s hedgehog as an omnivore animal has spices-specific characteristics compare to the Erinaceous auritus as an insectivore species. This finding provides a set of basic data about the morphology of tongue and its lingual papillae in Brandt’s hedgehog.

  13. Morphometrics of foramen magnum in African four-toed hedgehog (Atelerix albiventris).

    Science.gov (United States)

    Girgiri, I; Olopade, J O; Yahaya, A

    2015-01-01

    The purpose of this study was to examine the morphometry of the foramen magnum of African four-toed hedgehog (Atelerix albiventris) in Maiduguri. Fourteen hedgehog skulls (7 male and 7 female each) were used for this study. The overall mean value of foramen magnum height and width were 0.51 ± 0.05 cm and 0.64 ± 0.04 cm while occipital condylar and interparacondylar widths were 1.00 ± 0.12 cm and 1.62 ± 0.07 cm, respectively. There was no significant difference between the two sexes. The foramen magnum index was 83.4 ± 5.51 cm in males and was significantly higher than 76.3 ± 6.37 cm observed in females. The presences of dorsal notches (occipital dysplasia) were observed, that were of three distinct types. It is envisaged, that the study will provide a valuable database on the anatomy of foramen magnum of hedgehogs in Nigeria for morphological, neurological, zooarchaeological, and comparative anatomical studies.

  14. Different parasite faunas in sympatric populations of sister hedgehog species in a secondary contact zone.

    Directory of Open Access Journals (Sweden)

    Miriam Pfäffle

    Full Text Available Providing descriptive data on parasite diversity and load in sister species is a first step in addressing the role of host-parasite coevolution in the speciation process. In this study we compare the parasite faunas of the closely related hedgehog species Erinaceus europaeus and E. roumanicus from the Czech Republic where both occur in limited sympatry. We examined 109 hedgehogs from 21 localities within this secondary contact zone. Three species of ectoparasites and nine species of endoparasites were recorded. Significantly higher abundances and prevalences were found for Capillaria spp. and Brachylaemus erinacei in E. europaeus compared to E. roumanicus and higher mean infection rates and prevalences for Hymenolepis erinacei, Physaloptera clausa and Nephridiorhynchus major in E. roumanicus compared to E. europaeus. Divergence in the composition of the parasite fauna, except for Capillaria spp., which seem to be very unspecific, may be related to the complicated demography of their hosts connected with Pleistocene climate oscillations and consequent range dynamics. The fact that all parasite species with different abundances in E. europaeus and E. roumanicus belong to intestinal forms indicates a possible diversification of trophic niches between both sister hedgehog species.

  15. Hedgehog信号通路与乳腺癌%Hedgehog Signal Pathway in the Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    屈超; 陈茜; 黄慧芳; 崔玉影; 邹伟

    2012-01-01

    The Hedgehog signaling pathway is considered to be involved in the molecular mechanism of the invasion and metastasis of the tumors. Mutations or abnormal expression in components of this pathway lead to the growth of breast tumors. Hedgehog signaling pathway interacts with Wnt, MAPK to regulate the progress of tumors. To better understand the molecular mechanism on the growth and progress of breast cancer, the vital role of Hedgehog signaling pathway on the growth and development of breast cancers was briefly reviewed.%近年来的研究表明,Hedgehog信号通路在肿瘤的发生发展中具有重要的作用,该通路基因突变或异常表达将导致多种器官肿瘤的发生,并与Wnt、MAPK等信号通路相互作用,共同调节肿瘤的发生发展.我们简要综述了Hedgehog信号通路在乳腺癌发生发展中的重要作用,旨在了解乳腺癌发生、发展的分子机制.

  16. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase.

    Science.gov (United States)

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2015-12-01

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.

  17. Mutations in the hedgehog pathway genes SMO and PTCH1 in human gastric tumors.

    Directory of Open Access Journals (Sweden)

    Xi-De Wang

    Full Text Available The causal role of the hedgehog pathway in cancer has been best documented in basal cell carcinoma of the skin. To assess potential DNA alterations of the hedgehog pathway in gastric cancer, we sequenced SMO and PTCH1 genes in a set of 39 gastric tumors. Tumors were classified by histology based on the Lauren classification and Sanger sequencing was performed to obtain full length coding sequences. Genomic instability was evident in these tumors as a number of silent or missense mutations were found. In addition to those that are potential germline polymorphisms, we found three SMO missense mutations, and one PTCH1 frameshift mutation that are novel and have not been documented in basal cell carcinoma. Mutations were found in both intestinal and diffuse type gastric tumors as well as in tumors that exhibit both intestinal and diffuse features. mRNA expression of hedgehog pathway genes was also examined and their levels do not indicate unequivocal higher pathway activity in tumors with mutations than those without. In summary, SMO and/or PTCH1 mutations are present at low frequency in different histologic subtypes of gastric tumors and these do not appear to be driver mutations.

  18. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility.

    Science.gov (United States)

    Rennert, Christiane; Eplinius, Franziska; Hofmann, Ute; Johänning, Janina; Rolfs, Franziska; Schmidt-Heck, Wolfgang; Guthke, Reinhardt; Gebhardt, Rolf; Ricken, Albert M; Matz-Soja, Madlen

    2017-05-30

    The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

  19. The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.

    Science.gov (United States)

    Avanesov, Andrei; Blair, Seth S

    2013-01-01

    Hedgehog (Hh) family proteins are secreted signaling ligands whose short- and long-range activities transform cellular fates in multiple contexts in organisms ranging from metazoans to humans. In the developing Drosophila wing, extracellular Hh binds to cell-bound glypican heparan sulfate proteoglycans (HSPGs) and the secreted protein Shifted (Shf), a member of Wnt inhibitory factor 1 (WIF1) family. The glypicans and Shf are required for long-range Hh movement and signaling; it has been proposed that Shf promotes long-range Hh signaling by reinforcing binding between Hh and the glypicans, and that much or all of glypican function in Hh signaling requires Shf. However, we will show here that Shf maintains short-range Hh signaling in the wing via a mechanism that does not require the presence of or binding to the Drosophila glypicans Dally and Dally-like protein. Conversely, we demonstrate interactions between Hh and the glypicans that are maintained, and even strengthened, in the absence of Shf. We present evidence that Shf binds to the CDO/BOC family Hh co-receptors Interference hedgehog (Ihog) and Brother of Ihog, suggesting that Shf regulates short-range Hh signaling through interactions with the receptor complex. In support of a functional interaction between Ihog and members of the Shf/WIF1 family, we show that Ihog can increase the Wnt-inhibitory activity of vertebrate WIF1; this result raises the possibility of interactions between WIF1 and vertebrate CDO/BOC family members.

  20. Increased expression of the sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins.

    Science.gov (United States)

    Wang, Shih-Ho; Yang, Wen-Kai; Lee, Jane-Dar

    2017-03-01

    Objectives Varicocele is characterized by dilatation and tortuosity of the internal spermatic vein. Sonic hedgehog plays an important role in angiogenesis and vascular remodeling under hypoxic stress. We studied the relationship and distribution of SHH and vascular endothelial growth factor in internal spermatic vein in patients diagnosed with varicocele. Methods Specimens of 1 cm were taken from the internal spermatic vein during left varicocele repair (N = 20). The control samples of ISV were obtained from eight male patients who underwent left inguinal herniorrhaphy. We analyzed the sonic hedgehog and vascular endothelial growth factor expression and distribution by immunoblotting, immunohistochemistry, immunofluorescent staining, and confocal laser scanning microscopy. The data were analyzed using the Student's t test. Results Immunoblotting showed higher expression of sonic hedgehog and vascular endothelial growth factor proteins in varicocele veins than in the control group ( P sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins which imply that the reducing hypoxia or using sonic hedgehog antagonists may be helpful for this vascular disease.

  1. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord.

    Science.gov (United States)

    Gulino, Rosario; Gulisano, Massimo

    2013-09-15

    Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.

  2. First report of natural infection in hedgehogs with Leishmania major, a possible reservoir of zoonotic cutaneous leishmaniasis in Algeria.

    Science.gov (United States)

    Tomás-Pérez, Míriam; Khaldi, Mourad; Riera, Cristina; Mozo-León, Denis; Ribas, Alexis; Hide, Mallorie; Barech, Ghania; Benyettou, Meryam; Seghiri, Kamel; Doudou, Souad; Fisa, Roser

    2014-07-01

    We report here the first known cases of natural infection of hedgehogs with Leishmania major. Cutaneous leishmaniasis is an important public health problem in the area of M'sila, a semi-arid province in Algeria's northern Sahara, where two species of hedgehog live, Atelerix algirus and Paraechinus aethiopicus. The aim of this research was to survey Leishmania infection in these hedgehogs and evaluate whether they were reservoir hosts of Leishmania in an endemic zoonotic focus of leishmaniasis. Serological and molecular methods were used to determine the presence of Leishmania in 24 hedgehogs caught directly by hand and identified at species level as 19 A. algirus and 5 P. aethiopicus. Specific anti-Leishmania antibodies were detected in 29.2% of individuals by Western blot and in 26.3% by ELISA. The real-time PCR performed in spleen, ear and blood samples detected Leishmania spp. DNA in 12.5% of the individuals, one A. algirus and two P. aethiopicus. Three skin and two spleen samples of these animals were found to be parasitized and were identified by molecular test as L. major. Considering our results, it is suggested that hedgehogs have a potential epidemiological role as reservoir hosts of L. major.

  3. Hedgehog signaling pathway: A novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Afroz Abidi

    2014-01-01

    Full Text Available The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449, an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.

  4. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas.

    Science.gov (United States)

    Abidi, Afroz

    2014-01-01

    The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.

  5. Dutch hedgehogs Erinaceus europaeus are nowadays mainly found in urban areas, possibly due to the negative Effects of badgers Meles meles

    NARCIS (Netherlands)

    Poel, van de J.; Dekker, J.J.A.; Langevelde, van F.

    2015-01-01

    In several west European countries, the distribution of hedgehogs Erinaceus europaeus is declining. In the UK, predation by the European badger Meles meles is considered to be the main death cause of hedgehogs. In the Netherlands, badger density is rising, which suggests the same cause for the decli

  6. Role of Hedgehog-GLI signaling pathway in the tumorigenesis of pancreatic cancer%Hedgehog-GLI信号通路在胰腺癌发生中的作用

    Institute of Scientific and Technical Information of China (English)

    郭杰芳; 高军; 李兆申

    2007-01-01

    近年来研究发现Hedgehog-GLI信号转导通路的异常激活参予胰腺癌的发生及恶性生物学特性的维持.GLI锌指转录因子作为该信号通路末端的靶基因直接调控子,在这一过程中起着非常重要的作用.本文就Hedgehog-GLI信号通路在胰腺癌发生中的作用、GLI转录活性的调控及致瘤作用、Hedgehog-GLI通路的靶向治疗价值等方面的研究进展作一综述.

  7. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations.

    Science.gov (United States)

    D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim

    2006-08-01

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.

  8. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    Science.gov (United States)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  9. Hedgehogs (Erinaceus europaeus as a Source of Ectoparasites in Urban-suburban Areas of Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasser Hajipour

    2015-10-01

    Full Text Available Background: Hedgehogs are small, nocturnal mammals which become popular in the world and have important role in transmission of zoonotic agents. Thus, the present study aimed to survey ectoparasite infestation from April 2010 to December 2011 in urban and suburban parts of Urmia and Tabriz Cities, Northwest of Iran.Methods: A total number of 84 hedgehogs (40 females and 44 males were examined. They have been carefully inspected for ectoparasites and collected arthropods were stored in 70% ethanol solution. The identification of arthropods was carried out using morphological diagnostic keys.Results: The occurrence of ticks on hedgehogs was 23 (67.7% with Rhipicephalus turanicus in Urmia and 11 (22% as well as 1(2% with Rh. turanicus and Hyalomma anatolicum anatolicum in Tabriz, respectively. One flea species, Archaeopsylla erinacei, was found with prevalence of 19 (55.9% and 27 (54% in Urmia and Tabriz Cities, respectively. Prevalence of infestation with Rh. turanicus and A. erinacei were not different (P> 0.05 between sexes of hedgehogs in two study areas. Highest prevalence of tick and flea infestation was in June in Urmia, whereas it was observed in August in Tabriz. Both tick and flea parasitizing hedgehogs showed seasonal difference in prevalence (P< 0.05 in Urmia, but it was not detected in Tabriz (P> 0.05.Conclusion: The result showed the high occurrence of ectoparasites in hedgehog population and according to the zoonotic potential of these animals as vector of some agents further studies are needed to investigate in different parts of Iran.

  10. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution.

    Science.gov (United States)

    Islam, A F M Tariqul; Moly, Pricila Khan; Miyamoto, Yuki; Kusakabe, Takehiro G

    2010-02-01

    Members of the Hedgehog (Hh) family are soluble ligands that orchestrate a wide spectrum of developmental processes ranging from left-right axis determination of the embryo to tissue patterning and organogenesis. Tunicates, including ascidians, are the closest relatives of vertebrates, and elucidation of Hh signaling in ascidians should provide an important clue towards better understanding the role of this pathway in development. In previous studies, expression patterns of genes encoding Hh and its downstream factor Gli have been examined up to the tailbud stage in the ascidian embryo, but their expression in the larva has not been reported. Here we show the spatial expression patterns of hedgehog (Ci-hh1, Ci-hh2), patched (Ci-ptc), smoothened (Ci-smo), and Gli (Ci-Gli) orthologs in larvae of the ascidian Ciona intestinalis. The expression patterns of Ci-hh2 and Ci-Gli dramatically change during the period between the late tailbud embryo and the swimming larva. At the larval stage, expression of Ci-Gli was found in a central part of the endoderm and in the visceral ganglion, while Ci-hh2 was expressed in two discrete endodermal regions, anteriorly and posteriorly adjacent to the cells expressing Gli. The expression patterns of these genes suggest that the Hh ligand controls postembryonic development of the endoderm and the central nervous system. Expression of a gene encoding Hh in the anterior and/or pharyngeal endoderm is probably an ancient chordate character; diversification of regulation and targets of the Hh signaling in this region may have played a major role in the evolution of chordate body structures.

  11. Integrated Genotypic Analysis of Hedgehog-Related Genes Identifies Subgroups of Keratocystic Odontogenic Tumor with Distinct Clinicopathological Features

    OpenAIRE

    2013-01-01

    Keratocystic odontogenic tumor (KCOT) arises as part of Gorlin syndrome (GS) or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH) of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elu...

  12. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy.

    Science.gov (United States)

    Mak, Kinglun Kingston; Kronenberg, Henry M; Chuang, Pao-Tien; Mackem, Susan; Yang, Yingzi

    2008-06-01

    Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.

  13. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity.

    Directory of Open Access Journals (Sweden)

    Céline Delloye-Bourgeois

    Full Text Available The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON, a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.

  14. Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach.

    Directory of Open Access Journals (Sweden)

    Jessica M Donnelly

    Full Text Available Studies using Helicobacter-infected mice show that bone marrow-derived mesenchymal stem cells (MSCs can repopulate the gastric epithelium and promote gastric cancer progression. Within the tumor microenvironment of the stomach, pro-inflammatory cytokine interferon-gamma (IFNγ and Sonic hedgehog (Shh are elevated. IFNγ is implicated in tumor proliferation via activation of the Shh signaling pathway in various tissues but whether a similar mechanism exists in the stomach is unknown. We tested the hypothesis that IFNγ drives MSC proliferation and recruitment, a response mediated by Shh signaling. The current study uses transplantation of an in vitro transformed mesenchymal stem cell line (stMSC(vect, that over-expresses hedgehog signaling, in comparison to non-transformed wild-type MSCs (wtMSCs, wtMSCs transfected to over-express Shh (wtMSC(Shh, and stMSCs transduced with lentiviral constructs containing shRNA targeting the Shh gene (stMSC(ShhKO. The effect of IFNγ on MSC proliferation was assessed by cell cycle analysis in vitro using cells treated with recombinant IFNγ (rmIFNγ alone, or in combination with anti-Shh 5E1 antibody, and in vivo using mice transplanted with MSCs treated with PBS or rmIFNγ. In vitro, IFNγ significantly increased MSC proliferation, a response mediated by Shh that was blocked by 5E1 antibody. The MSC population collected from bone marrow of PBS- or IFNγ-treated mice showed that IFNγ significantly increased the percentage of all MSC cell lines in S phase, with the exception of the stMSCs(ShhKO cells. While the MSC cell lines with intact Shh expression were recruited to the gastric mucosa in response to IFNγ, stMSCs(ShhKO were not. Hedgehog signaling is required for MSC proliferation and recruitment to the stomach in response to IFNγ.

  15. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    Science.gov (United States)

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.

  16. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options – role of smoothened inhibitors

    Directory of Open Access Journals (Sweden)

    Fecher LA

    2015-11-01

    Full Text Available Leslie A Fecher,1,3 William H Sharfman2 1Department of Internal Medicine and Dermatology, Indiana University Health Simon Cancer Center, Indianapolis, IN, USA; 2The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA, 3Department of Internal Medicine and Dermatology, University of Michigan, MI, USA Abstract: Cutaneous basal cell carcinoma (BCC is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449, a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. Keywords: basal cell carcinoma, hedgehog, smoothened, vismodegib, Gorlin, basal cell nevus syndrome

  17. Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis.

    Science.gov (United States)

    Syed, Islam S; Pedram, Akbari; Farhat, Walid A

    2016-02-01

    Sonic hedgehog (Shh) signaling pathway has emerged as a critical component of bladder development, cancer initiation, and progression. While the role of Shh signaling in bladder development is well documented, its role in bladder cancer progression is uncertain. Additionally, epithelial-to-mesenchymal transition (EMT) has been identified to promote bladder cancer progression in the initial stages and also contribute to drug resistance in the later stage and ultimately metastasis. We speculate that epithelial-to-mesenchymal transitions (EMT) and Shh fuel the carcinogenesis process. This review presents the most recent studies focusing on the role of Shh signaling in bladder cancer progression.

  18. Occurrence of the lungworms Capillaria and Crenosoma spp. in British hedgehogs (Erinaceus europaeus).

    Science.gov (United States)

    Majeed, S K; Morris, P A; Cooper, J E

    1989-01-01

    Fifty-three dead hedgehogs (Erinaceus europaeus) were investigated histologically for evidence of lungworm infestation. The faeces of forty-two were examined microscopically for nematode eggs. Thirty-five animals showed parasitic lesions--fourteen Crenosoma only, five Capillaria only and sixteen both. Infestations were characterized by inflammatory changes in the trachea and lung and the presence of worms in other organs. There was some correlation between the finding of parasites in histological sections and the detection of eggs in faeces but, neither method appears completely reliable.

  19. Targeting Sonic Hedgehog: a new way to mow down pancreatic cancer?

    Science.gov (United States)

    Cengel, Keith A

    2004-02-01

    Despite continuing development of new therapies, the prognosis for patients with pancreatic cancer remains extremely poor. In part, this may relate to molecular abnormalities that stimulate pancreatic tumorigenesis and also contribute to reduced sensitivity to standard treatments such as chemotherapy and radiotherapy. Two recent reports in Nature suggest that Sonic Hedgehog (Shh) overexpression may contribute to pancreatic tumorigenesis and that cyclopamine, a specific inhibitor of Shh signaling, can reduce pancreatic cancer cell growth and viability. This discovery is exciting and suggests that targeting Shh signaling may be an effective novel approach to therapy in patients with this devastating disease.

  20. Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea).

    Science.gov (United States)

    Bartkowska, K; Turlejski, K; Grabiec, M; Ghazaryan, A; Yavruoyan, E; Djavadian, R L

    2010-01-01

    We investigated adult neurogenesis in two species of mammals belonging to the superorder Laurasiatheria, the southern white-breasted hedgehog (order Erinaceomorpha, species Erinaceus concolor) from Armenia and the European mole (order Soricomorpha, species Talpa europaea) from Poland. Neurogenesis in the brain of these species was examined immunohistochemically, using the endogenous markers doublecortin (DCX) and Ki-67, which are highly conserved among species. We found that in both the hedgehog and mole, like in the majority of earlier investigated mammals, neurogenesis continues in the subventricular zone (SVZ) of the lateral ventricles and in the dentate gyrus (DG). In the DG of both species, DCX-expressing cells and Ki-67-labeled cells were present in the subgranular and granular layers. In the mole, a strong bundle of DCX-labeled processes, presumably axons of granule cells, was observed in the center of the hilus. Proliferating cells (expressing Ki-67) were identified in the SVZ of lateral ventricles of both species, but neuronal precursor cells (expressing DCX) were also observed in the olfactory bulb (OB). In both species, the vast majority of cells expressing DCX in the OB were granule cells with radially orientated dendrites, although some periglomerular cells surrounding the glomeruli were also labeled. In addition, this paper is the first to show DCX-labeled fibers in the anterior commissure of the hedgehog and mole. These fibers must be axons of new neurons making interhemispheric connections between the two OB or piriform (olfactory) cortices. DCX-expressing neurons were observed in the striatum and piriform cortex of both hedgehog and mole. We postulate that in both species a fraction of cells newly generated in the SVZ migrates along the rostral migratory stream to the piriform cortex. This pattern of migration resembles that of the 'second-wave neurons' generated during embryonal development of the neocortex rather than the pattern observed during

  1. Activation of Sonic Hedgehog Signaling Pathway in S-type Neuroblastoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    周昱男; 戴若连; 毛玲; 夏远鹏; 姚玉芳; 杨雪; 胡波

    2010-01-01

    The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components- Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to ...

