WorldWideScience

Sample records for hedgehog signaling maintains

  1. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  2. Hedgehog Signaling in Endochondral Ossification

    Directory of Open Access Journals (Sweden)

    Shinsuke Ohba

    2016-06-01

    Full Text Available Hedgehog (Hh signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1 chondrocyte differentiation; (2 chondrocyte proliferation; and (3 specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders.

  3. Hedgehog Signaling in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Emanuela Felley-Bosco

    2015-07-01

    Full Text Available Malignant pleural mesothelioma (MPM is a cancer associated with exposure to asbestos fibers, which accumulate in the pleural space, damage tissue and stimulate regeneration. Hedgehog signaling is a pathway important during embryonic mesothelium development and is inactivated in adult mesothelium. The pathway is reactivated in some MPM patients with poor clinical outcome, mainly mediated by the expression of the ligands. Nevertheless, mutations in components of the pathway have been observed in a few cases. Data from different MPM animal models and primary culture suggest that both autocrine and paracrine Hedgehog signaling are important to maintain tumor growth. Drugs inhibiting the pathway at the level of the smoothened receptor (Smo or glioma-associated protein transcription factors (Gli have been used mostly in experimental models. For clinical development, biomarkers are necessary for the selection of patients who can benefit from Hedgehog signaling inhibition.

  4. Hedgehog signaling in the stomach.

    Science.gov (United States)

    Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana

    2016-12-01

    The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma.

    Science.gov (United States)

    Conduit, S E; Ramaswamy, V; Remke, M; Watkins, D N; Wainwright, B J; Taylor, M D; Mitchell, C A; Dyson, J M

    2017-10-26

    Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P3. INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P3, its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P3/pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall survival

  6. Hedgehog

    Directory of Open Access Journals (Sweden)

    Oktay Avcı

    2012-12-01

    Full Text Available The hedgehog pathway is a major regulator for cell differentiation, tissue polarity and cell proliferation. Several studies reveal activation of this pathway in basal cell carcinomas in approximately 30% of extracutaneous solid tumors including medulloblastomas, lung, breast, gastrointestinal and prostate cancers. Targeted inhibition of hedgehog signaling may be effective in treatment of many types of human tumors. The discovery and synthesis of specific hedgehog antagonists raise the possibility of their successful use in human cancer therapy. In this review, the molecular basis of hedgehog signaling activation, major advances in our understanding of signaling activation in human solid tumors, hedgehog antagonists and their potential application in human cancer will be evaluated.

  7. Metabolites in vertebrate Hedgehog signaling.

    Science.gov (United States)

    Roberg-Larsen, Hanne; Strand, Martin Frank; Krauss, Stefan; Wilson, Steven Ray

    2014-04-11

    The Hedgehog (HH) signaling pathway is critical in embryonic development, stem cell biology, tissue homeostasis, chemoattraction and synapse formation. Irregular HH signaling is associated with a number of disease conditions including congenital disorders and cancer. In particular, deregulation of HH signaling has been linked to skin, brain, lung, colon and pancreatic cancers. Key mediators of the HH signaling pathway are the 12-pass membrane protein Patched (PTC), the 7-pass membrane protein Smoothened (SMO) and the GLI transcription factors. PTC shares homology with the RND family of small-molecule transporters and it has been proposed that it interferes with SMO through metabolites. Although a conclusive picture is lacking, substantial efforts are made to identify and understand natural metabolites/sterols, including cholesterol, vitamin D3, oxysterols and glucocorticoides, that may be affected by, or influence the HH signaling cascade at the level of PTC and SMO. In this review we will elaborate the role of metabolites in HH signaling with a focus on oxysterols, and discuss advancements in modern analytical approaches in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  9. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    Directory of Open Access Journals (Sweden)

    Alexandre N Ermilov

    2016-11-01

    Full Text Available For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings

  10. Sonic Hedgehog signaling in the mammalian brain.

    Science.gov (United States)

    Traiffort, Elisabeth; Angot, Elodie; Ruat, Martial

    2010-05-01

    The discovery of a Sonic Hedgehog (Shh) signaling pathway in the mature vertebrate CNS has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. Shh is proposed to participate in the establishment and maintenance of adult neurogenic niches and to regulate the proliferation of neuronal or glial precursors in several brain areas. Consistent with its role during brain development, misregulation of Shh signaling is associated with tumorigenesis while its recruitement in damaged neural tissue might be part of the regenerating process. This review focuses on the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.

  11. Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover.

    Directory of Open Access Journals (Sweden)

    Shoujun Huang

    2013-11-01

    Full Text Available Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.

  12. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    Science.gov (United States)

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  13. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  14. Opening new doors: Hedgehog signaling and the pancreatic cancer stroma

    NARCIS (Netherlands)

    Damhofer, H.

    2015-01-01

    In pancreatic cancer, a very difficult to treat tumor type with a dismal prognosis, Hedgehog (Hh) ligands are produced by tumor cells and signal to the surrounding tumor microenvironment. This thesis gives new insights into the different aspects of stromal biology and Hh signaling by describing for

  15. Role of Hedgehog Signaling Pathway in NASH

    Directory of Open Access Journals (Sweden)

    Mariana Verdelho Machado

    2016-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease.

  16. Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study

    OpenAIRE

    Zhiwei Cao; Huiliang Li; Ruixin Zhu; Qi Liu; Jian Tang

    2011-01-01

    The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed whi...

  17. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    autocrine and juxtacrine signaling, and inhibited PDAC cell growth and invasiveness in vitro. In addition, Hhat knockdown in a HEK293a cell line constitutively expressing Shh and A549 human non-small cell lung cancer cells inhibited their ability to signal in a juxtacrine/paracrine fashion to the reporter......Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC...

  18. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinical responses leading to the approval of the Smoothened inhibitor, vismodegib, for the treatment of advanced basal cell carcinoma. Aberrant Hedgehog pathway signaling has also been noted in prostate cancer with evidence suggesting that it may render prostate epithelial cells tumorigenic, drive the epithelial-to-mesenchymal transition, and contribute towards the development of castration-resistance through autocrine and paracrine signaling within the tumor microenvironment and cross-talk with the androgen pathway. In addition, there are emerging clinical data suggesting that inhibition of the Hedgehog pathway may be effective in the treatment of recurrent and metastatic prostate cancer. Here we will review these data and highlight areas of active clinical research as they relate to Hedgehog pathway inhibition in prostate cancer.

  19. Primary cilia integrate hedgehog and Wnt signaling during tooth development.

    Science.gov (United States)

    Liu, B; Chen, S; Cheng, D; Jing, W; Helms, J A

    2014-05-01

    Many ciliopathies have clinical features that include tooth malformations but how these defects come about is not clear. Here we show that genetic deletion of the motor protein Kif3a in dental mesenchyme results in an arrest in odontogenesis. Incisors are completely missing, and molars are enlarged in Wnt1(Cre+)Kif3a(fl/fl) embryos. Although amelogenesis and dentinogenesis initiate in the molar tooth bud, both processes terminate prematurely. We demonstrate that loss of Kif3a in dental mesenchyme results in loss of Hedgehog signaling and gain of Wnt signaling in this same tissue. The defective dental mesenchyme then aberrantly signals to the dental epithelia, which prompts an up-regulation in the Hedgehog and Wnt responses in the epithelia and leads to multiple attempts at invagination and an expanded enamel organ. Thus, the primary cilium integrates Hedgehog and Wnt signaling between dental epithelia and mesenchyme, and this cilia-dependent integration is required for proper tooth development.

  20. Research advances in Hedgehog signaling pathway in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    LIU Jia

    2015-02-01

    Full Text Available Hedgehog (Hh signaling pathway is present in many animals and plays an important role in regulating embryonic development and differentiation. Aberrant activation of Hh signaling contributes to the pathogenesis of many malignancies. Recent studies have shown that dysregulated Hh signaling pathway participates in the tumorigenesis, tumor invasion, and metastasis of hepatocellular carcinoma (HCC. Investigation of the relationship between Hh signaling pathway and HCC will help elucidate the molecular mechanism of pathogenesis of HCC and provide a new insight into the development of novel anticancer therapy and therapeutic target.

  1. Aberrant FGF signaling, independent of ectopic hedgehog signaling, initiates preaxial polydactyly in Dorking chickens.

    Science.gov (United States)

    Bouldin, Cortney M; Harfe, Brian D

    2009-10-01

    The formation of supernumerary digits, or polydactyly, is a common congenital malformation. Although mutations in a number of genes have been linked to polydactyly, the molecular etiology for a third of human disorders with polydactyly remains unknown. To increase our understanding of the potential causes for polydactyly, we characterized a spontaneous chicken mutant, known as Dorking. The hindlimbs of Dorkings form a preaxial supernumerary digit. During the early stages of limb development, ectopic expression of several genes, including Sonic Hedgehog (Shh) and Fibroblast Growth Factor 4 (Fgf4), was found in Dorking hindlimbs. In addition to ectopic gene expression, a decrease in cell death in the anterior of the developing Dorking hindlimb was observed. Further molecular investigation revealed that ectopic Fgf4 expression was initiated and maintained independent of ectopic Shh. Additionally, inhibition of Fgf signaling but not hedgehog signaling was capable of restoring the normal anterior domain of cell death in Dorking hindlimbs. Our data indicates that in Dorking chickens, preaxial polydactyly is initiated independent of Shh.

  2. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  3. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  4. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis

    Science.gov (United States)

    Kurosaka, Hiroshi; Iulianella, Angelo; Williams, Trevor; Trainor, Paul A.

    2014-01-01

    Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutations in hedgehog acyltransferase (Hhat) and patched1 (Ptch1) exhibited perturbations in the SHH gradient during frontonasal development, which led to hypoplastic nasal process outgrowth, epithelial seam persistence, and cleft lip. Further investigation revealed that enhanced SHH signaling restricts canonical WNT signaling in the lambdoidal region by promoting expression of genes encoding WNT inhibitors. Moreover, reduction of canonical WNT signaling perturbed p63/interferon regulatory factor 6 (p63/IRF6) signaling, resulting in increased proliferation and decreased cell death, which was followed by persistence of the epithelial seam and cleft lip. Consistent with our results, mutations in genes that disrupt SHH and WNT signaling have been identified in both mice and humans with cleft lip. Collectively, our data illustrate that altered SHH signaling contributes to the etiology and pathogenesis of cleft lip through antagonistic interactions with other gene regulatory networks, including the canonical WNT and p63/IRF6 signaling pathways. PMID:24590292

  5. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ram Kumar, Ram Mohan, E-mail: rkumar@research.balgrist.ch; Fuchs, Bruno [Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008 (Switzerland)

    2015-05-13

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.

  6. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway.

    Science.gov (United States)

    Subramani, Ramadevi; Gonzalez, Elizabeth; Nandy, Sushmita Bose; Arumugam, Arunkumar; Camacho, Fernando; Medel, Joshua; Alabi, Damilola; Lakshmanaswamy, Rajkumar

    2017-02-14

    The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. Anti-proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti-metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti-metastatic effect through inhibition of sonic hedgehog signaling. The anti-cancer effect of gedunin was further validated using xenograft mouse model. Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers.

  7. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    Science.gov (United States)

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  8. Sonic Hedgehog Signaling and Development of the Dentition

    Directory of Open Access Journals (Sweden)

    Maisa Seppala

    2017-05-01

    Full Text Available Sonic hedgehog (Shh is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.

  9. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  10. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  11. Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study

    Directory of Open Access Journals (Sweden)

    Zhiwei Cao

    2011-05-01

    Full Text Available The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed which incorporates various statistical analysis methods to perform a Quantitative Structure-Activity Relationship (QSAR study on the inhibitors of Hedgehog signaling. The whole QSAR data contain 93 cyclopamine derivatives as well as their activities against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157. Our extensive testing indicated that the binary classification model is a better choice for building the QSAR model of inhibitors of Hedgehog signaling compared with other statistical methods and the corresponding in silico analysis provides three possible ways to improve the activity of inhibitors by demethylation, methylation and hydroxylation at specific positions of the compound scaffold respectively. From these, demethylation is the best choice for inhibitor structure modifications. Our investigation also revealed that NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog signal pathway among others.

  12. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  13. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  14. An Nfic-hedgehog signaling cascade regulates tooth root development.

    Science.gov (United States)

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. © 2015. Published by The Company of Biologists Ltd.

  15. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling.

    Science.gov (United States)

    Das, Shamik; Jackson, William P; Prasain, Jeevan K; Hanna, Ann; Bailey, Sarah K; Tucker, J Allan; Bae, Sejong; Wilson, Landon S; Samant, Rajeev S; Barnes, Stephen; Shevde, Lalita A

    2017-01-23

    The tumor suppressor protein Merlin is proteasomally degraded in breast cancer. We undertook an untargeted metabolomics approach to discern the global metabolomics profile impacted by Merlin in breast cancer cells. We discerned specific changes in glutathione metabolites that uncovered novel facets of Merlin in impacting the cancer cell metabolome. Concordantly, Merlin loss increased oxidative stress causing aberrant activation of Hedgehog signaling. Abrogation of GLI-mediated transcription activity compromised the aggressive phenotype of Merlin-deficient cells indicating a clear dependence of cells on Hedgehog signaling. In breast tumor tissues, GLI1 expression enhanced tissue identification and discriminatory power of Merlin, cumulatively presenting a powerful substantiation of the relationship between these two proteins. We have uncovered, for the first time, details of the tumor cell metabolomic portrait modulated by Merlin, leading to activation of Hedgehog signaling. Importantly, inhibition of Hedgehog signaling offers an avenue to target the vulnerability of tumor cells with loss of Merlin.

  16. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  17. Influenza NS1 directly modulates Hedgehog signaling during infection.

    Directory of Open Access Journals (Sweden)

    Margery G Smelkinson

    2017-08-01

    Full Text Available The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.

  18. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis.

    Science.gov (United States)

    Yu, Jeffrey C; Fox, Zachary D; Crimp, James L; Littleford, Hana E; Jowdry, Andrea L; Jackman, William R

    2015-04-01

    Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation, we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. © 2015 Wiley Periodicals, Inc.

  19. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Reck, A; Beck, H C

    2017-01-01

    Dental follicle stem cells (DFCs) are precursor cells of alveolar osteoblasts, and previous studies have shown that the growth factor bone morphogenetic protein (BMP)2 induces the osteogenic differentiation of DFCs. However, the molecular mechanism down-stream of the induction of the osteogenic...... of repressors of the hedgehog-signaling pathway such as Patched 1 (PTCH1), Suppressor of Fused (SUFU), and Parathyroid Hormone-Related Peptide (PTHrP). Previous studies suggested that hedgehog proteins induce the osteogenic differentiation of mesenchymal stem cells via a paracrine pathway. Indian hedgehog (IHH...

  20. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  1. Hedgehog signaling regulates telomerase reverse transcriptase in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Tapati Mazumdar

    Full Text Available The Hedgehog (HH signaling pathway is critical for normal embryonic development, tissue patterning and cell differentiation. Aberrant HH signaling is involved in multiple human cancers. HH signaling involves a multi-protein cascade activating the GLI proteins that transcriptionally regulate HH target genes. We have previously reported that HH signaling is essential for human colon cancer cell survival and inhibition of this signal induces DNA damage and extensive cell death. Here we report that the HH/GLI axis regulates human telomerase reverse transcriptase (hTERT, which determines the replication potential of cancer cells. Suppression of GLI1/GLI2 functions by a C-terminus truncated GLI3 repressor mutant (GLI3R, or by GANT61, a pharmacological inhibitor of GLI1/GLI2, reduced hTERT protein expression in human colon cancer, prostate cancer and Glioblastoma multiforme (GBM cell lines. Expression of an N-terminus deleted constitutively active mutant of GLI2 (GLI2ΔN increased hTERT mRNA and protein expression and hTERT promoter driven luciferase activity in human colon cancer cells while GANT61 inhibited hTERT mRNA expression and hTERT promoter driven luciferase activity. Chromatin immunoprecipitation with GLI1 or GLI2 antibodies precipitated fragments of the hTERT promoter in human colon cancer cells, which was reduced upon exposure to GANT61. In contrast, expression of GLI1 or GLI2ΔN in non-malignant 293T cells failed to alter the levels of hTERT mRNA and protein, or hTERT promoter driven luciferase activity. Further, expression of GLI2ΔN increased the telomerase enzyme activity, which was reduced by GANT61 administration in human colon cancer, prostate cancer, and GBM cells. These results identify hTERT as a direct target of the HH signaling pathway, and reveal a previously unknown role of the HH/GLI axis in regulating the replication potential of cancer cells. These findings are of significance in understanding the important regulatory

  2. Role of the Drosophila non-visual ß-arrestin kurtz in hedgehog signalling.

    Directory of Open Access Journals (Sweden)

    Cristina Molnar

    2011-03-01

    Full Text Available The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms.

  3. Dynamic interpretation of hedgehog signaling in the Drosophila wing disc.

    Directory of Open Access Journals (Sweden)

    Marcos Nahmad

    2009-09-01

    Full Text Available Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh forms an extracellular gradient that organizes patterning along the anterior-posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial "overshoot" of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc. In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression.

  4. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development.

    Directory of Open Access Journals (Sweden)

    Duy Nguyen

    Full Text Available Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh and its transcriptional effector Cubitus interuptus (Ci. In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.

  5. Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer

    Directory of Open Access Journals (Sweden)

    Yoshinori Abe

    2017-11-01

    Full Text Available The epidermis is the outermost layer of the skin and provides a protective barrier against environmental insults. It is a rapidly-renewing tissue undergoing constant regeneration, maintained by several types of stem cells. The Hedgehog (HH signaling pathway is one of the fundamental signaling pathways that contributes to epidermal development, homeostasis, and repair, as well as to hair follicle development and follicle bulge stem cell maintenance. The HH pathway interacts with other signal transduction pathways, including those activated by Wnt, bone morphogenetic protein, platelet-derived growth factor, Notch, and ectodysplasin. Furthermore, aberrant activation of HH signaling is associated with various tumors, including basal cell carcinoma. Therefore, an understanding of the regulatory mechanisms of the HH signaling pathway is important for elucidating fundamental mechanisms underlying both organogenesis and carcinogenesis. In this review, we discuss the role of the HH signaling pathway in the development and homeostasis epidermis and hair follicles, and in basal cell carcinoma formation, providing an update of current knowledge in this field.

  6. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Directory of Open Access Journals (Sweden)

    Stock David W

    2010-11-01

    Full Text Available Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  7. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Science.gov (United States)

    2010-01-01

    Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution. PMID:21118524

  8. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics

    National Research Council Canada - National Science Library

    Tang, Su‐Ni; Fu, Junsheng; Nall, Dara; Rodova, Mariana; Shankar, Sharmila; Srivastava, Rakesh K

    2012-01-01

    Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs...

  9. Role of Hedgehog signaling pathway in progression of non-alcoholic fatty liver fibrosis

    Directory of Open Access Journals (Sweden)

    AN Baiquan

    2015-03-01

    Full Text Available Obesity and related metabolic syndromes are prevalent on the global scale. Thus far, non-alcoholic fatty liver (NAFL disease has caused wide attention from domestic and overseas scholars. NAFL cirrhosis is considered to be the central part and inevitable stage of liver cirrhosis developed from simple fatty liver and non-alcoholic steatohepatitis. The effect of Hedgehog signaling pathway on hepatocytes in the progression of NAFL fibrosis was elucidated and investigated by a population study. Results showed that abnormal activation of the Hedgehog signaling pathway promoted the progression of NAFL fibrosis. In-depth study on the Hedgehog signaling pathway may provide a new approach for the treatment of NAFL fibrosis.

  10. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling

    NARCIS (Netherlands)

    Hammond, Christina Lindsey; Schulte-Merker, Stefan

    2009-01-01

    Hedgehog (Hh) signalling has been implicated in the development of osteoblasts and osteoclasts whose balanced activities are critical for proper bone formation. As many mouse mutants in the Hh pathway are embryonic lethal, questions on the exact effects of Hh signalling on osteogenesis remain. Using

  11. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling.

    NARCIS (Netherlands)

    Hammond, C.L.; Schulte-Merker, S.

    2009-01-01

    Hedgehog (Hh) signalling has been implicated in the development of osteoblasts and osteoclasts whose balanced activities are critical for proper bone formation. As many mouse mutants in the Hh pathway are embryonic lethal, questions on the exact effects of Hh signalling on osteogenesis remain. Using

  12. Anti‑fibrotic effect of Sedum sarmentosum Bunge extract in kidneys via the hedgehog signaling pathway.

    Science.gov (United States)

    Bai, Yongheng; Wu, Cunzao; Hong, Weilong; Zhang, Xing; Liu, Leping; Chen, Bicheng

    2017-07-01

    Sedum sarmentosum Bunge (SSBE) is a perennial plant widely distributed in Asian countries, and its extract is traditionally used for the treatment of certain inflammatory diseases. Our previous studies demonstrated that SSBE has marked renal anti‑fibrotic effects. However, the underlying molecular mechanisms remain to be fully elucidated. The present study identified that SSBE exerts its inhibitory effect on the myofibroblast phenotype and renal fibrosis via the hedgehog signaling pathway in vivo and in vitro. In rats with unilateral ureteral obstruction (UUO), SSBE administration reduced kidney injury and alleviated interstitial fibrosis by decreasing the levels of transforming growth factor (TGF)‑β1 and its receptor, and inhibiting excessive accumulation of extracellular matrix (ECM) components, including type I and III collagens. In addition, SSBE suppressed the expression of proliferating cell nuclear antigen, and this anti‑proliferative activity was associated with downregulation of hedgehog signaling activity in SSBE‑treated UUO kidneys. In cultured renal tubular epithelial cells (RTECs), recombinant TGF‑β1 activated hedgehog signaling, and resulted in induction of the myofibroblast phenotype. SSBE treatment inhibited the activation of hedgehog signaling and partially reversed the fibrotic phenotype in TGF‑β1‑treated RTECs. Similarly, aristolochic acid‑mediated upregulated activity of hedgehog signaling was reduced by SSBE treatment, and thereby led to the abolishment of excessive ECM accumulation. Therefore, these findings suggested that SSBE attenuates the myofibroblast phenotype and renal fibrosis via suppressing the hedgehog signaling pathway, and may facilitate the development of treatments for kidney fibrosis.

  13. Silibinin Treatment Inhibits the Growth of Hedgehog Inhibitor-Resistant Basal Cell Carcinoma Cells via Targeting EGFR-MAPK-Akt and Hedgehog Signaling.

    Science.gov (United States)

    Dheeraj, Arpit; Rigby, Cynthia M; O'Bryant, Cindy L; Agarwal, Chapla; Singh, Rana P; Deep, Gagan; Agarwal, Rajesh

    2017-07-01

    Basal cell carcinoma (BCC) is the most common skin malignancy. Deregulated hedgehog signaling plays a central role in BCC development; therefore, hedgehog inhibitors have been approved to treat locally advanced or metastatic BCC. However, the development of resistance to hedgehog inhibitors is the major challenge in effective treatment of this disease. Herein, we evaluated the efficacy of a natural agent silibinin to overcome resistance with hedgehog inhibitors (Sant-1 and GDC-0449) in BCC cells. Silibinin (25-100 μm) treatment for 48 h strongly inhibited growth and induced death in ASZ001, Sant-1-resistant (ASZ001-Sant-1) and GDC-0449-resistant (ASZ001-GDC-0449) BCC cells. Furthermore, colony-forming ability of ASZ001, ASZ001-Sant-1 and ASZ001-GDC-0449 cells was completely inhibited by silibinin treatment. Molecular analysis showed that silibinin treatment decreased the level of phosphorylated EGFR (Tyrosine 1173) and total EGFR in ASZ001-Sant-1 cells, key signaling molecules responsible for BCC resistance toward hedgehog inhibitors. Further, silibinin treatment decreased the phosphorylated Akt (Serine 473), phosphorylated ERK1/2 (Threonine 202/Tyrosine 204), cyclin D1 and Gli-1 level but increased the SUFU expression in ASZ001-Sant-1-resistant cells. Silibinin treatment of ASZ001-Sant-1-resistant cells also decreased bcl-2 but increased cleaved caspase 3 and PARP cleavage, suggesting induction of apoptosis. Together, these results support silibinin use to target hedgehog inhibitor-resistant BCC cells. © 2017 The American Society of Photobiology.

  14. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.

    Science.gov (United States)

    Warner, Jacob F; Miranda, Esther L; McClay, David R

    2016-03-15

    Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld

    2009-01-01

    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine......, an inhibitor of Smoothened, blocks hedgehog signaling in P19.CL6 cells, as well as differentiation of the cells into beating cardiomyocytes. E11.5 embryos of the Ift88(tm1Rpw) (Ift88-null) mice, which form no cilia, have ventricular dilation, decreased myocardial trabeculation and abnormal outflow tract...

  16. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway.

    Science.gov (United States)

    Song, Libin; Chen, Xiangyuan; Gao, Song; Zhang, Chenyue; Qu, Chao; Wang, Peng; Liu, Luming

    2016-10-12

    Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.

  17. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Su

    2013-01-01

    Full Text Available IL-6 and sonic hedgehog (Shh signaling molecules are considered to maintain the growth of cancer stem cells (CSCs. Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted.

  18. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  19. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis.

    Directory of Open Access Journals (Sweden)

    Vanina G Da Ros

    Full Text Available Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer.

  20. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions

    DEFF Research Database (Denmark)

    Chang, Shu-Chun; Mulloy, Barbara; Magee, Anthony I

    2011-01-01

    Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs) for t...

  1. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    OpenAIRE

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary prote...

  2. Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions.

    Science.gov (United States)

    Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F

    2017-10-01

    The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc

  3. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  4. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor.