  2. Natural infection of Algerian hedgehog, Atelerix algirus (Lereboullet 1842) with Leishmania parasites in Tunisia.

    Science.gov (United States)

    Chemkhi, Jomaa; Souguir, Hejer; Ali, Insaf Bel Hadj; Driss, Mehdi; Guizani, Ikram; Guerbouj, Souheila

    2015-10-01

    In Tunisia, Leishmania parasites are responsible of visceral leishmaniasis, caused by Leishmania infantum species while three cutaneous disease forms are documented: chronic cutaneous leishmaniasis due to Leishmania killicki, sporadic cutaneous form (SCL) caused by L. infantum and the predominant zoonotic cutaneous leishmanaisis (ZCL) due to Leishmania major. ZCL reservoirs are rodents of the Psammomys and Meriones genera, while for SCL the dog is supposed to be a reservoir. Ctenodactylus gundii is involved in the transmission of L. killicki. However, other mammals could constitute potential reservoir hosts in Tunisia and other North African countries. In order to explore the role of hedgehogs as potential reservoirs of leishmaniasis, specimens (N=6) were captured during July-November period in 2011-2013 in an SCL endemic area in El Kef region, North-Western Tunisia. Using morphological characteristics, all specimens were described and measured. Biopsies from liver, heart, kidney and spleen of each animal were used to extract genomic DNA, which was further used in PCR assays to assess the presence of Leishmania parasites. Different PCRs targeting kinetoplast minicircles, ITS1, mini-exon genes and a repetitive Leishmania- specific sequence, were applied. To further identify Leishmania species involved, RFLP analysis of amplified fragments was performed with appropriate restriction enzymes. Using morphological characters, animals were identified as North African hedgehogs, also called Algerian hedgehogs, that belong to the Erinaceidae family, genus Atelerix Pomel 1848, and species algirus (Lereboullet, 1842). PCR results showed in total that all specimens were Leishmania infected, with different organs incriminated, mainly liver and spleen. Results were confirmed by direct sequencing of amplified fragments. Species identification showed that all specimens were infected with L. major, three of which were additionally co-infected with L. infantum. The present study

  3. Hedgehog pathway inhibition in advanced basal cell carcinoma: latest evidence and clinical usefulness

    Science.gov (United States)

    Silapunt, Sirunya; Chen, Leon; Migden, Michael R.

    2016-01-01

    Treatment of locally advanced basal cell carcinomas (laBCCs) with large, aggressive, destructive, and disfiguring tumors, or metastatic disease is challenging. Dysregulation of the Hedgehog (Hh) signaling pathway has been identified in the vast majority of basal cell carcinomas (BCCs). There are two United States Food and Drug Administration (US FDA)-approved Hh pathway inhibitors (HPIs) that exhibit antitumor activity in advanced BCC with an acceptable safety profile. Common adverse effects include muscle spasms, dysgeusia, alopecia, fatigue, nausea and weight loss. PMID:27583029

  4. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yang; Wenlin Chen; Yongbin Chen; Jin Jiang

    2012-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals.The Hh signal is transduced by Smoothened (Smo),a seven-transmembrane protein related to G protein coupled receptors.Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals,how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood.Here,we provide evidence that two ciliary proteins,Evc and Evc2,the products of human disease genes responsible for the Ellis-van Creveld syndrome,act downstream of Smo to transduce the Hh signal.We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo.Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu-/- cells,suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation.Furthermore,we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a-/- cilium-deficient cells.We propose that Hh activates Smo by inducing its phosphorylation,which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  5. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    Science.gov (United States)

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  6. Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade.

    Directory of Open Access Journals (Sweden)

    Caroline Halluin

    Full Text Available The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis.

  7. Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade

    Science.gov (United States)

    Naye, François; Peers, Bernard; Roussigné, Myriam; Blader, Patrick

    2016-01-01

    The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis. PMID:27387288

  8. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  9. Study of Sonic hedgehog signaling pathway related molecules in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Ma; Hai-Ji Sun; Yun-Shan Wang; Shu-Hong Huang; Jing-Wu Xie; Hong-Wei Zhang

    2006-01-01

    AIM: To study the expression of Sonic hedgehog pathway-related molecules, Sonic hedgehog (Shh) and Gli1 in gastric carcinoma.METHODS: Expression of Shh in 56 gastric specimens including non-cancerous gastric tissues, gastric adenocarcinoma, gastric squamous cell carcinoma was detected by RT-PCR, in situ hybridization and immunohistochemistry. Expression of Gli1 was observed by in situ hybridization.RESULTS: The positive rate of Shh and Gli1 expression was 0.0%, 0.0% in non-cancerous gastric tissues while it was 66.7%, 57.8% respectively in gastric adenocarcinoma, and 100%, 100% respectively in gastric squamous cell carcinoma. There was a significant difference between the non-cancerous gastric tissues and gastric carcinoma (P < 0.05). Elevated expression of Shh and Gli1 in gastric tubular adenocarcinoma was associated with poorly differentiated tumors while the expression was absent in gastric mucinous adenocarcinoma.CONCLUSION: The elevated expression of Shh and Gli1 in gastric adenocarcinoma and gastric squamous cell carcinoma shows the involvement of activated Shh signaling in the cellular proliferation of gastric carcinogenesis. It suggests Shh signaling gene may be a new and good target gene for gastric tumor diagnosis and therapy.

  10. Hedgehog Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Mathieu Daynac

    2016-10-01

    Full Text Available Identifying the mechanisms controlling quiescence and activation of neural stem cells (NSCs is crucial for understanding brain repair. Here, we demonstrate that Hedgehog (Hh signaling actively regulates different pools of quiescent and proliferative NSCs in the adult ventricular-subventricular zone (V-SVZ, one of the main brain neurogenic niches. Specific deletion of the Hh receptor Patched in NSCs during adulthood upregulated Hh signaling in quiescent NSCs, progressively leading to a large accumulation of these cells in the V-SVZ. The pool of non-neurogenic astrocytes was not modified, whereas the activated NSC pool increased after a short period, before progressively becoming exhausted. We also showed that Sonic Hedgehog regulates proliferation of activated NSCs in vivo and shortens both their G1 and S-G2/M phases in culture. These data demonstrate that Hh orchestrates the balance between quiescent and activated NSCs, with important implications for understanding adult neurogenesis under normal homeostatic conditions or during injury.

  11. Expression and Role of Sonic Hedgehog in the Process of Fracture Healing with Aging.

    Science.gov (United States)

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Obata, Kyoichi; Masui, Masanori; Pang, Pai; Horikiri, Yuu; Sasaki, Akira

    2016-01-01

    Aging is one of the risk factors for delayed fracture healing. Sonic hedgehog (SHH) protein, an inducer of embryonic development, has been demonstrated to be activated in osteoblasts at the dynamic remodeling site of a bone fracture. Herein, we compared and examined the distribution patterns of SHH and the functional effect of SHH signaling on osteogenesis and osteoclastogenesis between young (5-week-old) and aged (60-week-old) mice during fracture healing. We found that SHH was expressed in bone marrow cells from the fractured site of the rib of young mice on day 5, but was barely detectable in the corresponding cells from the rib of aged mice. SHH was also detected in osteoblasts and bone marrow cells at the callus remodeling stage on days 14 and 28 in both young and aged mice. The number of alkaline phosphatase (ALP)-positive osteoblasts was significantly higher in young mice on days 5 and 14, whereas the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts was significantly higher in aged mice. SHH stimulated significantly more osteoblast formation in the young compared to old mice. SHH stimulated the osteoclast formation directly in the aged mice and suppressed the formation indirectly through osteoprotegerin expression in the young mice. Results indicate that an aged-related delay of fracture healing may contribute to the unbalanced bone formation and resorption, regulated by hedgehog signaling.

  12. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans.

    Science.gov (United States)

    Ortmann, Corinna; Pickhinke, Ute; Exner, Sebastian; Ohlig, Stefanie; Lawrence, Roger; Jboor, Hamodah; Dreier, Rita; Grobe, Kay

    2015-06-15

    All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.

  13. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    Science.gov (United States)

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  14. Hedgehog信号通路与胃癌%Hedgehog signaling pathway and gastric cancer

    Institute of Scientific and Technical Information of China (English)

    王俊峰; 李继坤

    2009-01-01

    Hedgehog(Hh) pathway plays a key role in a variety of processes, such as embryogenesis, maintenance of tissue homeostasis, tissue repair and carcinogenesis. Recent studies indicate that the aberrant activation of Hh pathway has been linked to multiple types of human cancer. Here, we present an overview of the processing and secretion of Hh pathway and the role of Hh pathway in gastric cancer.%Hedgehog (Hh)信号通路在胚胎发育、组织修复、癌症发生等进程中发挥重要作用.近年来多项研究发现Hh通路的异常激活与胃癌的发生、发展关系密切.本文就Hh信号通路的构成及其在胃中的表达、生理作用和胃癌发生、发展的关系等方面的研究进展作一综述.

  15. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mihaela Crisan

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSC, the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment.

  16. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice.

    Science.gov (United States)

    Burnett, Jacob B; Lupu, Floria I; Eggenschwiler, Jonathan T

    2017-10-01

    Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation.

    Science.gov (United States)

    Kanayama, Masaki; Akiyama-Oda, Yasuko; Nishimura, Osamu; Tarui, Hiroshi; Agata, Kiyokazu; Oda, Hiroki

    2011-10-11

    During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.

  18. Using mechanistic Bayesian networks to identify downstream targets of the sonic hedgehog pathway.

    Science.gov (United States)

    Shah, Abhik; Tenzen, Toyoaki; McMahon, Andrew P; Woolf, Peter J

    2009-12-18

    The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.

  19. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway

    Directory of Open Access Journals (Sweden)

    McMahon Andrew P

    2009-12-01

    Full Text Available Abstract Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL. We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.

  20. Sonic hedgehog functions as a mitogen during bell stage of odontogenesis.

    Science.gov (United States)

    Wu, Changshan; Shimo, Tsuyoshi; Liu, Mufei; Pacifici, Maurizio; Koyama, Eiki

    2003-01-01

    Epithelial-mesenchymal interactions are required for tissue growth and gene expression patterns during odontogenesis. We showed previously that Sonic hedgehog (SHH) is detectable in both dental epithelium and mesenchyme, while Shh transcripts are present in dental epithelium only, suggesting that SHH functions as an autocrine signal in epithelium and a paracrine signal in mesenchyme. This hypothesis was tested here. We found by in situ hybridization that the SHH autocrine receptor Ptch-2 is indeed expressed in dental epithelium whereas the paracrine receptor Ptc is expressed in mesenchyme. Bovine bell stage tooth germs were microsurgically separated into epithelial and mesenchymal portions and the resulting tissue fragments were organ-cultured. In epithelium fragments cultured by themselves, gene expression of Shh and Gli-1 (a putative transcriptional mediator of hedgehog signaling) was significantly decreased in both inner dental epithelium and stratum intermedium layers; this was accompanied by a sharp drop in epithelial cell proliferation. However, in companion control tissue fragments containing both epithelium and mesenchyme, Shh and Gli-1 expression as well as cell proliferation were maintained. Treatment of dental epithelial or mesenchymal cell populations in monolayer cultures with exogenous recombinant SHH stimulated cell proliferation. Together, the data provide clear evidence that Shh is synthesized by dental epithelium, reaches the underlying mesenchyme, and appears to act as an autocrine mitogen for epithelial cells and a paracrine mitogen for mesenchymal cells, thus exerting crucial functions in tooth germ growth, morphogenesis, and tissue-tissue interactions of bell stage of odontogenesis.

  1. NHR-23 dependent collagen and hedgehog-related genes required for molting

    Energy Technology Data Exchange (ETDEWEB)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Krause, Michael W. [Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Kostrouch, Zdenek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Kostrouchova, Marta, E-mail: marta.kostrouchova@lf1.cuni.cz [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic)

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  2. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    Science.gov (United States)

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  3. Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold; Roelink, Henk

    2008-01-01

    The hedgehog (Hh) pathway is required for many developmental processes,. as well as for adult homeostasis. Although all known effects of Hh signaling affecting patterning and differentiation are mediated by members of the Gli family of zinc ringer transcription factors, we demonstrate that the Hh-de

  4. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, R.I. [Johns Hopkins Univ., Baltimore, MD (United States); Roessler, E.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  5. Test Plan for Westinghouse Hanford Company`s Hedgehog Shielded Container, Docket 94-39-7A, Type A Container

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.

    1995-02-27

    This report documents the US Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Westinghouse Hanford Company`s Hedgehog Shielded Container for use as a Type A packaging. The packaging configurations being tested are intended for liquids and solids, and for air transportation.

  6. Infestation of urban populations of the Northern white-breasted hedgehog, Erinaceus roumanicus, by Ixodes spp. ticks in Poland.

    Science.gov (United States)

    Dziemian, S; Michalik, J; Pi Łacińska, B; Bialik, S; Sikora, B; Zwolak, R

    2014-12-01

    Infestation by the nest-dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white-breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4-year study in residential areas of the city of Poznań, west-central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas.

  7. Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): III. Hair as an indicator of endogenous organochlorine compound concentrations.

    Science.gov (United States)

    D'Havé, Helga; Scheirs, Jan; Covaci, Adrian; Schepens, Paul; Verhagen, Ron; De Coen, Wim

    2006-01-01

    Concentrations of organochlorine persistent pollutants were investigated in tissues of the European hedgehog (Erinaceus europaeus). Road kills and carcasses from wildlife rescue centers were used to characterize organochlorine compound tissue distribution and tissue profile dissimilarities (hair, liver, kidney, muscle, and adipose tissue). The most important contaminants were polychlorinated biphenyls (PCBs), chlordanes (CHLs), and DDTs, with median concentrations of 75, 5.1, and 1.4 ng/g liver wet weight, respectively. Median levels for the remaining compounds-hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and octachlorostyrene-were less than 0.5 ng/g liver wet weight. Compared to results with other mammalian wildlife, the present results indicate that hedgehogs may accumulate considerable concentrations of organochlorine compounds. Polychlorinated biphenyls and HCB preferably accumulated in liver and muscle tissue. Concentrations of DDTs and HCHs were highest in muscle tissue and hair, respectively. Octachlorostyrene and CHL levels were predominant in liver. The observed positive relationships between concentrations in hair and internal tissues for PCBs, DDTs, HCB, HCHs, and CHLs (0.49 hedgehog hair as a nondestructive biomonitoring tool regarding pollution with organochlorine compounds and the promising role of the hedgehog as a mammalian indicator species of pollution in terrestrial environments.

  8. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis.

    Science.gov (United States)

    Matz-Soja, Madlen; Rennert, Christiane; Schönefeld, Kristin; Aleithe, Susanne; Boettger, Jan; Schmidt-Heck, Wolfgang; Weiss, Thomas S; Hovhannisyan, Amalya; Zellmer, Sebastian; Klöting, Nora; Schulz, Angela; Kratzsch, Jürgen; Guthke, Reinhardt; Gebhardt, Rolf

    2016-05-17

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond.

  9. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain

    NARCIS (Netherlands)

    Vermeulen, F.; Covaci, A.; Havé, D' H.; Brink, van den N.W.; Blust, R.; Coen, De W.; Bervoets, L.

    2010-01-01

    The bioaccumulation of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and DDT and metabolites, was investigated in the soil–earthworm–hedgehog food chain. Concentrations of selected POPs were measured in soil and earthworms coll

  10. Microduplications encompassing the Sonic Hedgehog Limb Enhancer ZRS are Associated with Haas Type Polysyndactyly and Laurin-Sandrow Syndrome

    DEFF Research Database (Denmark)

    Lohan, Silke; Spielmann, Malte; Doelken, Sandra C

    2014-01-01

    with Haas type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZRS on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower...

  11. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    DEFF Research Database (Denmark)

    Airik, Rannar; Schueler, Markus; Airik, Merlin

    2016-01-01

    Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC...

  12. Duplication of 7q36.3 encompassing the Sonic Hedgehog (SHH) gene is associated with congenital muscular hypertrophy

    DEFF Research Database (Denmark)

    Kroeldrup, L; Kjaergaard, S; Kirchhoff, Eva Maria

    2012-01-01

    with muscular hypertrophy and mildly retarded psychomotor development. Array-CGH identified a small duplication of 7q36.3 including the Sonic Hedgehog (SHH) gene in both the aborted foetus and the live born male sib. Neither of the parents carried the 7q36.3 duplication. The consequences of overexpression...

  13. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial

    Directory of Open Access Journals (Sweden)

    O'Hara William A

    2011-12-01

    Full Text Available Abstract Background Desert hedgehog (DHH belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. Results DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice, but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. Conclusions These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis.

  14. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  15. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Science.gov (United States)

    Rebollido-Rios, Rocio; Bandari, Shyam; Wilms, Christoph; Jakuschev, Stanislav; Vortkamp, Andrea; Grobe, Kay; Hoffmann, Daniel

    2014-07-01

    Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  16. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  17. Statins activate the canonical hedgehog-signaling and aggravate non-cirrhotic portal hypertension, but inhibit the non-canonical hedgehog signaling and cirrhotic portal hypertension.

    Science.gov (United States)

    Uschner, Frank E; Ranabhat, Ganesh; Choi, Steve S; Granzow, Michaela; Klein, Sabine; Schierwagen, Robert; Raskopf, Esther; Gautsch, Sebastian; van der Ven, Peter F M; Fürst, Dieter O; Strassburg, Christian P; Sauerbruch, Tilman; Diehl, Anna Mae; Trebicka, Jonel

    2015-09-28

    Liver cirrhosis but also portal vein obstruction cause portal hypertension (PHT) and angiogenesis. This study investigated the differences of angiogenesis in cirrhotic and non-cirrhotic PHT with special emphasis on the canonical (Shh/Gli) and non-canonical (Shh/RhoA) hedgehog pathway. Cirrhotic (bile duct ligation/BDL; CCl4 intoxication) and non-cirrhotic (partial portal vein ligation/PPVL) rats received either atorvastatin (15 mg/kg; 7d) or control chow before sacrifice. Invasive hemodynamic measurement and Matrigel implantation assessed angiogenesis in vivo. Angiogenesis in vitro was analysed using migration and tube formation assay. In liver and vessel samples from animals and humans, transcript expression was analyzed using RT-PCR and protein expression using Western blot. Atorvastatin decreased portal pressure, shunt flow and angiogenesis in cirrhosis, whereas atorvastatin increased these parameters in PPVL rats. Non-canonical Hh was upregulated in experimental and human liver cirrhosis and was blunted by atorvastatin. Moreover, atorvastatin blocked the non-canonical Hh-pathway RhoA dependently in activated hepatic steallate cells (HSCs). Interestingly, hepatic and extrahepatic Hh-pathway was enhanced in PPVL rats, which resulted in increased angiogenesis. In summary, statins caused contrary effects in cirrhotic and non-cirrhotic portal hypertension. Atorvastatin inhibited the non-canonical Hh-pathway and angiogenesis in cirrhosis. In portal vein obstruction, statins enhanced the canonical Hh-pathway and aggravated PHT and angiogenesis.

  18. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  19. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations

    Energy Technology Data Exchange (ETDEWEB)

    D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: helga.dhave@ua.ac.be; Scheirs, Jan [Evolutionary Biology Group, Department of Biology, University of Antwerp, B-2020 Antwerp (Belgium); Mubiana, Valentine Kayawe [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verhagen, Ron [Evolutionary Biology Group, Department of Biology, University of Antwerp, B-2020 Antwerp (Belgium); Blust, Ronny [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim de [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2006-08-15

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs. - Hedgehog hair and spines are promising non-destructive biomonitoring tools of terrestrial metal pollution.

  20. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.

    Science.gov (United States)

    Dorn, Karolin V; Hughes, Casey E; Rohatgi, Rajat

    2012-10-16

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies.

  1. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat

    DEFF Research Database (Denmark)

    Teperino, Raffaele; Amann, Sabine; Bayer, Martina

    2012-01-01

    Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we......-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.......Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we...

  2. Sonic hedgehog pathway contributes to gastric cancer cell growth and proliferation.

    Science.gov (United States)

    Wan, Jianhua; Zhou, Ji; Zhao, Hailong; Wang, Mei; Wei, Zhuanqin; Gao, Hongyan; Wang, Yongzhong; Cui, Hongjuan

    2014-04-01

    The Sonic Hedgehog (Shh) signaling pathway is commonly activated in gastrointestinal cancer. However, our understanding of the Shh pathway in gastric cancer remains limited. Here we examined the effects of cyclopamine, a specific inhibitor of the Shh signaling pathway, on cell growth and proliferation in gastric primary cancer cells GAM-016 and the MKN-45 cell line. The results showed that the Shh signaling molecules SHH, PTCH, SMO, GLI1, and GLI2 were intact and activated in both types of cells. Furthermore, we observed that cyclopamine inhibited gastric cancer cell proliferation through cell cycle arrest and apoptosis. An in vivo study using NOD/SCID mouse xenografts demonstrated that cyclopamine significantly prevented tumor growth and development. Our study indicated that Shh signaling pathway could promote gastric cancer cell proliferation and tumor development, and blocking this pathway may be a potential strategy in gastric cancer treatment.

  3. Drosophila Boi limits Hedgehog levels to suppress follicle stem cell proliferation.

    Science.gov (United States)

    Hartman, Tiffiney R; Zinshteyn, Daniel; Schofield, Heather K; Nicolas, Emmanuelle; Okada, Ami; O'Reilly, Alana M

    2010-11-29

    Stem cells depend on signals from cells within their microenvironment, or niche, as well as factors secreted by distant cells to regulate their maintenance and function. Here we show that Boi, a Hedgehog (Hh)-binding protein, is a novel suppressor of proliferation of follicle stem cells (FSCs) in the Drosophila ovary. Hh is expressed in apical cells, distant from the FSC niche, and diffuses to reach FSCs, where it promotes FSC proliferation. We show that Boi is expressed in apical cells and exerts its suppressive effect on FSC proliferation by binding to and sequestering Hh on the apical cell surface, thereby inhibiting Hh diffusion. Our studies demonstrate that cells distant from the local niche can regulate stem cell function through ligand sequestration, a mechanism that likely is conserved in other epithelial tissues.

  4. Interferon gamma and sonic hedgehog signaling are required to dysregulate murine neural stem/precursor cells.

    Directory of Open Access Journals (Sweden)

    Janine Walter

    Full Text Available BACKGROUND: The pro-inflammatory cytokine interferon gamma (IFNγ, a key player in various neurological diseases, was recently shown to induce a dysregulated phenotype in neural stem/precursor cells (NSPCs that is characterized by the simultaneous expression of glial and neuronal markers and irregular electrophysiological properties. Thus far, the mechanisms of this phenomenon have remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine if binding of the signal transducers and activators of transcription (Stat 1 to the sonic hedgehog (SHH promoter is important for this phenomenon to occur, chromatin immunoprecipitation and pharmacological inhibition studies were performed. We report here that the activation of both the Stat 1 and SHH pathways is necessary to elicit the dysregulated phenotype. CONCLUSIONS/SIGNIFICANCE: Thus, blocking these pathways might preserve functional differentiation of NSPCs under inflammatory conditions leading to more effective regeneration.

  5. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction.

    Science.gov (United States)

    Ko, Hyuk Wan; Norman, Ryan X; Tran, John; Fuller, Kimberly P; Fukuda, Mitsunori; Eggenschwiler, Jonathan T

    2010-02-16

    Recent findings indicate that mammalian Sonic hedgehog (Shh) signal transduction occurs within primary cilia, although the cell biological mechanisms underlying both Shh signaling and ciliogenesis have not been fully elucidated. We show that an uncharacterized TBC domain-containing protein, Broad-minded (Bromi), is required for high-level Shh responses in the mouse neural tube. We find that Bromi controls ciliary morphology and proper Gli2 localization within the cilium. By use of a zebrafish model, we further show that Bromi is required for proper association between the ciliary membrane and axoneme. Bromi physically interacts with cell cycle-related kinase (CCRK), whose Chlamydomonas homolog regulates flagellar length. Biochemical and genetic interaction data indicate that Bromi promotes CCRK stability and function. We propose that Bromi and CCRK control the structure of the primary cilium by coordinating assembly of the axoneme and ciliary membrane, allowing Gli proteins to be properly activated in response to Shh signaling.

  6. Sonic Hedgehog与前列腺生长调控%Sonic Hedgehog and Prostate Growth Regulation

    Institute of Scientific and Technical Information of China (English)

    杨立; 申吉泓; 刘孝东

    2007-01-01

    Sonic hedgehog(Shh)是一类在胚胎发育过程中起关键作用的信号调节因子.研究认为Shh信号在前列腺导管形成分化以及基质-上皮的相互作用等机制中发挥着重要作用,从而调节前列腺发育、生长和细胞增殖;Shh信号作用途径的紊乱可导致肿瘤细胞的生成和增殖.探讨Shh信号机制在前列腺正常生长和疾病状态中的作用将为研究前列腺疾病的发病机制提供重要的思路.

  7. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Kavitha Yaddanapudi

    Full Text Available Toll-like receptor 3 (TLR3 signaling has been implicated in neural stem/precursor cell (NPC proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT or TLR3 deficient (TLR3(-/- mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.

  8. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  9. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    Science.gov (United States)

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.

  10. A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs.

    Science.gov (United States)

    Gillis, J Andrew; Hall, Brian K

    2016-04-15

    Chondrichthyans (sharks, skates, rays and holocephalans) possess paired appendages that project laterally from their gill arches, known as branchial rays. This led Carl Gegenbaur to propose that paired fins (and hence tetrapod limbs) originally evolved via transformation of gill arches. Tetrapod limbs are patterned by asonic hedgehog(Shh)-expressing signalling centre known as the zone of polarising activity, which establishes the anteroposterior axis of the limb bud and maintains proliferative expansion of limb endoskeletal progenitors. Here, we use loss-of-function, label-retention and fate-mapping approaches in the little skate to demonstrate that Shh secretion from a signalling centre in the developing gill arches establishes gill arch anteroposterior polarity and maintains the proliferative expansion of branchial ray endoskeletal progenitor cells. These findings highlight striking parallels in the axial patterning mechanisms employed by chondrichthyan branchial rays and paired fins/limbs, and provide mechanistic insight into the anatomical foundation of Gegenbaur's gill arch hypothesis.

  11. Indian hedgehog roles in post-natal TMJ development and organization.

    Science.gov (United States)

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.

  12. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Directory of Open Access Journals (Sweden)

    Noah Ray Johnson

    Full Text Available The morphogen Sonic hedgehog (Shh holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  13. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Science.gov (United States)

    Johnson, Noah Ray; Wang, Yadong

    2013-01-01

    The morphogen Sonic hedgehog (Shh) holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  14. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  15. A critical role for sonic hedgehog signaling in the early expansion of the developing brain.

    Science.gov (United States)

    Britto, Joanne; Tannahill, David; Keynes, Roger

    2002-02-01

    The mechanisms that coordinate the three-dimensional shape of the vertebrate brain during development are largely unknown. We have found that sonic hedgehog (Shh) is crucial in driving the rapid, extensive expansion of the early vesicles of the developing midbrain and forebrain. Transient displacement of the notochord from the midbrain floor plate resulted in abnormal folding and overall collapse of the vesicles, accompanied by reduced cell proliferation and increased cell death in the midbrain. Simultaneously, expression of Shh decreased locally in the notochord and floor plate, whereas overt patterning and differentiation proceeded normally. Normal midbrain expansion was restored by implantation of Shh-secreting cells in a dose-dependent manner; conversely, expansion was retarded following antagonism of the Shh signaling pathway by cyclopamine. Our results indicate that Shh signaling from the ventral midline is essential for regulating brain morphogenesis during early development.

  16. ZnO hedgehog-like structures for control cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Neykova, Neda, E-mail: neykova@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 120 00 Prague 2 (Czech Republic); Broz, Antonin [Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 12852 Prague 2 (Czech Republic); Remes, Zdenek; Hruska, Karel [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Kalbacova, Marie [Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 12852 Prague 2 (Czech Republic); Kromka, Alexander; Vanecek, Milan [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic)

    2012-02-01

    Growth of biocompatible zinc oxide hedgehog-like structures on glass substrates using hydrothermal method at low temperature is demonstrated. The as-grown samples are characterized by scanning electron microscopy and Raman spectroscopy. The optical absorption of the as-grown ZnO microstructures measured with photothermal deflection spectroscopy showed very low optical absorption and strong scattering making ZnO microrods an ideal diffuser in the visible and near IR regions. In addition, the effect of ZnO microstructures on the cultivation of osteosarcoma cells (SAOS-2) is presented. During the 48 h cultivation period, no toxic effect of ZnO as a chemical agent on SAOS-2 cells was observed.

  17. New prospects for drug development: the hedgehog pathway revealed. Focus on hematologic malignancies.

    Science.gov (United States)

    Pimentel, Agustin; Velez, Michel; Barahona, Luz J; Swords, Ronan; Lekakis, Lazaros

    2013-05-01

    The hedgehog (Hh) pathway is a critical regulator of vertebrate embryonic development and is involved in the function of processes such as stem cell maintenance and differentiation, tissue polarity and cell proliferation. Given how critical these functions are, it is not surprising that mutations in Hh pathway components are often implicated in the tumorigenesis of a variety of human cancers. Promotion of tumor growth has recently been shown by activated Hh signaling in the tumor itself, as well as by pathway activation within surrounding cells comprising the tumor microenvironment. Targeted disruption of various Hh pathway proteins has been successfully employed as an anticancer strategy with several synthetic Hh antagonists now available. Here, the molecular basis of Hh signaling, the therapeutic rationales for targeting this pathway and the current status of Hh pathway inhibitors in the clinic are reviewed.

  18. Novel Sonic Hedgehog Mutation in a Couple with Variable Expression of Holoprosencephaly

    Directory of Open Access Journals (Sweden)

    M. Aguinaga

    2011-01-01

    Full Text Available Holoprosencephaly (HPE is the most common developmental defect of the forebrain and midface in humans. sporadic and inherited mutations in the human sonic hedgehog (SHH gene cause 37% of familial HPE. A couple was referred to our unit with a family history of two spontaneous first trimester miscarriages and a daughter with HPE who presented early neonatal death. The father had a repaired median cleft lip, absence of central incisors, facial medial hypoplasia, and cleft palate. Intelligence and a brain CT scan were normal. Direct paternal sequencing analysis showed a novel nonsense mutation (W127X. Facial characteristics are considered as HPE microforms, and the pedigree suggested autosomal dominant inheritance with a variable expression of the phenotype. This study reinforces the importance of an exhaustive evaluation of couples with a history of miscarriages and neonatal deaths with structural defects.

  19. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    Directory of Open Access Journals (Sweden)

    Josep Roma

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.

  20. From teratogens to potential therapeutics: natural inhibitors of the Hedgehog signaling network come of age.

    Science.gov (United States)

    Hovhannisyan, Amalya; Matz, Madlen; Gebhardt, Rolf

    2009-10-01

    Steroidal alkaloids from Veratrum californicum (Durand) are known to exert teratogenic effects (e.g., cyclopia, holoprosencephaly) by blocking the Hedgehog (Hh) signaling pathway, which plays a considerable role in embryonic development and organogenesis. Most surprisingly, recent studies demonstrate that this complex signaling network is active even in the healthy adult organism, where it seems to control important aspects of basic metabolism and interorgan homeostasis. Abnormal activation of Hh signaling, however, can lead to the development of different tumors, psoriasis, and other diseases. This review provides an overview of how the principle teratogenic and hazardous constituent of Veratrum californicum, cyclopamine, interferes with Hh signaling and can potentially serve as a beneficial therapeutic for different tumors and psoriasis.

  1. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development.

    Science.gov (United States)

    Maurange, Cédric; Paro, Renato

    2002-10-15

    In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs could also control expression of genes involved in patterning imaginal discs during larval development. Our results demonstrate that expression of the hedgehog gene, once activated, is maintained by a CMM. In addition, our experiments indicate that the switching of such CMMs to an active state during larval stages, in contrast to embryonic stages, may require specific trans-activators. Our results suggest that the patterning of cells in particular developmental fields in the imaginal discs does not only rely on external cues from morphogens, but also depends on the previous history of the cells, as the control by CMMs ensures a preformatted gene expression pattern.

  2. HedgeHOGS: A Rapid Nuclear Hedge Sizing and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Adam F. [United States Military Academy, West Point, NY (United States); Steinfeldt, Bradley Alexander [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lafleur, Jarret Marshall [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hawley, Marilyn F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shannon, Lisa M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    The U.S. nuclear stockpile hedge is an inventory of non-deployed nuclear warheads and a force structure capable of deploying those warheads. Current guidance is to retain this hedge to mitigate the risk associated with the technical failure of any single warhead type or adverse geopolitical developments that could require augmentation of the force. The necessary size of the hedge depends on the composition of the nuclear stockpile and assumed constraints. Knowing the theoretical minimum hedge given certain constraints is useful when considering future weapons policy. HedgeHOGS, an Excel-based tool, was developed to enable rapid calculation of the minimum hedge size associated with varying active stockpile composition and hedging strategies.

  3. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    Science.gov (United States)

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  4. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling.

    Science.gov (United States)

    Wang, Jinhu; Cao, Jingli; Dickson, Amy L; Poss, Kenneth D

    2015-06-11

    In response to cardiac damage, a mesothelial tissue layer enveloping the heart called the epicardium is activated to proliferate and accumulate at the injury site. Recent studies have implicated the epicardium in multiple aspects of cardiac repair: as a source of paracrine signals for cardiomyocyte survival or proliferation; a supply of perivascular cells and possibly other cell types such as cardiomyocytes; and as a mediator of inflammation. However, the biology and dynamism of the adult epicardium is poorly understood. To investigate this, we created a transgenic line to ablate the epicardial cell population in adult zebrafish. Here we find that genetic depletion of the epicardium after myocardial loss inhibits cardiomyocyte proliferation and delays muscle regeneration. The epicardium vigorously regenerates after its ablation, through proliferation and migration of spared epicardial cells as a sheet to cover the exposed ventricular surface in a wave from the chamber base towards its apex. By reconstituting epicardial regeneration ex vivo, we show that extirpation of the bulbous arteriosus-a distinct, smooth-muscle-rich tissue structure that distributes outflow from the ventricle-prevents epicardial regeneration. Conversely, experimental repositioning of the bulbous arteriosus by tissue recombination initiates epicardial regeneration and can govern its direction. Hedgehog (Hh) ligand is expressed in the bulbous arteriosus, and treatment with a Hh signalling antagonist arrests epicardial regeneration and blunts the epicardial response to muscle injury. Transplantation of Sonic hedgehog (Shh)-soaked beads at the ventricular base stimulates epicardial regeneration after bulbous arteriosus removal, indicating that Hh signalling can substitute for the influence of the outflow tract. Thus, the ventricular epicardium has pronounced regenerative capacity, regulated by the neighbouring cardiac outflow tract and Hh signalling. These findings extend our understanding of

  5. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  6. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    Science.gov (United States)

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  7. The Mode of Hedgehog Binding to Ihog Homologues is Not Conserved Across Different Phyla

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, J.; Zheng, X; Hauk, G; Ghirlando, R; Beachy, P; Leahy, D

    2008-01-01

    Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses1, 2. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer3, 4, 5, 6, 7. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle8, 9, 10. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner12, 13. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO12, 14. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.

  8. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer.

    Science.gov (United States)

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-08-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients' prognosis.

  9. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists

    Directory of Open Access Journals (Sweden)

    Shulok Janine

    2002-11-01

    Full Text Available Abstract Background The Hedgehog (Hh signaling pathway is vital to animal development as it mediates the differentiation of multiple cell types during embryogenesis. In adults, Hh signaling can be activated to facilitate tissue maintenance and repair. Moreover, stimulation of the Hh pathway has shown therapeutic efficacy in models of neuropathy. The underlying mechanisms of Hh signal transduction remain obscure, however: little is known about the communication between the pathway suppressor Patched (Ptc, a multipass transmembrane protein that directly binds Hh, and the pathway activator Smoothened (Smo, a protein that is related to G-protein-coupled receptors and is capable of constitutive activation in the absence of Ptc. Results We have identified and characterized a synthetic non-peptidyl small molecule, Hh-Ag, that acts as an agonist of the Hh pathway. This Hh agonist promotes cell-type-specific proliferation and concentration-dependent differentiation in vitro, while in utero it rescues aspects of the Hh-signaling defect in Sonic hedgehog-null, but not Smo-null, mouse embryos. Biochemical studies with Hh-Ag, the Hh-signaling antagonist cyclopamine, and a novel Hh-signaling inhibitor Cur61414, reveal that the action of all these compounds is independent of Hh-protein ligand and of the Hh receptor Ptc, as each binds directly to Smo. Conclusions Smo can have its activity modulated directly by synthetic small molecules. These studies raise the possibility that Hh signaling may be regulated by endogenous small molecules in vivo and provide potent compounds with which to test the therapeutic value of activating the Hh-signaling pathway in the treatment of traumatic and chronic degenerative conditions.

  10. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment.

    Science.gov (United States)

    Lubik, Amy A; Nouri, Mannan; Truong, Sarah; Ghaffari, Mazyar; Adomat, Hans H; Corey, Eva; Cox, Michael E; Li, Na; Guns, Emma S; Yenki, Parvin; Pham, Steven; Buttyan, Ralph

    2017-01-15

    Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.

  11. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei-guo HU; Tao LIU; Jiong-xin XIONG; Chun-you WANG

    2007-01-01

    Aim: To investigate the expression of sonic hedgehog (SHH) and epidermal growth factor receptor (EGFR) signal molecules in pancreatic cancer cells, and to assess the inhibitory effects through the blockade of the SHH and EGFR signaling path- ways by cyclopamine and Iressa, respectively. Methods: The expression of SHH and EGFR in pancreatic cancer cell lines (PANC-1, SUIT-2, and ASPC-1) was de-tected by RT-PCR and Western blot analysis. After treatment with different con-centrations of cyclopamine, alone or in combination with Iressa, the antiproliferative effect on pancreatic cancer cells was analyzed by methyl thiazolyl tetrazolium assays. A flow cytometry analysis was used to detect the cellular cycle distribu-tion and apoptosis of pancreatic cancer cells. Results: All of the 3 pancreatic cancer cell lines expressed SHH, Smoothened (SMO), and EGFR. Cyclopamine could downregulate the expression of EGFR in all cell lines. Cyclopamine or Iressa could induce a growth inhibitory effect in a dose-dependent manner. Moreover,the combined use of 2.5 μmol/L cyclopamine and 1 μmol/L Iressa induced an enhanced inhibitory effect and a greater apoptosis rate than any agent alone. The percentage of the cell population of the G0/G1 and sub-G1 phases was significantly increased along with the increasing dose of cyclopamine and/or Iressa. Conclusion: The blockade of the sonic hedgehog signal pathway enhances the antiproliferative effect of the EGFR inhibitor through the downregulation of its expression in pancreatic cancer cells. The simultaneous blockade of SHH and EGFR signaling represents possible targets of new treatment strategies for pan-creatic carcinoma.

  12. Gi proteins mediate activation of the canonical hedgehog pathway in the myocardium.

    Science.gov (United States)

    Carbe, Christian J; Cheng, Lan; Addya, Sankar; Gold, Jessica I; Gao, Erhe; Koch, Walter J; Riobo, Natalia A

    2014-07-01

    During myocardial ischemia, upregulation of the hedgehog (Hh) pathway promotes neovascularization and increases cardiomyocyte survival. The canonical Hh pathway activates a transcriptional program through the Gli family of transcription factors by derepression of the seven-transmembrane protein smoothened (Smo). The mechanisms linking Smo to Gli are complex and, in some cell types, involve coupling of Smo to Gi proteins. In the present study, we investigated, for the first time, the transcriptional response of cardiomyocytes to sonic hedgehog (Shh) and the role of Gi protein utilization. Our results show that Shh strongly activates Gli1 expression by quantitative PCR in a Smo-dependent manner in neonatal rat ventricular cardiomyocytes. Microarray analysis of gene expression changes elicited by Shh and sensitive to a Smo inhibitor identified a small subset of 37 cardiomyocyte-specific genes regulated by Shh, including some in the PKA and purinergic signaling pathways. In addition, neonatal rat ventricular cardiomyocytes infected with an adenovirus encoding GiCT, a peptide that impairs receptor-Gi protein coupling, showed reduced activation of Hh targets. In vitro data were confirmed in transgenic mice with cardiomyocyte-inducible GiCT expression. Transgenic GiCT mice showed specific reduction of Gli1 expression in the heart under basal conditions and failed to upregulate the Hh pathway upon ischemia and reperfusion injury, unlike their littermate controls. This study characterizes, for the first time, the transcriptional response of cardiomyocytes to Shh and establishes a critical role for Smo coupling to Gi in Hh signaling in the normal and ischemic myocardium. Copyright © 2014 the American Physiological Society.

  13. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    Science.gov (United States)

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  14. [Parasitological fecal studies of equids, dogs, cats and hedgehogs during the years 1984-1991].