    Science.gov (United States)

    Seidel, Kerstin; Ahn, Christina P; Lyons, David; Nee, Alexander; Ting, Kevin; Brownell, Isaac; Cao, Tim; Carano, Richard A D; Curran, Tom; Schober, Markus; Fuchs, Elaine; Joyner, Alexandra; Martin, Gail R; de Sauvage, Frederic J; Klein, Ophir D

    2010-11-01

    In many organ systems such as the skin, gastrointestinal tract and hematopoietic system, homeostasis is dependent on the continuous generation of differentiated progeny from stem cells. The rodent incisor, unlike human teeth, grows throughout the life of the animal and provides a prime example of an organ that rapidly deteriorates if newly differentiated cells cease to form from adult stem cells. Hedgehog (Hh) signaling has been proposed to regulate self-renewal, survival, proliferation and/or differentiation of stem cells in several systems, but to date there is little evidence supporting a role for Hh signaling in adult stem cells. We used in vivo genetic lineage tracing to identify Hh-responsive stem cells in the mouse incisor and we show that sonic hedgehog (SHH), which is produced by the differentiating progeny of the stem cells, signals to several regions of the incisor. Using a hedgehog pathway inhibitor (HPI), we demonstrate that Hh signaling is not required for stem cell survival but is essential for the generation of ameloblasts, one of the major differentiated cell types in the tooth, from the stem cells. These results therefore reveal the existence of a positive-feedback loop in which differentiating progeny produce the signal that in turn allows them to be generated from stem cells.

  5. Development of stratum intermedium and its role as a Sonic hedgehog-signaling structure during odontogenesis.

    Science.gov (United States)

    Koyama, E; Wu, C; Shimo, T; Iwamoto, M; Ohmori, T; Kurisu, K; Ookura, T; Bashir, M M; Abrams, W R; Tucker, T; Pacifici, M

    2001-10-01

    Stratum intermedium is a transient and subtle epithelial structure closely associated with inner dental epithelium in tooth germs. Little is known about its development and roles. To facilitate analysis, we used bovine tooth germs, predicting that they may contain a more conspicuous stratum intermedium. Indeed, early bell stage bovine tooth germs already displayed an obvious stratum intermedium with a typical multilayered organization and flanking the enamel knot. Strikingly, with further development, the cuspally located stratum intermedium underwent thinning and involution, whereas a multilayered stratum intermedium formed at successive sites along the cusp-to-cervix axis of odontogenesis. In situ hybridization and immunohistochemistry showed that stratum intermedium produces the signaling molecule Sonic hedgehog (Shh). Maximal Shh expression was invariably seen in its thickest multilayered portions. Shh was also produced by inner dental epithelium; expression was not constant but varied with development and cytodifferentiation of ameloblasts along the cusp-to-cervix axis. Interestingly, maximal Shh expression in inner dental epithelium did not coincide with that in stratum intermedium. Both stratum intermedium and inner dental epithelium expressed the Shh receptor Patched2 (Ptch2), an indication of autocrine signaling loops. Shh protein, but not RNA, was present in underlying dental mesenchyme, probably resulting from gradual diffusion from epithelial layers and reflecting paracrine loops of action. To analyze the regulation of Shh expression, epithelial and mesenchymal layers were separated and maintained in organ culture. Shh expression decreased over time, but was maintained in unoperated specimens. Our data show for the first time that stratum intermedium is a highly regulated and Shh-expressing structure. Given its dynamic and apparently interactive properties, stratum intermedium may help orchestrate progression of odontogenesis from cusp to cervix

  6. The relationship between Sonic hedgehog signalling, cilia and neural tube defects

    Science.gov (United States)

    Murdoch, Jennifer N.; Copp, Andrew J.

    2013-01-01

    The Hedgehog signalling pathway is essential for many aspects of normal embryonic development, including formation and patterning of the neural tube. Absence of Shh ligand is associated with the midline defect holoprosencephaly, while increased Shh signalling is associated with exencephaly and spina bifida. To complicate this apparently simple relationship, mutation of proteins required for function of cilia often leads to impaired Shh signalling and to disruption of neural tube closure. In this manuscript, we review the literature on Shh pathway mutants and discuss the relationship between Shh signalling, cilia and neural tube defects. PMID:20544799

  7. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  8. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Directory of Open Access Journals (Sweden)

    Schwend Tyler

    2009-11-01

    Full Text Available Abstract Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC. Genetic studies in zebrafish and mice have established that the Hedgehog (Hh-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE, which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia 12. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1 for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1. Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to

  9. A Smoothened-Evc2 Complex Transduces the Hedgehog Signal at Primary Cilia

    OpenAIRE

    Dorn, Karolin V.; Hughes, Casey E.; Rohatgi, Rajat

    2012-01-01

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that...

  10. Hedgehog-PKA signaling and gnrh3 regulate the development of zebrafish gnrh3 neurons.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Kuo

    Full Text Available GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA, by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA* and dominant negative regulatory subunit (PKI into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis.

  11. Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish

    Directory of Open Access Journals (Sweden)

    Ahlberg Per

    2007-06-01

    Full Text Available Abstract Background Little is known about the control of the development of vertebrate unpaired appendages such as the caudal fin, one of the key morphological specializations of fishes. Recent analysis of lamprey and dogshark median fins suggests the co-option of some molecular mechanisms between paired and median in Chondrichthyes. However, the extent to which the molecular mechanisms patterning paired and median fins are shared remains unknown. Results Here we provide molecular description of the initial ontogeny of the median fins in zebrafish and present several independent lines of evidence that Sonic hedgehog signaling emanating from the embryonic midline is essential for establishment and outgrowth of the caudal fin primordium. However, gene expression analysis shows that the primordium of the adult caudal fin does not harbor a Sonic hedgehog-expressing domain equivalent to the Shh secreting zone of polarizing activity (ZPA of paired appendages. Conclusion Our results suggest that Hedgehog proteins can regulate skeletal appendage outgrowth independent of a ZPA and demonstrates an unexpected mechanism for mediating Shh signals in a median fin primordium. The median fins evolved before paired fins in early craniates, thus the patterning of the median fins may be an ancestral mechanism that controls the outgrowth of skeletogenic appendages in vertebrates.

  12. Sonic Hedgehog Signaling Switches the Mode of Division in the Developing Nervous System

    Directory of Open Access Journals (Sweden)

    Murielle Saade

    2013-08-01

    Full Text Available The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis, and these regulatory processes are subverted in tumor formation. Here, we developed markers that provided the single-cell resolution necessary to quantify the three modes of division taking place in the developing nervous system in vivo: self-expanding, PP; self-replacing, PN; and self-consuming, NN. Using these markers and a mathematical model that predicts the dynamics of motor neuron progenitor division, we identify a role for the morphogen Sonic hedgehog in the maintenance of stem cell identity in the developing spinal cord. Moreover, our study provides insight into the process linking lineage commitment to neurogenesis with changes in cell-cycle parameters. As a result, we propose a challenging model in which the external Sonic hedgehog signal dictates stem cell identity, reflected in the consequent readjustment of cell-cycle parameters.

  13. Targeted inhibition of hedgehog signaling by cyclopamine prodrugs for advanced prostate cancer

    Science.gov (United States)

    Kumar, Srinivas K.; Roy, Indrajit; Anchoori, Ravi K.; Fazli, Sarah; Maitra, Anirban; Beachy, Philip A.; Khan, Saeed R.

    2009-01-01

    A promising agent for use in prostate cancer therapy is the Hedgehog (Hh) signaling pathway inhibitor, cyclopamine. This compound, however, has the potential for causing serious side effects in non-tumor tissues. To minimize these bystander toxicities, we have designed and synthesized two novel peptide-cyclopamine conjugates as prostate-specific antigen (PSA)-activated prodrugs for use against prostate cancer. These prodrugs were composed of cyclopamine coupled to one of two peptides (either HSSKLQ or SSKYQ) that can be selectively cleaved by PSA, converting the mature prodrug into an active Hedgehog inhibitor within the malignant cells. Of the two prodrugs, Mu-SSKYQ-Cyclopamine was rapidly hydrolyzed, with a half-life of 3.2 h, upon incubation with the PSA enzyme. Thus, modulating cyclopamine at the secondary amine with PSA-cleavable peptides is a promising strategy for developing prodrugs to target prostate cancer. PMID:18249125

  14. Hedgehog Signaling in Prostate Development, Regeneration and Cancer

    Directory of Open Access Journals (Sweden)

    Wade Bushman

    2016-10-01

    Full Text Available The prostate is a developmental model system study of prostate growth regulation. Historically the research focus was on androgen regulation of development and growth and instructive interactions between the mesenchyme and epithelium. The study of Hh signaling in prostate development revealed important roles in ductal morphogenesis and in epithelial growth regulation that appear to be recapitulated in prostate cancer. This overview of Hh signaling in the prostate will address the well-described role of paracrine signaling prostate development as well as new evidence suggesting a role for autocrine signaling, the role of Hh signaling in prostate regeneration and reiterative activities in prostate cancer.

  15. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    Science.gov (United States)

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    Science.gov (United States)

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  17. CDO, an Hh-coreceptor, mediates lung cancer cell proliferation and tumorigenicity through Hedgehog signaling.

    Science.gov (United States)

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.

  18. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice.

    Science.gov (United States)

    Burnett, Jacob B; Lupu, Floria I; Eggenschwiler, Jonathan T

    2017-10-01

    Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    Science.gov (United States)

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  20. Precision medicine and precision therapeutics: hedgehog signaling pathway, basal cell carcinoma and beyond.

    Science.gov (United States)

    Mohan, Shalini V; Chang, Anne Lynn S

    2014-06-01

    Precision medicine and precision therapeutics is currently in its infancy with tremendous potential to improve patient care by better identifying individuals at risk for skin cancer and predict tumor responses to treatment. This review focuses on the Hedgehog signaling pathway, its critical role in the pathogenesis of basal cell carcinoma, and the emergence of targeted treatments for advanced basal cell carcinoma. Opportunities to utilize precision medicine are outlined, such as molecular profiling to predict basal cell carcinoma response to targeted therapy and to inform therapeutic decisions.

  1. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsumaru

    2011-01-01

    Full Text Available An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh, GLI-Kruppel family member 3 (Gli3 and Aristaless-like homeobox 4 (Alx4. Introduction of additional Alx4(Lst mutations into the Gli3(Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3(Xt/+; Alx4(Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3(Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles.We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.

  2. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  3. Primary cilia are present on human blood and bone marrow cells and mediate Hedgehog signaling.

    Science.gov (United States)

    Singh, Mohan; Chaudhry, Parvesh; Merchant, Akil A

    2016-12-01

    Primary cilia are nonmotile, microtubule-based organelles that are present on the cellular membrane of all eukaryotic cells. Functional cilia are required for the response to developmental signaling pathways such as Hedgehog (Hh) and Wnt/β-catenin. Although the Hh pathway has been shown to be active in leukemia and other blood cancers, there have been no reports describing the presence of primary cilia in human blood or leukemia cells. In the present study, we show that nearly all human blood and bone marrow cells have primary cilia (97-99%). In contrast, primary cilia on AML cell lines (KG1, KG1a, and K562) were less frequent (10-36% of cells) and were often shorter and dysmorphic, with less well-defined basal bodies. Finally, we show that treatment of blood cells with the Hh pathway ligand Sonic Hedgehog (SHh) causes translocation of Smoothened (SMO) to the primary cilia and activation of Hh target genes, demonstrating that primary cilia in blood cells are functional and participate in Hh signaling. Loss of primary cilia on leukemia cells may have important implications for aberrant pathway activation and response to SMO inhibitors currently in clinical development. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  4. FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bingchen Han

    2015-11-01

    Full Text Available The mesoderm- and epithelial-mesenchymal transition-associated transcription factor FOXC1 is specifically overexpressed in basal-like breast cancer (BLBC, but its biochemical function is not understood. Here, we demonstrate that FOXC1 controls cancer stem cell (CSC properties enriched in BLBC cells via activation of Smoothened (SMO-independent Hedgehog (Hh signaling. This non-canonical activation of Hh is specifically mediated by Gli2. Furthermore, we show that the N-terminal domain of FOXC1 (aa 1–68 binds directly to an internal region (aa 898–1168 of Gli2, enhancing the DNA-binding and transcription-activating capacity of Gli2. FOXC1 expression correlates with that of Gli2 and its targets in human breast cancers. Moreover, FOXC1 overexpression reduces sensitivity to anti-Hedgehog (Hh inhibitors in BLBC cells and xenograft tumors. Together, these findings reveal FOXC1-mediated non-canonical Hh signaling that determines the BLBC stem-like phenotype and anti-Hh sensitivity, supporting inhibition of FOXC1 pathways as potential approaches for improving BLBC treatment.

  5. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  6. Regulation of Hedgehog Signaling in Cancer by Natural and Dietary Compounds.

    Science.gov (United States)

    Bao, Cheng; Kramata, Pavel; Lee, Hong Jin; Suh, Nanjoo

    2018-01-01

    The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling mediators has been implicated in cancer, associated with processes including inflammation, tumor cell growth, invasion, and metastasis, as well as cancer stemness. Small molecules targeting the regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib observed in clinical trials suggests that other Hh signaling components need to be explored as potential anticancer targets. Natural and dietary compounds provide a resource for the development of potent agents affecting intracellular signaling cascades, and numerous studies have been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent studies investigating the effect of natural products and dietary components on Hh signaling in cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Directory of Open Access Journals (Sweden)

    Clemens Kiecker

    2016-12-01

    Full Text Available A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

  8. Calcitriol Inhibits Hedgehog Signaling and Induces Vitamin D Receptor Signaling and Differentiation in the Patched Mouse Model of Embryonal Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Anja Uhmann

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma in children. Aberrant Hedgehog (Hh signaling is characteristic of the embryonal subtype (ERMS and of fusion-negative alveolar RMS. In the mouse, ERMS-like tumors can be induced by mutations in the Hh receptor Patched1 (Ptch. As in humans these tumors show increased Hh pathway activity. Here we demonstrate that the treatment with the active form of vitamin D3, calcitriol, inhibits Hh signaling and proliferation of murine ERMS in vivo and in vitro. Concomitantly, calcitriol activates vitamin D receptor (Vdr signaling and induces tumor differentiation. In addition, calcitriol inhibits ERMS growth in Ptch-mutant mice, which is, however, a rather late response. Taken together, our results suggest that exogenous supply of calcitriol could be beneficial in the treatment of RMS, especially in those which are associated with aberrant Hh signaling activity.

  9. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling.

    Science.gov (United States)

    Wang, Jinhu; Cao, Jingli; Dickson, Amy L; Poss, Kenneth D

    2015-06-11

    In response to cardiac damage, a mesothelial tissue layer enveloping the heart called the epicardium is activated to proliferate and accumulate at the injury site. Recent studies have implicated the epicardium in multiple aspects of cardiac repair: as a source of paracrine signals for cardiomyocyte survival or proliferation; a supply of perivascular cells and possibly other cell types such as cardiomyocytes; and as a mediator of inflammation. However, the biology and dynamism of the adult epicardium is poorly understood. To investigate this, we created a transgenic line to ablate the epicardial cell population in adult zebrafish. Here we find that genetic depletion of the epicardium after myocardial loss inhibits cardiomyocyte proliferation and delays muscle regeneration. The epicardium vigorously regenerates after its ablation, through proliferation and migration of spared epicardial cells as a sheet to cover the exposed ventricular surface in a wave from the chamber base towards its apex. By reconstituting epicardial regeneration ex vivo, we show that extirpation of the bulbous arteriosus-a distinct, smooth-muscle-rich tissue structure that distributes outflow from the ventricle-prevents epicardial regeneration. Conversely, experimental repositioning of the bulbous arteriosus by tissue recombination initiates epicardial regeneration and can govern its direction. Hedgehog (Hh) ligand is expressed in the bulbous arteriosus, and treatment with a Hh signalling antagonist arrests epicardial regeneration and blunts the epicardial response to muscle injury. Transplantation of Sonic hedgehog (Shh)-soaked beads at the ventricular base stimulates epicardial regeneration after bulbous arteriosus removal, indicating that Hh signalling can substitute for the influence of the outflow tract. Thus, the ventricular epicardium has pronounced regenerative capacity, regulated by the neighbouring cardiac outflow tract and Hh signalling. These findings extend our understanding of

  10. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity.

    Science.gov (United States)

    Lee, Seung Joon; Litan, Alisa; Li, Zhiqin; Graves, Bruce; Lindsey, Stephan; Barwe, Sonali P; Langhans, Sigrid A

    2015-08-19

    The Sonic hedgehog (Shh) signaling pathway plays an important role in cerebellar development, and mutations leading to hyperactive Shh signaling have been associated with certain forms of medulloblastoma, a common form of pediatric brain cancer. While the fundamentals of this pathway are known, the molecular targets contributing to Shh-mediated proliferation and transformation are still poorly understood. Na,K-ATPase is a ubiquitous enzyme that maintains intracellular ion homeostasis and functions as a signaling scaffold and a cell adhesion molecule. Changes in Na,K-ATPase function and subunit expression have been reported in several cancers and loss of the β1-subunit has been associated with a poorly differentiated phenotype in carcinoma but its role in medulloblastoma progression is not known. Human medulloblastoma cell lines and primary cultures of cerebellar granule cell precursors (CGP) were used to determine whether Shh regulates Na,K-ATPase expression. Smo/Smo medulloblastoma were used to assess the Na,K-ATPase levels in vivo. Na,K-ATPase β1-subunit was knocked down in DAOY cells to test its role in medulloblastoma cell proliferation and tumorigenicity. Na,K-ATPase β1-subunit levels increased with differentiation in normal CGP cells. Activation of Shh signaling resulted in reduced β1-subunit mRNA and protein levels and was mimicked by overexpression of Gli1and Bmi1, both members of the Shh signaling cascade; overexpression of Bmi1 reduced β1-subunit promoter activity. In human medulloblastoma cells, low β1-subunit levels were associated with increased cell proliferation and in vivo tumorigenesis. Na,K-ATPase β1-subunit is a target of the Shh signaling pathway and loss of β1-subunit expression may contribute to tumor development and progression not only in carcinoma but also in medulloblastoma, a tumor of neuronal origin.

  11. A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts.

    Science.gov (United States)

    Casso, David J; Liu, Songmei; Iwaki, D David; Ogden, Stacey K; Kornberg, Thomas B

    2008-03-01

    Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.

  12. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx.

    Science.gov (United States)

    Tabler, Jacqueline M; Rigney, Maggie M; Berman, Gordon J; Gopalakrishnan, Swetha; Heude, Eglantine; Al-Lami, Hadeel Adel; Yannakoudakis, Basil Z; Fitch, Rebecca D; Carter, Christopher; Vokes, Steven; Liu, Karen J; Tajbakhsh, Shahragim; Egnor, Se Roian; Wallingford, John B

    2017-02-13

    Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus.

  13. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori.

    Science.gov (United States)

    Liang, Shuang; Chen, Rui-Ting; Zhang, Deng-Pan; Xin, Hu-Hu; Lu, Yan; Wang, Mei-Xian; Miao, Yun-Gen

    2015-10-01

    Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  14. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  15. Hedgehog signaling plays roles in epithelial cell proliferation in neonatal mouse uterus and vagina.

    Science.gov (United States)

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2012-04-01

    Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.

  16. A Smoothened-Evc2 Complex Transduces the Hedgehog Signal at Primary Cilia

    Science.gov (United States)

    Dorn, Karolin V.; Hughes, Casey E.; Rohatgi, Rajat

    2013-01-01

    SUMMARY Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies. PMID:22981989

  17. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Hedgehog (Hh signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12 that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci, the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.

  18. In vitro osteoinductive effects of hydroxycholesterol on human adipose-derived stem cells are mediated through the hedgehog signaling pathway.

    Science.gov (United States)

    Yalom, Anisa; Hokugo, Akishige; Sorice, Sarah; Li, Andrew; Segovia Aguilar, Luis A; Zuk, Patricia; Jarrahy, Reza

    2014-11-01

    Human adipose-derived stem cells have been identified as a potential source of cells for use in bone tissue engineering because of their ready availability, ease of harvest, and susceptibility to osteogenic induction. The authors have previously demonstrated the ability of an osteogenic molecule called hydroxycholesterol, an oxidative derivative of cholesterol, to induce osteogenic differentiation in pluripotent murine and rabbit bone marrow stromal cells. In this study, the authors examine the ability of hydroxycholesterol to induce osteogenesis in human adipose-derived stem cells. Human adipose-derived stem cells were isolated from raw human lipoaspirates through standard isolation and expansion of the stromal vascular fraction. Cells were plated onto tissue culture plates in control medium and harvested between passages 2 and 3, incubated with conventional osteogenic media, and treated with various concentrations (1, 5, and 10 μM) of the 20(S) analogue of hydroxycholesterol. Evaluation of cellular osteogenic activity was performed. The role of the hedgehog signaling pathway in hydroxycholesterol-mediated osteogenesis was evaluated by hedgehog inhibition assays. Alkaline phosphatase activity, bone-related gene expression, and mineralization were all significantly increased in cultures of human adipose-derived stem cells treated with 5 μM of 20(S)-hydroxycholesterol relative to controls. In addition, induction of hydroxycholesterol-mediated osteogenesis was mitigated by the addition of the hedgehog pathway inhibitor to cell cultures, implicating the hedgehog signaling pathway in the osteogenic mechanism on human adipose-derived stem cells by hydroxycholesterol. These in vitro studies demonstrate that hydroxycholesterol exerts an osteoinductive influence on human adipose-derived stem cells and that these effects are mediated at least in part through the hedgehog signaling pathway.

  19. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Shtutman Michael

    2010-04-01

    Full Text Available Abstract Background Castration resistant prostate cancer (CRPC develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI prostate cancer cells. Results Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881 restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to

  20. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  1. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Siru Zhou

    2015-06-01

    Full Text Available Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK activity and increased Indian hedgehog (IHH expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis.

  2. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  3. Maml1 acts cooperatively with Gli proteins to regulate sonic hedgehog signaling pathway.

    Science.gov (United States)

    Quaranta, Roberta; Pelullo, Maria; Zema, Sabrina; Nardozza, Francesca; Checquolo, Saula; Lauer, Dieter Matthias; Bufalieri, Francesca; Palermo, Rocco; Felli, Maria Pia; Vacca, Alessandra; Talora, Claudio; Di Marcotullio, Lucia; Screpanti, Isabella; Bellavia, Diana

    2017-07-20

    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator. Notably, Maml1 silencing results in a significant reduction of Gli target genes expression, with a negative impact on cell growth of NIH3T3 and Patched1-/- mouse embryonic fibroblasts (MEFs), bearing a constitutively active Shh signaling. Remarkably, Shh pathway activity results severely compromised both in MEFs and GCPs deriving from Maml1-/- mice with an impairment of GCPs proliferation and cerebellum development. Therefore Maml1-/- phenotype mimics aspects of Shh pathway deficiency, suggesting an intrinsic requirement for Maml1 in cerebellum development. The present study shows a new role for Maml1 as a component of Shh signaling, which plays a crucial role in both development and tumorigenesis.

  4. Targeting Sonic Hedgehog Signaling by Compounds and Derivatives from Natural Products

    Directory of Open Access Journals (Sweden)

    Yu-Chuen Huang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays critical roles in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemopreventives, and their antitumor effects have been demonstrated both in vitro and in vivo. However, reports for their bioactivity against CSCs and specifically targeting Shh signaling remain limited. In this review, we summarize investigations of the compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade. Given that Shh signaling antagonism has been clinically proven as effective strategy against CSCs, this review may be exploitable for development of novel anticancer agents from complementary and alternative medicine.

  5. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  6. Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice.

    Science.gov (United States)

    Finco, Isabella; Lerario, Antonio M; Hammer, Gary D

    2018-02-01

    The atrophy and hypofunction of the adrenal cortex following long-term pharmacologic glucocorticoid therapy is a major health problem necessitating chronic glucocorticoid replacement that often prolongs the ultimate return of endogenous adrenocortical function. Underlying this functional recovery is anatomic regeneration, the cellular and molecular mechanisms of which are poorly understood. Investigating the lineage contribution of cortical Sonic hedgehog (Shh)+ progenitor cells and the SHH-responsive capsular Gli1+ cells to the regenerating adrenal cortex, we observed a spatially and temporally bimodal contribution of both cell types to adrenocortical regeneration following cessation of glucocorticoid treatment. First, an early repopulation of the cortex is defined by a marked delamination and expansion of capsular Gli1+ cells, recapitulating the establishment of the capsular-cortical homeostatic niche during embryonic development. This rapid repopulation is promptly cleared from the cortical compartment only to be supplanted by repopulating cortical cells derived from the resident long-term-retained zona glomerulosa Shh+ progenitors. Pharmacologic and genetic dissection of SHH signaling further defines an SHH-dependent activation of WNT signaling that supports regeneration of the cortex following long-term glucocorticoid therapy. We define the signaling and lineage relationships that underlie the regeneration process. Copyright © 2018 Endocrine Society.

  7. A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint

    Directory of Open Access Journals (Sweden)

    Malgorzata Kubiak

    2016-08-01

    Full Text Available This review highlights the essential role of Hedgehog (Hh signalling in the developmental steps of temporomandibular joint (TMJ formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI dependent and independent functions. Morphogenesis and maturation of the TMJ’s individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling.

  8. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats.

    Science.gov (United States)

    El-Agroudy, Nermeen N; El-Naga, Reem N; El-Razeq, Rania Abd; El-Demerdash, Ebtehal

    2016-11-01

    Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. Male Sprague-Dawley rats were treated with either CCl4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α-SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF-κB, TNF-α, COX-2, IL-1β), TGF-β1 and Hh signalling markers (Ptch-1, Smo, Gli-2) were also assessed. Hepatic fibrosis induced by CCl4 was significantly reduced by forskolin, as indicated by decreased α-SMA expression and collagen deposition. Forskolin co-treatment significantly attenuated oxidative stress and inflammation, reduced TGF-β1 levels and down-regulated mRNA expression of Ptch-1, Smo and Gli-2 through cAMP-dependent PKA activation. In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti-inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP-dependent activation of PKA. © 2016 The British Pharmacological Society.

  9. Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2017-12-01

    Full Text Available Summary: Colon cancer is a heterogeneous tumor driven by a subpopulation of cancer stem cells (CSCs. To study CSCs in colon cancer, we used limiting dilution spheroid and serial xenotransplantation assays to functionally define the frequency of CSCs in a panel of patient-derived cancer organoids. These studies demonstrated cancer organoids to be enriched for CSCs, which varied in frequency between tumors. Whole-transcriptome analysis identified WNT and Hedgehog signaling components to be enhanced in CSC-enriched tumors and in aldehyde dehydrogenase (ALDH-positive CSCs. Canonical GLI-dependent Hedgehog signaling is a negative regulator of WNT signaling in normal intestine and intestinal tumors. Here, we show that Hedgehog signaling in colon CSCs is autocrine SHH-dependent, non-canonical PTCH1 dependent, and GLI independent. In addition, using small-molecule inhibitors and RNAi against SHH-palmitoylating Hedgehog acyltransferase (HHAT, we demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival. : Colon cancer is a heterogeneous tumor driven by a subpopulation(s of therapy-resistant cancer stem cells (CSCs. Regan et al. use 3D culture models to demonstrate that CSC survival is regulated by non-canonical, SHH-dependent, PTCH1-dependent Hedgehog signaling, which acts as a positive regulator of WNT signaling to block CSC differentiation. Keywords: WNT pathway, non-canonical Hedgehog signaling, cancer stem cell, colon cancer, cancer organoid, PTCH1, HHAT, SHH

  10. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics.

    Science.gov (United States)

    Dafinger, Claudia; Liebau, Max Christoph; Elsayed, Solaf Mohamed; Hellenbroich, Yorck; Boltshauser, Eugen; Korenke, Georg Christoph; Fabretti, Francesca; Janecke, Andreas Robert; Ebermann, Inga; Nürnberg, Gudrun; Nürnberg, Peter; Zentgraf, Hanswalter; Koerber, Friederike; Addicks, Klaus; Elsobky, Ezzat; Benzing, Thomas; Schermer, Bernhard; Bolz, Hanno Jörn

    2011-07-01

    Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.

  11. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells.

    Science.gov (United States)

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R; Anant, Shrikant; Dhar, Animesh

    2015-09-29

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis.

  12. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    Science.gov (United States)

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  13. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Seiji Kakiuchi

    2017-02-01

    Full Text Available Aberrant activation of the Hedgehog (Hh signaling pathway is involved in the maintenance of leukemic stem cell (LSCs populations. PF-0444913 (PF-913 is a novel inhibitor that selectively targets Smoothened (SMO, which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML. However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling.

  14. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review

    Science.gov (United States)

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-01-01

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer. PMID:27190692

  15. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model.

    Directory of Open Access Journals (Sweden)

    Christopher K McCann

    Full Text Available Recent evidence links aberrant activation of Hedgehog (Hh signaling with the pathogenesis of several cancers including medulloblastoma, basal cell, small cell lung, pancreatic, prostate and ovarian. This investigation was designed to determine if inhibition of this pathway could inhibit serous ovarian cancer growth.We utilized an in vivo pre-clinical model of serous ovarian cancer to characterize the anti-tumor activity of Hh pathway inhibitors cyclopamine and a clinically applicable derivative, IPI-926. Primary human serous ovarian tumor tissue was used to generate tumor xenografts in mice that were subsequently treated with cyclopamine or IPI-926.Both compounds demonstrated significant anti-tumor activity as single agents. When IPI-926 was used in combination with paclitaxel and carboplatinum (T/C, no synergistic effect was observed, though sustained treatment with IPI-926 after cessation of T/C continued to suppress tumor growth. Hh pathway activity was analyzed by RT-PCR to assess changes in Gli1 transcript levels. A single dose of IPI-926 inhibited mouse stromal Gli1 transcript levels at 24 hours with unchanged human intra-tumor Gli1 levels. Chronic IPI-926 therapy for 21 days, however, inhibited Hh signaling in both mouse stromal and human tumor cells. Expression data from the micro-dissected stroma in human serous ovarian tumors confirmed the presence of Gli1 transcript and a significant association between elevated Gli1 transcript levels and worsened survival.IPI-926 treatment inhibits serous tumor growth suggesting the Hh signaling pathway contributes to the pathogenesis of ovarian cancer and may hold promise as a novel therapeutic target, especially in the maintenance setting.

  16. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro.

    Science.gov (United States)

    You, Min; Varona-Santos, Javier; Singh, Samer; Robbins, David J; Savaraj, Niramol; Nguyen, Dao M

    2014-01-01

    The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.

  17. A mutation in the mouse ttc26 gene leads to impaired hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Ruth E Swiderski

    2014-10-01

    Full Text Available The phenotype of the spontaneous mutant mouse hop-sterile (hop is characterized by a hopping gait, polydactyly, hydrocephalus, and male sterility. Previous analyses of the hop mouse revealed a deficiency of inner dynein arms in motile cilia and a lack of sperm flagella, potentially accounting for the hydrocephalus and male sterility. The etiology of the other phenotypes and the location of the hop mutation remained unexplored. Here we show that the hop mutation is located in the Ttc26 gene and impairs Hedgehog (Hh signaling. Expression analysis showed that this mutation led to dramatically reduced levels of the Ttc26 protein, and protein-protein interaction assays demonstrated that wild-type Ttc26 binds directly to the Ift46 subunit of Intraflagellar Transport (IFT complex B. Although IFT is required for ciliogenesis, the Ttc26 defect did not result in a decrease in the number or length of primary cilia. Nevertheless, Hh signaling was reduced in the hop mouse, as revealed by impaired activation of Gli transcription factors in embryonic fibroblasts and abnormal patterning of the neural tube. Unlike the previously characterized mutations that affect IFT complex B, hop did not interfere with Hh-induced accumulation of Gli at the tip of the primary cilium, but rather with the subsequent dissociation of Gli from its negative regulator, Sufu. Our analysis of the hop mouse line provides novel insights into Hh signaling, demonstrating that Ttc26 is necessary for efficient coupling between the accumulation of Gli at the ciliary tip and its dissociation from Sufu.

  18. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria.

    Science.gov (United States)

    Thorpe, Stephen D; Gambassi, Silvia; Thompson, Clare L; Chandrakumar, Charmilie; Santucci, Annalisa; Knight, Martin M

    2017-09-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  19. Hedgehog signaling antagonist GDC-0449 (Vismodegib inhibits pancreatic cancer stem cell characteristics: molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Brahma N Singh

    Full Text Available Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs. Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib, orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro.GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival.These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs.

  20. Epigenetic deregulation of Ellis Van Creveld confers robust Hedgehog signaling in adult T-cell leukemia.

    Science.gov (United States)

    Takahashi, Ryutaro; Yamagishi, Makoto; Nakano, Kazumi; Yamochi, Toshiko; Yamochi, Tadanori; Fujikawa, Dai; Nakashima, Makoto; Tanaka, Yuetsu; Uchimaru, Kaoru; Utsunomiya, Atae; Watanabe, Toshiki

    2014-09-01

    One of the hallmarks of cancer, global gene expression alteration, is closely associated with the development and malignant characteristics associated with adult T-cell leukemia (ATL) as well as other cancers. Here, we show that aberrant overexpression of the Ellis Van Creveld (EVC) family is responsible for cellular Hedgehog (HH) activation, which provides the pro-survival ability of ATL cells. Using microarray, quantitative RT-PCR and immunohistochemistry we have demonstrated that EVC is significantly upregulated in ATL and human T-cell leukemia virus type I (HTLV-1)-infected cells. Epigenetic marks, including histone H3 acetylation and Lys4 trimethylation, are specifically accumulated at the EVC locus in ATL samples. The HTLV-1 Tax participates in the coordination of EVC expression in an epigenetic fashion. The treatment of shRNA targeting EVC, as well as the transcription factors for HH signaling, diminishes the HH activation and leads to apoptotic death in ATL cell lines. We also showed that a HH signaling inhibitor, GANT61, induces strong apoptosis in the established ATL cell lines and patient-derived primary ATL cells. Therefore, our data indicate that HH activation is involved in the regulation of leukemic cell survival. The epigenetically deregulated EVC appears to play an important role for HH activation. The possible use of EVC as a specific cell marker and a novel drug target for HTLV-1-infected T-cells is implicated by these findings. The HH inhibitors are suggested as drug candidates for ATL therapy. Our findings also suggest chromatin rearrangement associated with active histone markers in ATL. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  1. Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.

    Science.gov (United States)

    Kazmers, Nikolas H; McKenzie, Jennifer A; Shen, Tony S; Long, Fanxin; Silva, Matthew J

    2015-12-01

    Hedgehog (Hh) signaling is critical in developmental osteogenesis, and recent studies suggest it may also play a role in regulating osteogenic gene expression in the post-natal setting. However, there is a void of studies directly assessing the effect of Hh inhibition on post-natal osteogenesis. This study utilized a cyclic loading-induced ulnar stress fracture model to evaluate the hypothesis that Hh signaling contributes to osteogenesis and angiogenesis during stress fracture healing. Immediately prior to loading, adult rats were given GDC-0449 (Vismodegib - a selective Hh pathway inhibitor; 50mg/kg orally twice daily), or vehicle. Hh signaling was upregulated in response to stress fracture at 3 days (Ptch1, Gli1 expression), and was markedly inhibited by GDC-0449 at 1 day and 3 days in the loaded and non-loaded ulnae. GDC-0449 did not affect Hh ligand expression (Shh, Ihh, Dhh) at 1 day, but decreased Shh expression by 37% at 3 days. GDC-0449 decreased woven bone volume (-37%) and mineral density (-17%) at 7 days. Dynamic histomorphometry revealed that the 7 day callus was composed predominantly of woven bone in both groups. The observed reduction in woven bone occurred concomitantly with decreased expression of Alpl and Ibsp, but was not associated with differences in early cellular proliferation (as determined by callus PCNA staining at 3 days), osteoblastic differentiation (Osx expression at 1 day and 3 days), chondrogenic gene expression (Acan, Sox9, and Col2α1 expression at 1 day and 3 days), or bone resorption metrics (callus TRAP staining at 3 days, Rankl and Opg expression at 1 day and 3 days). To evaluate angiogenesis, vWF immunohistochemistry showed that GDC-0449 reduced fracture callus blood vessel density by 55% at 3 days, which was associated with increased Hif1α gene expression (+30%). Dynamic histomorphometric analysis demonstrated that GDC-0449 also inhibited lamellar bone formation. Lamellar bone analysis of the loaded limb (directly adjacent

  2. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    Science.gov (United States)

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  3. Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway.

    Science.gov (United States)

    Wu, Xianqiu; Xu, Benke; Yang, Chao; Wang, Wentao; Zhong, Dequan; Zhao, Zhan; He, Longshuang; Hu, Yuanjun; Jiang, Lili; Li, Jun; Song, Libing; Zhang, Wei

    2017-09-12

    The prognosis of human astrocytoma is poor, and the molecular alterations underlying its pathogenesis still needed to be elucidated. Nucleolar and spindle associated protein 1 (NUSAP1) was observed in several types of cancers, but its role in astrocytoma remained unknown. The expression of NUSAP1 in astrocytoma cell lines and tissues were measured with western blotting and Real-Time PCR. Two hundred and twenty-one astrocytoma tissue samples were analyzed by immunochemistry to demonstrate the correlation between the NUSAP1 expression and clinicopathological characteristics. 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell matrix penetration assay, wound healing assay and anchorage-independent growth assay were used to investigate the biological effect of NUSAP1 in astrocytoma. An intracranial brain xenograft tumor model was used to confirm the oncogenic role of NUSAP1 in human astrocytoma. Luciferase reporter assay was used to investigate the effect of NUSAP1 on Hedgehog signaling pathway. NUSAP1 was markedly overexpressed in astrocytoma cell lines and tissues compared with normal astrocytes and brain tissues. NUSAP1 was found to be overexpressed in 152 of 221 (68.78%) astrocytoma tissues, and was significantly correlated to poor survival. Further, ectopic expression or knockdown of NUSAP1 significantly promoted or inhibited, respectively, the invasive ability of astrocytoma cells. Moreover, intracranial xenografts of astrocytoma cells engineered to express NUSAP1 were highly invasive compared with the parental cells. With regard to its molecular mechanism, upregulation of NUSAP1 in astrocytoma cells promoted the nuclear translocation of GLI family zinc finger 1 (GLI1) and upregulated the downstream genes of the Hedgehog pathway. These findings indicate that NUSAP1 contributes to the progression of astrocytoma by enhancing tumor cell invasiveness via activation of the Hedgehog signaling pathway, and that NUSAP1

  4. Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway.

    Science.gov (United States)

    Li, Qiushi; Chen, Yingxin; Dong, Shujun; Liu, Shujie; Zhang, Xiaodan; Si, Xi; Zhou, Yanmin

    2017-09-01

    Low-level laser could promote osteoblast proliferation, and it has been applied in clinical practice to promote wound healing and tissue regeneration. However, the mechanism related to laser irradiation remains unclear. This study aimed to investigate the effects of low-level laser irradiation on the cell proliferation and the expressions of hedgehog signaling molecules Indian hedgehog (Ihh), Ptch, and Gli in vitro. In our present study, the MTT method was used to evaluate the effect on cell proliferation of laser irradiation on MC3T3-E1 cells. And cell cycle was examined by flow cytometry. Gene and protein expressions of hedgehog signaling molecules, including Ihh, Ptch, Smoothened (Smo), and Gli, were examined by qRT-PCR and western blot analysis. The results showed that laser irradiation at dosage of 3.75 J/cm(2) enhances the proliferation of MC3T3-E1 cells compared with control groups (p = 0.00). Moreover, laser irradiation (3.75 J/cm(2)) increased the cell amount at S phase (p = 0.00). In addition, the expressions of Ihh, Ptch, Smo, and Gli were significantly increased compared to the control during laser irradiation (3.75 J/cm(2))-induced MC3T3-E1 osteoblast proliferation. After adding the hedgehog signaling inhibitor CY (cyclopamine), cell proliferation and Ihh, Ptch, Smo, and Gli expressions were inhibited (p = 0.00), and the cell amount at S phase was reduced compared with combination groups (p = 0.00). These results indicated that laser irradiation promotes proliferation of MC3T3-E1 cells through hedgehog signaling pathway. Our findings provide insights into the mechanistic link between laser irradiation-induced osteogenesis and hedgehog signaling pathway.

  5. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    DEFF Research Database (Denmark)

    Airik, Rannar; Schueler, Markus; Airik, Merlin

    2016-01-01

    Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage...... response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired...... Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC...

  6. Molecular signalling in hepatocellular carcinoma: Role of and crosstalk among Wnt/β-catenin, Sonic Hedgehog, Notch and Dickkopf-1

    Science.gov (United States)

    Giakoustidis, Alexandros; Giakoustidis, Dimitrios; Mudan, Satvinder; Sklavos, Argyrios; Williams, Roger

    2015-01-01

    Hepatocellular carcinoma is the sixth most common cancer worldwide. In the majority of cases, there is evidence of existing chronic liver disease from a variety of causes including viral hepatitis B and C, alcoholic liver disease and nonalcoholic steatohepatitis. Identification of the signalling pathways used by hepatocellular carcinoma cells to proliferate, invade or metastasize is of paramount importance in the discovery and implementation of successfully targeted therapies. Activation of Wnt/β-catenin, Notch and Hedgehog pathways play a critical role in regulating liver cell proliferation during development and in controlling crucial functions of the adult liver in the initiation and progression of human cancers. β-catenin was identified as a protein interacting with the cell adhesion molecule E-cadherin at the cell-cell junction, and has been shown to be one of the most important mediators of the Wnt signalling pathway in tumourigenesis. Investigations into the role of Dikkopf-1 in hepatocellular carcinoma have demonstrated controversial results, with a decreased expression of Dickkopf-1 and soluble frizzled-related protein in various cancers on one hand, and as a possible negative prognostic indicator of hepatocellular carcinoma on the other. In the present review, the authors focus on the Wnt/β-catenin, Notch and Sonic Hedgehog pathways, and their interaction with Dikkopf-1 in hepatocellular carcinoma. PMID:25965442

  7. Hedgehog Zoonoses

    Science.gov (United States)

    Riley, Patricia Y.

    2005-01-01

    Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314

  8. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis

    Science.gov (United States)

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-05-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.

  9. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2016-06-01

    Full Text Available Hedgehog (Hh signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR-family protein Smoothened (Smo. Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail. We find that CL-II phosphorylation is promoted by protein kinase A (PKA-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.

  10. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  11. Primary cilia on porcine testicular somatic cells and their role in hedgehog signaling and tubular morphogenesis in vitro.

    Science.gov (United States)

    Dores, Camila; Alpaugh, Whitney; Su, Lin; Biernaskie, Jeff; Dobrinski, Ina

    2017-04-01

    The primary cilium is a microtubule-based sensory organelle found on nearly all eukaryotic cells but little is understood about its function in the testis. We investigate the role of primary cilia on testis cells in vitro by inhibiting formation of the primary cilium with Ciliobrevin D, a cell-permeable, reversible chemical inhibitor of ATPase motor cytoplasmic dynein. We analyzed cultured cells for the presence of primary cilia and their involvement in hedgehog signaling. Primary cilia were present on 89.3 ± 2.3 % of untreated testicular somatic cells compared to 3.1 ± 2.5 % cells with primary cilia for Ciliobrevin D-treated cells. Protein levels of Gli-2 and Smoothened were lower on Western blots after suppression of cilia with Ciliobrevin D. The inhibitor did not affect centrosome localization or cell proliferation, indicating that changes were due to ablation of the primary cilium. Testicular somatic cells have the ability to form three-dimensional tubules in vitro. In vitro-formed tubules were significantly longer and wider in the control group than in the Ciliobrevin D-treated group (9.91 ± 0.35 vs. 5.540 ± 1.08 mm and 339.8 ± 55.78 vs. 127.2 ± 11.9 μm, respectively) indicating that primary cilia play a role in tubule formation. Our results establish that the inhibition of ATPase motor cytoplasmic dynein perturbs formation of primary cilia in testicular somatic cells, affects the hedgehog signaling pathway and impairs tubule formation in vitro. These findings provide evidence for a role of cilia in the testis in cell signaling and tubular morphogenesis in vitro.

  12. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of Hedgehog signaling.

    Science.gov (United States)

    Benito-Gonzalez, Ana; Doetzlhofer, Angelika

    2014-09-17

    Mechano-sensory hair cells (HCs), housed in the inner ear cochlea, are critical for the perception of sound. In the mammalian cochlea, differentiation of HCs occurs in a striking basal-to-apical and medial-to-lateral gradient, which is thought to ensure correct patterning and proper function of the auditory sensory epithelium. Recent studies have revealed that Hedgehog signaling opposes HC differentiation and is critical for the establishment of the graded pattern of auditory HC differentiation. However, how Hedgehog signaling interferes with HC differentiation is unknown. Here, we provide evidence that in the murine cochlea, Hey1 and Hey2 control the spatiotemporal pattern of HC differentiation downstream of Hedgehog signaling. It has been recently shown that HEY1 and HEY2, two highly redundant HES-related transcriptional repressors, are highly expressed in supporting cell (SC) and HC progenitors (prosensory cells), but their prosensory function remained untested. Using a conditional double knock-out strategy, we demonstrate that prosensory cells form and proliferate properly in the absence of Hey1 and Hey2 but differentiate prematurely because of precocious upregulation of the pro-HC factor Atoh1. Moreover, we demonstrate that prosensory-specific expression of Hey1 and Hey2 and its subsequent graded downregulation is controlled by Hedgehog signaling in a largely FGFR-dependent manner. In summary, our study reveals a critical role for Hey1 and Hey2 in prosensory cell maintenance and identifies Hedgehog signaling as a novel upstream regulator of their prosensory function in the mammalian cochlea. The regulatory mechanism described here might be a broadly applied mechanism for controlling progenitor behavior in the central and peripheral nervous system. Copyright © 2014 the authors 0270-6474/14/3412865-12$15.00/0.

  13. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery

    DEFF Research Database (Denmark)

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain

    2008-01-01

    are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation...... of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery. Udgivelsesdato: 2008-Mar-10...

  14. Inhibition of Sonic Hedgehog Signaling Pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-Stem-Like Population and Sphere-Forming Capacity in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-03-01

    Full Text Available Background/Aim: Triple-negative breast cancer (TNBC represents a particular clinical challenge because these cancers do not respond to endocrine therapy or other available targeted agents. The lack of effective agents and obvious targets are major challenges in treating TNBC. In this study we explored the cytostatic effect of thiazole ring containing antibiotic drug thiostrepton on TNBC cell lines and investigated the molecular mechanism. Methods: Cell viability was measured by MTT assay. Cell surface marker was monitored by FCM. Western blot was applied to assess the protein expression levels of target genes. Results: We found that thiostrepton remarkably suppressed the CD44+/CD24- stem-like population and sphere forming capacity of TNBC cell lines. Notably, we showed for the first time that thiostrepton exerted its pharmacological action by targeting sonic hedgehog (SHH signaling pathway. Thiostrepton repressed SHH ligand expression and reduced Gli-1 nuclear localization in TNBC cell line. Furthermore, the downstream target of SHH signaling undergone dose-dependent, rapid, and sustained loss of mRNA transcript level after thiostrepton treatment. Finally, we showed that SHH ligand was essential for maintaining CD44+/CD24- stem-like population in TNBC cell line. Conclusion: We conclude that thiostrepton suppresses the CD44+/CD24- stem-like population through inhibition of SHH signaling pathway. Our results give a new insight into the mechanism of thiostrepton anti-tumor activity and suggest thiostrepton as a promising agent that targets hedgehog signaling pathway in TNBC.

  15. An In Vivo Chemical Genetic Screen Identifies Phosphodiesterase 4 as a Pharmacological Target for Hedgehog Signaling Inhibition

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2015-04-01

    Full Text Available Hedgehog (Hh signaling plays an integral role in vertebrate development, and its dysregulation has been accepted widely as a driver of numerous malignancies. While a variety of small molecules target Smoothened (Smo as a strategy for Hh inhibition, Smo gain-of-function mutations have limited their clinical implementation. Modulation of targets downstream of Smo could define a paradigm for treatment of Hh-dependent cancers. Here, we describe eggmanone, a small molecule identified from a chemical genetic zebrafish screen, which induced an Hh-null phenotype. Eggmanone exerts its Hh-inhibitory effects through selective antagonism of phosphodiesterase 4 (PDE4, leading to protein kinase A activation and subsequent Hh blockade. Our study implicates PDE4 as a target for Hh inhibition, suggests an improved strategy for Hh-dependent cancer therapy, and identifies a unique probe of downstream-of-Smo Hh modulation.

  16. Lung fibroblasts share mesenchymal stem cell features which are altered in chronic obstructive pulmonary disease via the overactivation of the Hedgehog signaling pathway.

    Science.gov (United States)

    Figeac, Florence; Dagouassat, Maylis; Mahrouf-Yorgov, Meriem; Le Gouvello, Sabine; Trébeau, Céline; Sayed, Angeliqua; Stern, Jean-Baptiste; Validire, Pierre; Dubois-Randé, Jean-Luc; Boczkowski, Jorge; Mus-Veteau, Isabelle; Rodriguez, Anne-Marie

    2015-01-01

    Alteration of functional regenerative properties of parenchymal lung fibroblasts is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD). However, what these functions are and how they are impaired in COPD remain poorly understood. Apart from the role of fibroblasts in producing extracellular matrix, recent studies in organs different from the lung suggest that such cells might contribute to repair processes by acting like mesenchymal stem cells. In addition, several reports sustain that the Hedgehog pathway is altered in COPD patients thus aggravating the disease. Nevertheless, whether this pathway is dysregulated in COPD fibroblasts remains unknown. We investigated the stem cell features and the expression of Hedgehog components in human lung fibroblasts isolated from histologically-normal parenchymal tissue from 25 patients--8 non-smokers/non-COPD, 8 smokers-non COPD and 9 smokers with COPD--who were undergoing surgery for lung tumor resection. We found that lung fibroblasts resemble mesenchymal stem cells in terms of cell surface marker expression, differentiation ability and immunosuppressive potential and that these properties were altered in lung fibroblasts from smokers and even more in COPD patients. Furthermore, we showed that some of these phenotypic changes can be explained by an over activation of the Hedgehog signaling in smoker and COPD fibroblasts. Our study reveals that lung fibroblasts possess mesenchymal stem cell-features which are impaired in COPD via the contribution of an abnormal Hedgehog signaling. These processes should constitute a novel pathomechanism accounting for disease occurrence and progression.

  17. Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia

    Science.gov (United States)

    Kern, D; Regl, G; Hofbauer, S W; Altenhofer, P; Achatz, G; Dlugosz, A; Schnidar, H; Greil, R; Hartmann, T N; Aberger, F

    2015-01-01

    The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with other cancer pathways including PI3K/AKT modulates HH/GLI signal strength and its oncogenicity. In this study, we addressed the role of HH/GLI and its putative interaction with the PI3K/AKT cascade in the initiation and maintenance of chronic lymphocytic leukemia (CLL). Using transgenic mouse models, we show that B-cell-specific constitutive activation of HH/GLI signaling either at the level of the HH effector and drug target Smoothened or at the level of the GLI transcription factors does not suffice to initiate a CLL-like phenotype characterized by the accumulation of CD5+ B cells in the lymphatic system and peripheral blood. Furthermore, Hh/Gli activation in Pten-deficient B cells with activated Pi3K/Akt signaling failed to enhance the expansion of leukemic CD5+ B cells, suggesting that genetic or epigenetic alterations leading to aberrant HH/GLI signaling in B cells do not suffice to elicit a CLL-like phenotype in mice. By contrast, we identify a critical role of GLI and PI3K signaling for the survival of human primary CLL cells. We show that combined targeting of GLI and PI3K/AKT/mTOR signaling can have a synergistic therapeutic effect in cells from a subgroup of CLL patients, thereby providing a basis for the evaluation of future combination therapies targeting HH/GLI and PI3K signaling in this common hematopoietic malignancy. PMID:25639866

  18. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  19. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines

    DEFF Research Database (Denmark)

    Nielsen, Sonja K; Møllgård, Kjeld; Clement, Christian A

    2008-01-01

    Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct...... adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary...