    Science.gov (United States)

    Epe, C; Ising-Volmer, S; Stoye, M

    1993-11-01

    The results of the coproscopical examinations in horses, dogs, cats and hedgehogs between 1984 and 1991 are presented. In 9192 samples from horses 55.5% stages of strongylids, 4.0% of Parascaris equorum, 2.2% of anoplocephalids, 1.6% Strongyloides westeri, 0.7% of Oxyuris equi, 0.6% of Eimeria leuckarti, 0.2% of Fasciola hepatica and 0.04% of Dictyocaulus arnfieldi were found. In 48.0% of the 46 samples from donkeys eggs from strongylids were detected, in 17.4% larvae from Dictyocaulus arnfieldi, in 2.2% eggs from Strongyloides westeri, Parascaris equorum and oocysts from Eimeria leuckarti, respectively. In 3329 samples of dogs 6.9% developmental stages of Toxocara canis, 6.0% of Giardia spp., 4.2% of Isospora spp., 3.0% of Sarcocystis spp., 2.5% each of ancylostomids and Trichuris vulpis, 1.1% of Toxascaris leonina and 1.1% of Dipylidium canium, up to 1.0% of taeniids, 0.6% of each Mesocestoides spp. and Metastrongylidae, 0.3% of Strongyloides stercoralis and 0.2% of Capillaria spp. and Hammondia heydorni were detected. In 9.5% of the 1147 samples of cats eggs from Toxocara mystax were found, in 4.7% eggs of taeniids, in 4.6% cysts of Isospora spp., in 2.4% of Giardia spp., in 1.4% eggs of Dipylidium caninum, in 1.0% of Capillaria spp. and Aelurostrongylus abstrusus, in 0.6% development stages of Toxoplasma gondii, in 0.5% of ancylostomids and in 0.3% of Sarcocystis spp. and Opisthorchis felineus. In 1175 samples of hedgehogs 48.8% eggs of Capillaria spp., 35.9% of Crenosoma striatum, 17.9% oocysts of Isospora spp., 2.3% eggs of Brachylaemus erinacei were found.

  15. Hedgehog signaling pathway and lung cancer%Hedgehog信号转导通路与肺癌

    Institute of Scientific and Technical Information of China (English)

    白晓燕

    2011-01-01

    Hedgehog (Hh) pathway plays a critical role in embryonic development period,which regulates cell proliferation and differentiation,and coordinates the key step of organs' development process such as skin,brain,neural tube,bowels,appendage and lung.In the adult stage,Hh signaling regulates proliferation of stem cells.At this time,Hh signaling is strictly controlled by time and space.In recent years,studies have shown aberrant activation of the Hh pathway is closely related to various types of malignancies,and would be a new therapeutic target of tumor treatment.This paper will review the characteristic of Hh signaling pathway and its research status in lung cancer.%Hedgehog(Hh)信号通路在胚胎发育期起关键作用,调节细胞的增殖、分化,协调组织器官如皮肤、脑、神经管、肠、附肢及肺等发育过程中的关键步骤.在成年期,Hh通路调控干细胞的增殖,此时Hh通路受到严格的时空限制.近年来研究表明Hh信号通路异常激活与包括肺癌在内的多种肿瘤的发生、发展密切相关,因此可能会成为肿瘤治疗的一个新靶点.现对Hh信号通路的特性及其在肺癌中的研究现状作一综述.

  16. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh source.

    Directory of Open Access Journals (Sweden)

    Constanza Martínez

    Full Text Available The Sonic Hedgehog (Shh pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh signaling in a conditional Patched 1 (Ptc1 mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps viability, proliferation and differentiation. By recreating the three-dimensional (3-D microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF and fibroblast growth factor (FGF signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  17. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity.

    Directory of Open Access Journals (Sweden)

    Marisa O Peluso

    Full Text Available A requisite step for canonical Hedgehog (Hh pathway activation by Sonic Hedgehog (Shh ligand is accumulation of Smoothened (Smo to the primary cilium (PC. Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses

  18. Embryofetal development study of vismodegib, a hedgehog pathway inhibitor, in rats.

    Science.gov (United States)

    Morinello, Eric; Pignatello, Michael; Villabruna, Loris; Goelzer, Petra; Bürgin, Heinrich

    2014-04-01

    Vismodegib (Erivedge) is a first-in-class small-molecule hedgehog pathway inhibitor for the treatment of adults with advanced basal-cell carcinoma. Because this pathway is known to play key roles in patterning and growth during vertebrate development, vismodegib was anticipated to be embryotoxic. To support marketing applications, an embryofetal development study was completed in which a limited number of pregnant rats (n = 6/group) was administered vismodegib by oral gavage on gestation days 6 to 17. When vismodegib was administered at ≥60 mg/kg/day, doses associated with evidence of pharmacologic activity in previous rat toxicity studies, all conceptuses were resorbed at an early embryonic stage in the absence of significant maternal toxicity. When administered at 10 mg/kg/day, corresponding to an exposure (AUC0-24h ) approximately 15% of the median in patients at steady state, a variety of malformations were observed, including absent/fused digits in the hindlimb of multiple fetuses, multiple craniofacial abnormalities in one fetus, and an anorectal defect in one fetus. In addition, the incidence of variations, including dilated renal pelvis or ureter and incompletely or unossified skeletal elements, was significantly greater when compared with the controls. These results confirmed that vismodegib is likely to be embryotoxic at clinically relevant maternal exposures, and doses ≥60 mg/kg/day resulted in a 100% incidence of embryolethality that likely resulted from severe defects in early embryonic development. In contrast, craniofacial defects typically associated with hedgehog pathway inhibition were only observed in one fetus at the low dose of 10 mg/kg/day, which likely reflected minimal or intermittent pathway inhibition at low exposures.

  19. Antagonizing the Hedgehog Pathway with Vismodegib Impairs Malignant Pleural Mesothelioma Growth In Vivo by Affecting Stroma.

    Science.gov (United States)

    Meerang, Mayura; Bérard, Karima; Felley-Bosco, Emanuela; Lauk, Olivia; Vrugt, Bart; Boss, Andreas; Kenkel, David; Broggini-Tenzer, Angela; Stahel, Rolf A; Arni, Stephan; Weder, Walter; Opitz, Isabelle

    2016-05-01

    An autocrine-driven upregulation of the Hedgehog (Hh) signaling pathway has been described in malignant pleural mesothelioma (MPM), in which the ligand, desert Hh (DHH), was produced from tumor cells. However, our investigation revealed that the Hh pathway is activated in both tumor and stroma of MPM tumor specimens and an orthotopic immunocompetent rat MPM model. This was demonstrated by positive immunohistochemical staining of Glioma-associated oncogene 1 (GLI1) and Patched1 (PTCH1) in both tumor and stromal fractions. DHH was predominantly expressed in the tumor fractions. To further investigate the role of the Hh pathway in MPM stroma, we antagonized Hh signaling in the rat model of MPM using a Hh antagonist, vismodegib, (100 mg/kg orally). Daily treatment with vismodegib efficiently downregulated Hh target genes Gli1, Hedgehog Interacting Protein (Hhip), and Ptch1, and caused a significant reduction of tumor volume and tumor growth delay. Immunohistochemical analyses revealed that vismodegib treatment primarily downregulated GLI1 and HHIP in the stromal compartment along with a reduced expression of previously described fibroblast Hh-responsive genes such as Fibronectin (Fn1) and Vegfa Primary cells isolated from the rat model cultured in 3% O2 continued to express Dhh but did not respond to vismodegib in vitro However, culture supernatant from these cells stimulated Gli1, Ptch1, and Fn1 expression in mouse embryonic fibroblasts, which was suppressed by vismodegib. Our study provides new evidence regarding the role of Hh signaling in MPM stroma in the maintenance of tumor growth, emphasizing Hh signaling as a treatment target for MPM. Mol Cancer Ther; 15(5); 1095-105. ©2016 AACR.

  20. Hedgehog -Gli 信号通路在肺癌中的研究进展%Research progress of Hedgehog-Gli signaling pathway in lung cancer

    Institute of Scientific and Technical Information of China (English)

    王磊(综述); 陈公琰(审校)

    2015-01-01

    Hedgehog-Gli signaling pathway involves in vertebrate embryonic development ,tissue differ-entiation,organogenesis,and plays an important role in homeostasis ,the maintenance of stem cell function ,regula-tion of epithelial mesenchymal transition .Hedgehog-Gli signaling pathway activation correlates with a variety of tumor development ,invasion,apoptosis and drug resistance .This review seeks to clarify the composition of Hedge-hog-Gli signaling pathway ,mechanism of action ,the role of Hedgehog-Gli signaling pathway in lung cancer de-velopment and function of lung cell of the EGFR -TKI resistance .%Hedgehog-Gli信号通路参与脊椎动物的胚胎发育、组织分化、器官形成,并且在稳定机体内环境、维持干细胞功能、调节上皮-间质转化中起重要作用。 Hedgehog-Gli信号通路的激活与多种肿瘤的发生发展、侵袭、凋亡及耐药密切相关。本文旨在阐明Hedgehog-Gli信号通路的组成,作用机制,在肺癌发生发展过程中的作用以及在EGFR-TKI治疗EGFR突变NSCLC耐药后的作用。

  1. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling.

    Science.gov (United States)

    Park, Tae Joo; Haigo, Saori L; Wallingford, John B

    2006-03-01

    The vertebrate planar cell polarity (PCP) pathway has previously been found to control polarized cell behaviors rather than cell fate. We report here that disruption of Xenopus laevis orthologs of the Drosophila melanogaster PCP effectors inturned (in) or fuzzy (fy) affected not only PCP-dependent convergent extension but also elicited embryonic phenotypes consistent with defective Hedgehog signaling. These defects in Hedgehog signaling resulted from a broad requirement for Inturned and Fuzzy in ciliogenesis. We show that these proteins govern apical actin assembly and thus control the orientation, but not assembly, of ciliary microtubules. Finally, accumulation of Dishevelled and Inturned near the basal apparatus of cilia suggests that these proteins function in a common pathway with core PCP components to regulate ciliogenesis. Together, these data highlight the interrelationships between cell polarity, cellular morphogenesis, signal transduction and cell fate specification.

  2. Detergent-solubilized Patched purified from Sf9 cells fails to interact strongly with cognate Hedgehog or Ihog homologs.

    Science.gov (United States)

    Cleveland, Thomas E; McCabe, Jacqueline M; Leahy, Daniel J

    2014-12-01

    Patched (Ptc) is a twelve-pass transmembrane protein that functions as a receptor for the Hedgehog (Hh) family of morphogens. In addition to Ptc, several accessory proteins including the CDO/Ihog family of co-receptors are necessary for proper Hh signaling. Structures of Hh proteins bound to members of the CDO/Ihog family are known, but the nature of the full Hh receptor complex is not well understood. We have expressed the Drosophila Patched and Mouse Patched-1 proteins in Sf9 cells and find that Sonic Hedgehog will bind to Mouse Patched-1 in isolated Sf9 cell membranes but that purified, detergent-solubilized Ptc proteins do not interact strongly with cognate Hh and CDO/Ihog homologs. These results may reflect a nonnative conformation of detergent-solubilized Ptc or that an additional factor or factors lost during purification are required for high-affinity Ptc binding to Hh.

  3. An Integrated Approach Identifies Nhlh1 and Insm1 as Sonic Hedgehog-regulated Genes in Developing Cerebellum and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Enrico De Smaele

    2008-01-01

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor of childhood arising from deregulated cerebellar development. Sonic Hedgehog (Shh pathway plays a critical role in cerebellar development and its aberrant expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled a cluster of genes whose expression correlates with the levels of Hedgehog (HH activity. From this cluster, we identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the expression of these genes is also upregulated in mouse and human HH-dependent MBs, suggesting that they may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.

  4. Inhibition of ErbB receptors, Hedgehog and NF-kappaB signaling by polyphenols in cancer.

    Science.gov (United States)

    Benvenuto, Monica; Fantini, Massimo; Masuelli, Laura; De Smaele, Enrico; Zazzeroni, Francesca; Tresoldi, Ilaria; Calabrese, Giorgio; Galvano, Fabio; Modesti, Andrea; Bei, Roberto

    2013-06-01

    Carcinogenesis is a multi-step process triggered by cumulative genetic alterations, which drive the progressive transformation of a normal cell into a cancer cell. Among the signal transduction pathways whose cross-talk plays an important role in neoplastic transformation are those mediated by ErbB receptors, NF-kappaB and the Hedgehog (HH)/glioma-associated oncogene (GLI) cascade. Polyphenols can be employed to inhibit the growth of cancer cells due to their ability to modulate the activity of multiple targets involved in carcinogenesis through simultaneous direct interaction or modulation of gene expression. This review will describe the cross-talk between ErbB receptors, NF-kappaB and the Hedgehog (HH)/glioma-associated oncogene (GLI) signaling pathways and the potential role of polyphenols in inhibiting this dialogue and the growth of cancer cells.

  5. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway

    OpenAIRE

    Zhou, Zhong-guang; Zhang, Chao-ying; Fei, Hong-xin; Zhong, Li-Li; Bai, Yun

    2015-01-01

    Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell c...

  6. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development

    OpenAIRE

    Allen, Benjamin L.; Tenzen, Toyoaki; McMahon, Andrew P.

    2007-01-01

    Hedgehog (Hh) signaling is critical for patterning and growth during mammalian embryogenesis. Transcriptional profiling identified Growth-arrest-specific 1 (Gas1) as a general negative target of Shh signaling. Data presented here define Gas1 as a novel positive component of the Shh signaling cascade. Removal of Gas1 results in a Shh dose-dependent loss of cell identities in the ventral neural tube and facial and skeletal defects, also consistent with reduced Shh signaling. In contrast, ectopi...

  7. CD44, Sonic Hedgehog, and Gli1 Expression Are Prognostic Biomarkers in Gastric Cancer Patients after Radical Resection

    OpenAIRE

    Chen Jian-Hui; Zhai Er-Tao; Chen Si-Le; Wu Hui; Wu Kai-Ming; Zhang Xin-Hua; Chen Chuang-Qi; Cai Shi-Rong; He Yu-Long

    2016-01-01

    Aim. CD44 and Sonic Hedgehog (Shh) signaling are important for gastric cancer (GC). However, the clinical impact, survival, and recurrence outcome of CD44, Shh, and Gli1 expressions in GC patients following radical resection have not been elucidated. Patients and Methods. CD44, Shh, and Gli1 protein levels were quantified by immunohistochemistry (IHC). The association between CD44, Shh, and Gli1 expression and clinicopathological features or prognosis of GC patients was determined. The biomar...

  8. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    OpenAIRE

    Rong Yang; Minglei Wang; Jia Wang; Xingxu Huang; Ru Yang; Wei-Qiang Gao

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patche...

  9. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    Science.gov (United States)

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos.

  10. Hedgehogs and Mustelid Species: Major Carriers of Pathogenic Leptospira, a Survey in 28 Animal Species in France (20122015)

    Science.gov (United States)

    Raton, Vincent; Zilber, Anne-Laure; Gasqui, Patrick; Faure, Eva; Baurier, Florence; Vourc’h, Gwenaël; Kodjo, Angeli; Combes, Benoît

    2016-01-01

    Human leptospirosis is a zoonotic and potentially fatal disease that has increasingly been reported in both developing and developed countries, including France. However, our understanding of the basic aspects of the epidemiology of this disease, including the source of Leptospira serogroup Australis infections in humans and domestic animals, remains incomplete. We investigated the genetic diversity of Leptospira in 28 species of wildlife other than rats using variable number tandem repeat (VNTR) and multispacer sequence typing (MST). The DNA of pathogenic Leptospira was detected in the kidney tissues of 201 individuals out of 3,738 tested individuals. A wide diversity, including 50 VNTR profiles and 8 MST profiles, was observed. Hedgehogs and mustelid species had the highest risk of being infected (logistic regression, OR = 66.8, CI95% = 30.9–144 and OR = 16.7, CI95% = 8.7–31.8, respectively). Almost all genetic profiles obtained from the hedgehogs were related to Leptospira interrogans Australis, suggesting the latter as a host-adapted bacterium, whereas mustelid species were infected by various genotypes, suggesting their interaction with Leptospira was different. By providing an inventory of the circulating strains of Leptospira and by pointing to hedgehogs as a potential reservoir of L. interrogans Australis, our study advances current knowledge on Leptospira animal carriers, and this information could serve to enhance epidemiological investigations in the future. PMID:27680672

  11. Vismodegib hedgehog-signaling inhibition and treatment of basal cell carcinomas as well as keratocystic odontogenic tumors in Gorlin syndrome.

    Science.gov (United States)

    Booms, Patrick; Harth, Marc; Sader, Robert; Ghanaati, Shahram

    2015-01-01

    Vismodegib hedgehog signaling inhibition treatment has potential for reducing the burden of multiple skin basal cell carcinomas and jaw keratocystic odontogenic tumors. They are major criteria for the diagnosis of Gorlin syndrome, also called nevoid basal cell carcinoma syndrome. Clinical features of Gorlin syndrome are reported, and the relevance of hedgehog signaling pathway inhibition by oral vismodegib for maxillofacial surgeons is highlighted. In summary, progressed basal cell carcinoma lesions are virtually inoperable. Keratocystic odontogenic tumors have an aggressive behavior including rapid growth and extension into adjacent tissues. Interestingly, nearly complete regression of multiple Gorlin syndrome-associated keratocystic odontogenic tumors following treatment with vismodegib. Due to radio-hypersensitivity in Gorlin syndrome, avoidance of treatment by radiotherapy is strongly recommended for all affected individuals. Vismodegib can help in those instances where radiation is contra-indicated, or the lesions are inoperable. The effect of vismodegib on basal cell carcinomas was associated with a significant decrease in hedgehog-signaling and tumor proliferation. Vismodegib, a new and approved drug for the treatment of advanced basal cell carcinoma, is a specific oncogene inhibitor. It also seems to be effective for treatment of keratocystic odontogenic tumors and basal cell carcinomas in Gorlin syndrome, rendering the surgical resections less challenging.

  12. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-12-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Internal Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Tao-Yuan, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, TaiwanBackground: Abnormal activation of the Sonic Hedgehog (SHH signaling pathway contributing to carcinogenesis of some organs has been reported in the literature. We hypothesize that activation of the SHH pathway contributes to the recurrence of breast carcinoma.Methods: Fifty consecutive patients with invasive breast carcinoma following curative resection were enrolled in this prospective study. The ratios of messenger RNA (mRNA expression for Sonic Hedgehog (SHH, patched homolog-1 (PTCH-1, glioma-associated oncogene-1 (GLI-1, and smoothened (SMOH were measured between breast carcinoma tissue and paired noncancerous breast tissue. These ratios were compared with their clinicopathologic characteristics. These factors and the mRNA ratios were compared between patients with recurrence and those without recurrence.Results: The size of the invasive cancer correlated significantly with the ratio of SHH mRNA (P=0.001, that of PTCH-1 mRNA (P=0.005, and that of SMOH mRNA (P=0.021. Lymph node involvement correlated significantly with the ratio of SMOH mRNA (P=0.041. The correlation between Her-2 neu and the ratio of GLI-1 mRNA was statistically significant (P=0.012. Each ratio of mRNA of SHH, PTCH-1, GLI-1, and SMOH correlated significantly with cancer recurrence (P<0.001 for each.Conclusion: We suggest that high expression of SHH mRNA, PTCH-1 mRNA, GLI-1 mRNA, and SMOH mRNA in breast cancer tissue correlates with invasiveness and is a potential biomarker to predict postoperative recurrence.Keywords: SHH pathway, breast carcinoma, prediction, recurrence

  13. First ultrastructural observations on gastritis caused by Physaloptera clausa (Spirurida: Physalopteridae) in hedgehogs (Erinaceus europeaus).

    Science.gov (United States)

    Gorgani-Firouzjaee, T; Farshid, A A; Naem, S

    2015-10-01

    Ultrastructural changes of gastritis due to infection with Physaloptera clausa in 12 fresh carcasses of euthanized European hedgehogs (Erinaceus europaeus) collected from different part of Urmia, Iran, in which they were highly populated with this animal, six females and six males were subjected to detail necropsy with special reference to the stomach. Macroscopic changes of stomach were recorded and some of the worms collected. Based on number of parasites present in the stomach, they were divided into light infection, mild infection, and severe infection. Parasites were collected, and worms identification of the species was confirmed on the basis of light microscope examination with reference to keys. Tissues fixed in 3% glutaraldehyde, post-fixed in 1% osmium tetroxide and processed and plastic embedded; ultrathin sections of 60-70 nm were cut and stained with uranyl acetate and lead citrate; electron microscopic observations showed that, in light infection some changes were observed in gastric cells such as dilatation and vesiculation of the endoplasmic reticulum, large numbers of lipid granules, mitochondrial swelling, nuclear chromatin margination, and some nucleus showed washed out appearance. Other cells showed some alterations in mitochondria, dilatation of smooth endoplasmic reticulum, loss of both free and bound ribosomes, vesiculation in cytoplasm, and increase Golgi apparatus and secretory vesicles. The inflammatory cells including lymphocytes, macrophages, mast cells, and predominantly eosinophils were identified. In moderate infection, the cellular pattern of gastric mucosa replaced with inflammatory cells. The marked increase of macrophages and other inflammatory cell was observed. A particular finding in our study was the presence of globule leukocyte in the moderate stage. Moreover, scant formation and distribution of collagen fibers as well as fibroblasts were also noted. In severe infection, the most obvious observation was marked distribution

  14. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typi...... in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.......The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found...... typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog - Shh; Indian hedgehog - Ihh; and Desert hedgehog - Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification...