  20. Molecular modelling of berberine derivatives as inhibitors of human smoothened receptor and hedgehog signalling pathway using a newly developed algorithm on anti-cancer drugs.

    Science.gov (United States)

    Kaboli, Parham Jabbarzadeh; Bazrafkan, Mohammad; Ismail, Patimah; Ling, King-Hwa

    2017-09-29

    Protoberberine isoquinoline alkaloids are found in many plant species. They consist of a diverse class of secondary metabolites with many pharmacologically active members, such as different derivatives of berberine already patented. In the development of approximately 20-25% of all cancers, altered hedgehog (Hh) signalling is involved where the smoothened (Smo) transmembrane receptor triggers Hh signalling pathway towards Gli1 gene expression. The current study aimed to model and verify the anti-Smo activity of berberine and its derivatives using a novel automated script. Based on the patented inventions filed on ADMET modelling until 2016, which also predicts ADMET parameters and binding efficiency indices for all molecules, a script was developed to run automated molecular docking for a large number of small molecules. Berberine was found to interact with Lys395 of Smo receptor via hydrogen bonding and cation-π interactions. In addition, π-π interactions between berberine aromatic rings and two aromatic residues in the Smo transmembrane domain, Tyr394 and Phe484, were noted. Binding efficiency indices using an in-silico approach to plot the Smo-specific binding potency of each ligand was performed. The mRNA level of Gli1 was studied as the outcome of Hh signalling pathway to show the effect of berberine on hedgehog signalling. This study predicted the role of berberine as an inhibitor of Smo receptor, suggesting its effectiveness in hedgehog signalling during cancer treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Rannar Airik

    Full Text Available Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1, of the endosomal sorting complex (RABEP2, ERC1, and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14 at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.

  2. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    Science.gov (United States)

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  3. Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC).

    Science.gov (United States)

    Zavala, Gabriela; Prieto, Catalina P; Villanueva, Andrea A; Palma, Verónica

    2017-09-29

    Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) show remarkable therapeutic potential to repair tissue upon injury via paracrine signaling by secreting diverse trophic factors that promote angiogenesis. However, the mechanisms and signaling pathways that regulate the induction of these specific factors are still mostly unknown. Emerging evidence suggests that Sonic hedgehog (SHH) plays a central role in angiogenesis and tissue maintenance. However, its contribution to the angiogenic potential of MSC has not been fully addressed. The aim of this work was to characterize the expression of the SHH pathway components in WJ-MSC primary cultures and to evaluate their angiogenic responsiveness to SHH signaling. Primary cell cultures obtained from human umbilical cords were treated with pharmacological modulators of the SHH pathway. We evaluated the modulation of diverse trophic factors in cell lysates, conditioned medium, and functional in vitro assays. In addition, we determined the angiogenic potential of the SHH pathway in the chicken chorioallantoic membrane, an in vivo model. Our results show that WJ-MSC express components of the canonical SHH pathway and are activated by its signaling. In fact, we provide evidence of basal autocrine/paracrine SHH signaling in WJ-MSC. SHH pathway stimulation promotes the secretion of angiogenic factors such as activin A, angiogenin, angiopoietin 1, granulocyte-macrophage colony-stimulating factor, matrix metallometallopeptidase -9, and urokinase-type plasminogen activator, enhancing the pro-angiogenic capabilities of WJ-MSC both in vitro and in vivo. WJ-MSC are a cell population responsive to SHH pathway stimulation. Basal SHH signaling is in part responsible for the angiogenic inductive properties of WJ-MSC. Overall, exogenous activation of the SHH pathway enhances the angiogenic properties of WJ-MSC, making this cell population an ideal target for treating tissue injury.

  4. Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus

    OpenAIRE

    Ponting Chris P; MacArthur Katie; Campbell Jennifer; Liu Yu-Ning; Tompson Stuart; Blair Helen J; Ruiz-Perez Victor L; Goodship Judith A

    2011-01-01

    Abstract Background Evc is essential for Indian Hedgehog (Hh) signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to Evc and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome. Results Bioinformatic analysis reveals that the Evc and Evc2 genes arose through a duplication event early in metazoan evolution and were subsequently lost in arthropods and nematodes. Here we demonstrate that Evc2 is essenti...

  5. A novel PEGylated liposome-encapsulated SANT75 suppresses tumor growth through inhibiting hedgehog signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yike Yuan

    Full Text Available The Hedgehog (Hh pathway inhibitors have shown great promise in cancer therapeutics. SANT75, a novel compound we previously designed to specially inhibit the Smoothened (SMO protein in the Hh pathway, has greater inhibitory potency than many of commonly used Hh inhibitors. However, preclinical studies of SANT75 revealed water insolubility and acute toxicity. To overcome these limitations, we developed a liposomal formulation of SANT75 and investigated its antitumor efficacy in vitro and in vivo. We encapsulated SANT75 into PEGylated liposome and the mean particle size distribution and zeta-potential (ZP of liposomes were optimized. Using the Shh-light2 cell and Gli-GFP or Flk-GFP transgenic reporter zebrafish, we confirmed that liposome-encapsulated SANT75 inhibited Hh activity with similar potency as the original SANT75. SANT75 encapsulated into liposome exerted strong tumor growth-inhibiting effects in vitro and in vivo. In addition, the liposomal SANT75 therapy efficiently improved the survival time of tumor-bearing mice without obvious systemic toxicity. The pathological morphology and immunohistochemistry staining revealed that liposomal SANT75 induced tumor cell apoptosis, inhibited tumor angiogenesis as assessed by CD31 and down-regulated the expression of Hh target protein Gli-1 in tumor tissues. Our findings suggest that liposomal formulated SANT75 has improved solubility and bioavailability and should be further developed as a drug candidate for treating tumors with abnormally high Hh activity.

  6. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  7. Prognostic value of hedgehog signaling pathway in digestive system cancers: A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Yihan; Peng, Qian; Jia, Hongyuan; Du, Xiao

    2016-01-01

    The Hedgehog (Hh) signaling pathway has recently been reported to be associated with the prognosis of digestive system cancers. However, the results are inconsistent. This study aimed to investigate the association between Hh pathway components and survival outcomes in patients with digestive system cancers. We conducted a comprehensive retrieval in PubMed, EMBASE and Cochrane library for relevant literatures until May 1st, 2015. The pooled hazard ratios (HRs) for overall survival (OS) and disease-free survival (DFS) with 95% confidence intervals (CIs) were calculated to clarify the prognostic value of Hh pathway components, including Shh, Gli1, Gli2, Smo and Ptch1. A total of 16 eligible articles with 3222 patients were included in the meta-analysis. Pooled HR suggested that over-expression of Shh and Gli1 were both associated with poor OS (HR = 1.87, 95% CI: 1.14-3.07 and HR = 1.96, 95% CI: 1.66-2.32, respectively) and DFS (HR = 2.37, 95% CI: 1.19-4.72 and HR = 2.18, 95% CI: 1.61-2.96, respectively). In addition, over-expression of Smo was associated with poor DFS (HR = 1.38, 95% CI: 1.08-1.75). This study reveals that over-expressed Hh pathway components, including Shh, Gli1 and Smo, are associated with poor prognosis in digestive system cancer patients. Hh signaling pathway may become a potential therapeutic target in digestive system cancers.

  8. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament.

    Science.gov (United States)

    Sugita, Daisuke; Yayama, Takafumi; Uchida, Kenzo; Kokubo, Yasuo; Nakajima, Hideaki; Yamagishi, Atsushi; Takeura, Naoto; Baba, Hisatoshi

    2013-10-15

    Histological, immunohistochemical, and immunoblot analyses of the expression of Indian hedgehog (Ihh) signaling in human cervical ossification of the posterior longitudinal ligament (OPLL). To examine the hypothesis that Ihh signaling in correlation with Sox9 and parathyroid-related peptide hormone (PTHrP) facilitates chondrocyte differentiation in enchondral ossification process in human cervical OPLL. In enchondral ossification, certain transcriptional factors regulate cell differentiation. OPLL is characterized by overexpression of these factors and disturbance of the normal cell differentiation process. Ihh signaling is essential for enchondral ossification, especially in chondrocyte hypertrophy. Samples of ossified ligaments were harvested from 45 patients who underwent anterior cervical decompressive surgery for symptomatic OPLL, and 6 control samples from patients with cervical spondylotic myelopathy/radiculopathy without OPLL. The harvested sections were stained with hematoxylin-eosin and toluidine blue, examined by transmission electron microscopy, and immunohistochemically stained for Ihh, PTHrP, Sox9, type X, XI collagen, and alkaline phosphatase. Immunoblot analysis was performed in cultured cells derived from the posterior longitudinal ligaments in the vicinity of the ossified plaque and examined for the expression of these factors. The ossification front in OPLL contained chondrocytes at various differentiation stages, including proliferating chondrocytes in fibrocartilaginous area, hypertrophic chondrocytes around the calcification front, and apoptotic chondrocytes near the ossified area. Immunoreactivity for Ihh and Sox9 was evident in proliferating chondrocytes and was strongly positive for PTHrP in hypertrophic chondrocytes. Mesenchymal cells with blood vessel formation were positive for Ihh, PTHrP, and Sox9. Cultured cells from OPLL tissues expressed significantly higher levels of Ihh, PTHrP, and Sox9 than those in non-OPLL cells. Our results

  9. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  10. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling.

    Science.gov (United States)

    Xing, Weirong; Cheng, Shaohong; Wergedal, Jon; Mohan, Subburaman

    2014-10-01

    Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. © 2014 American Society for Bone and Mineral Research.

  11. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    Science.gov (United States)

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  12. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia.

    Science.gov (United States)

    Zeng, Xian; Zhao, Hui; Li, Yubin; Fan, Jiajun; Sun, Yun; Wang, Shaofei; Wang, Ziyu; Song, Ping; Ju, Dianwen

    2015-01-01

    The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL(+) CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL(+) CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL(+) cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL(+) cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.

  13. The Exon Junction Complex and Srp54 Contribute to Hedgehog Signaling via ci RNA Splicing in Drosophila melanogaster.

    Science.gov (United States)

    Garcia-Garcia, Elisa; Little, Jamie C; Kalderon, Daniel

    2017-08-01

    Hedgehog (Hh) regulates the Cubitus interruptus (Ci) transcription factor in Drosophila melanogaster by activating full-length Ci-155 and blocking processing to the Ci-75 repressor. However, the interplay between the regulation of Ci-155 levels and activity, as well as processing-independent mechanisms that affect Ci-155 levels, have not been explored extensively. Here, we identified Mago Nashi (Mago) and Y14 core Exon Junction Complex (EJC) proteins, as well as the Srp54 splicing factor, as modifiers of Hh pathway activity under sensitized conditions. Mago inhibition reduced Hh pathway activity by altering the splicing pattern of ci to reduce Ci-155 levels. Srp54 inhibition also affected pathway activity by reducing ci RNA levels but additionally altered Ci-155 levels and activity independently of ci splicing. Further tests using ci transgenes and ci mutations confirmed evidence from studying the effects of Mago and Srp54 that relatively small changes in the level of Ci-155 primary translation product alter Hh pathway activity under a variety of sensitized conditions. We additionally used ci transgenes lacking intron sequences or the presumed translation initiation codon for an alternatively spliced ci RNA to provide further evidence that Mago acts principally by modulating the levels of the major ci RNA encoding Ci-155, and to show that ci introns are necessary to support the production of sufficient Ci-155 for robust Hh signaling and may also be important mediators of regulatory inputs. Copyright © 2017 by the Genetics Society of America.

  14. Msi2 Maintains Quiescent State of Hair Follicle Stem Cells by Directly Repressing the Hh Signaling Pathway.

    Science.gov (United States)

    Ma, Xianghui; Tian, Yuhua; Song, Yongli; Shi, Jianyun; Xu, Jiuzhi; Xiong, Kai; Li, Jia; Xu, Wenjie; Zhao, Yiqiang; Shuai, Jianwei; Chen, Lei; Plikus, Maksim V; Lengner, Christopher J; Ren, Fazheng; Xue, Lixiang; Yu, Zhengquan

    2017-05-01

    Hair follicles (HFs) undergo precisely regulated cycles of active regeneration (anagen), involution (catagen), and relative quiescence (telogen). Hair follicle stem cells (HFSCs) play important roles in regenerative cycling. Elucidating mechanisms that govern HFSC behavior can help uncover the underlying principles of hair development, hair growth disorders, and skin cancers. RNA-binding proteins of the Musashi (Msi) have been implicated in the biology of different stem cell types, yet they have not been studied in HFSCs. Here we utilized gain- and loss-of-function mouse models to demonstrate that forced MSI2 expression retards anagen entry and consequently delays hair growth, whereas loss of Msi2 enhances hair regrowth. Furthermore, our findings show that Msi2 maintains quiescent state of HFSCs in the process of the telogen-to-anagen transition. At the molecular level, our unbiased transcriptome profiling shows that Msi2 represses Hedgehog signaling activity and that Shh is its direct target in the hair follicle. Taken together, our findings reveal the importance of Msi2 in suppressing hair regeneration and maintaining HFSC quiescence. The previously unreported Msi2-Shh-Gli1 pathway adds to the growing understanding of the complex network governing cyclic hair growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit.

    Directory of Open Access Journals (Sweden)

    Phing Chian Chai

    Full Text Available In Drosophila postembryonic neuroblasts, transition in gene expression programs of a cascade of transcription factors (also known as the temporal series acts together with the asymmetric division machinery to generate diverse neurons with distinct identities and regulate the end of neuroblast proliferation. However, the underlying mechanism of how this "temporal series" acts during development remains unclear. Here, we show that Hh signaling in the postembryonic brain is temporally regulated; excess (earlier onset of Hh signaling causes premature neuroblast cell cycle exit and under-proliferation, whereas loss of Hh signaling causes delayed cell cycle exit and excess proliferation. Moreover, the Hh pathway functions downstream of Castor but upstream of Grainyhead, two components of the temporal series, to schedule neuroblast cell cycle exit. Interestingly, hh is likely a target of Castor. Hence, Hh signaling provides a link between the temporal series and the asymmetric division machinery in scheduling the end of neurogenesis.

  16. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    National Research Council Canada - National Science Library

    Cuiping Yang Wenlin Chen Yongbin Chen Jin Jiang

    2012-01-01

    .... Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal...

  17. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification.

    Science.gov (United States)

    Williams, Justin N; Kambrath, Anuradha Valiya; Patel, Roshni B; Kang, Kyung Shin; Mével, Elsa; Li, Yong; Cheng, Ying-Hua; Pucylowski, Austin J; Hassert, Mariah A; Voor, Michael J; Kacena, Melissa A; Thompson, William R; Warden, Stuart J; Burr, David B; Allen, Matthew R; Robling, Alexander G; Sankar, Uma

    2018-01-03

    Approximately ten percent of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days post-fracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell recruitment, chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609 treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609 treated animals with significantly higher torsional strength and stiffness by 28 days post-injury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones. This

  18. MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor.

    Science.gov (United States)

    Hoch, Lucile; Faure, Helene; Roudaut, Hermine; Schoenfelder, Angele; Mann, Andre; Girard, Nicolas; Bihannic, Laure; Ayrault, Olivier; Petricci, Elena; Taddei, Maurizio; Rognan, Didier; Ruat, Martial

    2015-05-01

    The Smoothened (Smo) receptor, a member of class F G protein-coupled receptors, is the main transducer of the Hedgehog (Hh) signaling pathway implicated in a wide range of developmental and adult processes. Smo is the target of anticancer drugs that bind to a long and narrow cavity in the 7-transmembrane (7TM) domain. X-ray structures of human Smo (hSmo) bound to several ligands have revealed 2 types of 7TM-directed antagonists: those binding mostly to extracellular loops (site 1, e.g., LY2940680) and those penetrating deeply in the 7TM cavity (site 2, e.g., SANT-1). Here we report the development of the acylguanidine MRT-92, which displays subnanomolar antagonist activity against Smo in various Hh cell-based assays. MRT-92 inhibits rodent cerebellar granule cell proliferation induced by Hh pathway activation through pharmacologic (half maximal inhibitory concentration [IC50] = 0.4 nM) or genetic manipulation. Using [(3)H]MRT-92 (Kd = 0.3 nM for hSmo), we created a comprehensive framework for the interaction of small molecule modulators with hSmo and for understanding chemoresistance linked to hSmo mutations. Guided by molecular docking and site-directed mutagenesis data, our work convincingly confirms that MRT-92 simultaneously recognized and occupied both sites 1 and 2. Our data demonstrate the existence of a third type of Smo antagonists, those entirely filling the Smo binding cavity from the upper extracellular part to the lower cytoplasmic-proximal subpocket. Our studies should help design novel potent Smo antagonists and more effective therapeutic strategies for treating Hh-linked cancers and associated chemoresistance. © FASEB.

  19. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  20. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  1. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  2. The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Flemban, Arwa [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom); Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382 (Saudi Arabia); Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom)

    2015-09-16

    The epithelium of the lactiferous ducts in the breast is comprised of luminal epithelial cells and underlying basal myoepithelial cells. The regulation of cell fate and transit of cells between these two cell types remains poorly understood. This relationship becomes of greater importance when studying the subtypes of epithelial breast carcinoma, which are categorized according to their expression of luminal or basal markers. The epithelial mesenchymal transition (EMT) is a pivotal event in tumor invasion. It is important to understand mechanisms that regulate this process, which bears relation to the normal dynamic of epithelial/basal phenotype regulation in the mammary gland. Understanding this process could provide answers for the regulation of EMT in breast cancer, and thereby identify potential targets for therapy. Evidence points towards a role for hedgehog signaling in breast tissue homeostasis and also in mammary neoplasia. This review examines our current understanding of role of the hedgehog-signaling (Hh) pathway in breast epithelial cells both during breast development and homeostasis and to assess the potential misappropriation of Hh signals in breast neoplasia, cancer stem cells and tumor metastasis via EMT.

  3. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylani, Samer Z. [Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Avenue South, ACC 414, Birmingham, AL 35233 (United States); Xu, Jianmin; Srivastava, Ritesh K. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, Bethesda (United States); Pressey, Joseph G. [Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Avenue South, ACC 414, Birmingham, AL 35233 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  4. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1–SUFU Interaction in PDA Cells

    Directory of Open Access Journals (Sweden)

    Xinshuo Wang

    2017-11-01

    Full Text Available Dysregulation of Hedgehog (Hh signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA. Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.

  5. Orm Proteins Integrate Multiple Signals to Maintain Sphingolipid Homeostasis*

    Science.gov (United States)

    Gururaj, Charulatha; Federman, Ross; Chang, Amy

    2013-01-01

    Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis. PMID:23737533

  6. Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.

    Science.gov (United States)

    Gururaj, Charulatha; Federman, Ross S; Federman, Ross; Chang, Amy

    2013-07-12

    Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis.

  7. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish

    Directory of Open Access Journals (Sweden)

    van Eeden Freek

    2010-04-01

    Full Text Available Abstract Background In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish. Results Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation. Conclusion Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling.

  8. Three Tctn proteins are functionally conserved in the regulation of neural tube patterning and Gli3 processing but not ciliogenesis and Hedgehog signaling in the mouse.

    Science.gov (United States)

    Wang, Chengbing; Li, Jia; Meng, Qing; Wang, Baolin

    2017-10-01

    Tctn1, Tctn2, and Tctn3 are membrane proteins that localize at the transition zone of primary cilia. Tctn1 and Tctn2 mutations have been reported in both humans and mice, but Tctn3 mutations have been reported only in humans. It is also not clear whether the three Tctn proteins are functionally conserved with respect to ciliogenesis and Hedgehog (Hh) signaling. In the present study, we report that loss of Tctn3 gene function in mice results in a decrease in ciliogenesis and Hh signaling. Consistent with this, Tctn3 mutant mice exhibit holoprosencephaly and randomized heart looping and lack the floor plate in the neural tube, the phenotypes similar to those of Tctn1 and Tctn2 mutants. We also show that overexpression of Tctn3, but not Tctn1 or Tctn2, can rescue ciliogenesis in Tctn3 mutant cells. Similarly, replacement of Tctn3 with Tctn1 or Tctn2 in the Tctn3 gene locus results in reduced ciliogenesis and Hh signaling, holoprosencephaly, and randomized heart looping. Surprisingly, however, the neural tube patterning and the proteolytic processing of Gli3 (a transcription regulator for Hh signaling) into a repressor, both of which are usually impaired in ciliary gene mutants, are normal. These results suggest that Tctn1, Tctn2, and Tctn3 are functionally divergent with respect to their role in ciliogenesis and Hh signaling but conserved in neural tube patterning and Gli3 processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways.

    Directory of Open Access Journals (Sweden)

    Ryo Matsuda

    2015-01-01

    Full Text Available The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh and WNT/wingless (wg signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF knirps (kni in the anterior dorsal trunk (DTa1. kni represses the expression of another TF spalt major (salm, making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors.

  10. EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia.

    Science.gov (United States)

    Pusapati, Ganesh V; Hughes, Casey E; Dorn, Karolin V; Zhang, Dapeng; Sugianto, Priscilla; Aravind, L; Rohatgi, Rajat

    2014-03-10

    The Hedgehog (Hh) pathway depends on primary cilia in vertebrates, but the signaling machinery within cilia remains incompletely defined. We report the identification of a complex between two ciliary proteins, EFCAB7 and IQCE, which positively regulates the Hh pathway. The EFCAB7-IQCE module anchors the EVC-EVC2 complex in a signaling microdomain at the base of cilia. EVC and EVC2 genes are mutated in Ellis van Creveld and Weyers syndromes, characterized by impaired Hh signaling in skeletal, cardiac, and orofacial tissues. EFCAB7 binds to a C-terminal disordered region in EVC2 that is deleted in Weyers patients. EFCAB7 depletion mimics the Weyers cellular phenotype-the mislocalization of EVC-EVC2 within cilia and impaired activation of the transcription factor GLI2. Evolutionary analysis suggests that emergence of these complexes might have been important for adaptation of an ancient organelle, the cilium, for an animal-specific signaling network. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Sonic Hedgehog Signaling Mediates Resveratrol to Increase Proliferation of Neural Stem Cells After Oxygen-Glucose Deprivation/Reoxygenation Injury in Vitro

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2015-03-01

    Full Text Available Background/Aims: There is interest in drugs and rehabilitation methods to enhance neurogenesis and improve neurological function after brain injury or degeneration. Resveratrol may enhance hippocampal neurogenesis and improve hippocampal atrophy in chronic fatigue mice and prenatally stressed rats. However, its effect and mechanism of neurogenesis after stroke is less well understood. Sonic hedgehog (Shh signaling is crucial for neurogenesis in the embryonic and adult brain, but relatively little is known about the role of Shh signaling in resveratrol-enhanced neurogenesis after stroke. Methods: Neural stem cells (NSCs before oxygen-glucose deprivation/reoxygenation (OGD/R in vitro were pretreated with resveratrol with or without cyclopamine. Survival and proliferation of NSCs was assessed by the CCK8 assay and BrdU immunocytochemical staining. The expressions and activity of signaling proteins and mRNAs were detected by immunocytochemistry, Western blotting, and RT-PCR analysis. Results: Resveratrol significantly increased NSCs survival and proliferation in a concentration-dependent manner after OGD/R injury in vitro. At the same time, the expression of Patched-1, Smoothened (Smo, and Gli-1 proteins and mRNAs was upregulated, and Gli-1 entered the nucleus, which was inhibited by cyclopamine, a Smo inhibitor. Conclusion: Shh signaling mediates resveratrol to increase NSCs proliferation after OGD/R injury in vitro.

  12. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  13. PKA-mediated Gli2 and Gli3 phosphorylation is inhibited by Hedgehog signaling in cilia and reduced in Talpid3 mutant.

    Science.gov (United States)

    Li, Jia; Wang, Chengbing; Wu, Chuanqing; Cao, Ting; Xu, Guoqiang; Meng, Qing; Wang, Baolin

    2017-09-01

    Hedgehog (Hh) signaling is thought to occur in primary cilia, but the molecular basis of Gli2 and Gli3 activation by Hh signaling in cilia is unknown. Similarly, how ciliary gene mutations result in reduced Gli3 processing that generates a repressor is also not clear. Here we show that Hh signaling inhibits Gli2 and Gli3 phosphorylation by protein kinase A (PKA) in cilia. The cilia related gene Talpid3 (Ta3) mutation results in the reduced processing and phosphorylation of Gli2 and Gli3. Interestingly, Ta3 interacts and colocalizes with PKA regulatory subunit PKARIIβ at centrioles in the cell. The centriolar localization and PKA binding regions are located in the N- and C-terminal regions of Ta3, respectively. PKARIIβ fails to localize at centrioles in some Ta3 mutant cells. Therefore, our study provides the direct evidence that Gli2 and Gli3 are dephosphorylated and activated in cilia and that impaired Gli2 and Gli3 processing in Ta3 mutant is at least in part due to a decrease in Gli2 and Gli3 phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Developmental hypothyroxinemia and hypothyroidism reduce proliferation of cerebellar granule neuron precursors in rat offspring by downregulation of the sonic hedgehog signaling pathway.