  15. Hedgehog信号通路在白血病中的研究进展%Research progress of Hedgehog signaling pathway in leukemia

    Institute of Scientific and Technical Information of China (English)

    王焱

    2015-01-01

    Hedgehog signaling pathway is an important signaling pathway in human body.Human Hedgehog signaling pathway plays a crucial role in embryogenesis,organ development and maintain homeostasis.Studies have shown aberrant activation of the Hedgehog signaling pathway is closely related to various types of malignancies including hematological malignancies.This article will review the constitute of Hedgehog signaling pathway,Hedgehog pathway research status in leukemia and its prospect in leukemia therapy.%Hedgehog信号通路是人体内的重要信号通路之一.人类Hedgehog信号通路在胚胎发育、组织器官形成及维持机体内环境稳定等生理过程中发挥重要作用,同时与肿瘤的发生和发展也有着密切的关系.新近研究发现Hedgehog信号通路异常活化与血液肿瘤的发生、发展密切相关.现从Hedgehog信号通路的组成,其与造血调控及白血病的关系,以及针对Hedgehog信号通路的靶向治疗等方面,就近年来,Hedgehog信号通路及Hedgehog信号通路抑制剂在白血病的研究进展综述如下.

  16. Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif

    Directory of Open Access Journals (Sweden)

    Bürglin Thomas R

    2008-03-01

    Full Text Available Abstract Background The Hedgehog (Hh signaling pathway plays important roles in human and animal development as well as in carcinogenesis. Hh molecules have been found in both protostomes and deuterostomes, but curiously the nematode Caenorhabditis elegans lacks a bona-fide Hh. Instead a series of Hh-related proteins are found, which share the Hint/Hog domain with Hh, but have distinct N-termini. Results We performed extensive genome searches of the cnidarian Nematostella vectensis and several nematodes to gain further insights into Hh evolution. We found six genes in N. vectensis with a relationship to Hh: two Hh genes, one gene with a Hh N-terminal domain fused to a Willebrand factor type A domain (VWA, and three genes containing Hint/Hog domains with distinct novel N-termini. In the nematode Brugia malayi we find the same types of hh-related genes as in C. elegans. In the more distantly related Enoplea nematodes Xiphinema and Trichinella spiralis we find a bona-fide Hh. In addition, T. spiralis also has a quahog gene like C. elegans, and there are several additional hh-related genes, some of which have secreted N-terminal domains of only 15 to 25 residues. Examination of other Hh pathway components revealed that T. spiralis - like C. elegans - lacks some of these components. Extending our search to all eukaryotes, we recovered genes containing a Hog domain similar to Hh from many different groups of protists. In addition, we identified a novel Hint gene family present in many eukaryote groups that encodes a VWA domain fused to a distinct Hint domain we call Vint. Further members of a poorly characterized Hint family were also retrieved from bacteria. Conclusion In Cnidaria and nematodes the evolution of hh genes occurred in parallel to the evolution of other genes that contain a Hog domain but have different N-termini. The fact that Hog genes comprising a secreted N-terminus and a Hog domain are also found in many protists suggests that this

  17. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    Science.gov (United States)

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  18. Environ: E00428 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00428 Echinops latifolius root Crude drug Echinops latifolius, Echinops [TAX:32194...] Asteraceae (daisy family) Echinops latifolius root (dried) Crude drugs [BR:br08305] Dicot plants: asterids Asteraceae (daisy family) E00428 Echinops latifolius root ...

  19. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    Science.gov (United States)

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism.

  20. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Siru Zhou

    2015-06-01

    Full Text Available Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK activity and increased Indian hedgehog (IHH expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis.

  1. Smoothened Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma

    Science.gov (United States)

    Yauch, Robert L.; Dijkgraaf, Gerrit J. P.; Alicke, Bruno; Januario, Thomas; Ahn, Christina P.; Holcomb, Thomas; Pujara, Kanan; Stinson, Jeremy; Callahan, Christopher A.; Tang, Tracy; Bazan, J. Fernando; Kan, Zhengyan; Seshagiri, Somasekar; Hann, Christine L.; Gould, Stephen E.; Low, Jennifer A.; Rudin, Charles M.; de Sauvage, Frederic J.

    2017-01-01

    The Hedgehog (Hh) signaling pathway is inappropriately activated in certain human cancers, including medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that inhibits Hh signaling by targeting the serpentine receptor Smoothened (SMO), has produced promising anti-tumor responses in early clinical studies of cancers driven by mutations in this pathway. To evaluate the mechanism of resistance in a medulloblastoma patient who had relapsed after an initial response to GDC-0449, we determined the mutational status of Hh signaling genes in the tumor after disease progression. We identified an amino acid substitution at a conserved aspartic acid residue of SMO that had no effect on Hh signaling but disrupted the ability of GDC-0449 to bind SMO and suppress this pathway. A mutation altering the same amino acid also arose in a GDC-0449–resistant mouse model of medulloblastoma. These findings show that acquired mutations in a serpentine receptor with features of a G protein–coupled receptor can serve as a mechanism of drug resistance in human cancer. PMID:19726788

  2. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  3. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  4. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review.

    Science.gov (United States)

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-05-15

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer.

  5. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  6. Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling.

    Science.gov (United States)

    Villegas, Victoria E; Rondón-Lagos, Milena; Annaratone, Laura; Castellano, Isabella; Grismaldo, Adriana; Sapino, Anna; Zaphiropoulos, Peter G

    2016-02-27

    The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER- cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes.

  7. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Science.gov (United States)

    Wang, Yue; Jin, Shijie; Sonobe, Yoshifumi; Cheng, Yi; Horiuchi, Hiroshi; Parajuli, Bijay; Kawanokuchi, Jun; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2014-01-01

    The blood-brain barrier (BBB) is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH) released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β), a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  8. Wnt, Hedgehog and junctional Armadillo/beta-catenin establish planar polarity in the Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Pamela F Colosimo

    Full Text Available To generate specialized structures, cells must obtain positional and directional information. In multi-cellular organisms, cells use the non-canonical Wnt or planar cell polarity (PCP signaling pathway to establish directionality within a cell. In vertebrates, several Wnt molecules have been proposed as permissible polarity signals, but none has been shown to provide a directional cue. While PCP signaling components are conserved from human to fly, no PCP ligands have been reported in Drosophila. Here we report that in the epidermis of the Drosophila embryo two signaling molecules, Hedgehog (Hh and Wingless (Wg or Wnt1, provide directional cues that induce the proper orientation of Actin-rich structures in the larval cuticle. We further find that proper polarity in the late embryo also involves the asymmetric distribution and phosphorylation of Armadillo (Arm or beta-catenin at the membrane and that interference with this Arm phosphorylation leads to polarity defects. Our results suggest new roles for Hh and Wg as instructive polarizing cues that help establish directionality within a cell sheet, and a new polarity-signaling role for the membrane fraction of the oncoprotein Arm.

  9. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells.

    Science.gov (United States)

    Corcoran, Ryan B; Scott, Matthew P

    2006-05-30

    Sterol synthesis is required for Sonic hedgehog (Shh) signal transduction. Errors in Shh signal transduction play important roles in the formation of human tumors, including medulloblastoma (MB). It is not clear which products of sterol synthesis are necessary for Shh signal transduction or how they act. Here we show that cholesterol or specific oxysterols are the critical products of sterol synthesis required for Shh pathway signal transduction in MB cells. In MB cells, sterol synthesis inhibitors reduce Shh target gene transcription and block Shh pathway-dependent proliferation. These effects of sterol synthesis inhibitors can be reversed by exogenous cholesterol or specific oxysterols. We also show that certain oxysterols can maximally activate Shh target gene transcription through the Smoothened (Smo) protein as effectively as the known Smo full agonist, SAG. Thus, sterols are required and sufficient for Shh pathway activation. These results suggest that oxysterols may be critical regulators of Smo, and thereby Shh signal transduction. Inhibition of Shh signaling by sterol synthesis inhibitors may offer a novel approach to the treatment of MB and other Shh pathway-dependent human tumors.

  10. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    Science.gov (United States)

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory.

  11. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  12. Dephosphorylated parafibromin is a transcriptional coactivator of the Wnt/Hedgehog/Notch pathways.

    Science.gov (United States)

    Kikuchi, Ippei; Takahashi-Kanemitsu, Atsushi; Sakiyama, Natsuki; Tang, Chao; Tang, Pei-Jung; Noda, Saori; Nakao, Kazuki; Kassai, Hidetoshi; Sato, Toshiro; Aiba, Atsu; Hatakeyama, Masanori

    2016-09-21

    Evolutionally conserved Wnt, Hedgehog (Hh) and Notch morphogen pathways play essential roles in the development, homeostasis and pathogenesis of multicellular organisms. Nevertheless, mechanisms that intracellularly coordinate these signal inputs remain poorly understood. Here we found that parafibromin, a component of the PAF complex, competitively interacts with β-catenin and Gli1, thereby potentiating transactivation of Wnt- and Hh-target genes in a mutually exclusive manner. Parafibromin also binds to the Notch intracellular domain (NICD), enabling concerted activation of Wnt- and Notch-target genes. The transcriptional platform function of parafibromin is potentiated by tyrosine dephosphorylation, mediated by SHP2 phosphatase, while it is attenuated by tyrosine phosphorylation, mediated by PTK6 kinase. Consequently, acute loss of parafibromin in mice disorganizes the normal epithelial architecture of the intestine, which requires coordinated activation/inactivation of Wnt, Hh and/or Notch signalling. Parafibromin integrates and converts signals conveyed by these morphogen pathways into appropriate transcriptional outputs in a tyrosine phosphorylation/dephosphorylation-regulated manner.

  13. Targeting Sonic Hedgehog Signaling by Compounds and Derivatives from Natural Products

    Directory of Open Access Journals (Sweden)

    Yu-Chuen Huang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays critical roles in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemopreventives, and their antitumor effects have been demonstrated both in vitro and in vivo. However, reports for their bioactivity against CSCs and specifically targeting Shh signaling remain limited. In this review, we summarize investigations of the compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade. Given that Shh signaling antagonism has been clinically proven as effective strategy against CSCs, this review may be exploitable for development of novel anticancer agents from complementary and alternative medicine.

  14. Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mingxia Wang

    2014-01-01

    Full Text Available Sonic hedgehog (Shh signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS. We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1 in RA synovial tissues was examined by immunohistochemistry (IHC and in FLS by IHC, immunofluorescence (IF, quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05. Cyclopamine (a specific inhibitor of Shh signaling decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1 phase. Our data show that Shh signaling is activated in synovium of RA patients in vivo and in cultured FLS form RA patients in vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

  15. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  16. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yue Wang

    Full Text Available The blood-brain barrier (BBB is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β, a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  17. Primary cilium and sonic hedgehog signaling during neural tube patterning: role of GPCRs and second messengers.

    Science.gov (United States)

    Pal, Kasturi; Mukhopadhyay, Saikat

    2015-04-01

    The ventral neural tube in vertebrates is patterned by a gradient of sonic hedgehog (Shh) secreted from the notochord and floor plate. Forward genetic screens first pointed to the role of the primary cilium in ventral neural tube patterning. Further research has shown that most components of the Shh pathway localize to or shuttle through the primary cilium. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA)- and cilium-dependent manner. Recent work suggests that the orphan G-protein-coupled receptor (GPCR) Gpr161 localizes to cilia, and functions as a negative regulator of Shh signaling by determining Gli processing via cAMP signaling. The primary cilium also functions as a signaling compartment for calcium in the Shh pathway. A better understanding of the role of the cilium as a signaling compartment, and the interplay of second messenger systems that regulate PKA activation and Gli amplification during signaling is critical for deciphering the role of Shh during development, neuronal differentiation, and tumorigenesis.

  18. Ectopic expression of Sonic Hedgehog in a cryptorchid man with azoospermia: a case report.

    Science.gov (United States)

    Zou, Shasha; Wang, Yanan; Chen, Tingting; Song, Pingping; Xin, Daiying; Ping, Ping; Huang, Yiran; Li, Zheng; Hu, Hongliang

    2014-04-01

    A 30-year-old man presented with a left undescended testis, right testicular deficiency and azoospermia. Testicular biopsy revealed an absence of spermatocytes and increased numbers of Leydig cells in the undescended testis. Additional comparative analyses were undertaken to explore Sonic Hedgehog (Shh) immunostaining in the testis of juvenile and adult mice, in the testis of the patient with cryptorchidism, and in archival testicular tissue from a patient with obstructive azoospermia and a patient with prostate cancer. Shh immunostaining was demonstrated in spermatocytes in juvenile and adult mouse testis and in the patients with obstructive azoospermia and prostate cancer, suggesting that Shh signalling is involved in normal spermatogenesis. In the patient with cryptorchidism, Shh immunostaining was localized to the Leydig cells, which suggests that Shh might be involved in the abnormal expansion of the Leydig cell population in the testis. These preliminary data on the appearance of Shh protein during normal spermatogenesis might provide the basis for further investigations to clarify the role of Shh signalling in spermatogenesis during normal and pathogenic testis development.

  19. Sonic Hedgehog, VACTERL, and Fanconi anemia: Pathogenetic connections and therapeutic implications.

    Science.gov (United States)

    Lubinsky, Mark

    2015-11-01

    Three systems with VACTERL association findings- mutations of the Sonic Hedgehog (SHH) signaling pathway in mice, murine adriamycin teratogenicity, and human Fanconi anemia (FA) pathway mutations, may all involve a similar mechanism. SHH is up-regulated in irradiated cells, and DNA breaks common with radiation damage in the adriamycin and FA systems are plausible signals for such effects, which would affect development. Since FA related DNA breakage occurs throughout life, SHH disturbances may account for later FA related findings involving hematopoietic and malignancy issues. In support, androgen, a standard treatment for FA hematologic failure, down-regulates SHH, and common FA malignancies such as squamous cell carcinomas and acute myeloid leukemia have been linked to enhanced SHH function. This suggests that interventions lowering SHH levels may be useful therapeutically. Also supporting a connection between pre- and post- natal findings, the frequency and number of VACTERL anomalies with FA correlate with the severity and onset of hematopoietic and malignancy issues. In FA, radial anomalies are the most common of these defects, followed by renal findings, while vertebral and gastrointestinal anomalies are relatively uncommon, a pattern that differs from observations of the VACTERL association. Genes with more severe effects also show a greatly increased incidence of brain abnormalities, and a paucity of such findings with other FA genes suggests that brain development is relatively refractory to SHH related effects, accounting for the rarity of such findings with the association.

  20. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix.

    Science.gov (United States)

    Nagy, Nandor; Barad, Csilla; Graham, Hannah K; Hotta, Ryo; Cheng, Lily S; Fejszak, Nora; Goldstein, Allan M

    2016-01-15

    The enteric nervous system (ENS) develops from neural crest cells that migrate along the intestine, differentiate into neurons and glia, and pattern into two plexuses within the gut wall. Inductive interactions between epithelium and mesenchyme regulate gut development, but the influence of these interactions on ENS development is unknown. Epithelial-mesenchymal recombinations were constructed using avian hindgut mesenchyme and non-intestinal epithelium from the bursa of Fabricius. These recombinations led to abnormally large and ectopically positioned ganglia. We hypothesized that sonic hedgehog (Shh), a secreted intestinal epithelial protein not expressed in the bursa, mediates this effect. Inhibition of Shh signaling, by addition of cyclopamine or a function-blocking antibody, resulted in large, ectopic ganglia adjacent to the epithelium. Shh overexpression, achieved in ovo using Shh-encoding retrovirus and in organ culture using recombinant protein, led to intestinal aganglionosis. Shh strongly induced the expression of versican and collagen type IX, whereas cyclopamine reduced expression of these chondroitin sulfate proteoglycans that are known to be inhibitory to neural crest cell migration. Shh also inhibited enteric neural crest-derived cell (ENCC) proliferation, promoted neuronal differentiation, and reduced expression of Gdnf, a key regulator of ENS formation. Ptc1 and Ptc2 were not expressed by ENCCs, and migration of isolated ENCCs was not inhibited by Shh protein. These results suggest that epithelial-derived Shh acts indirectly on the developing ENS by regulating the composition of the intestinal microenvironment.

  1. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen.

    Science.gov (United States)

    Martinez, Jose A; Kobayashi, Masaki; Krishnan, Anand; Webber, Christine; Christie, Kimberly; Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2015-09-01

    Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them.

  2. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    Science.gov (United States)

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs.

  3. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis.

    Science.gov (United States)

    Berretta, Antonio; Gowing, Emma K; Jasoni, Christine L; Clarkson, Andrew N

    2016-02-23

    Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth.

  4. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma.

    Science.gov (United States)

    Kanda, Shiori; Mitsuyasu, Takeshi; Nakao, Yu; Kawano, Shintaro; Goto, Yuichi; Matsubara, Ryota; Nakamura, Seiji

    2013-09-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation.

  5. Desert Hedgehog/Patch2 Axis Contributes to Vascular Permeability and Angiogenesis in Glioblastoma.

    Science.gov (United States)

    Azzi, Sandy; Treps, Lucas; Leclair, Héloïse M; Ngo, Hai-Mi; Harford-Wright, Elizabeth; Gavard, Julie

    2015-01-01

    Glioblastoma multiforme (GBM) constitutes the most common and the most aggressive type of human tumors affecting the central nervous system. Prognosis remains dark due to the inefficiency of current treatments and the rapid relapse. Paralleling other human tumors, GBM contains a fraction of tumor initiating cells with the capacity to self-renew, initiate and maintain the tumor mass. These cells were found in close proximity to brain vasculature, suggesting functional interactions between brain tumor-initiating cells (BTICs) and endothelial cells within the so-called vascular niche. However, the mechanisms by which these cells impact on the endothelium plasticity and function remain unclear. Using culture of BTICs isolated from a cohort of 14 GBM patients, we show that BTICs secretome promotes brain endothelial cell remodeling in a VEGF-independent manner. Gene array analysis unmasked that BTICs-released factors drove the expression of Ptch2 in endothelial cells. Interestingly, BTICs produce desert hedgehog (DHH) ligand, enabling a paracrine DHH/Ptch2 signaling cascade that conveys elevated permeability and angiogenesis. Finally, DHH silencing in BTICs dramatically reduced tumor growth, as well as vascularization and intra-tumor permeability. Collectively, our data unveil a role for DHH in exacerbated tumor angiogenesis and permeability, which may ultimately favor glioblastoma growth, and thus place the DHH/Ptch2 nexus as a molecular target for novel therapies.

  6. Desert Hedgehog/Patch2 axis contributes to vascular permeability and angiogenesis in glioblastoma

    Directory of Open Access Journals (Sweden)

    Sandy eAzzi

    2015-11-01

    Full Text Available Glioblastoma multiforme (GBM constitutes the most common and the most aggressive type of human tumors affecting the central nervous system. Prognosis remains dark due to the inefficiency of current treatments and the rapid relapse. Paralleling other human tumors, GBM contains a fraction of tumor initiating cells with the capacity to self-renew, initiate and maintain the tumor mass. These cells were found in close proximity to brain vasculature, suggesting functional interactions between brain tumor-initiating cells (BTICs and endothelial cells within the so-called vascular niche. However, the mechanisms by which these cells impact on the endothelium plasticity and function remain unclear. Using culture of BTICs isolated from a cohort of 14 GBM patients, we show that BTIC secretome promotes brain endothelial cell remodeling in a VEGF-independent manner. Gene array analysis unmasked that BTIC-released factors drove the expression of Ptch2 in endothelial cells. Interestingly, BTICs produce Desert Hedgehog (DHH ligand, enabling a paracrine DHH/Ptch2 signaling cascade that conveys elevated permeability and angiogenesis. Finally, DHH silencing in BTICs dramatically reduced tumor growth, as well as vascularization and intra-tumor permeability. Collectively, our data unveil a role for DHH in exacerbated tumor angiogenesis and permeability, which may ultimately favor glioblastoma growth, and thus place the DHH/Ptch2 nexus as a molecular target for novel therapies.

  7. Tbx5-hedgehog molecular networks are essential in the second heart field for atrial septation.

    Science.gov (United States)

    Xie, Linglin; Hoffmann, Andrew D; Burnicka-Turek, Ozanna; Friedland-Little, Joshua M; Zhang, Ke; Moskowitz, Ivan P

    2012-08-14

    The developmental mechanisms underlying human congenital heart disease (CHD) are poorly understood. Atrial septal defects (ASDs) can result from haploinsufficiency of cardiogenic transcription factors including TBX5. We demonstrated that Tbx5 is required in the second heart field (SHF) for atrial septation in mice. Conditional Tbx5 haploinsufficiency in the SHF but not the myocardium or endocardium caused ASDs. Tbx5 SHF knockout embryos lacked atrial septum progenitors. We found that Tbx5 mutant SHF progenitors demonstrated cell-cycle progression defects and that Tbx5 regulated cell-cycle progression genes including Cdk6. Activated hedgehog (Hh) signaling rescued ASDs in Tbx5 mutant embryos, placing Tbx5 upstream or parallel to Hh in cardiac progenitors. Tbx5 regulated SHF Gas1 and Osr1 expression, supporting both pathways. These results describe a SHF Tbx5-Hh network required for atrial septation. A paradigm defining molecular requirements in SHF cardiac progenitors for cardiac septum morphogenesis has implications for the ontogeny of CHD.

  8. Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation.