    Science.gov (United States)

    Wang, Yuan; Wang, Yi; Dong, Jing; Wei, Wei; Song, Binbin; Min, Hui; Yu, Ye; Lei, Xibing; Zhao, Ming; Teng, Weiping; Chen, Jie

    2014-06-01

    Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during development result in dysfunction of the central nervous system, affecting psychomotor and motor function, although the underlying mechanisms causing these alterations are still unclear. Therefore, our aim is to study the effects of developmental hypothyroxinemia, caused by mild ID, and developmental hypothyroidism, caused by severe ID or methimazole (MMZ), on the proliferation of cerebellar granule neuron precursors (CGNPs), an excellent experimental model of cerebellar development and function. The sonic hedgehog (Shh) signaling pathway is essential for CGNP proliferation, and as such, its activation is also investigated here. A maternal hypothyroxinemia model was established in Wistar rats by administrating a mild ID diet, and two maternal hypothyroidism models were developed either by administrating a severe ID diet or MMZ water. Our results showed that hypothyroxinemia and hypothyroidism reduced proliferation of CGNPs on postnatal day (PN) 7, PN14, and PN21. Accordingly, the mean intensity of proliferating cell nuclear antigen and Ki67 nuclear antigen immunofluorescence was reduced in the mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of the Shh signaling pathway on PN7, PN14, and PN21. Our study supports the hypothesis that developmental hypothyroxinemia induced by mild ID, and hypothyroidism induced by severe ID or MMZ, reduce the proliferation of CGNPs, which may be ascribed to the downregulation of the Shh signaling pathway.

  15. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    Science.gov (United States)

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  16. Sonic hedgehog and FGF8: inadequate signals for the differentiation of a dopamine phenotype in mouse and human neurons in culture.

    Science.gov (United States)

    Stull, N D; Iacovitti, L

    2001-05-01

    Embryonic mouse striatal neurons and human neurons derived from the NT2/hNT stem cell line can be induced, in culture, to express the dopaminergic (DA) biosynthetic enzyme tyrosine hydroxylase (TH). The novel expression of TH in these cells is signaled by the synergistic interaction of factors present in the media, such as fibroblast growth factor 1 (FGF1) and one of several possible coactivators [DA, phorbol 12-myristate 13-acetate (TPA), isobutylmethylxanthine (IBMX), or forskolin]. Similarly, in vivo, it has recently been reported that the expression of TH in the developing midbrain is mediated by the synergy of FGF8 and the patterning molecule sonic hedgehog (Shh). In the present study, we examined whether the putative in vivo DA differentiation factors can similarly signal TH in our in vitro cell systems. We found that FGF8 and Shh induced TH expression in fewer than 2% of NT2/hNT cells and less than 5% of striatal neurons. The latter could be amplified to as much as 30% by increasing the concentration of growth factor 10-fold or by the addition of other competent coactivators (IBMX/forskolin, TPA, and DA). Additivity/inhibitor experiments indicated that FGF8 worked through traditional tyrosine kinase-initiated MAP/MEK signaling pathways. However, the Shh signal transduction cascade remained unclear. These data suggest that cues effective in vivo may be less successful in promoting the differentiation of a DA phenotype in mouse and human neurons in culture. Thus, our ability to generate DA neurons from different cell lines, for use in the treatment of Parkinson's disease, will depend on the identification of appropriate differentiation signals for each cell type under investigation. Copyright 2001 Academic Press.

  17. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  18. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    Science.gov (United States)

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    Science.gov (United States)

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  20. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling

    Science.gov (United States)

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T.; Bok, Jinwoong; Ko, Hyuk Wan

    2014-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome. PMID:24853502

  1. Expression patterns of key Sonic Hedgehog signaling pathway components in the developing and adult mouse midbrain and in the MN9D cell line.

    Science.gov (United States)

    Feuerstein, Melanie; Chleilat, Enaam; Khakipoor, Shokoufeh; Michailidis, Konstantinos; Ophoven, Christian; Roussa, Eleni

    2017-11-01

    The temporal dynamic expression of Sonic Hedgehog (SHH) and signaling during early midbrain dopaminergic (mDA) neuron development is one of the key players in establishing mDA progenitor diversity. However, whether SHH signaling is also required during later developmental stages and in mature mDA neurons is less understood. We study the expression of SHH receptors Ptch1 and Gas1 (growth arrest-specific 1) and of the transcription factors Gli1, Gli2 and Gli3 in mouse midbrain during embryonic development [embryonic day (E) 12.5 onwards)], in newborn and adult mice using in situ hybridization and immunohistochemistry. Moreover, we examine the expression and regulation of dopaminergic neuronal progenitor markers, midbrain dopaminergic neuronal markers and markers of the SHH signaling pathway in undifferentiated and butyric acid-treated (differentiated) MN9D cells in the presence or absence of exogenous SHH in vitro by RT-PCR, immunoblotting and immunocytochemistry. Gli1 was expressed in the lateral mesencephalic domains, whereas Gli2 and Gli3 were expressed dorsolaterally and complemented by ventrolateral expression of Ptch1. Co-localization with tyrosine hydroxylase could not be observed. GAS1 was exclusively expressed in the dorsal mesencephalon at E11.5 and co-localized with Ki67. In contrast, MN9D cells expressed all the genes investigated and treatment of the cells with butyric acid significantly upregulated their expression. The results suggest that SHH is only indirectly involved in the differentiation and survival of mDA neurons and that the MN9D cell line is a valuable model for investigating early development but not the differentiation and survival of mDA neurons.

  2. The pleiotropic mouse phenotype extra-toes spotting is caused by translation initiation factor Eif3c mutations and is associated with disrupted sonic hedgehog signaling

    Science.gov (United States)

    Gildea, Derek E.; Luetkemeier, Erin S.; Bao, Xiaozhong; Loftus, Stacie K.; Mackem, Susan; Yang, Yingzi; Pavan, William J.; Biesecker, Leslie G.

    2011-01-01

    Polydactyly is a common malformation and can be an isolated anomaly or part of a pleiotropic syndrome. The elucidation of the mutated genes that cause polydactyly provides insight into limb development pathways. The extra-toes spotting (Xs) mouse phenotype manifests anterior polydactyly, predominantly in the forelimbs, with ventral hypopigmenation. The mapping of XsJ to chromosome 7 was confirmed, and the interval was narrowed to 322 kb using intersubspecific crosses. Two mutations were identified in eukaryotic translation initiation factor 3 subunit C (Eif3c). An Eif3c c.907C>T mutation (p.Arg303X) was identified in XsJ, and a c.1702_1758del mutation (p.Leu568_Leu586del) was identified in extra-toes spotting-like (Xsl), an allele of XsJ. The effect of the XsJ mutation on the SHH/GLI3 pathway was analyzed by in situ hybridization analysis, and we show that Xs mouse embryos have ectopic Shh and Ptch1 expression in the anterior limb. In addition, anterior limb buds show aberrant Gli3 processing, consistent with perturbed SHH/GLI3 signaling. Based on the occurrence of Eif3c mutations in 2 Xs lines and haploinsufficiency of the XsJ allele, we conclude that the Xs phenotype is caused by a mutation in Eif3c, a component of the translation initiation complex, and that the phenotype is associated with aberrant SHH/GLI3 signaling.—Gildea, D. E., Luetkemeier, E. S., Bao, X., Loftus, S. K., Mackem, S., Yang, Y., Pavan, W. J., Biesecker, L. G. The pleiotropic mouse phenotype extra-toes spotting is caused by translation initiation factor Eif3c mutations and is associated with disrupted sonic hedgehog signaling. PMID:21292980

  3. LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway.

    Science.gov (United States)

    Zhou, Mingli; Hou, Yixuan; Yang, Guanglun; Zhang, Hailong; Tu, Gang; Du, Yan-e; Wen, Siyang; Xu, Liyun; Tang, Xi; Tang, Shifu; Yang, Li; Cui, Xiaojiang; Liu, Manran

    2016-01-01

    Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewal capacity and limitless proliferative potential as well as high invasion and migration capacity. These cells are commonly associated with epithelial-mesenchymal transition (EMT), which is also critical for tumor metastasis. Recent studies illustrate a direct link between EMT and stemness of cancer cells. Long non-coding RNAs (lncRNAs) have emerged as important new players in the regulation of multiple cellular processes in various diseases. To date, the role of lncRNAs in EMT-associated CSC stemness acquisition and maintenance remains unclear. In this study, we discovered that a set of lncRNAs were dysregulated in Twist-positive mammosphere cells using lncRNA microarray analysis. Multiple lncRNAs-associated canonical signaling pathways were identified via bioinformatics analysis. Especially, the Shh-GLI1 pathway associated lncRNA-Hh, transcriptionally regulated by Twist, directly targets GAS1 to stimulate the activation of hedgehog signaling (Hh). The activated Hh increases GLI1 expression, and enhances the expression of SOX2 and OCT4 to play a regulatory role in CSC maintenance. Thus, the mammosphere-formation efficiency (MFE) and the self-renewal capacity in vitro, and oncogenicity in vivo in Twist-positive breast cancer cells are elevated. lncRNA-Hh silence in Twist-positive breast cells attenuates the activated Shh-GLI1 signaling and decreases the CSC-associated SOX and OCT4 levels, thus reduces the MFE and tumorigenesis of transplanted tumor. Our results reveal that lncRNAs function as an important regulator endowing Twist-induced EMT cells to gain the CSC-like stemness properties. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  4. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    Science.gov (United States)

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  5. Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise.

    Science.gov (United States)

    Luo, Jinhong; Goerlitz, Holger R; Brumm, Henrik; Wiegrebe, Lutz

    2015-12-22

    Short-term adjustments of signal characteristics allow animals to maintain reliable communication in noise. Noise-dependent vocal plasticity often involves simultaneous changes in multiple parameters. Here, we quantified for the first time the relative contributions of signal amplitude, duration, and redundancy for improving signal detectability in noise. To this end, we used a combination of behavioural experiments on pale spear-nosed bats (Phyllostomus discolor) and signal detection models. In response to increasing noise levels, all bats raised the amplitude of their echolocation calls by 1.8-7.9 dB (the Lombard effect). Bats also increased signal duration by 13%-85%, corresponding to an increase in detectability of 1.0-5.3 dB. Finally, in some noise conditions, bats increased signal redundancy by producing more call groups. Assuming optimal cognitive integration, this could result in a further detectability improvement by up to 4 dB. Our data show that while the main improvement in signal detectability was due to the Lombard effect, increasing signal duration and redundancy can also contribute markedly to improving signal detectability. Overall, our findings demonstrate that the observed adjustments of signal parameters in noise are matched to how these parameters are processed in the receiver's sensory system, thereby facilitating signal transmission in fluctuating environments.

  6. Outfoxing the Hedgehog

    Science.gov (United States)

    Barbieri, Richard

    2011-01-01

    Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…

  7. Constitutive IFNα/β signaling maintains expression of signaling intermediaries for efficient cytokine responses

    Science.gov (United States)

    Messina, Nicole L.; Clarke, Christopher J. P.; Johnstone, Ricky W.

    2016-01-01

    ABSTRACT Interferons (IFNs) are a family of immunoregulatory cytokines with important roles in anti-viral and anti-tumor responses. Type I and II IFNs bind distinct receptors and are associated with different stages of the immune response. There is however, considerable crosstalk between these two cytokines with enhancement of IFNγ responses following IFNα/β priming and loss of IFNα/β receptor (IFNAR) resulting in diminished IFNγ responses. In this study, we sought to define the mechanism of crosstalk between the type I and II IFNs. Our previous reports demonstrated reduced expression of the canonically activated transcription factor signal transducer and activator of transcription (STAT)1, in cells lacking the IFNAR α chain (IFNAR1). Therefore, we used microarray analysis to determine whether reconstitution of STAT1 in IFNAR1-deficient cells was sufficient to restore IFNγ responses. We identified several biological pathways, including the MHC class I antigen presentation pathway, in which STAT1 reconstitution was able to significantly rescue IFNγ-mediated gene regulation in Ifnar1−/− cells. Notably, we also found that in addition to low basal expression of STAT1, cells lacking the IFNAR1 also had aberrant expression of multiple other transcription factors and signaling intermediaries. The studies described herein demonstrate that basal and regulated expression of signaling intermediaries is a mechanism for crosstalk between cytokines including type I and II IFNs. PMID:27512617

  8. Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus

    Directory of Open Access Journals (Sweden)

    Ponting Chris P

    2011-02-01

    Full Text Available Abstract Background Evc is essential for Indian Hedgehog (Hh signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to Evc and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome. Results Bioinformatic analysis reveals that the Evc and Evc2 genes arose through a duplication event early in metazoan evolution and were subsequently lost in arthropods and nematodes. Here we demonstrate that Evc2 is essential for Hh pathway activation in response to the Smo agonist purmorphamine. A yeast two-hybrid screen using Evc as bait identified Evc2 as an Evc binding partner and we confirmed the interaction by immunoprecipitation. We developed anti-Evc2 antibodies and show that Evc2 and Evc co-localize at the basal body and also on primary cilia. In transfected cells, basal body and cilia localization is observed when Evc and Evc2 constructs are co-transfected but not when either construct is transfected individually. We show that Evc and Evc2 are cilia transmembrane proteins, the C-terminus for both being intracellular and Evc2, but not Evc, having an extracellular portion. Furthermore, Evc is absent at the basal body in Evc2 null cells. Using Western blots of cytoplasmic and nuclear protein, we also demonstrate that full length Evc2 but not Evc, is located in the nucleus. Conclusions We demonstrate for the first time that Evc2 is a positive regulator of the Hh signalling pathway and that it is located at the basal body of primary cilia. We show that the presence of Evc and Evc2 at the basal body and cilia membrane is co-dependent. In addition, Evc2, but not Evc, is present in the cell nucleus suggesting movement of Evc2 between the cilium and nucleus.

  9. Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus.

    Science.gov (United States)

    Blair, Helen J; Tompson, Stuart; Liu, Yu-Ning; Campbell, Jennifer; MacArthur, Katie; Ponting, Chris P; Ruiz-Perez, Victor L; Goodship, Judith A

    2011-02-28

    Evc is essential for Indian Hedgehog (Hh) signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to Evc and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome. Bioinformatic analysis reveals that the Evc and Evc2 genes arose through a duplication event early in metazoan evolution and were subsequently lost in arthropods and nematodes. Here we demonstrate that Evc2 is essential for Hh pathway activation in response to the Smo agonist purmorphamine. A yeast two-hybrid screen using Evc as bait identified Evc2 as an Evc binding partner and we confirmed the interaction by immunoprecipitation. We developed anti-Evc2 antibodies and show that Evc2 and Evc co-localize at the basal body and also on primary cilia. In transfected cells, basal body and cilia localization is observed when Evc and Evc2 constructs are co-transfected but not when either construct is transfected individually. We show that Evc and Evc2 are cilia transmembrane proteins, the C-terminus for both being intracellular and Evc2, but not Evc, having an extracellular portion. Furthermore, Evc is absent at the basal body in Evc2 null cells. Using Western blots of cytoplasmic and nuclear protein, we also demonstrate that full length Evc2 but not Evc, is located in the nucleus. We demonstrate for the first time that Evc2 is a positive regulator of the Hh signalling pathway and that it is located at the basal body of primary cilia. We show that the presence of Evc and Evc2 at the basal body and cilia membrane is co-dependent. In addition, Evc2, but not Evc, is present in the cell nucleus suggesting movement of Evc2 between the cilium and nucleus.

  10. Hormonal pleiotropy helps maintain queen signal honesty in a highly eusocial wasp.

    Science.gov (United States)

    Oliveira, Ricardo Caliari; Vollet-Neto, Ayrton; Akemi Oi, Cintia; van Zweden, Jelle S; Nascimento, Fabio; Sullivan Brent, Colin; Wenseleers, Tom

    2017-05-10

    In insect societies, both queens and workers produce chemicals that reliably signal caste membership and reproductive status. The mechanisms that help to maintain the honesty of such queen and fertility signals, however, remain poorly studied. Here we test if queen signal honesty could be based on the shared endocrine control of queen fertility and the production of specific signals. In support of this "hormonal pleiotropy" hypothesis, we find that in the common wasp, application of methoprene (a juveline hormone analogue) caused workers to acquire a queen-like cuticular hydrocarbon profile, resulting in the overproduction of known queen pheromones as well as some compounds typically linked to worker fertility. By contrast, administration of precocene-I (a JH inhibitor) had a tendency to have the opposite effect. Furthermore, a clear gonadotropic effect of JH in queens was suggested by the fact that circulating levels of JH were ca. 2 orders of magnitude higher in queens than those in workers and virgin, non-egg-laying queens, even if methoprene or precocene treatment did not affect the ovary development of workers. Overall, these results suggest that queen signal honesty in this system is maintained by queen fertility and queen signal production being under shared endocrine control.

  11. mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling.

    Science.gov (United States)

    Masui, Kenta; Shibata, Noriyuki; Cavenee, Webster K; Mischel, Paul S

    2016-09-01

    Mutations in growth factor receptor signaling pathways are common in cancer cells, including the highly lethal brain tumor glioblastoma (GBM) where they drive tumor growth through mechanisms including altering the uptake and utilization of nutrients. However, the impact of changes in micro-environmental nutrient levels on oncogenic signaling, tumor growth, and drug resistance is not well understood. We recently tested the hypothesis that external nutrients promote GBM growth and treatment resistance by maintaining the activity of mechanistic target of rapamycin complex 2 (mTORC2), a critical intermediate of growth factor receptor signaling, suggesting that altered cellular metabolism is not only a consequence of oncogenic signaling, but also potentially an important determinant of its activity. Here, we describe the studies that corroborate the hypothesis and propose others that derive from them. Notably, this line of reasoning raises the possibility that systemic metabolism may contribute to responsiveness to targeted cancer therapies. © 2016 WILEY Periodicals, Inc.

  12. Cardiac interference reduction in diaphragmatic MMG signals during a Maintained Inspiratory Pressure Test.

    Science.gov (United States)

    Sarlabous, L; Torres, A; Fiz, J A; Jané, R

    2013-01-01

    A recursive least square (RLS) adaptive filtering algorithm for reduction of cardiac interference in diaphragmatic mecanomyographic (MMGdi) signals is addressed in this paper. MMGdi signals were acquired with a capacitive accelerometer placed between 7th and 8th intercostal spaces, on the right anterior axillary line, during a maintained inspiratory pressure test. Subjects were asked to maintain a constant inspiratory pressure with a mouthpiece connected to a closed tube (without breathing). This maneuver was repeated at five different contraction efforts: apnea (no effort), 20 cmH2O, 40 cmH2O, 60 cmH2O and maximum voluntary contraction. An adaptive noise canceller (ANC) using the RLS algorithm was applied on the MMGdi signals. To evaluate the behavior of the ANC, the MMGdi signals were analyzed in two segments: with and without cardiac interference (WCI and NCI, respectively). In both segments it was analyzed the power spectral density (PSD), and the ARV and RMS amplitude parameters for each contraction effort. With the proposed ANC algorithm the amplitude parameters of the WCI segments were reduced to a level similar to the one of the NCI segments. The obtained results showed that ANC using the RLS algorithm allows to significantly reduce the cardiac interference in MMGdi signals.

  13. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Sarah C Goetz

    Full Text Available The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  14. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Science.gov (United States)

    Goetz, Sarah C; Bangs, Fiona; Barrington, Chloe L; Katsanis, Nicholas; Anderson, Kathryn V

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  15. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness

    Science.gov (United States)

    Goodnough, L. Henry; DiNuoscio, Gregg J.; Atit, Radhika P.

    2015-01-01

    Background Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β-catenin signaling-dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β-catenin signaling pathway and is expressed in cranial bone and dermal lineages. Results Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β-catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. Conclusions Thus, Twist1, a target of canonical Wnt/β-catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation. PMID:26677825

  16. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  17. A Novel Strategy to Inhibit Hedgehog Signaling and Control Growth of Androgen-Independent Prostate Cancer Cells

    Science.gov (United States)

    2013-12-01

    approach is the slow image acquisition time and measurement of final spheroid size. Time lapse photography is difficult.The approach works for all the...mediated signaling: a novel therapeutic paradigm for androgen independent prostate cancer. Apoptosis, 2010. 15(2): p. 153-61. 4. Graham, T.R., K.C...Histopathol, 2008. 23(10): p. 1279-90. 10. Paule, B., et al., The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic

  18. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p-aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings.

    Science.gov (United States)

    Li, Wenlu; Sun, Qinsheng; Song, Lu; Gao, Chunmei; Liu, Feng; Chen, Yuzong; Jiang, Yuyang

    2017-12-01

    PI3K/Akt/mTOR and hedgehog (Hh) signalings are two important pathways in breast cancer, which are usually connected with the drug resistance and cancer migration. Many studies indicated that PI3K/Akt/mTOR inhibitors and Hh inhibitors displayed synergistic effects, and the combination of the two signaling drugs could delay drug resistance and inhibit cancer migration in breast cancer. Therefore, the development of molecules simultaneously inhibiting these two pathways is urgent needed. Based on the structures of PI3K inhibitor buparlisib and Hh inhibitor vismodegib, a series of hybrid structures were designed and synthesized utilizing rational drug design and computer-based drug design. Several compounds displayed excellent antiproliferative activities against several breast cancer cell lines, including triple-negative breast cancer (TNBC) MDA-MB-231 cell. Further mechanistic studies demonstrated that the representative compound 9i could inhibit both PI3K/Akt/mTOR and hedgehog (Hh) signalings by inhibiting the phosphorylation of S6K and Akt as well as decreasing the SAG elevated expression of Gli1. Compound 9i could also induce apoptosis remarkably in T47D and MDA-MB-231 cells. In the transwell assay, 9i showed significant inhibition on the migration of MDA-MB-231. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling.

    Directory of Open Access Journals (Sweden)

    Jing Hu

    Full Text Available An improved understanding of the pluripotency maintenance of embryonic stem (ES cells is important for investigations of early embryo development and for cell replacement therapy, but the mechanism behind pluripotency is still incompletely understood. Recent findings show that zinc, an essential trace element in humans, is critically involved in regulating various signaling pathways and genes expression. However, its role in ES cell fate determination remains to be further explored. Here we showed that 2μM zinc chloride (ZnCl2 transiently maintained mouse ES cell pluripotency in vitro. The cultured mouse ES cells remained undifferentiated under 2μM ZnCl2 treatment in leukemia inhibitory factor (LIF withdrawal, retinoic acid (RA or embryoid bodies (EBs differentiation assays. In addition, ZnCl2 increased pluripotency genes expression and inhibited differentiation genes expression. Further mechanistic studies revealed that ZnCl2 transiently activated signal transducers and activators of transcription 3 (Stat3 signaling through promoting Stat3 phosphorylation. Inhibition of Stat3 signaling abrogated the effects of ZnCl2 on mouse ES cell pluripotency. Taken together, this study demonstrated a critical role of zinc in the pluripotency maintenance of mouse ES cells, as well as an important regulator of Stat3 signaling.

  20. TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation

    Directory of Open Access Journals (Sweden)

    Brad J. Niles

    2014-02-01

    Full Text Available Reactive oxygen species (ROS are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.

  1. Inhibition of sonic hedgehog signaling blocks cell migration and growth but induces apoptosis via suppression of FOXQ1 in natural killer/T-cell lymphoma.

    Science.gov (United States)

    Liu, Pingyi; Chen, Lingling

    2018-01-01

    The present study explored the effects of Forkhead box Q1 (FOXQ1) on cell proliferation, cell cycle and apoptosis via the Sonic hedgehog (Shh) pathway in Natural killer/T-cell lymphoma (NKTCL). Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect FOXQ1 expression in 117 NKTCL patients and 120 healthy controls. Additionally, FOXQ1 expression in NKTCL cell lines (HANK-1, NK-92, SNK-6, SNT-8 and YT) was determined by western blotting and qRT-PCR. SNK-6 cells were transfected with FOXQ1-shRNA or Shh pathway inhibitor Cyclopamine/recombinant protein Shh. Cell counting kit-8 (CCK-8) and 5-bromo-2-deoxy-uridine (BrdU) incorporation assays were conducted to detect cell proliferation, flow cytometry was used to determine the cell cycle and cell apoptosis, and western blotting was used to detect protein expression. FOXQ1 expression was higher in NKTCL patients than in healthy controls, which was related to Ann Arbor stage, bone marrow involvement and the 5year survival rate in NKTCL patients. Moreover, FOXQ1 expression, pathological type, Ann Arbor stage, B symptom and bone marrow involvement were independent risk factors in NKTCL. Shh pathway-related proteins were down-regulated after transfection of SNK-6 cells with FOXQ1-shRNA. Additionally, SNK-6 cell proliferation was greatly reduced, the cell cycle was blocked at the G0/G1 phase, and the expression of CyclinD1 and CyclinE was markedly decreased, while an increase in cell apoptosis with elevated Bcl-2-associated X protein (Bax) and Caspase-3 and reduced B-cell lymphoma/leukemia-2 (Bcl-2) were also observed. However, no significant alterations were observed between the FOXQ1-shRNA+Shh and Blank groups. The inhibition of FOXQ1 restricted NKTCL cell proliferation and growth but induced apoptosis via blocking the Shh signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway.

    Science.gov (United States)

    Grisanti, Laura; Revenkova, Ekaterina; Gordon, Ronald E; Iomini, Carlo

    2016-06-15

    Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling. © 2016. Published by The Company of Biologists Ltd.

  3. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation.

    Science.gov (United States)

    Siegert, M E; Römer, H; Hartbauer, M

    2013-12-15

    We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of -8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the 'novelty detector'.

  4. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition

    Science.gov (United States)

    Brown, Wells S.; Akhand, Saeed Salehin; Wendt, Michael K.