    Science.gov (United States)

    Zhou, Lun; Liu, Jielin; Xiang, Menglan; Olson, Patrick; Guzzetta, Alexander; Zhang, Ke; Moskowitz, Ivan P; Xie, Linglin

    2017-02-21

    GATA4, an essential cardiogenic transcription factor, provides a model for dominant transcription factor mutations in human disease. Dominant GATA4 mutations cause congenital heart disease (CHD), specifically atrial and atrioventricular septal defects (ASDs and AVSDs). We found that second heart field (SHF)-specific Gata4 heterozygote embryos recapitulated the AVSDs observed in germline Gata4 heterozygote embryos. A proliferation defect of SHF atrial septum progenitors and hypoplasia of the dorsal mesenchymal protrusion, rather than anlage of the atrioventricular septum, were observed in this model. Knockdown of the cell-cycle repressor phosphatase and tensin homolog (Pten) restored cell-cycle progression and rescued the AVSDs. Gata4 mutants also demonstrated Hedgehog (Hh) signaling defects. Gata4 acts directly upstream of Hh components: Gata4 activated a cis-regulatory element at Gli1 in vitro and occupied the element in vivo. Remarkably, SHF-specific constitutive Hh signaling activation rescued AVSDs in Gata4 SHF-specific heterozygous knockout embryos. Pten expression was unchanged in Smoothened mutants, and Hh pathway genes were unchanged in Pten mutants, suggesting pathway independence. Thus, both the cell-cycle and Hh-signaling defects caused by dominant Gata4 mutations were required for CHD pathogenesis, suggesting a combinatorial model of disease causation by transcription factor haploinsufficiency.

  9. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori.

    Science.gov (United States)

    Liang, Shuang; Chen, Rui-Ting; Zhang, Deng-Pan; Xin, Hu-Hu; Lu, Yan; Wang, Mei-Xian; Miao, Yun-Gen

    2015-10-01

    Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates.

  10. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.

    Science.gov (United States)

    Peacock, Craig D; Wang, Qiuju; Gesell, Gregory S; Corcoran-Schwartz, Ian M; Jones, Evan; Kim, Jynho; Devereux, Wendy L; Rhodes, Jonathan T; Huff, Carol A; Beachy, Philip A; Watkins, D Neil; Matsui, William

    2007-03-01

    The cancer stem cell hypothesis suggests that malignant growth depends on a subset of tumor cells with stem cell-like properties of self-renewal. Because hedgehog (Hh) signaling regulates progenitor cell fate in normal development and homeostasis, aberrant pathway activation might be involved in the maintenance of such a population in cancer. Indeed, mutational activation of the Hh pathway is associated with medulloblastoma and basal cell carcinoma; pathway activity is also critical for growth of other tumors lacking such mutations, although the mechanism of pathway activation is poorly understood. Here we study the role and mechanism of Hh pathway activation in multiple myeloma (MM), a malignancy with a well defined stem cell compartment. In this model, rare malignant progenitors capable of clonal expansion resemble B cells, whereas the much larger tumor cell population manifests a differentiated plasma cell phenotype that pathologically defines the disease. We show that the subset of MM cells that manifests Hh pathway activity is markedly concentrated within the tumor stem cell compartment. The Hh ligand promotes expansion of MM stem cells without differentiation, whereas the Hh pathway blockade, while having little or no effect on malignant plasma cell growth, markedly inhibits clonal expansion accompanied by terminal differentiation of purified MM stem cells. These data reveal that Hh pathway activation is heterogeneous across the spectrum of MM tumor stem cells and their more differentiated progeny. The potential existence of similar relationships in other adult cancers may have important biologic and clinical implications for the study of aberrant Hh signaling.

  11. Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy.

    Science.gov (United States)

    Hildebrand, Michael S; Griffin, Nicole G; Damiano, John A; Cops, Elisa J; Burgess, Rosemary; Ozturk, Ezgi; Jones, Nigel C; Leventer, Richard J; Freeman, Jeremy L; Harvey, A Simon; Sadleir, Lynette G; Scheffer, Ingrid E; Major, Heather; Darbro, Benjamin W; Allen, Andrew S; Goldstein, David B; Kerrigan, John F; Berkovic, Samuel F; Heinzen, Erin L

    2016-08-01

    Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease.

  12. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases.

    Directory of Open Access Journals (Sweden)

    Shamik Das

    Full Text Available The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon.

  13. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice

    Science.gov (United States)

    Dang, Mai T.; Wehrli, Suzanne; Dang, Chi V.; Curran, Tom

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice. PMID:26192445

  14. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    Science.gov (United States)

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  15. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice.

    Directory of Open Access Journals (Sweden)

    Mai T Dang

    Full Text Available The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice.

  16. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice.

    Science.gov (United States)

    Dang, Mai T; Wehrli, Suzanne; Dang, Chi V; Curran, Tom

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet would suppress tumor growth in a genetically engineered mouse model of medulloblastoma. However, we found that the ketogenic diet did not slow the growth of spontaneous tumors or allograft flank tumors, and it did not exhibit synergy with a small molecule inhibitor of Smoothened. Serum insulin was significantly reduced in mice fed the ketogenic diet, but no alteration in PI3 kinase activity was observed. These findings indicate that while the ketogenic diet may be effective in inhibiting growth of other tumor types, it does not slow the growth of HH-medulloblastoma in mice.

  17. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Directory of Open Access Journals (Sweden)

    Clemens Kiecker

    2016-12-01

    Full Text Available A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

  18. Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution.

    Science.gov (United States)

    Menuet, Arnaud; Alunni, Alessandro; Joly, Jean-Stéphane; Jeffery, William R; Rétaux, Sylvie

    2007-03-01

    Ventral midline Sonic Hedgehog (Shh) signalling is crucial for growth and patterning of the embryonic forebrain. Here, we report how enhanced Shh midline signalling affects the evolution of telencephalic and diencephalic neuronal patterning in the blind cavefish Astyanax mexicanus, a teleost fish closely related to zebrafish. A comparison between cave- and surface-dwelling forms of Astyanax shows that cavefish display larger Shh expression in all anterior midline domains throughout development. This does not affect global forebrain regional patterning, but has several important consequences on specific regions and neuronal populations. First, we show expanded Nkx2.1a expression and higher levels of cell proliferation in the cavefish basal diencephalon and hypothalamus. Second, we uncover an Nkx2.1b-Lhx6-GABA-positive migratory pathway from the subpallium to the olfactory bulb, which is increased in size in cavefish. Finally, we observe heterochrony and enlarged Lhx7 expression in the cavefish basal forebrain. These specific increases in olfactory and hypothalamic forebrain components are Shh-dependent and therefore place the telencephalic midline organisers in a crucial position to modulate forebrain evolution through developmental events, and to generate diversity in forebrain neuronal patterning.

  19. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma.

    Science.gov (United States)

    Boehme, Karen A; Zaborski, Julian J; Riester, Rosa; Schweiss, Sabrina K; Hopp, Ulrike; Traub, Frank; Kluba, Torsten; Handgretinger, Rupert; Schleicher, Sabine B

    2016-02-01

    Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.

  20. Exact results in the Skyrme model in (3+1) dimensions via the generalized hedgehog ansatz

    Science.gov (United States)

    Canfora, Fabrizio

    2016-09-01

    We present exact results in the (3 + 1) -dimensional Skyrme model. First of all, it will be shown that, in the Pionic sector, a quite remarkable phenomenon for a non-integrable (3 + 1) -dimensional field theory appears: a non-linear superposition law is available allowing the composition of solutions in order to generate new solutions of the full field equations keeping alive, at the same time, the interactions terms in the energy-density. Secondly, it will be shown that the generalized hedgehog ansatz can be extended to suitable curved backgrounds. Interestingly, one can choose the background metric in such a way to describe finite-volume effects and, at the same time, to simplify the Skyrme field equations. In this way, it is possible to construct the first exact multi-Skyrmionic configurations of the (3 + 1) -dimensional Skyrme model with arbitrary high winding number and living at finite volume. Last but not least, a novel BPS bound (which is sharper than the usual one in term of the winding number) will be derived which can be saturated and reduces the field equations to a first-order equation for the profile.

  1. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

    Directory of Open Access Journals (Sweden)

    Mauricio Cortes

    2015-10-01

    Full Text Available Hematopoietic stem and progenitor cells (HSPCs are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3 modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

  2. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation.

    Science.gov (United States)

    Cortes, Mauricio; Liu, Sarah Y; Kwan, Wanda; Alexa, Kristen; Goessling, Wolfram; North, Trista E

    2015-10-13

    Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

  3. Regulation mechanisms of the hedgehog pathway in pancreatic cancer: a review.

    Science.gov (United States)

    Honselmann, Kim Christin; Pross, Moritz; Jung, Carlo Maria Felix; Wellner, Ulrich Friedrich; Deichmann, Steffen; Keck, Tobias; Bausch, Dirk

    2015-01-31

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of death from cancer. Its 5-year survival rate is less than 5%. This poor prognosis is mostly due to the cancer's early invasion and metastasis formation, leading to an initial diagnosis at an advanced incurable stage in the majority of patients. The only potentially curative treatment is radical surgical resection. The effect of current chemotherapeutics or radiotherapy is limited. Novel therapeutic strategies are therefore much needed. One of the hallmarks of PDAC is its abundant desmoplastic (stromal) reaction. The Hedgehog (Hh) signaling pathway is critical for embryologic development of the pancreas. Aberrant Hh signaling promotes pancreatic carcinogenesis, the maintenance of the tumor microenvironment and stromal growth. The canonical Hh-pathway in the tumor stroma has been targeted widely but has not yet lead to hopeful clinical results. Targeting both the tumor and its surrounding stroma through Hh pathway inhibition by also targeting non-canonical pathways as apparent in the tumor cell may therefore be a novel treatment strategy for PDAC.

  4. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Seiji Kakiuchi

    2017-02-01

    Full Text Available Aberrant activation of the Hedgehog (Hh signaling pathway is involved in the maintenance of leukemic stem cell (LSCs populations. PF-0444913 (PF-913 is a novel inhibitor that selectively targets Smoothened (SMO, which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML. However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling.

  5. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update.

    Science.gov (United States)

    Takebe, Naoko; Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X; Ivy, S Percy

    2015-08-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents.

  6. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways.

    Science.gov (United States)

    Takebe, Naoko; Harris, Pamela J; Warren, Ronald Q; Ivy, S Percy

    2011-02-01

    Tumor relapse and metastasis remain major obstacles for improving overall cancer survival, which may be due at least in part to the existence of cancer stem cells (CSCs). CSCs are characterized by tumorigenic properties and the ability to self-renew, form differentiated progeny, and develop resistance to therapy. CSCs use many of the same signaling pathways that are found in normal stem cells, such as Wnt, Notch, and Hedgehog (Hh). The origin of CSCs is not fully understood, but data suggest that they originate from normal stem or progenitor cells, or possibly other cancer cells. Therapeutic targeting of both CSCs and bulk tumor populations may provide a strategy to suppress tumor regrowth. Development of agents that target critical steps in the Wnt, Notch, and Hh pathways will be complicated by signaling cross-talk. The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are described in this Review.

  7. Hedgehog signalling controls zebrafish neural keel morphogenesis via its level-dependent effects on neurogenesis.

    Science.gov (United States)

    Takamiya, Masanari; Campos-Ortega, Jose A

    2006-04-01

    We investigated the role of hedgehog (Hh) signalling on zebrafish neurulation, focusing on the intimate relationship between neurogenesis and morphogenesis during the neural keel stage. Through the analyses of Hh loss- and gain-of-function phenotypes, we found that Hh signalling controls the neural keel morphogenesis. To investigate underlying mechanisms, we examined cellular elongation polarity in the neural keel of Hh loss- and gain-of-function phenotypes and compared this with the deficient phenotype of a planar cell polarity (PCP) molecule, Trilobite/Strabismus. We found that Hh signalling controls cell elongation polarity of the neuroepithelium at least in part by means of PCP pathway; however, its effects are not strong enough per se to affect keel morphogenesis; instead Hh signalling mainly controls keel morphogenesis by means of affecting both medial and lateral neurogenesis. We devised a method for precise evaluation of neurogenesis in loss- and gain-of-Hh phenotypes that compensates for its delay caused by disturbed morphogenesis. We present a model that Hh signalling exerts level-dependent and binary-opposite effects on medial neurogenesis, whose modification to explain lateral neurogenesis reveals regional differences of underlying mechanisms between the two proneural domains. Such differences seem to be created in part by regional effector signalling; the effects of high Hh-signalling on medial neurogenesis can be reversed in accordance to medial Tri/Stbm level, in a polarity independent manner.

  8. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila.

    Science.gov (United States)

    Nakano, Y; Nystedt, S; Shivdasani, A A; Strutt, H; Thomas, C; Ingham, P W

    2004-06-01

    The Hedgehog signalling pathway is deployed repeatedly during normal animal development and its inappropriate activity is associated with various tumours in human. The serpentine protein Smoothened (Smo) is essential for cells to respond to the Hedeghog (Hh) signal; oncogenic forms of Smo have been isolated from human basal cell carcinomas. Despite similarities with ligand binding G-protein coupled receptors, the molecular basis of Smo activity and its regulation remains unclear. In non-responding cells, Smo is suppressed by the activity of another multipass membrane spanning protein Ptc, which acts as the Hh receptor. In Drosophila, binding of Hh to Ptc has been shown to cause an accumulation of phosphorylated Smo protein and a concomitant stabilisation of the activated form of the Ci transcription factor. Here, we identify domains essential for Smo activity and investigate the sub-cellular distribution of the wild type protein in vivo. We find that deletion of the amino terminus and the juxtamembrane region of the carboxy terminus of the protein result in the loss of normal Smo activity. Using Green Fluorescent Protein (GFP) and horseradish peroxidase fusion proteins we show that Smo accumulates in the plasma membrane of cells in which Ptc activity is abrogated by Hh but is targeted to the degradative pathway in cells where Ptc is active. We further demonstrate that Smo accumulation is likely to be a cause, rather than a consequence, of Hh signal transduction.

  9. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    2015-07-01

    Full Text Available Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair. Aberrant activation of the Hedgehog (Hh signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  10. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  11. Tbx5-Hedgehog Molecular Networks Are Essential in the Second Heart Field for Atrial Septation

    Science.gov (United States)

    Xie, Linglin; Hoffmann, Andrew D.; Burnicka-Turek, Ozanna; Friedland-Little, Joshua M.; Zhang, Ke; Moskowitz, Ivan P.

    2014-01-01

    Summary The developmental mechanisms underlying human congenital heart disease (CHD) are poorly understood. Atrial septal defects (ASDs) can result from haploinsufficiency of cardiogenic transcription factors including TBX5. We demonstrated that Tbx5 is required in the second heart field (SHF) for atrial septation in mice. Conditional Tbx5 haploinsufficiency in the SHF but not the myocardium or endocardium caused ASDs. Tbx5 SHF knockout embryos lacked atrial septum progenitors. We found that Tbx5 mutant SHF progenitors demonstrated cell-cycle progression defects and that Tbx5 regulated cell-cycle progression genes including Cdk6. Activated hedgehog (Hh) signaling rescued ASDs in Tbx5 mutant embryos, placing Tbx5 upstream or parallel to Hh in cardiac progenitors. Tbx5 regulated SHF Gas1 and Osr1 expression, supporting both pathways. These results describe a SHF Tbx5-Hh network required for atrial septation. A paradigm defining molecular requirements in SHF cardiac progenitors for cardiac septum morphogenesis has implications for the ontogeny of CHD. PMID:22898775

  12. Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway.

    Science.gov (United States)

    Geissler, Klaus; Zach, Otto

    2012-05-01

    Animal models are established tools to study basic questions of biology in a systematic way. They have greatly facilitated our understanding of the mechanisms by which nature forms and maintains organisms. Much of the knowledge on molecular changes underlying the development of organisms originates from research in the fruit fly model Drosophila melanogaster. Vertebrate models including the mouse and zebrafish model, but also other animal models coming from different corners of the animal kingdom have shown that much of the basic machinery of development is essentially identical, not just in all vertebrates but in all major phyla of invertebrates too. Moreover, key elements of this machinery have been demonstrated to be involved in recurrent molecular abnormalities detected in tumor-tissue from patients, indicating their implication in the genesis of human cancer. Thus, research in this field has become a common topic for both biologists and hemato-oncologists. In this review, we summarize current knowledge on some of these key elements and molecular pathways such as Notch, Hedgehog, Wingless, Runt, and Trithorax that have been originally described and studied in animal models and which seem to play a major role in the pathophysiology and targeted management of human cancer.

  13. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Hedgehog (Hh signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12 that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci, the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.

  14. Expression of Indian hedgehog is negatively correlated with APC gene mutation in colorectal tumors.

    Science.gov (United States)

    Fu, Xiangsheng; Shi, Lei; Zhang, Wei; Zhang, Xiaoyan; Peng, Yan; Chen, Xia; Tang, Chuankang; Li, Xiaoyun; Zhou, Xian

    2014-01-01

    The regulatory mechanism of Indian hedgehog (IHH) in colorectal carcinogenesis has not been elucidated. In the current study, the expression of IHH were investigated in 7 digestive tract cancer cell lines, and in 10 normal colorectal mucosas (NCs), 30 hyperplastic polyps (HPs), 35 colorectal adenomas (ADs), and 40 colorectal adenocarcinomas (CAs) by semi-quantitative RT-PCR and immunohistochemical staining. Moreover, the mutational status of adenomatous polyposis coli (APC) and β-catenin in these tumors were analyzed by direct sequencing. IHH mRNA was lost in the 4 colon cancer cell lines harboring APC mutation. IHH mRNA was significantly decreased in CAs (0.17 ± 0.22), compared with that in ADs (0.38 ± 0.35) and HPs (0.56 ± 0.38, P 19.47 ± 17.91) and NCs (42.40 ± 13.67, P < 0.05). Moreover, APC mutations were negatively correlated with IHH mRNA expression (Spearman's R = -0.636, P < 0.01) and IHH protein expression (Spearman's R = -0.426, P < 0.01). In conclusion, down-regulation of IHH expression might be an early event during the carcinogenesis of colorectal cancer. The activation of Wnt signaling by APC mutation might contribute to the down-regulation or loss of IHH expression in colorectal tumors.

  15. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib.

    Science.gov (United States)

    Lou, Emil; Schomaker, Matthew; Wilson, Jon D; Ahrens, Mary; Dolan, Michelle; Nelson, Andrew C

    2016-08-12

    Medulloblastoma is an aggressive primitive neuroectodermal tumor of the cerebellum that is rare in adults. Medulloblastomas fall into 4 prognostically significant molecular subgroups that are best defined by experimental gene expression profiles: the WNT pathway, sonic hedgehog (SHH) pathway, and subgroups 3 and 4 (non-SHH/WNT). Medulloblastoma of adults belong primarily to the SHH category. Vismodegib, an SHH-pathway inhibitor FDA-approved in 2012 for treatment of basal cell carcinoma, has been used successfully in the setting of chemorefractory medulloblastoma, but not as a first-line therapy. In this report, we describe a sustained response of an unresectable multifocal form of adult medulloblastoma to vismodegib. Molecular analysis in this case revealed mutations in TP53 and a cytogenetic abnormality, i17q, that is prevalent and most often associated with subgroup 4 rather than the SHH-activated form of medulloblastoma. Our findings indicate that vismodegib may also block alternate, non-canonical forms of downstream SHH pathway activation. These findings provide strong impetus for further investigation of vismodegib in clinical trials in the first-line setting for pediatric and adult forms of medulloblastoma.

  16. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    Directory of Open Access Journals (Sweden)

    Tadas K. Rimkus

    2016-02-01

    Full Text Available The sonic hedgehog (Shh signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO and glioma-associated oncogene homolog (GLI family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.

  17. Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers.

    Science.gov (United States)

    De Smaele, Enrico; Ferretti, Elisabetta; Gulino, Alberto

    2010-06-01

    Vismodegib (GDC-0449) is a small, orally administrable molecule, belonging to the 2-arylpyridine class, which was discovered by Genentech Inc under a collaboration with Curis Inc. Vismodegib inhibits the Hedgehog (Hh) pathway, which is involved in tumorigenesis, thus providing a strong rationale for its use in the treatment of a variety of cancers. Vismodegib suppresses Hh signaling by binding to and interfering with smoothened, a membrane protein that provides positive signals to the Hh signaling pathway. Preclinical studies demonstrated the antitumor activity of vismodegib in mouse models of medulloblastoma (MB) and in xenograft models of colorectal and pancreatic cancer. Phase I clinical trials in patients with advanced basal cell carcinoma (BCC) and MB highlighted an objective response to vismodegib. Reported side effects were minor, with only one grade 4 adverse event. Vismodegib is currently undergoing phase II clinical trials for the treatment of advanced BCC, metastatic colorectal cancer, ovarian cancer, MB and other solid tumors. Because of its low toxicity and specificity for the Hh pathway, this drug has potential advantages compared with conventional chemotherapy, and may also be used in combination treatments. Clinical trials with other Hh inhibitors are also ongoing and their therapeutic potential will need to be compared with vismodegib.

  18. ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas.

    Science.gov (United States)

    Grausam, Katie B; Dooyema, Samuel D R; Bihannic, Laure; Premathilake, Hasitha; Morrissy, A Sorana; Forget, Antoine; Schaefer, Amanda M; Gundelach, Justin H; Macura, Slobodan; Maher, Diane M; Wang, Xin; Heglin, Alex H; Ge, Xijin; Zeng, Erliang; Puget, Stephanie; Chandrasekar, Indra; Surendran, Kameswaran; Bram, Richard J; Schüller, Ulrich; Talyor, Michael D; Ayrault, Olivier; Zhao, Haotian

    2017-07-15

    Medulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to Ptch1(+/-) mice, which develop SHH-driven medulloblastoma, animals with Atoh1 transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma. Metastatic tumors retained abnormal SHH signaling like tumor xenografts. Conversely, ATOH1 expression was detected consistently in recurrent and metastatic SHH medulloblastoma. Chromatin immunoprecipitation sequencing and gene expression profiling identified candidate ATOH1 targets in tumor cells involved in development and tumorigenesis. Among these targets specific to metastatic tumors, there was an enrichment in those implicated in extracellular matrix remodeling activity, cytoskeletal network and interaction with microenvironment, indicating a shift in transcriptomic and epigenomic landscapes during metastasis. Treatment with bone morphogenetic protein or SHH pathway inhibitors decreased tumor cell proliferation and suppressed metastatic tumor growth, respectively. Our work reveals a dynamic ATOH1-driven molecular cascade underlying medulloblastoma metastasis that offers possible therapeutic opportunities. Cancer Res; 77(14); 3766-77. ©2017 AACR. ©2017 American Association for Cancer Research.

  19. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    Science.gov (United States)

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  20. Human hedgehog interacting protein gene and lung diseases%人音猬因子相互作用蛋白基因与肺部疾病

    Institute of Scientific and Technical Information of China (English)

    过依; 程挺; 万欢英

    2013-01-01

    Human hedgehog interacting protein gene encodes human hedgehog interacting protein (HHIP).This protein is a critical regulator of the hedgehog signal pathway,which has been implicated in development,repair,and cancer in multiple tissues.HHIP plays a role in development of many diseases including lung diseases.%人音猬因子相互作用蛋白基因编码一组跨膜糖蛋白——人音猬因子相互作用蛋白,其主要功能是负反馈调节抑制Hh信号通路活性.该基因与Hh信号通路在胚胎发育、细胞分化、肿瘤形成等有关,参与了各系统疾病的发生发展.本文就其与一些肺部疾病的关系作一综述.

  1. Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): I. Relationships between concentrations of metals and arsenic in hair, spines, and soil.

    Science.gov (United States)

    D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim

    2005-09-01

    Conventional metal exposure assessment in terrestrial mammals is generally based on organ analyses of sacrificed animals. Few studies on mammals use nondestructive methodologies despite the growing ethical concern over the use of destructive sampling. Nondestructive methods involve minimal stress to populations and permit successive biomonitoring of the same populations and individuals. In the present study we assessed metal exposure of hedgehogs (Erinaceus europaeus) by investigating relationships between concentrations of metals (Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and As in soil samples and in hair and spines of hedgehogs. Samples were collected in seven study sites along a metal pollution gradient, characterized by decreasing total soil Ag, As, Cd, Cu, Ni, and Pb concentrations with increasing distance from a nonferrous metallurgic factory. For a number of elements, soil contamination was related both to distance to the smelter and to habitat. Soil concentrations were positively related to levels in hair and spines for Ag, As, Cd, and Pb and thus to hedgehog exposure. Metal concentrations in soil did not relate to metal concentrations in hair and spines for essential elements (e.g., Cu, Fe, Mn, Ni, and Zn), except Co in hair and soil. Our results demonstrate that, at least for nonessential elements, concentrations in soils can be used to predict contamination of these elements in hedgehogs or vice versa. Furthermore, hedgehog exposure increased toward the smelter and was higher for hedgehogs foraging in grasslands than for animals foraging in the forest. Moreover, we believe that hair and spines are promising tools in terrestrial wildlife exposure assessment studies of metals and As.

  2. Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis.

    Science.gov (United States)

    Daane, Jacob M; Downs, Karen M

    2011-09-01

    Although many fetal birth defects, particularly those of the body wall and gut, are associated with abnormalities of the umbilical cord, the developmental relationship between these structures is largely obscure. Recently, genetic analysis of mid-gestation mouse embryos revealed that defects in Hedgehog signaling led to omphalocoele, or failure of the body wall to close at the umbilical ring (Matsumaru et al. [ 2011] PLos One 6:e16260). However, systematic spatiotemporal localization of Hedgehog signaling in the allantois, or umbilical precursor tissue, and the surrounding regions has not been documented. Here, a combination of reagents, including the Ptc1:lacZ and Runx1:lacZ reporter mice, immunohistochemistry for Smoothened (Smo), Sonic Hedgehog (Shh), and Indian hedgehog (Ihh), and detailed PECAM-1/Flk-1/Runx-1 analysis, revealed robust Hedgehog signaling in previously undocumented posterior sites over an extended period of time (∼7.0-9.75 dpc). These included the recently described proximal walls of the allantois (Ventral and Dorsal Cuboidal Mesothelia; VCM and DCM, respectively); the ventral embryonic surface continuous with them; hemogenic arterial endothelia; hematopoietic cells; the hindgut; ventral ectodermal ridge (VER); chorionic ectoderm; and the intraplacental yolk sac (IPY), which appeared to be a site of placental hematopoiesis. This map of Hedgehog signaling in the posterior region of the mouse conceptus will provide a valuable foundation upon which to elucidate the origin of many posterior midline abnormalities, especially those of the umbilical cord and associated fetal defects. Developmental Dynamics 240:2175-2193, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  3. Baicalin Attenuates Alcoholic Liver Injury through Modulation of Hepatic Oxidative Stress, Inflammation and Sonic Hedgehog Pathway in Rats

    Directory of Open Access Journals (Sweden)

    Huifen Wang

    2016-08-01

    Full Text Available Background/Aims: Lipid accumulation, inflammatory responses and oxidative stress have been implicated in the pathology of alcoholic liver disease (ALD. Targeting inhibition of these features may provide a promising therapeutic strategy for ALD. Baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been shown to exert a hepatoprotective effect. However, its effects on ALD remain obscure. This study was aimed to investigate the effects of baicalin on alcohol-induced liver injury and its related mechanisms. Methods: For in vivo experiments, rats were supplied intragastrical administration of alcohol continuously for 4 or 8 weeks, and then received baicalin treatment in the latter 4 weeks in the presence / absence of alcohol intake. Liver histology and function, inflammatory cytokines, oxidative mediators, and the components of the Sonic hedgehog pathway were evaluated. For in vitro experiments, alcohol-stimulated human normal liver cells LO2 were used. Results: Baicalin treatment significantly alleviated alcoholic liver injury, improved liver function impaired by alcohol, and inhibited hepatocytes apoptosis. In addition, baicalin decreased the expression levels of proinflammatory cytokines TNF-α, IL-1β, IL-6 and malonyldialdehyde (MDA, and increased the activities of antioxidant enzymes SOD and GSH-Px. Furthermore, baicalin modulated the activation of Sonic hedgehog (Shh pathway. Administration of baicalin upregulated the expression of sonic hedgehog (Shh, patched (Ptc, Smoothened (Smo, and Glioblastoma-1(Gli-1. Blockade of the Shh pathway in cyclopamine abolished the effects of baicalin in vitro. Conclusion: Both in vivo and in vitro experimental results indicate that baicalin exerts hepatoprotective roles in alcohol-induced liver injury through inhibiting oxidative stress, inflammatory response, and the regulation of the Shh pathway.

  4. Expressions of sonic hedgehog, patched, smoothened and Gli-1 in human intestinal stromal tumors and their correlation with prognosis

    Institute of Scientific and Technical Information of China (English)

    Ayumi Yoshizaki; Toshiyuki Nakayama; Shinji Naito; Chun-Yang Wen; Ichiro Sekine

    2006-01-01

    AIM: To investigate the role that the hedgehog (Hh)signaling pathway, which includes sonic hedgehog (Shh),Patched (Ptc), Smoothened (Smo) and Gli-1, plays in human gastrointestinal stromal tumors (GISTs).METHODS: Surgically resected specimens from patients with GISTs, leiomyomas and schwannomas were examined by immunohistochemical staining for aberrant expression of hedgehog signaling components, Shh, Ptc,Smo and Gli-1, respectively.RESULTS: In GISTs, 58.1% (18 of 31), 77.4% (24 of 31), 80.6% (25 of 31) and 58.1% (18 of 31) of the specimens stained positive for Shh, Ptc, Smo and Gli-1,respectively. In leiomyomas, 92.3% (12 of 13), 92.3% (12 of 13), 69.2% (9 of 13) and 92.3% (12 of 13) stained positive for Shh, Ptc, Smo and Gli-1, respectively. In schwannomas, 83.3% (5 of 6), 83.3% (5 of 6), 83.3%(5 of 6) and 100% (6 of 6) stained positive for Shh,Ptc, Smo and Gli-1, respectively. Immunohistochemistry revealed that the expressions of Shh and Gli-1 were significantly higher in leiomyomas than in GISTs (P < 0.05,respectively). Shh expression strongly correlated with the grade of tumor risk category and with tumor size (P <0.05, respectively). However, the expressions of Ptc and Smo did not correlate with histopathological differentiation.CONCLUSION: These results suggest that the Hh signaling pathway may play an important role in myogenic differentiation and the malignant potential of human intestinal stromal tumors.

  5. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  6. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Shimada

    Full Text Available Keratocystic odontogenic tumor (KCOT arises as part of Gorlin syndrome (GS or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1 showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2 less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3 consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.

  7. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features.

    Science.gov (United States)

    Shimada, Yasuyuki; Katsube, Ken-ichi; Kabasawa, Yuji; Morita, Kei-ichi; Omura, Ken; Yamaguchi, Akira; Sakamoto, Kei

    2013-01-01

    Keratocystic odontogenic tumor (KCOT) arises as part of Gorlin syndrome (GS) or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH) of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1) showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2) less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3) consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.

  8. Organization of the main olfactory bulbs of some mammals: musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats.

    Science.gov (United States)

    Kosaka, Katsuko; Kosaka, Toshio

    2004-04-19

    We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs.

  9. Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium

    OpenAIRE

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J.; Thom, Sonja; Engels, Knut; Schmidt, Mirko H. H.; Plate, Karl H; Liebner, Stefan

    2010-01-01

    Wnt/β-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/β-catenin pathway activation in reporter mice and by nuclear β-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. β-Catenin activation in APCmin/+ mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in th...

  10. A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint

    Directory of Open Access Journals (Sweden)

    Malgorzata Kubiak

    2016-08-01

    Full Text Available This review highlights the essential role of Hedgehog (Hh signalling in the developmental steps of temporomandibular joint (TMJ formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI dependent and independent functions. Morphogenesis and maturation of the TMJ’s individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling.

  11. Emergence of chemoresistance in a metastatic basal cell carcinoma patient after complete response to hedgehog pathway inhibitor vismodegib (GDC-0449).

    Science.gov (United States)

    Meani, Rowena E; Lim, Shueh-Wen; Chang, Anne Lynn S; Kelly, John W

    2014-08-01

    Vismodegib (GDC-0449, Genentech, USA), a small molecule inhibitor of the Hedgehog signalling pathway, has potent anti-tumour activity in advanced basal cell carcinoma (BCC). We report a case of a 67-year-old Australian man with metastatic BCC including pulmonary disease with malignant effusion who showed a dramatic complete response to vismodegib but subsequently experienced a recurrence of pulmonary disease, indicative of chemoresistance to vismodegib. This case is the first to illustrate chemoresistance in a patient with metastatic BCC, and demonstrates the need for closely monitoring metastatic BCC patients even after an apparently complete response.

  12. Epigenetic deregulation of Ellis Van Creveld confers robust Hedgehog signaling in adult T-cell leukemia.

    Science.gov (United States)

    Takahashi, Ryutaro; Yamagishi, Makoto; Nakano, Kazumi; Yamochi, Toshiko; Yamochi, Tadanori; Fujikawa, Dai; Nakashima, Makoto; Tanaka, Yuetsu; Uchimaru, Kaoru; Utsunomiya, Atae; Watanabe, Toshiki

    2014-09-01

    One of the hallmarks of cancer, global gene expression alteration, is closely associated with the development and malignant characteristics associated with adult T-cell leukemia (ATL) as well as other cancers. Here, we show that aberrant overexpression of the Ellis Van Creveld (EVC) family is responsible for cellular Hedgehog (HH) activation, which provides the pro-survival ability of ATL cells. Using microarray, quantitative RT-PCR and immunohistochemistry we have demonstrated that EVC is significantly upregulated in ATL and human T-cell leukemia virus type I (HTLV-1)-infected cells. Epigenetic marks, including histone H3 acetylation and Lys4 trimethylation, are specifically accumulated at the EVC locus in ATL samples. The HTLV-1 Tax participates in the coordination of EVC expression in an epigenetic fashion. The treatment of shRNA targeting EVC, as well as the transcription factors for HH signaling, diminishes the HH activation and leads to apoptotic death in ATL cell lines. We also showed that a HH signaling inhibitor, GANT61, induces strong apoptosis in the established ATL cell lines and patient-derived primary ATL cells. Therefore, our data indicate that HH activation is involved in the regulation of leukemic cell survival. The epigenetically deregulated EVC appears to play an important role for HH activation. The possible use of EVC as a specific cell marker and a novel drug target for HTLV-1-infected T-cells is implicated by these findings. The HH inhibitors are suggested as drug candidates for ATL therapy. Our findings also suggest chromatin rearrangement associated with active histone markers in ATL.

  13. A dual role for Sonic hedgehog in regulating adhesion and differentiation of neuroepithelial cells.

    Science.gov (United States)

    Jarov, Artem; Williams, Kevin P; Ling, Leona E; Koteliansky, Victor E; Duband, Jean-Loup; Fournier-Thibault, Claire

    2003-09-15

    In vertebrates, the nervous system arises from a flat sheet of epithelial cells, the neural plate, that gradually transforms into a hollow neural tube. This process, called neurulation, involves sequential changes in cellular interactions that are precisely coordinated both spatially and temporally by the combined actions of morphogens. To gain further insight into the molecular events regulating cell adhesion during neurulation, we investigated whether the adhesive and migratory capacities of neuroepithelial cells might be modulated by Sonic hedgehog (Shh), a signaling molecule involved in the control of cell differentiation in the ventral neural tube. When deposited onto extracellular matrix components in vitro, neural plates explanted from avian embryos at early neurulation readily dispersed into monolayers of spread cells, thereby revealing their intrinsic ability to migrate. In the presence of Shh added in solution to the culture medium, the explants still exhibited the same propensity to disperse. In contrast, when Shh was immobilized to the substrate or produced by neuroepithelial cells themselves after transfection, neural plate explants failed to disperse and instead formed compact structures. Changes in the adhesive capacities of neuroepithelial cells caused by Shh could be accounted for by inactivation of surface beta1-integrins combined with an increase in N-cadherin-mediated cell adhesion. Furthermore, immobilized Shh promoted differentiation of neuroepithelial cells into motor neurons and floor plate cells with the same potency as soluble Shh. However, the effect of Shh on the neuroepithelial cell adhesion was discernible and apparently independent from its differentiation effect and was not mediated by the signaling cascade elicited by the Patched-Smoothened receptor and involving the Gli transcription factors. Thus, our experiments indicate that Shh is able to control sequentially adhesion and differentiation of neuroepithelial cells through

  14. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    Science.gov (United States)

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  15. Association between FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue microarray analysis.

    Science.gov (United States)

    Chen, Hong; Wang, Jingjing; Yang, Hong; Chen, Dan; Li, Panpan

    2016-10-01

    Forkhead box M1 (FOXM1) and hedgehog (Hh) signaling pathway are implicated in the formation and development of human tumors, including cervical cancer. Previous studies have indicated that FOXM1 may be a downstream target gene of the Hh signaling pathway, but their association in cervical cancer is largely unknown. In the present study, the expression of FOXM1 and Hh signaling molecules was evaluated by immunohistochemical analysis in a tissue microarray that contained 70 cervical cancer tissues and 10 normal cervical tissues. In addition, the association of these molecules with clinicopathological parameters, and the association between FOXM1 and various molecules involved in the Hh signaling pathway was investigated. The results indicated that FOXM1 and Hh signaling molecules were overexpressed in cervical cancer tissues. The protein expression levels of FOXM1, glioma-associated oncogene 1 (GLI1) and smoothened (SMO) correlated with the clinical stage of the tumors, while the protein expression levels of Sonic Hh (SHh), patched 1 (PTCH1) and GLI1 correlated with the pathological grade of the tumors. The expression levels of GLI1 were lower in tissues without lymph node metastasis than in tissues with lymph node metastasis. In addition, FOXM1 expression correlated with GLI1, SHh and PTCH1 expression in cancer tissues. These findings confirmed the participation of FOXM1 and the Hh signaling pathway in cervical cancer. Furthermore, the finding that FOXM1 may be a downstream target gene of the Hh signaling pathway in cervical cancer provides a potential novel diagnostic and therapeutic target for cervical cancer.

  16. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells.

    Science.gov (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea

    2015-06-01

    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  17. Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion

    Science.gov (United States)

    Lu, Jie; Almada, Luciana L.; Lomberk, Gwen; Fernandez-Zapico, Martin E.; Urrutia, Raul; Huebert, Robert C.

    2016-01-01

    Background & Aims Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. Methods Using directed differentiation of induced pluripotent stem cells (iPSC), isolated DRCs, and in vivo models, we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). Results We demonstrate, for the first time, that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein, enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7, CK19, and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient, ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. Conclusion We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo. PMID:27936185

  18. Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway

    Directory of Open Access Journals (Sweden)

    Groot Evelyn

    2008-02-01

    Full Text Available Abstract Background Aberrant activation of the Hedgehog (Hh signaling pathway in different organisms has shown the importance of this family of morphogens during development. Genetic screens in zebrafish have assigned specific roles for Hh in proliferation, differentiation and patterning, but mainly as a result of a loss of its activity. We attempted to fully activate the Hh pathway by removing both receptors for the Hh proteins, called Patched1 and 2, which are functioning as negative regulators in this pathway. Results Here we describe a splice-donor mutation in Ptc1, called ptc1hu1602, which in a homozygous state results in a subtle eye and somite phenotype. Since we recently positionally cloned a ptc2 mutant, a ptc1;ptc2 double mutant was generated, showing severely increased levels of ptc1, gli1 and nkx2.2a, confirming an aberrant activation of Hh signaling. As a consequence, a number of phenotypes were observed that have not been reported previously using Shh mRNA overexpression. Somites of ptc1;ptc2 double mutants do not express anteroposterior polarity markers, however initial segmentation of the somites itself is not affected. This is the first evidence that segmentation and anterior/posterior (A/P patterning of the somites are genetically uncoupled processes. Furthermore, a novel negative function of Hh signaling is observed in the induction of the fin field, acting well before any of the previously reported function of Shh in fin formation and in a way that is different from the proposed early role of Gli3 in limb/fin bud patterning. Conclusion The generation and characterization of the ptc1;ptc2 double mutant assigned novel and unexpected functions to the Hh signaling pathway. Additionally, these mutants will provide a useful system to further investigate the consequences of constitutively activated Hh signaling during vertebrate development.

  19. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    Directory of Open Access Journals (Sweden)

    Reem Malek

    Full Text Available Disruption of cerebellar granular neuronal precursor (GNP maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro, which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/- mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.

  20. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer

    Science.gov (United States)

    Yang, Zhaohui; Peng, Yu-Ching; Gopalan, Anuradha; Gao, Dong; Chen, Yu

    2017-01-01

    ABSTRACT It is widely appreciated that reactive stroma or carcinoma-associated fibroblasts can influence epithelial tumor progression. In prostate cancer (PCa), the second most common male malignancy worldwide, the amount of reactive stroma is variable and has predictive value for tumor recurrence. By analyzing human PCa protein and RNA expression databases, we found smooth muscle cells (SMCs) are decreased in advanced tumors, whereas fibroblasts are maintained. In three mouse models of PCa, PB-MYC, ERG/PTEN and TRAMP, we found the composition of the stroma is distinct. SMCs are greatly depleted in advanced PB-MYC tumors and locally reduced in ERG/PTEN prostates, whereas in TRAMP tumors the SMC layers are increased. In addition, interductal fibroblast-like cells expand in PB-MYC and ERG/PTEN tumors, whereas in TRAMP PCa they expand little and stromal cells invade into intraductal adenomas. Fate mapping of SMCs showed that in PB-MYC tumors the cells are depleted, whereas they expand in TRAMP tumors and interestingly contribute to the stromal cells in intraductal adenomas. Hedgehog (HH) ligands secreted by epithelial cells are known to regulate prostate mesenchyme expansion differentially during development and regeneration. Any possible role of HH signaling in stromal cells during PCa progression is poorly understood. We found that HH signaling is high in SMCs and fibroblasts near tumor cells in all models, and epithelial Shh expression is decreased whereas Ihh and Dhh are increased. In human primary PCa, expression of IHH is the highest of the three HH genes, and elevated HH signaling correlates with high stromal gene expression. Moreover, increasing HH signaling in the stroma of PB-MYC PCa resulted in more intact SMC layers and decreased tumor progression (micro-invasive carcinoma). Thus, we propose HH signaling restrains tumor progression by maintaining the smooth muscle and preventing invasion by tumor cells. Our studies highlight the importance of understanding

  1. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure.