    2016-01-01

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype. PMID:27825137

  5. Non-Canonical Hh Signaling in Cancer-Current Understanding and Future Directions.

    Science.gov (United States)

    Gu, Dongsheng; Xie, Jingwu

    2015-08-27

    As a major regulatory pathway for embryonic development and tissue patterning, hedgehog signaling is not active in most adult tissues, but is reactivated in a number of human cancer types. A major milestone in hedgehog signaling in cancer is the Food and Drug Administration (FDA) approval of a smoothened inhibitor Vismodegib for treatment of basal cell carcinomas. Vismodegib can block ligand-mediated hedgehog signaling, but numerous additional clinical trials have failed to show significant improvements in cancer patients. Amounting evidence indicate that ligand-independent hedgehog signaling plays an essential role in cancer. Ligand-independent hedgehog signaling, also named non-canonical hedgehog signaling, generally is not sensitive to smoothened inhibitors. What we know about non-canonical hedgehog signaling in cancer, and how should we prevent its activation? In this review, we will summarize recent development of non-canonical hedgehog signaling in cancer, and will discuss potential ways to prevent this type of hedgehog signaling.

  6. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.

    Science.gov (United States)

    Xu, Tao; Zhang, Honglai; Park, Sung-Soo; Venneti, Sriram; Kuick, Rork; Ha, Kimberly; Michael, Lowell Evan; Santi, Mariarita; Uchida, Chiyoko; Uchida, Takafumi; Srinivasan, Ashok; Olson, James M; Dlugosz, Andrzej A; Camelo-Piragua, Sandra; Rual, Jean-François

    2017-03-01

    Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Sonic hedgehog functions as a mitogen during bell stage of odontogenesis.

    Science.gov (United States)

    Wu, Changshan; Shimo, Tsuyoshi; Liu, Mufei; Pacifici, Maurizio; Koyama, Eiki

    2003-01-01

    Epithelial-mesenchymal interactions are required for tissue growth and gene expression patterns during odontogenesis. We showed previously that Sonic hedgehog (SHH) is detectable in both dental epithelium and mesenchyme, while Shh transcripts are present in dental epithelium only, suggesting that SHH functions as an autocrine signal in epithelium and a paracrine signal in mesenchyme. This hypothesis was tested here. We found by in situ hybridization that the SHH autocrine receptor Ptch-2 is indeed expressed in dental epithelium whereas the paracrine receptor Ptc is expressed in mesenchyme. Bovine bell stage tooth germs were microsurgically separated into epithelial and mesenchymal portions and the resulting tissue fragments were organ-cultured. In epithelium fragments cultured by themselves, gene expression of Shh and Gli-1 (a putative transcriptional mediator of hedgehog signaling) was significantly decreased in both inner dental epithelium and stratum intermedium layers; this was accompanied by a sharp drop in epithelial cell proliferation. However, in companion control tissue fragments containing both epithelium and mesenchyme, Shh and Gli-1 expression as well as cell proliferation were maintained. Treatment of dental epithelial or mesenchymal cell populations in monolayer cultures with exogenous recombinant SHH stimulated cell proliferation. Together, the data provide clear evidence that Shh is synthesized by dental epithelium, reaches the underlying mesenchyme, and appears to act as an autocrine mitogen for epithelial cells and a paracrine mitogen for mesenchymal cells, thus exerting crucial functions in tooth germ growth, morphogenesis, and tissue-tissue interactions of bell stage of odontogenesis.

  8. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  9. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution.

    Science.gov (United States)

    Matus, David Q; Magie, Craig R; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H

    2008-01-15

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in

  10. Bmp signaling maintains a mesoderm progenitor cell state in the mouse tailbud.

    Science.gov (United States)

    Sharma, Richa; Shafer, Maxwell E R; Bareke, Eric; Tremblay, Mathieu; Majewski, Jacek; Bouchard, Maxime

    2017-08-15

    Caudal somites are generated from a pool of progenitor cells located in the tailbud region. These progenitor cells form the presomitic mesoderm that gradually differentiates into somites under the action of the segmentation clock. The signals responsible for tailbud mesoderm progenitor pool maintenance during axial elongation are still elusive. Here, we show that Bmp signaling is sufficient to activate the entire mesoderm progenitor gene signature in primary cultures of caudal mesoderm cells. Bmp signaling acts through the key regulatory genes brachyury (T) and Nkx1-2 and contributes to the activation of several other regulators of the mesoderm progenitor gene network. In the absence of Bmp signaling, tailbud mesoderm progenitor cells acquire aberrant gene expression signatures of the heart, blood, muscle and skeletal embryonic lineages. Treatment of embryos with the Bmp inhibitor noggin confirmed the requirement for Bmp signaling for normal T expression and the prevention of abnormal lineage marker activation. Together, these results identify Bmp signaling as a non-cell-autonomous signal necessary for mesoderm progenitor cell homeostasis. © 2017. Published by The Company of Biologists Ltd.

  11. What maintains signal honesty in animal colour displays used in mate choice?

    Science.gov (United States)

    Weaver, Ryan J; Koch, Rebecca E; Hill, Geoffrey E

    2017-07-05

    Many of the colour displays of animals are proposed to have evolved in response to female mate choice for honest signals of quality, but such honest signalling requires mechanisms to prevent cheating. The most widely accepted and cited mechanisms for ensuring signal honesty are based on the costly signalling hypothesis, which posits that costs associated with ornamentation prevent low-quality males from being highly ornamented. Alternatively, by the index hypothesis, honesty can be achieved via cost-free mechanisms if ornament production is causally linked to core physiological pathways. In this essay, we review how a costly signalling framework has shaped empirical research in mate choice for colourful male ornaments and emphasize that alternative interpretations are plausible under an index signalling framework. We discuss the challenges in both empirically testing and distinguishing between the two hypotheses, noting that they need not be mutually exclusive. Finally, we advocate for a comprehensive approach to studies of colour signals that includes the explicit consideration of cost-free mechanisms for honesty.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  12. Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development

    Science.gov (United States)

    Barsoum, Ivraym Boshra

    2009-01-01

    Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…

  13. Pygopus Maintains Heart Function in Aging Drosophila Independently of Canonical Wnt Signaling

    Science.gov (United States)

    Tang, Min; Yuan, Wuzhou; Fan, Xiongwei; Liu, Ming; Bodmer, Rolf; Ocorr, Karen; Wu, Xiushan

    2013-01-01

    Background Heart function declines with age, but the genetic factors underlying such deterioration are largely unknown. Wnt signaling is known to play a role in heart development, but it has not been shown to be important in adult heart function. We have investigated the nuclear adapter protein encoded by pygopus (pygo), which mediates canonical Wnt signaling, for roles in aging-related cardiac dysfunction. Methods and Results Using the Drosophila heart model, we show that cardiac-specific pygo knockdown in adult flies causes a significant (4- to 5-fold) increase in cardiac arrhythmias (Pfunctional and morphological alterations were ameliorated by pygo overexpression. Unexpectedly, knockdown of 2 other Wnt signaling components, β-cat/armadillo or TCF/pangolin, had relatively milder effects on cardiac function. Double-heterozygous combinations of mutants for pygo and canonical Wnt signaling components had no additional effect on heart function over pygo heterozygotes alone. However, double knockdown of pygo and Ca2+/calmodulin-dependent protein kinase II caused additional arrhythmia compared with pygo knockdown alone, suggesting that some of the effects of pygo are mediated by Ca2+ signaling. In the isoproterenol-induced hypertrophic mouse model, we show that Pygo1 protein levels are increased. Conclusions Our data indicate that Pygo plays a critical role in adult heart function that is Wnt signaling independent and is likely conserved in mammals. PMID:24046329

  14. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells.

    Directory of Open Access Journals (Sweden)

    Lina E Tze

    2005-03-01

    Full Text Available In developing B lymphocytes, a successful V(DJ heavy chain (HC immunoglobulin (Ig rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking "back-differentiation" of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms.

  15. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Anna Engler

    2018-01-01

    Full Text Available Neurogenesis continues in the ventricular-subventricular zone (V-SVZ of the adult forebrain from quiescent neural stem cells (NSCs. V-SVZ NSCs are a reservoir for new olfactory bulb (OB neurons that migrate through the rostral migratory stream (RMS. To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.

  16. Protecting the hedgerow: p53 and hedgehog pathway interactions.

    Science.gov (United States)

    Ho, Louisa; Alman, Benjamin

    2010-02-01

    A common environment for the Hedgehog (Subfamily: erinaceinae) is a row of shrubs and trees often used on farms for enclosing or separating fields, called a hedgerow. Maintenance of a continuous shrub border is important for shielding crops from weather damage, but also provides an ideal protective habitat for the hedgehog. Similar to its mammalian counterpart, the Hedgehog (Hh) signalling pathway requires a controlled environment to regulate proper functioning of the cell. When allowed to run wild, constitutive activation of the Hh pathway results in tumorigenesis in different tissues types, including brain, skin and cartilage. With an additional loss of p53 tumor suppressor activity, an increase in tumor incidence, size and metastasis have been observed. p53 has a number of functions that can suppress tumor formation and growth in most, if not all Hh-related cancers, such as the inhibition of cell cycle progression and cell survival. Furthermore, increasing evidence of an interaction between p53 and Hedgehog signalling pathways suggests a critical role for the tumor suppressor activity of p53 in "protecting the hedgerow".

  17. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis.

    Science.gov (United States)

    Stopper, Geffrey F; Richards-Hrdlicka, Kathryn L; Wagner, Günter P

    2016-03-01

    The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Helping in food-deceptive orchids? A possible new mechanism maintaining polymorphism of floral signals.

    Science.gov (United States)

    Dormont, Laurent; Delle-Vedove, Roxane; Bessière, Jean-Marie; Key, Martine Hossaert-Mc; Schatz, Bertrand

    2010-05-01

    Why different colour morphs have evolved in flowering plants, and how they are maintained in populations, have long intrigued ecologists. The impact of variation in floral colour and odour (the two are frequently associated) on reproductive success remains poorly understood. In European rewardless orchids, many species occasionally show rare white-flowered individuals within populations of the common-coloured morph. In a recent study, we found that in Orchis mascula the presence of rare white-flowered morphs significantly increased the reproductive success (from 6% to 27%) of purple-flowered plants, while success of the white morph remained low. This surprising result appears due solely to floral color polymorphism, which in this species is not associated with odour polymorphism. We hypothesize that colour variation plays the key role in pollinator attraction, and that white-flowered individuals may be regarded to function as "sensory traps". We also propose that the maintenance of white-flowered mutants in O. mascula may result through kin selection, in which they act as helpers increasing the reproductive success of related purple individuals.

  19. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive AVE migration

    Science.gov (United States)

    Kumar, Amit; Lualdi, Margaret; Lyozin, George T.; Sharma, Prashant; Loncarek, Jadranka; Fu, Xin-Yuan; Kuehn, Michael R.

    2014-01-01

    In the early mouse embryo, a specialized population of extraembryonic visceral endoderm (VE) cells called the anterior VE (AVE) establishes the anterior posterior (AP) axis by restricting gastrulation-inducing signals to the opposite pole. These cells arise at the distal tip of the egg cylinder stage embryo and then asymmetrically migrate to the prospective anterior following the path of an earlier arising and migrating population called the distal VE (DVE). The Nodal-signaling pathway has been shown to have a critical role in the generation of the DVE and AVE and in their migration. The Nodal gene is expressed in both the VE and in the pluripotent epiblast, which gives rise to the germ layers. Previous findings have provided conflicting evidence as to the relative importance of Nodal signaling from the epiblast vs. VE for AP patterning. Here we show that conditional mutagenesis of the Nodal gene specifically within the VE leads to reduced Nodal expression levels in the epiblast and incomplete or failed AVE migration. These results support a required role for VE Nodal to maintain normal levels of expression in the epiblast, and suggest signaling from both VE and epiblast is important for AVE migration. PMID:25536399

  20. The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in Caenorhabditis elegans.

    Science.gov (United States)

    Pu, Pu; Stone, Craig E; Burdick, Joshua T; Murray, John I; Sundaram, Meera V

    2017-03-01

    Lipocalins are secreted cup-shaped glycoproteins that bind sterols, fatty acids, and other lipophilic molecules. Lipocalins have been implicated in a wide array of processes related to lipophilic cargo transport, sequestration, and signaling, and several are used as biomarkers for human disease, but the functions of most lipocalins remain poorly understood. Here we show that the Caenorhabditis elegans lipocalin LPR-1 is required to maintain apical membrane integrity and a continuous lumen in two narrow unicellular tubes, the excretory duct and pore, during a period of rapid lumen elongation. LPR-1 fusion protein is expressed by the duct and pore and accumulates both intracellularly and in apical extracellular compartments, but it can also function cell nonautonomously when provided from outside of the excretory system. lpr-1 mutant defects can be rescued by increased signaling through the epidermal growth factor (EGF)-Ras-extracellular signal regulated kinase (ERK) pathway, which promotes the more elongated duct vs. less elongated pore tube fate. Spatial and temporal rescue experiments indicate that Ras signaling acts within the duct and pore tubes during or prior to cell fate determination to bypass the requirement for LPR-1 lpr-1 mutations did not disrupt LIN-3/EGF-dependent duct-fate specification, prevent functioning of any specific LIN-3/EGF isoform, or alter LET-23/EGFR localization, and reduced signaling did not phenocopy or enhance lpr-1 mutant defects. These data suggest that LPR-1 protects lumen integrity through a LIN-3/EGF-independent mechanism, but that increased signaling upregulates some target(s) that can compensate for lpr-1 absence. Copyright © 2017 by the Genetics Society of America.

  1. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity*

    Science.gov (United States)

    Zhao, Dan; Ma, Gui; Zhang, Xiaolin; He, Yuan; Li, Mei; Han, Xueying; Fu, Liya; Dong, Xue-Yuan; Nagy, Tamas; Zhao, Qiang; Fu, Li; Dong, Jin-Tang

    2016-01-01

    The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity. PMID:27129249

  2. Maintaining stability of the rumen ecosystem is associated with changes of microbial composition and epithelial TLR signaling.

    Science.gov (United States)

    Shen, Hong; Chen, Zhan; Shen, Zanming; Lu, Zhongyan

    2017-06-01

    We used the goat as a model to study the effects of rumen microbial composition and epithelial TLR signaling on maintaining rumen stability during exogenous butyrate interference. Six cannulated goats received a rapid intraruminal infusion of 0.1 mol/L potassium phosphate buffer with (BT, n = 3) or without (CO, n = 3) 0.3 g/kg·BW·day sodium butyrate for 28 days. The ruminal pH and the concentration of total SCFA were not affected by the interference. 16S rRNA gene amplicon sequencing revealed a change in microbial composition after the butyrate infusion. LEfSe analysis showed a shift of the biomarker species from butyrate-producing bacteria to acetate-and propionate-producing bacteria. Quantitative PCR-based comparisons showed that significant increases in TLR2, TLR5, and MyD88 expression were accompanied by a significant decrease in IL-1β and IFN-γ expression in the ruminal epithelium. Constrained correlation analysis showed that the relative abundance of Roseburia was positively correlated with the expression of TLR5. Taken together, our study shows that microbial composition plays an important role in maintaining the stability of the microbial ecosystem in rumen, and indicates that the microbe-TLR-cytokine axis was involved in maintaining the stability of the gastrointestinal ecosystem. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Zinc Finger Homeodomain Factor Zfhx3 Is Essential for Mammary Lactogenic Differentiation by Maintaining Prolactin Signaling Activity.

    Science.gov (United States)

    Zhao, Dan; Ma, Gui; Zhang, Xiaolin; He, Yuan; Li, Mei; Han, Xueying; Fu, Liya; Dong, Xue-Yuan; Nagy, Tamas; Zhao, Qiang; Fu, Li; Dong, Jin-Tang

    2016-06-10

    The zinc finger homeobox 3 (ZFHX3, also named ATBF1 for AT motif binding factor 1) is a transcription factor that suppresses prostatic carcinogenesis and induces neuronal differentiation. It also interacts with estrogen receptor α to inhibit cell proliferation and regulate pubertal mammary gland development in mice. In the present study, we examined whether and how Zfhx3 regulates lactogenic differentiation in mouse mammary glands. At different stages of mammary gland development, Zfhx3 protein was expressed at varying levels, with the highest level at lactation. In the HC11 mouse mammary epithelial cell line, an in vitro model of lactogenesis, knockdown of Zfhx3 attenuated prolactin-induced β-casein expression and morphological changes, indicators of lactogenic differentiation. In mouse mammary tissue, knock-out of Zfhx3 interrupted lactogenesis, resulting in underdeveloped glands with much smaller and fewer alveoli, reduced β-casein expression, accumulation of large cytoplasmic lipid droplets in luminal cells after parturition, and failure in lactation. Mechanistically, Zfhx3 maintained the expression of Prlr (prolactin receptor) and Prlr-Jak2-Stat5 signaling activity, whereas knockdown and knock-out of Zfhx3 in HC11 cells and mammary tissues, respectively, decreased Prlr expression, Stat5 phosphorylation, and the expression of Prlr-Jak2-Stat5 target genes. These findings indicate that Zfhx3 plays an essential role in proper lactogenic development in mammary glands, at least in part by maintaining Prlr expression and Prlr-Jak2-Stat5 signaling activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about the form......Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about...... the formation and function of primary cilia in the mammalian testis. Here, we characterized primary cilia in adult human testis and report a constitutive expression of cilia in peritubular myoid cells and a dynamic expression of cilia in differentiating Leydig cells. Primary cilia are generally absent from...... cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components...

  5. Hedgehog and Resident Vascular Stem Cell Fate

    Directory of Open Access Journals (Sweden)

    Ciaran J. Mooney

    2015-01-01

    Full Text Available The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall.

  6. USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors.

    Science.gov (United States)

    Bridges, Caitlin R; Tan, Men-Chee; Premarathne, Susitha; Nanayakkara, Devathri; Bellette, Bernadette; Zencak, Dusan; Domingo, Deepti; Gecz, Jozef; Murtaza, Mariyam; Jolly, Lachlan A; Wood, Stephen A

    2017-03-24

    USP9X, is highly expressed in neural progenitors and, essential for neural development in mice. In humans, mutations in USP9X are associated with neurodevelopmental disorders. To understand USP9X's role in neural progenitors, we studied the effects of altering its expression in both the human neural progenitor cell line, ReNcell VM, as well as neural stem and progenitor cells derived from Nestin-cre conditionally deleted Usp9x mice. Decreasing USP9X resulted in ReNcell VM cells arresting in G0 cell cycle phase, with a concomitant decrease in mTORC1 signalling, a major regulator of G0/G1 cell cycle progression. Decreased mTORC1 signalling was also observed in Usp9x-null neurospheres and embryonic mouse brains. Further analyses revealed, (i) the canonical mTORC1 protein, RAPTOR, physically associates with Usp9x in embryonic brains, (ii) RAPTOR protein level is directly proportional to USP9X, in both loss- and gain-of-function experiments in cultured cells and, (iii) USP9X deubiquitlyating activity opposes the proteasomal degradation of RAPTOR. EdU incorporation assays confirmed Usp9x maintains the proliferation of neural progenitors similar to Raptor-null and rapamycin-treated neurospheres. Interestingly, loss of Usp9x increased the number of sphere-forming cells consistent with enhanced neural stem cell self-renewal. To our knowledge, USP9X is the first deubiquitylating enzyme shown to stabilize RAPTOR.

  7. TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-α and IL-1β signaling

    Science.gov (United States)

    Lu, Ying; Jiang, Bao-Chun; Cao, De-Li; Zhang, Zhi-Jun; Zhang, Xin; Ji, Ru-Rong; Gao, Yong-Jing

    2014-01-01

    The proinflammatory cytokines TNF-α and IL-1β have been strongly implicated in the pathogenesis of neuropathic pain, but the intracellular signaling of these cytokines in glial cells are not fully understood. Tumor necrosis factor receptor associated factor 6 (TRAF6) plays a key role in signal transduction in the TNF receptor superfamily and the interleukin-1 receptor superfamily. In this study, we investigated the role of TRAF6 in neuropathic pain in mice following spinal nerve ligation (SNL). SNL induced persistent TRAF6 upregulation in the spinal cord. Interestingly, TRAF6 was mainly colocalized with the astrocytic marker GFAP on SNL day 10 and partially expressed in microglia on SNL day 3. In cultured astrocytes, TRAF6 was up-regulated after exposure to TNF-α or IL-1β. TNF-α or IL-1β also increased CCL2 expression, which was suppressed by both siRNA and shRNA targeting TRAF6. TRAF6 siRNA treatment also inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) in astrocytes induced by TNF-α or IL-1β. JNK inhibitor D-NKI-1 dose-dependently decreased IL-1β-induced CCL2 expression. Moreover, spinal injection of TRAF6 siRNA decreased intrathecal TNF-α-or IL-1β-induced allodynia and hyperalgesia. Spinal TRAF6 inhibition via TRAF6 siRNA, shRNA lentivirus, or antisense oligodeoxynucleotides partially reversed SNL-induced neuropathic pain and spinal CCL2 expression. Finally, intrathecal injection of TNF-α-activated astrocytes induced mechanical allodynia, which was attenuated by pretreatment of astrocytes with TRAF6 siRNA. Taken together, the results suggest that TRAF6, upregulated in spinal cord astrocytes in the late phase after nerve injury, maintains neuropathic pain by integrating TNF-α and IL-1β signaling and activating the JNK/CCL2 pathway in astrocytes. PMID:25267210

  8. Transient activation of hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation.

    Science.gov (United States)

    Hai, Bo; Qin, Lizheng; Yang, Zhenhua; Zhao, Qingguo; Shangguan, Lei; Ti, Xinyu; Zhao, Yanqiu; Kim, Sangroh; Rangaraj, Dharanipathy; Liu, Fei

    2014-01-01

    To examine the effects and mechanisms of transient activation of the Hedgehog pathway on rescuing radiotherapy-induced hyposalivation in survivors of head and neck cancer. Mouse salivary glands and cultured human salivary epithelial cells were irradiated by a single 15-Gy dose. The Hedgehog pathway was transiently activated in mouse salivary glands, by briefly overexpressing the Sonic hedgehog (Shh) transgene or administrating smoothened agonist, and in human salivary epithelial cells, by infecting with adenovirus encoding Gli1. The activity of Hedgehog signaling was examined by the expression of the Ptch1-lacZ reporter and endogenous Hedgehog target genes. The salivary flow rate was measured following pilocarpine stimulation. Salivary stem/progenitor cells (SSPC), parasympathetic innervation, and expression of related genes were examined by flow cytometry, salisphere assay, immunohistochemistry, quantitative reverse transcription PCR, Western blotting, and ELISA. Irradiation does not activate Hedgehog signaling in mouse salivary glands. Transient Shh overexpression activated the Hedgehog pathway in ductal epithelia and, after irradiation, rescued salivary function in male mice, which is related with preservation of functional SSPCs and parasympathetic innervation. The preservation of SSPCs was likely mediated by the rescue of signaling activities of the Bmi1 and Chrm1-HB-EGF pathways. The preservation of parasympathetic innervation was associated with the rescue of the expression of neurotrophic factors such as Bdnf and Nrtn. The expression of genes related with maintenance of SSPCs and parasympathetic innervation in female salivary glands and cultured human salivary epithelial cells was similarly affected by irradiation and transient Hedgehog activation. These findings suggest that transient activation of the Hedgehog pathway has the potential to restore salivary gland function after irradiation-induced dysfunction.

  9. Transient activation of Hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation

    Science.gov (United States)

    Yang, Zhenhua; Zhao, Qingguo; Shangguan, Lei; Ti, Xinyu; Zhao, Yanqiu; Kim, Sangroh; Rangaraj, Dharanipathy; Liu, Fei

    2014-01-01

    Purpose To examine effects and mechanisms of transient activation of Hedgehog pathway on rescuing radiotherapy-induced hyposalivation in head and neck cancer survivors. Experimental Design Mouse salivary glands and cultured human salivary epithelial cells were irradiated by single 15Gy dose. Hedgehog pathway was transiently activated in mouse salivary glands by shortly over-expressing Sonic hedgehog (Shh) transgene or administrating Smoothened Agonist and in human salivary epithelial cells by infecting with adenovirus encoding Gli1. Activity of Hedgehog signaling was examined by expression of Ptch1-lacZ reporter and endogenous Hedgehog target genes. Salivary flow rate was measured following pilocarpine stimulation. Salivary stem/progenitor cells (SSPCs), parasympathetic innervation and expression of related genes were examined by flow cytometry, salisphere assay, IHC, quantitative RT-PCR, Western blot and ELISA. Results Irradiation does not activate Hedgehog signaling in mouse salivary glands. Transient Shh over-expression activated Hedgehog pathway in ductal epithelia and that after irradiation rescued salivary function in male mice, which is related with preservation of functional SSPCs and parasympathetic innervation. The preservation of SSPCs was likely mediated by rescue of signaling activities of Bmi1 and Chrm1/HB-EGF pathways. The preservation of parasympathetic innervation was related with rescue of expression of neurotrophic factors such as Bdnf and Nrtn. The expression of genes related with maintenance of salivary stem/progenitor cells and parasympathetic innervation in female salivary glands and cultured human salivary epithelial cells was similarly affected by irradiation and transient Hedgehog activation. Conclusions These findings suggest that transient activation of Hedgehog pathway has the potential to restore irradiation-induced salivary gland dysfunction. PMID:24150232

  10. FGF2-induced Ras-MAPK signalling maintains lymphatic endothelial cell identity by upregulating endothelial-cell-specific gene expression and suppressing TGFβ signalling through Smad2.

    Science.gov (United States)

    Ichise, Taeko; Yoshida, Nobuaki; Ichise, Hirotake

    2014-02-15

    The lymphatic endothelial cell (LEC) fate decision program during development has been described. However, the mechanism underlying the maintenance of differentiated LEC identity remains largely unknown. Here, we show that fibroblast growth factor 2 (FGF2) plays a fundamental role in maintaining a differentiated LEC trait. In addition to demonstrating the appearance of LECs expressing α-smooth muscle actin in mouse lymphedematous skin in vivo, we found that mouse immortalised LECs lose their characteristics and undergo endothelial-to-mesenchymal transition (EndMT) when cultured in FGF2-depleted medium. FGF2 depletion acted synergistically with transforming growth factor (TGF) β to induce EndMT. We also found that H-Ras-overexpressing LECs were resistant to EndMT. Activation of H-Ras not only upregulated FGF2-induced activation of the Erk mitogen activated protein kinases (MAPK3 and MAPK1), but also suppressed TGFβ-induced activation of Smad2 by modulating Smad2 phosphorylation by MAPKs. These results suggest that FGF2 regulates LEC-specific gene expression and suppresses TGFβ signalling in LECs through Smad2 in a Ras-MAPK-dependent manner. Taken together, our findings provide a new insight into the FGF2-Ras-MAPK-dependent mechanism that maintains and modulates the LEC trait.

  11. Exposure-QT analysis for sonidegib (LDE225), an oral inhibitor of the hedgehog signaling pathway, for measures of the QT prolongation potential in healthy subjects and in patients with advanced solid tumors.

    Science.gov (United States)

    Quinlan, Michelle; Zhou, Jocelyn; Hurh, Eunju; Sellami, Dalila

    2016-12-01

    Sonidegib prevents activation of the Hedgehog signal transduction pathway. This PK-QT analysis has been performed to test for potential prolongation of the QT/QTc interval during extended use, and to understand the exposure-QT relationship for sonidegib in patients and in healthy volunteers (HV). A pooled analysis of the change in QT interval corrected for heart rate according to Fridericia's formula was conducted across four patient studies from a total of 341 patients (n = 211, 102, 21, and 7 from the phase II pivotal study A2201, study X2101, study X1101, and study B2209, respectively), and across four healthy volunteer studies from a total of 204 healthy volunteers (n = 146, 36, 16, and 6 from study A2114, study A1102, study A2108, and study A2110, respectively). A PK/ECG subgroup of 62 patients from the pivotal study A2201 was also analyzed to assess the QT prolongation risk at steady-state exposures. Sonidigib PK and ECG data were matched to determine the change from baseline in QTcF using a linear mixed-effect model. Clinical data indicate sonidegib does not cause QTc prolongation. ΔQTcF at steady-state concentrations for both 200 and 800-mg doses were all below 5 ms. The highest mean ΔQTcF at steady state was -3.9 ms at week 17 pre-dose in the sonidegib 200-mg group and 2.7 ms at 2-h post-dose in the sonidegib 800-mg group. The upper one-sided 95 % confidence interval of the estimated ΔQTcF at steady-state concentrations from the linear mixed-effect models were all QT prolongation have been reported in the sonidegib clinical development program. Based on these analyses, there is no evidence of QT prolongation associated with sonidegib 200 or 800 mg in solid tumor patients and HV.

  12. The Hippo/YAP1 pathway interacts with FGFR1 signaling to maintain stemness in lung cancer.

    Science.gov (United States)

    Lu, Tingting; Li, Ziming; Yang, Ying; Ji, Wenxiang; Yu, Yongfeng; Niu, Xiaomin; Zeng, Qingyu; Xia, Weiliang; Lu, Shun

    2018-02-13

    The Hippo pathway plays a critical role in organ size control, tissue homeostasis and tumor genesis through its key transcription regulator Yes-associated protein1 (YAP1), but the mechanism underlying its role in lung cancer is unclear. We hypothesized that YAP1 influences FGFR1 signaling to maintain cancer stem-like cell (CSC) properties in FGFR1-amplified lung cancer. In support of this, our data confirms that expression levels of YAP1 are positively associated with those of FGFR1 in clinical lung carcinoma samples as measured by real-time PCR, western blot, and immunohistochemistry (IHC) staining. Mechanistically, YAP1 up-regulates FGFR1 expression at the level of promoter through the TEAD binding site while bFGF/FGFR1 induces YAP1 expression via large tumor suppressors 1(LATS1). In addition, the absence of YAP1 abolishes self-renewal ability in lung cancer. Furthermore, an orthotropic mouse model highlights the function of YAP1 in the initiation and metastasis of lung cancer. Verteporfin, a YAP1 inhibitor, effectively inhibits both YAP1 and FGFR1 expression in lung cancer. Thus, we conclude that YAP1 is a potential therapeutic target for lung cancer. Combined targeting of YAP1 and FGFR1 may provide benefits to patients with FGFR1-amplified lung cancer. Copyright © 2018. Published by Elsevier B.V.

  13. Bilateral thalamocortical projection in hedgehogs: evolutionary implications.

    Science.gov (United States)

    Regidor, J; Divac, I

    1992-01-01

    In adult hedgehogs with large unilateral cortical deposits of fluorescent somatopetal tracers, labelled perikarya were found not only in the ipsilateral but also contralateral thalamus. An exceptionally large number of contralaterally labelled neurons was seen in the ventrolateral nucleus, also at a considerable distance from the midline. Deposits of one of two different tracers in the frontoparietal cortex of each hemisphere appear to label different perikarya in each ventrolateral nucleus. This projection to the contralateral cortex in hedgehogs does not resemble thalamo-cortical connections in either adult or developing brains of other mammalian species. Among amniotes, only in pigeons have contralateral projections from the thalamus to the telencephalon been described. The somatosensorimotor system of hedgehogs may be the only known mammalian remnant of primitive vertebrate thalamocortical organization. Whether primitive or derived, the bilateral thalamocortical projection in hedgehogs shows that hedgehog brains cannot be uncritically taken to represent brains of primate ancestors.

  14. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis.

    Science.gov (United States)

    Stoney, Patrick N; Fragoso, Yara D; Saeed, Reem Bu; Ashton, Anna; Goodman, Timothy; Simons, Claire; Gomaa, Mohamed S; Sementilli, Angelo; Sementilli, Leonardo; Ross, Alexander W; Morgan, Peter J; McCaffery, Peter J

    2016-07-01

    Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2-7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2-7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.

  15. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    Science.gov (United States)

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.

  16. In vivo imaging of Hedgehog pathway activation with a nuclear fluorescent reporter.

    Directory of Open Access Journals (Sweden)

    John K Mich

    Full Text Available The Hedgehog (Hh pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway.

  17. Potent small molecule Hedgehog agonists induce VEGF expression in vitro.

    Science.gov (United States)

    Seifert, Katrin; Büttner, Anita; Rigol, Stephan; Eilert, Nicole; Wandel, Elke; Giannis, Athanassios

    2012-11-01

    Here, we describe the synthesis, SAR studies as well as biological investigations of the known Hedgehog signaling agonist SAG and a small library of its analogues. The SAG and its derivatives were analyzed for their potency to activate the expression of the Hh target gene Gli1 in a reporter gene assay. By analyzing SAR important molecular descriptors for Gli1 activation have been identified. SAG as well as compound 10c proven to be potent activators of VEGF expression in cultivated dermal fibroblasts. Importantly and in contrast to SAG, derivative 10c displayed no toxicity in concentrations up to 250 μm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. RA and FGF Signalling Are Required in the Zebrafish Otic Vesicle to Pattern and Maintain Ventral Otic Identities

    Science.gov (United States)

    Maier, Esther C.; Whitfield, Tanya T.

    2014-01-01

    During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement. PMID:25473832

  19. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    2010-06-01

    Full Text Available Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown.Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants.This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  20. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  1. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Directory of Open Access Journals (Sweden)

    Abhishek Ghosh

    2014-10-01

    Full Text Available The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  2. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Science.gov (United States)

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  3. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a Combined Docking and QM/MM MD Study

    Directory of Open Access Journals (Sweden)

    Manuel Hitzenberger

    2017-10-01

    Full Text Available Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as Supplementary Material and can be used for further reference.

  4. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  5. Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors.

    Science.gov (United States)

    Matharu, Ranveer S; Perchoux, Julien; Kliese, Russell; Lim, Yah Leng; Rakić, Aleksandar D

    2011-09-15

    We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between -20 °C and +80 °C.

  6. An appraisal of how the vitamin A-redox hypothesis can maintain honesty of carotenoid-dependent signals

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Groothuis, Ton G. G.; Verhulst, Simon

    The vitamin A-redox hypothesis provides an explanation for honest signaling of phenotypic quality by carotenoid-dependent traits. A key aspect of the vitamin A-redox hypothesis, applicable to both yellow and red coloration, is the hypothesized negative feedback of tightly regulated Vitamin A plasma

  7. Human Plasma Very Low Density Lipoprotein Carries Indian Hedgehog

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Tio, Rene A.; Zeebregts, Clark J.; Bijlsma, Maarten F.; Zijlstra, Felix; Badlou, Bahram; de Vries, Marcel; Ferreira, Carmen V.; Spek, C. Arnold; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2010-01-01

    Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for

  8. An appraisal of how the vitamin A-redox hypothesis can maintain honesty of carotenoid-dependent signals.

    Science.gov (United States)

    Simons, Mirre J P; Groothuis, Ton G G; Verhulst, Simon

    2015-01-01

    The vitamin A-redox hypothesis provides an explanation for honest signaling of phenotypic quality by carotenoid-dependent traits. A key aspect of the vitamin A-redox hypothesis, applicable to both yellow and red coloration, is the hypothesized negative feedback of tightly regulated Vitamin A plasma levels on the enzyme responsible for sequestering both Vitamin A and carotenoids from the gut. We performed a meta-analysis and find that vitamin A levels are positively related to carotenoid plasma levels (r = 0.50, P = 0.0002). On the basis of this finding and further theoretical considerations, we propose that the vitamin A-redox hypothesis is unlikely to explain carotenoid-dependent honest signaling.

  9. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Rie [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Hong, Zhang [Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Ushida, Takashi [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  10. Wnt/Ca2+/NFAT Signaling Maintains Survival of Ph+ Leukemia Cells upon Inhibition of Bcr-Abl

    OpenAIRE

    Gregory, Mark A.; Phang, Tzu L.; Neviani, Paolo; Alvarez-Calderon, Francesca; Eide, Christopher A.; O'Hare, Thomas; Zaberezhnyy, Vadym; Williams, Richard T.; Druker, Brian J.; Perrotti, Danilo; DeGregori, James

    2010-01-01

    Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to completely eradicate Bcr-Abl+ leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl+ leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib in CML cells. This screen identified numerous components of a Wnt/Ca2+/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, de...

  11. Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

    Directory of Open Access Journals (Sweden)

    Benjamin A. Krishna

    2017-12-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR, which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells.

  12. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions

    Directory of Open Access Journals (Sweden)

    Fei Yang

    2017-07-01

    Full Text Available Central post-stroke pain (CPSP is an intractable central neuropathic pain that has been poorly studied mechanistically. Here we showed that stromal cell-derived factor 1 (SDF1 or CXCL12, a member of the CXC chemokine family, and its receptor CXCR4 played a key role in the development and maintenance of thalamic hemorrhagic CPSP through hypoxia inducible factor 1α (HIF-1α mediated microglial-astrocytic-neuronal interactions. First, both intra-thalamic collagenase (ITC and SDF1 injections could induce CPSP that was blockable and reversible by intra-thalamic administration of both AMD3100 (a selective CXCR4 antagonist and inhibitors of microglial or astrocytic activation. Second, long-term increased-expression of SDF1 and CXCR4 that was accompanied by activations of both microglia and astrocytes following ITC could be blocked by both AMD-3100 and YC-1, a selective inhibitor of HIF-1α. AMD-3100 could also inhibit release of proinflammatory mediators (TNFα, IL1β and IL-6. Increased-expression of HIF-1α, SDF1, CXCR4, Iba1 and GFAP proteins could be induced by both ITC and intra-thalamic CoCl2, an inducer of HIF-1α that was blockable by both HIF-1α inhibition and CXCR4 antagonism. Finally, inhibition of HIF-1α was only effective in prevention, but not in treatment of ITC-induced CPSP. Taken together, the present study demonstrated that in the initial process of thalamic hemorrhagic state HIF-1α up-regulated SDF1-CXCR4 signaling, while in the late process SDF1-CXCR4 signaling-mediated positive feedback plays more important role in glial-glial and glial-neuronal interactions and might be a novel promising molecular target for treatment of CPSP in clinic.

  13. FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia

    Directory of Open Access Journals (Sweden)

    Kobberup Sune

    2008-01-01

    Full Text Available Abstract Background Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (Fgf10 null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for Fgf10 is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs Fgf10 also plays a role in regulating differentiation. Results Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia. Conclusion We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.

  14. Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses

    Science.gov (United States)

    Chan, Jennifer A.; Balasubramanian, Srividya; Witt, Rochelle M.; Nazemi, Kellie J.; Choi, Yoojin; Pazyra-Murphy, Maria F.; Walsh, Carolyn O.; Thompson, Margaret; Segal, Rosalind A.

    2009-01-01

    SUMMARY Sonic Hedgehog (Shh) has dual roles in vertebrate development, as it promotes progenitor cell proliferation and induces tissue patterning. Here we show mitogenic and patterning functions of Shh can be uncoupled from one another. Using a genetic approach to selectively inhibit Shh-proteoglycan interactions in a mouse model, we show binding of Shh to proteoglycans is required for proliferation of neural stem/precursor cells but not for tissue patterning. Shh-proteoglycan interactions regulate both spatial and temporal features of Shh signaling. Proteoglycans localize Shh to specialized mitogenic niches and also act at the single cell level to regulate the duration of Shh signaling, thereby promoting a gene expression program important for cell division. As activation of the Shh pathway is a feature of diverse human cancers, selective stimulation of proliferation by Shh-proteoglycan interactions may also figure prominently in neoplastic growth. PMID:19287388

  15. Hedgehog inhibitors from Artocarpus communis and Hyptis suaveolens.

    Science.gov (United States)

    Arai, Midori A; Uchida, Kyoko; Sadhu, Samir K; Ahmed, Firoj; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2015-08-01

    The hedgehog (Hh) signaling pathway plays crucial roles in cell maintenance and proliferation during embryonic development. Naturally occurring Hh inhibitors were isolated from Artocarpus communis and Hyptis suaveolens using our previously constructed cell-based assay system. Bioactivity guided fractionation led to the isolation of 15 compounds, including seven new compounds (4, 5, 6, 7, and 9-11). The isolated compounds showed cytotoxicity against a cancer cell line (PANC1) in which Hh signaling was abnormally activated. Several compounds (12-14; GLI1 transcriptional inhibition IC50=7.6, 4.7, and 4.0 μM, respectively) inhibited Hh related protein (BCL2) expression. Moreover, compounds 1, 12, and 13 disrupted GLI1 and DNA complex formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Foxf genes integrate tbx5 and hedgehog pathways in the second heart field for cardiac septation.

    Directory of Open Access Journals (Sweden)

    Andrew D Hoffmann

    2014-10-01

    Full Text Available The Second Heart Field (SHF has been implicated in several forms of congenital heart disease (CHD, including atrioventricular septal defects (AVSDs. Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome transcriptional profiling and GLI-chromatin interaction studies. The Forkhead box transcription factors Foxf1a and Foxf2 were identified as SHF Hedgehog targets. Compound haploinsufficiency for Foxf1a and Foxf2 caused atrioventricular septal defects, demonstrating the biological relevance of this regulatory network. We identified a Foxf1a cis-regulatory element that bound the Hedgehog transcriptional regulators GLI1 and GLI3 and the T-box transcription factor TBX5 in vivo. GLI1 and TBX5 synergistically activated transcription from this cis-regulatory element in vitro. This enhancer drove reproducible expression in vivo in the posterior SHF, the only region where Gli1 and Tbx5 expression overlaps. Our findings implicate Foxf genes in atrioventricular septation, describe the molecular underpinnings of the genetic interaction between Hedgehog signaling and Tbx5, and establish a molecular model for the selection of the SHF gene regulatory network for cardiac septation.

  17. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration.

    Science.gov (United States)

    Kumar, Amit; Lualdi, Margaret; Lyozin, George T; Sharma, Prashant; Loncarek, Jadranka; Fu, Xin-Yuan; Kuehn, Michael R

    2015-04-01

    In the early mouse embryo, a specialized population of extraembryonic visceral endoderm (VE) cells called the distal VE (DVE) arises at the tip of the egg cylinder stage embryo and then asymmetrically migrates to the prospective anterior, recruiting additional distal cells. Upon migration these cells, called the anterior VE (AVE), establish the anterior posterior (AP) axis by restricting gastrulation-inducing signals to the opposite pole. The Nodal-signaling pathway has been shown to have a critical role in the generation and migration of the DVE/AVE. The Nodal gene is expressed in both the VE and in the pluripotent epiblast, which gives rise to the germ layers. Previous findings have provided conflicting evidence as to the relative importance of Nodal signaling from the epiblast vs. VE for AP patterning. Here we show that conditional mutagenesis of the Nodal gene specifically within the VE leads to reduced Nodal expression levels in the epiblast and incomplete or failed DVE/AVE migration. These results support a required role for VE Nodal to maintain normal levels of expression in the epiblast, and suggest signaling from both VE and epiblast is important for DVE/AVE migration. Published by Elsevier Inc.

  18. Two Lamprey Hedgehog Genes Share Non-Coding Regulatory Sequences and Expression Patterns with Gnathostome Hedgehogs

    Science.gov (United States)

    Ekker, Marc; Hadzhiev, Yavor; Müller, Ferenc; Casane, Didier; Magdelenat, Ghislaine; Rétaux, Sylvie

    2010-01-01

    Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences. PMID:20967201

  19. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase.

    Science.gov (United States)

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2015-12-01

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells.

    Science.gov (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea

    2015-06-01

    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  1. Ophthalmological abnormalities in wild European hedgehogs ...

    African Journals Online (AJOL)

    The predominant finding was bilateral nuclear cataract seen particularly in young poorly growing animals. Investigation into the potential causation of cataracts by poor nutrition or poor feeding ability by lens opacification requires further study. Keywords: Cataract, Conservation, Eye abnormality, Hedgehog, Rehabilitation ...

  2. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  3. Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold; Roelink, Henk

    The hedgehog (Hh) pathway is required for many developmental processes,. as well as for adult homeostasis. Although all known effects of Hh signaling affecting patterning and differentiation are mediated by members of the Gli family of zinc ringer transcription factors, we demonstrate that the

  4. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain.

    Science.gov (United States)

    Gazea, Mary; Tasouri, Evangelia; Tolve, Marianna; Bosch, Viktoria; Kabanova, Anna; Gojak, Christian; Kurtulmus, Bahtiyar; Novikov, Orna; Spatz, Joachim; Pereira, Gislene; Hübner, Wolfgang; Brodski, Claude; Tucker, Kerry L; Blaess, Sandra

    2016-01-01

    Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial

    Directory of Open Access Journals (Sweden)

    O'Hara William A

    2011-12-01

    Full Text Available Abstract Background Desert hedgehog (DHH belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. Results DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice, but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. Conclusions These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis.

  6. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  7. Neogenin regulates Sonic hedgehog pathway activity during digit patterning

    Science.gov (United States)

    Hong, Mingi; Schachter, Karen A.; Jiang, Guoying; Krauss, Robert S.

    2012-01-01

    Background Digit patterning integrates signaling by the Sonic Hedgehog (SHH), FGF and BMP pathways. GLI3, a component of the SHH pathway, is a major regulator of digit number and identity. Neogenin (encoded by Neo1) is a cell surface protein that serves to transduce signals from several ligands, including BMPs, in various developmental contexts. Although neogenin is implicated in BMP signaling, it has not been linked to SHH signaling and its role in digit patterning is unknown. Results We report that Neo1 mutant mice have preaxial polydactyly with low penetrance. Expression of SHH target genes, but not BMP target genes, is altered in Neo1 mutant limb buds. Analysis of mice carrying mutations in both Neo1 and Gli3 reveals that although neogenin plays a role in constraint of digit numbers, suppressing polydactyly, it is also required for the severe polydactyly caused by loss of GLI3. Furthermore, embryo fibroblasts from Neo1 mutant mice are sensitized to SHH pathway activation in vitro. Conclusions Our findings indicate that neogenin regulates SHH signaling in the limb bud to achieve proper digit patterning. PMID:22275192

  8. Serpent, Suppressor of Hairless and U-shaped are crucial regulators of hedgehog niche expression and prohemocyte maintenance during Drosophila larval hematopoiesis

    Science.gov (United States)

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Stoller-Conrad, Jessica; Schulz, Robert A.

    2010-01-01

    The lymph gland is a specialized organ for hematopoiesis, utilized during larval development in Drosophila. This tissue is composed of distinct cellular domains populated by blood cell progenitors (the medullary zone), niche cells that regulate the choice between progenitor quiescence and hemocyte differentiation [the posterior signaling center (PSC)], and mature blood cells of distinct lineages (the cortical zone). Cells of the PSC express the Hedgehog (Hh) signaling molecule, which instructs cells within the neighboring medullary zone to maintain a hematopoietic precursor state while preventing hemocyte differentiation. As a means to understand the regulatory mechanisms controlling Hh production, we characterized a PSC-active transcriptional enhancer that drives hh expression in supportive niche cells. Our findings indicate that a combination of positive and negative transcriptional inputs program the precise PSC expression of the instructive Hh signal. The GATA factor Serpent (Srp) is essential for hh activation in niche cells, whereas the Suppressor of Hairless [Su(H)] and U-shaped (Ush) transcriptional regulators prevent hh expression in blood cell progenitors and differentiated hemocytes. Furthermore, Srp function is required for the proper differentiation of niche cells. Phenotypic analyses also indicated that the normal activity of all three transcriptional regulators is essential for maintaining the progenitor population and preventing premature hemocyte differentiation. Together, these studies provide mechanistic insights into hh transcriptional regulation in hematopoietic progenitor niche cells, and demonstrate the requirement of the Srp, Su(H) and Ush proteins in the control of niche cell differentiation and blood cell precursor maintenance. PMID:20876645

  9. Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila

    Science.gov (United States)

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate. PMID:27462407

  10. Gut-neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila.

    Science.gov (United States)

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate.

  11. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Shu, Chengjie; Sun, Lingmei; Zhang, Weiming

    2016-08-01

    The Caenorhabditis elegans model can be used to study Candida albicans virulence and host immunity, as well as to identify plant-derived natural products to use against C. albicans. Thymol is a hydrophobic phenol compound from the aromatic plant thyme. In this study, the in vitro data demonstrated concentration-dependent thymol inhibition of both C. albicans growth and biofilm formation during different developmental phases. With the aid of the C. elegans system, we performed in vivo assays, and our results further showed the ability of thymol to increase C. elegans life span during infection, inhibit C. albicans colony formation in the C. elegans intestine, and increase the expression levels of host antimicrobial genes. Moreover, among the genes that encode the p38 MAPK signaling pathway, mutation of the pmk-1 or sek-1 gene decreased the beneficial effects of thymol's antifungal activity against C. albicans and thymol's maintenance of the innate immune response in nematodes. Western blot data showed the level of phosphorylation of pmk-1 was dramatically decreased against C. albicans. In nematodes, treatment with thymol recovered the dysregulation of pmk-1 and sek-1 gene expressions, the phosphorylation level of PMK-1 caused by C. albicans infection. Therefore, thymol may act, at least in part, through the function of the p38 MAPK signaling pathway to protect against C. albicans infection and maintain the host innate immune response to C. albicans. Our results indicate that the p38 MAPK signaling pathway plays a crucial role in regulating the beneficial effects observed after nematodes infected with C. albicans were treated with thymol.

  12. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols.

    Science.gov (United States)

    Sever, Navdar; Mann, Randall K; Xu, Libin; Snell, William J; Hernandez-Lara, Carmen I; Porter, Ned A; Beachy, Philip A

    2016-05-24

    Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith-Lemli-Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith-Lemli-Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.

  13. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  14. String gas shells, their dual radiation and hedgehog signature control

    National Research Council Canada - National Science Library

    Guendelman, E.I

    2009-01-01

    ... as spacelike in nature. This “dual radiation”, we will argue, can be interpreted as representing the virtual quantum fluctuations that stabilize the shell. The solutions can be generalized allowing for the introduction of a string-hedgehog [2] or a global monopole [3] on top of the string gas shell and its dual radiation. Then, for big enough hedgehog strengt...

  15. Targeting Sonic Hedgehog: a new way to mow down pancreatic cancer?

    Science.gov (United States)

    Cengel, Keith A

    2004-02-01

    Despite continuing development of new therapies, the prognosis for patients with pancreatic cancer remains extremely poor. In part, this may relate to molecular abnormalities that stimulate pancreatic tumorigenesis and also contribute to reduced sensitivity to standard treatments such as chemotherapy and radiotherapy. Two recent reports in Nature suggest that Sonic Hedgehog (Shh) overexpression may contribute to pancreatic tumorigenesis and that cyclopamine, a specific inhibitor of Shh signaling, can reduce pancreatic cancer cell growth and viability. This discovery is exciting and suggests that targeting Shh signaling may be an effective novel approach to therapy in patients with this devastating disease.

  16. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    Science.gov (United States)

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cerebrospinal fluid from patients with amyotrophic lateral sclerosis inhibits sonic hedgehog function

    Science.gov (United States)

    Drannik, Anna; Martin, Joan; Peterson, Randy; Ma, Xiaoxing; Jiang, Fan; Turnbull, John

    2017-01-01

    Sonic hedgehog (Shh) is a morphogen essential to the developing nervous system that continues to play an important role in adult life by contributing to cell proliferation and differentiation, maintaining blood-brain barrier integrity, and being cytoprotective against oxidative and excitotoxic stress, all features of importance in amyotrophic lateral sclerosis (ALS). ALS is a fatal disease characterized by selective loss of motor neurons due to poorly understood mechanisms. Evidence indicates that Shh might play an important role in ALS, and that Shh signaling might be also adversely affected in ALS. Since little is known about the functional status of Shh pathway in patients with ALS, we therefore sought to determine whether Shh protein levels or biological activity in cerebrospinal fluid (CSF) was less in ALS patients than controls, and whether these measures could be correlated with ALS disease severity and disease progression, and with other CSF analytes of biological interest in ALS. Comparing Shh levels in the CSF of normal controls (n = 13), neurological controls (n = 12), and ALS patients (n = 9) measured by ELISA, we found that CSF Shh levels were not different between controls and ALS patients. However, when assessing Shh biological activity in CSF using in vitro cell-based assays, which measure Shh activity as inducible Gli-driven luminescence, we found that in the presence of exogenous recombinant Shh or the Shh agonist, purmorphamine, the inducible activity of CSF was significantly augmented in the control groups as expected, but not in the ALS group, suggesting the presence of an inhibitor of Shh signaling in ALS CSF samples. Since purmorphamine acts on Smoothened, downstream of Shh and its receptor Patched, the inhibitory action is downstream of Smoothened. Our results also demonstrated that while the inhibitory effect of ALS CSF on Shh signaling did not correlate significantly with ALS disease characteristics, the levels of IL-1β and TNF-α did. In

  18. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers.