    Science.gov (United States)

    Tolosa, Ezequiel J; Fernández-Zapico, Martín E; Battiato, Natalia L; Rovasio, Roberto A

    2016-01-01

    Our aim was to understand the involvement of Sonic hedgehog (Shh) morphogen in the oriented distribution of neural crest cells (NCCs) toward the optic vesicle and to look for potential disorders of this guiding mechanism after ethanol exposure. In vitro directional analysis showed the chemotactic response of NCCs up Shh gradients and to notochord co-cultures (Shh source) or to their conditioned medium, a response inhibited by anti-Shh antibody, receptor inhibitor cyclopamine and anti-Smo morpholino (MO). Expression of the Ptch-Smo receptor complex on in vitro NCCs was also shown. In whole embryos, the expression of Shh mRNA and protein was seen in the ocular region, and of Ptch, Smo and Gli/Sufu system on cephalic NCCs. Anti-Smo MO or Ptch-mutated plasmid (Ptch1(Δloop2)) impaired cephalic NCC migration/distribution, with fewer cells invading the optic region and with higher cell density at the homolateral mesencephalic level. Beads embedded with cyclopamine (Smo-blocking) or Shh (ectopic signal) supported the role of Shh as an in vivo guide molecule for cephalic NCCs. Ethanol exposure perturbed in vitro and in vivo NCC migration. Early stage embryos treated with ethanol, in a model reproducing Fetal Alcohol Syndrome, showed later disruptions of craniofacial development associated with abnormal in situ expression of Shh morphogen. The results show the Shh/Ptch/Smo-dependent migration of NCCs toward the optic vesicle, with the support of specific inactivation with genetic and pharmacological tools. They also help to understand mechanisms of accurate distribution of embryonic cells and of their perturbation by a commonly consumed teratogen, and demonstrate, in addition to its other known developmental functions, a new biological activity of cellular guidance for Shh.

  2. Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma.

    Science.gov (United States)

    Damhofer, Helene; Medema, Jan Paul; Veenstra, Veronique L; Badea, Liviu; Popescu, Irinel; Roelink, Henk; Bijlsma, Maarten F

    2013-12-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. It is typically detected at an advanced stage, at which the therapeutic options are very limited. One remarkable feature of PDAC that contributes to its resilience to treatment is the extreme stromal activation seen in these tumors. Often, the vast majority of tumor bulk consists of non-tumor cells that together provide a tumor-promoting environment. One of the signals that maintains and activates the stroma is the developmental protein Sonic Hedgehog (SHH). As the disease progresses, tumor cells produce increasing amounts of SHH, which activates the surrounding stroma to aid in tumor progression. To better understand this response and identify targets for inhibition, we aimed to elucidate the proteins that mediate the SHH-driven stromal response in PDAC. For this a novel mixed-species coculture model was set up in which the cancer cells are human, and the stroma is modeled by mouse fibroblasts. In conjunction with next-generation sequencing we were able to use the sequence difference between these species to genetically distinguish between the epithelial and stromal responses to SHH. The stromal SHH-dependent genes from this analysis were validated and their relevance for human disease was subsequently determined in two independent patient cohorts. In non-microdissected tissue from PDAC patients, in which a large amount of stroma is present, the targets were confirmed to associate with tumor stroma versus normal pancreatic tissue. Patient survival analysis and immunohistochemistry identified CDA, EDIL3, ITGB4, PLAUR and SPOCK1 as SHH-dependent stromal factors that are associated with poor prognosis in PDAC patients. Summarizing, the presented data provide insight into the role of the activated stroma in PDAC, and how SHH acts to mediate this response. In addition, the study has yielded several candidates that are interesting therapeutic targets for a disease for which treatment

  3. Relation between sonic hedgehog pathway gene polymorphisms and basal cell carcinoma development in the Polish population.

    Science.gov (United States)

    Lesiak, Aleksandra; Sobolewska-Sztychny, Dorota; Majak, Paweł; Sobjanek, Michał; Wodz, Karolina; Sygut, Karolina Przybyłowska-; Majsterek, Ireneusz; Wozniacka, Anna; Narbutt, Joanna

    2016-01-01

    In recent decades, increases have been observed in the incidence of nonmelanoma skin cancers, including basal cell carcinoma (BCC) and squamous cell carcinoma. BCC is the most common neoplasm in Caucasian populations. Sonic hedgehog (Shh) pathway impairment plays a key role in BCC pathogenesis, and there is evidence that Shh pathway genetic variations may predispose to BCC development. We genotyped 22 single-nucleotide polymorphisms (SNPs) in 4 Shh pathway genes: SHH, GLI, SMO, and PTCH. The study group consisted of 142 BCC patients and 142 age-matched, sex-matched healthy subjects (controls). SNPs were assessed using the PCR-RFLP method. The genotype distribution for the polymorphisms in the rs104894049 331 A/T SHH, rs104894040 349 T/C SHH, and rs41303402 385 G/A SMO genes differed significantly between the BCC patients and the controls. The presence of CC genotype in the SHH rs104894040 349 T/C polymorphism was linked to the highest risk of BCC development (OR 87.9, p < 0.001). Other genotypes, such as the TT in SHH rs104894049 331 A/T and the GG in SMO rs41303402 385 G/A also statistically raised the risk of BCC, but these associations were weaker. Other investigated polymorphisms showed no statistical differences between patients and controls. The results obtained testify to the importance of the SHH and SMO gene polymorphisms in skin cancerogenesis. These results mainly underline the potential role of SHH3 rs104894040 349 T/C gene polymorphism in the development of skin basal cell carcinomas in patients of Polish origin.

  4. Hedgehog signaling antagonist GDC-0449 (Vismodegib inhibits pancreatic cancer stem cell characteristics: molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Brahma N Singh

    Full Text Available BACKGROUND: Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs. Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib, orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro. METHODOLOGY/PRINCIPAL FINDINGS: GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival. CONCLUSIONS/SIGNIFICANCE: These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs.

  5. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis

    Science.gov (United States)

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C.; El-Cheikh, Marcia Cury

    2017-01-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte–macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  6. Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish.

    Directory of Open Access Journals (Sweden)

    Tyler Schwend

    Full Text Available BACKGROUND: The Hedgehog (Hh-signaling pathway plays a crucial role in the development and maintenance of multiple vertebrate and invertebrate organ systems. Gli transcription factors are regulated by Hh-signaling and act as downstream effectors of the pathway to activate Hh-target genes. Understanding the requirements for Hh-signaling in organisms can be gained by assessing Gli activity in a spatial and temporal fashion. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a Gli-dependent (Gli-d transgenic line, Tg(Gli-d:mCherry, that allows for rapid and simple detection of Hh-responding cell populations in both live and fixed zebrafish. This transgenic line expresses a mCherry reporter under the control of a Gli responsive promoter, which can be followed by using fluorescent microscopy and in situ hybridization. Expression of the mCherry transgene reporter during embryogenesis and early larval development faithfully replicated known expression domains of Hh-signaling in zebrafish, and abrogating Hh-signaling in transgenic fish resulted in the suppression of reporter expression. Moreover, ectopic shh expression in Tg(Glid:mCherry fish led to increased transgene production. Using this transgenic line we investigated the nature of Hh-pathway response during early craniofacial development and determined that the neural crest skeletal precursors do not directly respond to Hh-signaling prior to 48 hours post fertilization, suggesting that earlier requirements for pathway activation in this population of facial skeleton precursors are indirect. CONCLUSION/SIGNIFICANCE: We have determined that early Hh-signaling requirements in craniofacial development are indirect. We further demonstrate the Tg(Gli-d:mCherry fish are a highly useful tool for studying Hh-signaling dependent processes during embryogenesis and larval stages.

  7. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro.

    Science.gov (United States)

    You, Min; Varona-Santos, Javier; Singh, Samer; Robbins, David J; Savaraj, Niramol; Nguyen, Dao M

    2014-01-01

    The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.

  8. The role of microRNAs during the genesis of medulloblastomas induced by the hedgehog pathway.

    Science.gov (United States)

    Luo, Xiaoju; Liu, Jun; Cheng, Steven Y

    2011-01-01

    Constitutive hedgehog (Hh) signaling is associated with the genesis of medulloblastomas (MB). The objective of this study is to identify special microRNAs (miRNAs) regulated by the Hh pathway, and to clarify the role of miRNAs during the genesis of MB induced by sustained Hh activation. In the primary screening, we used stem-loop RT-PCR to test the expression of 90 different miRNAs in the wildtype (WT) and Ptc-/- MEF cell lines. In the secondary screening, the miRNAs screened from the first screening were validated in the Sufu-/- MEF cell lines. We then verified the expression of miRNAs both in the normal cerebellar tissues and the MB induced by activated Hh pathway, and examined the expression of the other 21 miRNA members of the miR-154 cluster in the MB and normal cerebellum. In the first screening, 13 miRNAs showed significant differential expression in WT and Ptc-/- MEF cell lines, while 10 of them had significant difference in the Sufu-/- MEF cell line. Compared to the normal mouse cerebellum, only 2 miRNAs in 15 miRNAs were differentially expressed between the MB and normal cerebellar tissues. Among 21 members of the miR-154 cluster, 6 miRNAs were downregulated in the MB. Our study demonstrated that miR-154 may be regulated by the Hh pathway, and the activation of the Hh pathway led to the downregulation of the miR-154 cluster, resulting in the genesis of MB.

  9. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog.

    Science.gov (United States)

    Honsa, Pavel; Valny, Martin; Kriska, Jan; Matuskova, Hana; Harantova, Lenka; Kirdajova, Denisa; Valihrach, Lukas; Androvic, Peter; Kubista, Mikael; Anderova, Miroslava

    2016-09-01

    NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531.

  10. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  11. A mutation in the mouse ttc26 gene leads to impaired hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Ruth E Swiderski

    2014-10-01

    Full Text Available The phenotype of the spontaneous mutant mouse hop-sterile (hop is characterized by a hopping gait, polydactyly, hydrocephalus, and male sterility. Previous analyses of the hop mouse revealed a deficiency of inner dynein arms in motile cilia and a lack of sperm flagella, potentially accounting for the hydrocephalus and male sterility. The etiology of the other phenotypes and the location of the hop mutation remained unexplored. Here we show that the hop mutation is located in the Ttc26 gene and impairs Hedgehog (Hh signaling. Expression analysis showed that this mutation led to dramatically reduced levels of the Ttc26 protein, and protein-protein interaction assays demonstrated that wild-type Ttc26 binds directly to the Ift46 subunit of Intraflagellar Transport (IFT complex B. Although IFT is required for ciliogenesis, the Ttc26 defect did not result in a decrease in the number or length of primary cilia. Nevertheless, Hh signaling was reduced in the hop mouse, as revealed by impaired activation of Gli transcription factors in embryonic fibroblasts and abnormal patterning of the neural tube. Unlike the previously characterized mutations that affect IFT complex B, hop did not interfere with Hh-induced accumulation of Gli at the tip of the primary cilium, but rather with the subsequent dissociation of Gli from its negative regulator, Sufu. Our analysis of the hop mouse line provides novel insights into Hh signaling, demonstrating that Ttc26 is necessary for efficient coupling between the accumulation of Gli at the ciliary tip and its dissociation from Sufu.

  12. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice.

    Science.gov (United States)

    Sanchez, Pilar; Ruiz i Altaba, Ariel

    2005-02-01

    The full spectrum of developmental potential includes normal as well as abnormal and disease states. We therefore subscribe to the idea that tumors derive from the operation of paradevelopmental programs that yield consistent and recognizable morphologies. Work in frogs and mice shows that Hedgehog (Hh)-Gli signaling controls stem cell lineages and that its deregulation leads to tumor formation. Moreover, human tumor cells require sustained Hh-Gli signaling for proliferation as cyclopamine, an alkaloid of the lily Veratrum californicum that blocks the Hh pathway, inhibits the growth of different tumor cells in vitro as well as in subcutaneous xenografts. However, the evidence that systemic treatment is an effective anti-cancer therapy is missing. Here we have used Ptc1(+/-); p53(-/-) mice which develop medulloblastoma to test the ability of cyclopamine to inhibit endogenous tumor growth in vivo after tumor initiation through intraperitoneal delivery, which avoids the brain damage associated with direct injection. We find that systemic cyclopamine administration improves the health of Ptc1(+/-);p53(-/-) animals. Analyses of the cerebella of cyclopamine-treated animals show a severe reduction in tumor size and a large decrease in the number of Ptc1-expressing cells, as a readout of cells with an active Hu-Gli pathway, as well as an impairment of their proliferative capacity, always in comparison with vehicle treated mice. Our data demonstrate that systemic treatment with cyclopamine inhibits tumor growth in the brain supporting its therapeutical value for human HH-dependent tumors. They also demonstrate that even the complete loss of the well-known tumor suppressor p53 does not render the tumor independent of Hh pathway function.

  13. Bmi1 Is Required for Hedgehog Pathway-Driven Medulloblastoma Expansion

    Directory of Open Access Journals (Sweden)

    Lowell Evan Michael

    2008-12-01

    Full Text Available Inappropriate Hedgehog (Hh signaling underlies development of a subset of medulloblastomas, and tumors with elevated HH signaling activity express the stem cell self-renewal gene BMI1. To test whether Bmi1 is required for Hh-driven medulloblastoma development, we varied Bmi1 gene dosage in transgenic mice expressing an oncogenic Hh effector, SmoA1, driven by a glial fibrillary acidic protein (GFAP promoter. Whereas 100% of SmoA1; Bmi1+/+ or SmoA1;Bmi1+/- mice examined between postnatal (P days 14 and 26 had typical medulloblastomas (N = 29, tumors were not detected in any of the SmoA1;Bmi1-/- animals examined (N = 6. Instead, small ectopic collections of cells were present in the region of greatest tumor load in SmoA1 animals, suggesting that medulloblastomas were initiated but failed to undergo expansion into frank tumors. Cells within these Bmi1-/- lesions expressed SmoA1 but were largely nonproliferative, in contrast to cells in Bmi1+/+ tumors (6.2% vs 81.9% PCNA-positive, respectively. Ectopic cells were negative for the progenitor marker nestin, strongly GFAP-positive, and highly apoptotic, relative to Bmi1+/+ tumor cells (29.6% vs 6.3% TUNEL-positive. The alterations in proliferation and apoptosis in SmoA1;Bmi1-/- ectopic cells are associated with reduced levels of Cyclin D1 and elevated expression of cyclin-dependent kinase inhibitor p19Arf, two inversely regulated downstream targets of Bmi1. These data provide the first demonstration that Bmi1 is required for spontaneous de novo development of a solid tumor arising in the brain, suggest a crucial role for Bmi1-dependent, nestin-expressing progenitor cells in medulloblastoma expansion, and implicate Bmi1 as a key factor required for Hh pathway-driven tumorigenesis.

  14. Androgens regulate Hedgehog signalling and proliferation in androgen-dependent prostate cells.

    Science.gov (United States)

    Sirab, Nanor; Terry, Stéphane; Giton, Frank; Caradec, Josselin; Chimingqi, Mihelaiti; Moutereau, Stéphane; Vacherot, Francis; de la Taille, Alexandre; Kouyoumdjian, Jean-Claude; Loric, Sylvain

    2012-09-15

    Prostate cancer (PCa) is androgen sensitive in its development and progression to metastatic disease. Hedgehog (Hh) pathway activation is important in the initiation and growth of various carcinomas including PCa. We and others have observed aberrations of Hh pathway during the progression of PCa to the castration-resistant state. The involvement of androgen signalling in Hh pathway activation, however, remains largely elusive. Here we investigate the direct role of androgen signalling on Hh pathway. We examined the effect of Dihydrosterone (DHT), antiandrogen, bicalutamide, and Hh pathway inhibitor, KAAD-cyclopamine in four human prostate cell lines (two cancerous: LNCaP, VCaP, and two normal: PNT2 and PNT2-ARm which harbours a mutant version of androgen receptor (AR) that is commonly found in LNCaP). Cell proliferation as well as Hh pathway members (SHH, IHH, DHH, GLI, PTCH) mRNA expression levels were assessed. We showed that KAAD-cyclopamine decreased cell proliferation of DHT-stimulated LNCaP, VCaP and PNT2-ARm cells. SHH expression was found to be downregulated by DHT in all AR posititve cells. The negative effect of DHT on SHH expression was counteracted when cells were treated by bicalutamide. Importantly, KAAD-cyclopamine treatment seemed to inhibit AR activity. Moreover, bicalutamide as well as KAAD-cyclopamine treatments induced GLI and PTCH expression in VCaP and PNT2-ARm. Our results suggest that Hh pathway activity can be regulated by androgen signalling. Specifically, we show that the DHT-induced inhibition of Hh pathway is AR dependent. The mutual interaction between these two pathways might be important in the regulation of cell proliferation in PCa.

  15. Lizard tail regeneration: regulation of two distinct cartilage regions by Indian hedgehog.

    Science.gov (United States)

    Lozito, Thomas P; Tuan, Rocky S

    2015-03-15

    Lizards capable of caudal autotomy exhibit the remarkable ability to "drop" and then regenerate their tails. However, the regenerated lizard tail (RLT) is known as an "imperfect replicate" due to several key anatomical differences compared to the original tail. Most striking of these "imperfections" concerns the skeleton; instead of the vertebrae of the original tail, the skeleton of the RLT takes the form of an unsegmented cartilage tube (CT). Here we have performed the first detailed staging of skeletal development of the RLT CT, identifying two distinct mineralization events. CTs isolated from RLTs of various ages were analyzed by micro-computed tomography to characterize mineralization, and to correlate skeletal development with expression of endochondral ossification markers evaluated by histology and immunohistochemistry. During early tail regeneration, shortly after CT formation, the extreme proximal CT in direct contact with the most terminal vertebra of the original tail develops a growth plate-like region that undergoes endochondral ossification. Proximal CT chondrocytes enlarge, express hypertrophic markers, including Indian hedgehog (Ihh), apoptose, and are replaced by bone. During later stages of tail regeneration, the distal CT mineralizes without endochondral ossification. The sub-perichondrium of the distal CT expresses Ihh, and the perichondrium directly calcifies without cartilage growth plate formation. The calcified CT perichondrium also contains a population of stem/progenitor cells that forms new cartilage in response to TGF-β stimulation. Treatment with the Ihh inhibitor cyclopamine inhibited both proximal CT ossification and distal CT calcification. Thus, while the two mineralization events are spatially, temporally, and mechanistically very different, they both involve Ihh. Taken together, these results suggest that Ihh regulates CT mineralization during two distinct stages of lizard tail regeneration.

  16. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog.

    Science.gov (United States)

    Herzog, Wiebke; Zeng, Xianchun; Lele, Zsolt; Sonntag, Carmen; Ting, Jing-Wen; Chang, Chi-Yao; Hammerschmidt, Matthias

    2003-02-01

    Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of

  17. Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate.

    Directory of Open Access Journals (Sweden)

    Galen W Heyne

    Full Text Available The Hedgehog (Hh signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE, clefts of the lip with or without cleft palate (CL/P, and clefts of the secondary palate only (CPO. Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.

  18. Development of stratum intermedium and its role as a Sonic hedgehog-signaling structure during odontogenesis.

    Science.gov (United States)

    Koyama, E; Wu, C; Shimo, T; Iwamoto, M; Ohmori, T; Kurisu, K; Ookura, T; Bashir, M M; Abrams, W R; Tucker, T; Pacifici, M

    2001-10-01

    Stratum intermedium is a transient and subtle epithelial structure closely associated with inner dental epithelium in tooth germs. Little is known about its development and roles. To facilitate analysis, we used bovine tooth germs, predicting that they may contain a more conspicuous stratum intermedium. Indeed, early bell stage bovine tooth germs already displayed an obvious stratum intermedium with a typical multilayered organization and flanking the enamel knot. Strikingly, with further development, the cuspally located stratum intermedium underwent thinning and involution, whereas a multilayered stratum intermedium formed at successive sites along the cusp-to-cervix axis of odontogenesis. In situ hybridization and immunohistochemistry showed that stratum intermedium produces the signaling molecule Sonic hedgehog (Shh). Maximal Shh expression was invariably seen in its thickest multilayered portions. Shh was also produced by inner dental epithelium; expression was not constant but varied with development and cytodifferentiation of ameloblasts along the cusp-to-cervix axis. Interestingly, maximal Shh expression in inner dental epithelium did not coincide with that in stratum intermedium. Both stratum intermedium and inner dental epithelium expressed the Shh receptor Patched2 (Ptch2), an indication of autocrine signaling loops. Shh protein, but not RNA, was present in underlying dental mesenchyme, probably resulting from gradual diffusion from epithelial layers and reflecting paracrine loops of action. To analyze the regulation of Shh expression, epithelial and mesenchymal layers were separated and maintained in organ culture. Shh expression decreased o