    Science.gov (United States)

    Ohta, H; Aoyagi, K; Fukaya, M; Danjoh, I; Ohta, A; Isohata, N; Saeki, N; Taniguchi, H; Sakamoto, H; Shimoda, T; Tani, T; Yoshida, T; Sasaki, H

    2009-01-27

    We previously reported hedgehog (Hh) signal activation in the mucus-secreting pit cell of the stomach and in diffuse-type gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is known to be involved in tumour malignancy. However, little is known about whether and how both signallings cooperatively act in diffuse-type GC. By microarray and reverse transcription-PCR, we investigated the expression of those Hh and EMT signalling molecules in pit cells and in diffuse-type GCs. How both signallings act cooperatively in those cells was also investigated by the treatment of an Hh-signal inhibitor and siRNAs of Hh and EMT transcriptional key regulator genes on a mouse primary culture and on human GC cell lines. Pit cells and diffuse-type GCs co-expressed many Hh and EMT signalling genes. Mesenchymal-related genes (WNT5A, CDH2, PDGFRB, EDNRA, ROBO1, ROR2, and MEF2C) were found to be activated by an EMT regulator, SIP1/ZFHX1B/ZEB2, which was a target of a primary transcriptional regulator GLI1 in Hh signal. Furthermore, we identified two cancer-specific Hh targets, ELK1 and MSX2, which have an essential role in GC cell growth. These findings suggest that the gastric pit cell exhibits mesenchymal-like gene expression, and that diffuse-type GC maintains expression through the Hh-EMT pathway. Our proposed extensive Hh-EMT signal pathway has the potential to an understanding of diffuse-type GC and to the development of new drugs.

  19. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    Science.gov (United States)

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway. Copyright © 2017 the authors 0270-6474/17/371685-11$15.00/0.

  20. Ontogenetic expression of Sonic Hedgehog in the chicken subpallium

    Directory of Open Access Journals (Sweden)

    Sylvia M Bardet

    2010-07-01

    Full Text Available Sonic hedgehog (SHH is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS, somites and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatio-temporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1 and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.

  1. All Mammalian Hedgehog Proteins Interact with Cell Adhesion Molecule, Down-regulated by Oncogenes (CDO) and Brother of CDO (BOC) in a Conserved Manner*

    OpenAIRE

    Kavran, Jennifer M.; Ward, Matthew D.; Oladosu, Oyindamola O.; Mulepati, Sabin; Leahy, Daniel J.

    2010-01-01

    Hedgehog (Hh) signaling proteins stimulate cell proliferation, differentiation, and tissue patterning at multiple points in animal development. A single Hh homolog is present in Drosophila, but three Hh homologs, Sonic Hh, Indian Hh, and Desert Hh, are present in mammals. Distribution, movement, and reception of Hh signals are tightly regulated, and abnormal Hh signaling is associated with developmental defects and cancer. In addition to the integral membrane proteins Patched and Smoothened, ...

  2. Impacts of removing badgers on localised counts of hedgehogs.

    Directory of Open Access Journals (Sweden)

    Iain D Trewby

    Full Text Available Experimental evidence of the interactions among mammalian predators that eat or compete with one another is rare, due to the ethical and logistical challenges of managing wild populations in a controlled and replicated way. Here, we report on the opportunistic use of a replicated and controlled culling experiment (the Randomised Badger Culling Trial to investigate the relationship between two sympatric predators: European badgers Meles meles and western European hedgehogs Erinaceus europaeus. In areas of preferred habitat (amenity grassland, counts of hedgehogs more than doubled over a 5-year period from the start of badger culling (from 0.9 ha-1 pre-cull to 2.4 ha-1 post-cull, whereas hedgehog counts did not change where there was no badger culling (0.3-0.3 hedgehogs ha-1. This trial provides experimental evidence for mesopredator release as an outcome of management of a top predator.

  3. Impacts of Removing Badgers on Localised Counts of Hedgehogs

    Science.gov (United States)

    Trewby, Iain D.; Young, Richard; McDonald, Robbie A.; Wilson, Gavin J.; Davison, John; Walker, Neil; Robertson, Andrew; Doncaster, C. Patrick; Delahay, Richard J.

    2014-01-01

    Experimental evidence of the interactions among mammalian predators that eat or compete with one another is rare, due to the ethical and logistical challenges of managing wild populations in a controlled and replicated way. Here, we report on the opportunistic use of a replicated and controlled culling experiment (the Randomised Badger Culling Trial) to investigate the relationship between two sympatric predators: European badgers Meles meles and western European hedgehogs Erinaceus europaeus. In areas of preferred habitat (amenity grassland), counts of hedgehogs more than doubled over a 5-year period from the start of badger culling (from 0.9 ha−1 pre-cull to 2.4 ha−1 post-cull), whereas hedgehog counts did not change where there was no badger culling (0.3–0.3 hedgehogs ha−1). This trial provides experimental evidence for mesopredator release as an outcome of management of a top predator. PMID:24736454

  4. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  5. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Faculty of Health and Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY (United Kingdom); Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos [School of Cellular & Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD (United Kingdom)

    2015-09-17

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  6. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    David Qualtrough

    2015-09-01

    Full Text Available Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  7. Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1: implications for mental illness

    Directory of Open Access Journals (Sweden)

    Penelope J. Boyd

    2015-10-01

    Full Text Available DISRUPTED-IN-SCHIZOPHRENIA (DISC1 has been one of the most intensively studied genetic risk factors for mental illness since it was discovered through positional mapping of a translocation breakpoint in a large Scottish family where a balanced chromosomal translocation was found to segregate with schizophrenia and affective disorders. While the evidence for it being central to disease pathogenesis in the original Scottish family is compelling, recent genome-wide association studies have not found evidence for common variants at the DISC1 locus being associated with schizophrenia in the wider population. It may therefore be the case that DISC1 provides an indication of biological pathways that are central to mental health issues and functional studies have shown that it functions in multiple signalling pathways. However, there is little information regarding factors that function upstream of DISC1 to regulate its expression and function. We herein demonstrate that Sonic hedgehog (Shh signalling promotes expression of disc1 in the zebrafish brain. Expression of disc1 is lost in smoothened mutants that have a complete loss of Shh signal transduction, and elevated in patched mutants which have constitutive activation of Shh signalling. We previously demonstrated that disc1 knockdown has a dramatic effect on the specification of oligodendrocyte precursor cells (OPC in the hindbrain and Shh signalling is known to be essential for the specification of these cells. We show that disc1 is prominently expressed in olig2-positive midline progenitor cells that are absent in smo mutants, while cyclopamine treatment blocks disc1 expression in these cells and mimics the effect of disc1 knock down on OPC specification. Various features of a number of psychiatric conditions could potentially arise through aberrant Hedgehog signalling. We therefore suggest that altered Shh signalling may be an important neurodevelopmental factor in the pathobiology of mental

  8. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway

    OpenAIRE

    Subramani, Ramadevi; Gonzalez, Elizabeth; Nandy, Sushmita Bose; Arumugam, Arunkumar; Camacho, Fernando; Medel, Joshua; Alabi, Damilola; Lakshmanaswamy, Rajkumar

    2016-01-01

    INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti?proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We u...

  9. Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development

    Science.gov (United States)

    Porter, Jeffrey A.; Young, Keith E.; Beachy, Philip A.

    1996-10-01

    To determine the function of the pS2 trefoil protein, which is normally expressed in the gastric mucosa, the mouse pS2 (mpS2) gene was inactivated. The antral and pyloric gastric mucosa of mpS2-null mice was dysfunctional and exhibited severe hyperplasia and dysplasia. All homozygous mutant mice developed antropyloric adenoma, and 30 percent developed multifocal intraepithelial or intramucosal carcinomas. The small intestine was characterized by enlarged villi and an abnormal infiltrate of lymphoid cells. These results indicate that mpS2 is essential for normal differentiation of the antral and pyloric gastric mucosa and may function as a gastric-specific tumor suppressor gene.

  10. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo.

    Science.gov (United States)

    Crisan, Mihaela; Solaimani Kartalaei, Parham; Neagu, Alex; Karkanpouna, Sofia; Yamada-Inagawa, Tomoko; Purini, Caterina; Vink, Chris S; van der Linden, Reinier; van Ijcken, Wilfred; Chuva de Sousa Lopes, Susana M; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2016-03-08

    Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mihaela Crisan

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSC, the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment.

  12. Hedgehog Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Mathieu Daynac

    2016-10-01

    Full Text Available Identifying the mechanisms controlling quiescence and activation of neural stem cells (NSCs is crucial for understanding brain repair. Here, we demonstrate that Hedgehog (Hh signaling actively regulates different pools of quiescent and proliferative NSCs in the adult ventricular-subventricular zone (V-SVZ, one of the main brain neurogenic niches. Specific deletion of the Hh receptor Patched in NSCs during adulthood upregulated Hh signaling in quiescent NSCs, progressively leading to a large accumulation of these cells in the V-SVZ. The pool of non-neurogenic astrocytes was not modified, whereas the activated NSC pool increased after a short period, before progressively becoming exhausted. We also showed that Sonic Hedgehog regulates proliferation of activated NSCs in vivo and shortens both their G1 and S-G2/M phases in culture. These data demonstrate that Hh orchestrates the balance between quiescent and activated NSCs, with important implications for understanding adult neurogenesis under normal homeostatic conditions or during injury.

  13. Hh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton.

    Science.gov (United States)

    Swartz, Mary E; Nguyen, Van; McCarthy, Neil Q; Eberhart, Johann K

    2012-09-01

    The proper function of the craniofacial skeleton requires the proper shaping of many individual skeletal elements. Neural crest cells generate much of the craniofacial skeleton and morphogenesis of skeletal elements occurs in transient, reiterated structures termed pharyngeal arches. The shape of individual elements depends upon intrinsic patterning within the neural crest as well as extrinsic signals to the neural crest from adjacent tissues within the arches. Hedgehog (Hh) signaling is known to play roles in craniofacial development, yet its involvement in intrinsic and extrinsic patterning of the craniofacial skeleton is still not well understood. Here, we show that morphogenetic movements of the pharyngeal arches and patterning of the neural crest require Hh signaling. Loss of Hh signaling, in smoothened (smo) mutants, disrupts the expression of some Dlx genes as well as other markers of dorsal/ventral patterning of the neural crest. Transplantation of wild-type neural crest cells into smo mutants rescues this defect, demonstrating that the neural crest requires reception of Hh signals for proper patterning. Despite the rescue, morphogenesis of the facial skeleton is not fully recovered. Through transplant analyses, we find two additional requirements for Hh signaling. The endoderm requires the reception of Hh signals for proper morphogenetic movements of the pharyngeal arches and the neural crest require the reception of Hh signaling for the activity of a reverse signal that maintains sonic hedgehog expression in the endoderm. Collectively, these results demonstrate that Hh signaling is essential to establish intrinsic and extrinsic patterning information for the craniofacial skeleton. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Loss of parietal cell expression of Sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells.

    Science.gov (United States)

    Xiao, Chang; Ogle, Sally A; Schumacher, Michael A; Orr-Asman, Melissa A; Miller, Marian L; Lertkowit, Nantaporn; Varro, Andrea; Hollande, Frederic; Zavros, Yana

    2010-02-01

    Sonic Hedgehog (Shh) is expressed in the adult stomach, but its role as a gastric morphogen is unclear. We sought to identify mechanisms by which Shh might regulate gastric epithelial cell function and differentiation. Mice with a parietal cell-specific deletion of Shh (HKCre/Shh(KO)) were created. Gastric morphology and function were studied in control and HKCre/Shh(KO) mice between 1 and 8 months of age. In contrast to control mice, HKCre/Shh(KO) mice developed gastric hypochlorhydria, hypergastrinemia, and a phenotype that resembled foveolar hyperplasia. The fundic mucosa of HKCre/Shh(KO) mice had an expanded surface pit cell lineage that was documented by increased incorporation of bromodeoxyuridine and was attributed to the hypergastrinemia. Compared with controls, numbers of total mucous neck and zymogen cells were significantly decreased in stomachs of HKCre/Shh(KO) mice. In addition, zymogen and neck cell markers were coexpressed in the same cell populations, indicating disrupted differentiation of the zymogen cell lineage from the mucous neck cells in the stomachs of HKCre/Shh(KO) mice. Laser capture microdissection of the surface epithelium, followed by quantitative reverse-transcription polymerase chain reaction, revealed a significant increase in expression of Indian Hedgehog, glioma-associated oncogene homolog 1, Wnt, and cyclin D1. Laser capture microdissection analysis also showed a significant increase in Snail with a concomitant decrease in E-cadherin. In the stomachs of adult mice, loss of Shh from parietal cells results in hypochlorhydria and hypergastrinemia. Hypergastrinemia might subsequently induce increased Hedgehog and Wnt signaling in the surface pit epithelium, resulting in hyperproliferation.

  15. What Kind of Signaling Maintains Pluripotency and Viability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 with Serum-Free Medium?

    Science.gov (United States)

    Nakashima, Yoshiki; Omasa, Takeshi

    2016-01-01

    Xeno-free medium contains no animal-derived components, but is composed of minimal growth factors and is serum free; the medium may be supplemented with insulin, transferrin, and selenium (ITS medium). Serum-free and xeno-free culture of human-induced pluripotent stem cells (hiPSCs) uses a variety of components based on ITS medium and Dulbecco's modified Eagle's medium/Ham's nutrient mixture F12 (DMEM/F12) that contain high levels of iron salt and glucose. Culture of hiPSCs also requires scaffolding materials, such as extracellular matrix, collagen, fibronectin, laminin, proteoglycan, and vitronectin. The scaffolding component laminin-511, which is composed of α5, β1, and γ1 chains, binds to α3β1, α6β1, and α6β4 integrins on the cell membrane to induce activation of the PI3K/AKT- and Ras/MAPK-dependent signaling pathways. In hiPSCs, the interaction of laminin-511/α6β1 integrin with the cell-cell adhesion molecule E-cadherin confers protection against apoptosis through the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathways for cell death) and the proto-oncogene tyrosine-protein kinase Fyn (Fyn)-RhoA-ROCK signaling pathway. The expression levels of α6β1 integrin and E-cadherin on cell membranes are controlled through the activation of insulin receptor/insulin, FGF receptor/FGF2, or activin-like kinase 5 (ALK5)-dependent TGF-β signaling. A combination of growth factors, medium constituents, cell membrane-located E-cadherin, and α6β1 integrin-induced signaling is required for pluripotent cell proliferation and for optimal cell survival on a laminin-511 scaffold. In this review, we discuss and explore the influence of growth factors on the cadherin and integrin signaling pathways in serum-free and xeno-free cultures of hiPSCs during the preparation of products for regenerative medicinal therapies. In addition, we suggest the optimum serum-free medium components for use with laminin-511, a new scaffold for hi

  16. EGFR/ARF6 regulation of Hh signalling stimulates oncogenic Ras tumour overgrowth.

    Science.gov (United States)

    Chabu, Chiswili; Li, Da-Ming; Xu, Tian

    2017-03-10

    Multiple signalling events interact in cancer cells. Oncogenic Ras cooperates with Egfr, which cannot be explained by the canonical signalling paradigm. In turn, Egfr cooperates with Hedgehog signalling. How oncogenic Ras elicits and integrates Egfr and Hedgehog signals to drive overgrowth remains unclear. Using a Drosophila tumour model, we show that Egfr cooperates with oncogenic Ras via Arf6, which functions as a novel regulator of Hh signalling. Oncogenic Ras induces the expression of Egfr ligands. Egfr then signals through Arf6, which regulates Hh transport to promote Hh signalling. Blocking any step of this signalling cascade inhibits Hh signalling and correspondingly suppresses the growth of both, fly and human cancer cells harbouring oncogenic Ras mutations. These findings highlight a non-canonical Egfr signalling mechanism, centered on Arf6 as a novel regulator of Hh signalling. This explains both, the puzzling requirement of Egfr in oncogenic Ras-mediated overgrowth and the cooperation between Egfr and Hedgehog.

  17. Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and Sonic hedgehog response

    Directory of Open Access Journals (Sweden)

    Piotrowska-Nitsche Karolina

    2012-05-01

    Full Text Available Abstract Background Primary cilia are microtubule-based sensory organelles that play important roles in developmental signaling pathways. Recent work demonstrated that, in cell culture, the daughter cell that inherits the older mother centriole generates a primary cilium and responds to external stimuli prior to its sister cell. This asynchrony in timing of cilia formation could be especially critical during development as cell divisions are required for both differentiation and maintenance of progenitor cell niches. Methods Here we integrate several fluorescent markers and use ex vivo live imaging of a single cell division within the mouse E8.5 neuroepithelium to reveal both the formation of a primary cilium and the transcriptional response to Sonic hedgehog in the daughter cells. Results We show that, upon cell division, cilia formation and the Sonic hedgehog response are asynchronous between the daughter cells. Conclusions Our results demonstrate that we can directly observe single cell divisions within the developing neuroepithelium and concomitantly monitor cilium formation or Sonic hedgehog response. We expect this method to be especially powerful in examining whether cellular behavior can lead to both differentiation and maintenance of cells in a progenitor niche.

  18. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  19. NHR-23 dependent collagen and hedgehog-related genes required for molting

    Energy Technology Data Exchange (ETDEWEB)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Krause, Michael W. [Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Kostrouch, Zdenek [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic); Kostrouchova, Marta, E-mail: marta.kostrouchova@lf1.cuni.cz [Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague (Czech Republic)

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  20. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    Science.gov (United States)

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling.

    Science.gov (United States)

    Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter; Castilla, Lucio Hernán

    2012-07-26

    Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.

  2. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion.

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L

    2010-12-01

    Hypochlorhydria during Helicobacter pylori infection inhibits gastric Sonic Hedgehog (Shh) expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through intracellular calcium (Ca2(+)(i))-dependent protein kinase C (PKC) or cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation. We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1, a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) + 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), PKC-overexpressing adenoviruses, and PKC inhibitors were used to modulate Ca(2+)(i)-release, PKC activity, and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H(+)/K(+)-β-cholera-toxin-overexpressing mice. Mice that expressed secreted hedgehog-interacting protein-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression also was repressed in the hyperchlorhydric H(+)/K(+)-β-cholera-toxin model with increased cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca(2+)(i) release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin-, and carbachol-mediated release of Ca(2+)(i) induced Shh expression. Ca(2+)-chelation with BAPTA + EGTA reduced Shh expression. Overexpression of PKC-α, -β, and -δ (but not PKC-ϵ) induced an Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Secretagogues that stimulate

  3. A key role for early growth response-1 and nuclear factor-kappaB in mediating and maintaining GRO/CXCR2 proliferative signaling in esophageal cancer.

    Science.gov (United States)

    Wang, Bo; Khachigian, Levon M; Esau, Luke; Birrer, Michael J; Zhao, Xiaohang; Parker, M Iqbal; Hendricks, Denver T

    2009-05-01

    Although early growth response-1 (EGR-1) has been shown as a key transcription factor in controlling cell growth, proliferation, differentiation, and angiogenesis, its role in the development of esophageal cancer is poorly understood despite the high frequency of this disease in many parts of the world. Here, immunohistochemistry showed that EGR-1 is overexpressed in 80% of esophageal tumor tissues examined. Furthermore, EGR-1 is constitutively expressed in all esophageal cancer cell lines analyzed. Esophageal squamous carcinoma WHCO1 cells stably transfected with EGR-1 short hairpin RNA displayed a 55% reduction in EGR-1 protein levels, 50% reduction in cell proliferation, a 50% reduction in cyclin-dependent kinase 4 levels, and a 2-fold induction in p27(Kip1) levels associated with a G(2)-M cell cycle arrest. EGR-1 knockdown also caused a marked induction in IkappaBalpha expression, an effect also observed in GRObeta RNA interference-expressing WHCO1 cells, because EGR-1 lies downstream of GRO/CXCR2 signaling. Furthermore, p65 mRNA levels were also reduced in cells treated with either short hairpin RNA EGR-1 or small interfering RNA EGR-1. Immunohistochemical analysis indicated that p65 is elevated in 78% (n = 61) of esophageal tumor sections analyzed. Moreover, nuclear factor-kappaB inhibition with either sodium salicylate or p65 RNA interference led to a significant reduction in GROalpha and GRObeta expression. These results indicate that EGR-1 and nuclear factor-kappaB mediate GRO/CXCR2 proliferative signaling in esophageal cancer and may represent potential target molecules for therapeutic intervention.

  4. Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice

    OpenAIRE

    Honghao Zhang; Nobuhiro Kamiya; Takehito Tsuji; Haruko Takeda; Greg Scott; Sudha Rajderkar; Ray, Manas K.; Yoshiyuki Mochida; Benjamin Allen; Veronique Lefebvre; Hung, Irene H.; Ornitz, David M.; Tetsuo Kunieda; Yuji Mishina

    2016-01-01

    Author Summary Ellis-van Creveld (EvC) syndrome is a congenital skeleton disorder characterized by short limbs. Recent studies indicated that EVC and EVC2, the proteins encoded by two causative genes of EvC syndrome, play important function in transducing Hedgehog signaling, a signaling pathway critical for embryonic development. The defective Hedgehog signaling in chondrocytes is therefore the speculated reason for dwarfism in EvC patients. However, despite the apparent skeletal abnormalitie...

  5. Vitamin D Signaling Through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models

    Directory of Open Access Journals (Sweden)

    Danmei Su

    2016-11-01

    Full Text Available Metabolic syndrome (MetS, characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD,is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR is highly expressed in the ileum of the small intestine,which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD is necessary but not sufficient, while additional vitamin D deficiency (VDD as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD, the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5, MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD, Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with

  6. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  7. Identification and Characterization of KCASH2 and KCASH3, 2 Novel Cullin3 Adaptors Suppressing Histone Deacetylase and Hedgehog Activity in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Enrico De Smaele

    2011-04-01

    Full Text Available Medulloblastoma is the most common pediatric malignant brain tumor, arising from aberrant cerebellar precursors' development, a process mainly controlled by Hedgehog (Hh signaling pathway. Histone deacetylase HDAC1 has been recently shown to modulate Hh signaling, deacetylating its effectors Gli1/2 and enhancing their transcriptional activity. Therefore, HDAC may represent a potential therapeutic target for Hh-dependent tumors, but still little information is available on the physiological mechanisms of HDAC regulation. The putative tumor suppressor RENKCTD11 acts through ubiquitination-dependent degradation of HDAC1, thereby affecting Hh activity and medulloblastoma growth. We identify and characterize here two RENKCTD11 homologues, defining a new family of proteins named KCASH, as “KCTD containing, Cullin3 adaptor, suppressor of Hedgehog.” Indeed, the novel genes (KCASH2KCTD21 and KCASH3KCTD6 share with RENKCTD11 a number of features, such as a BTB domain required for the formation of a Cullin3 ubiquitin ligase complex and HDAC1 ubiquitination and degradation capability, suppressing the acetylation-dependent Hh/Gli signaling. Expression of KCASH2 and -3 is observed in cerebellum, whereas epigenetic silencing and allelic deletion are observed in human medulloblastoma. Rescuing KCASHs expression reduces the Hedgehog-dependent medulloblastoma growth, suggesting that loss of members of this novel family of native HDAC inhibitors is crucial in sustaining Hh pathway-mediated tumorigenesis. Accordingly, they might represent a promising class of endogenous “agents” through which this pathway may be targeted.

  8. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    Directory of Open Access Journals (Sweden)

    Josep Roma

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.

  9. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice.

    Science.gov (United States)

    Feng, Rui; Aihara, Eitaro; Kenny, Susan; Yang, Li; Li, Jing; Varro, Andrea; Montrose, Marshall H; Shroyer, Noah F; Wang, Timothy C; Shivdasani, Ramesh A; Zavros, Yana

    2014-09-01

    Loss of expression of Sonic Hedgehog (Shh) from parietal cells results in hypergastrinemia in mice, accompanied by increased expression of Indian Hedgehog (Ihh) and hyperproliferation of surface mucous cells. We investigated whether hypergastrinemia induces gastric epithelial proliferation by activating Ihh signaling in mice. We studied mice with parietal cell-specific deletion of Shh (PC-Shh(KO)) and hypergastrinemia, crossed with gastrin-deficient (GKO) mice (PC-Shh(KO)/GKO). When mice were 3-4 months old, gastric tissues were collected and analyzed by histology, for incorporation of bromodeoxyuridine, and for expression of the surface mucous cell marker Ulex europaeus. PC-Shh(KO)/GKO mice were given gastrin infusions for 7 days; gastric surface epithelium was collected and expression of Ihh was quantified by laser capture microdissection followed by quantitative reverse transcriptase polymerase chain reaction. Mouse stomach-derived organoids were incubated with or without inhibitors of WNT (DKK1) or Smoothened (vismodegib) and then cocultured with immortalized stomach mesenchymal cells, to assess proliferative responses to gastrin. Gastric tissues from PC-Shh(KO)/GKO mice with hypergastrinemia had an expanded surface pit epithelium, indicated by a significant increase in numbers of bromodeoxyuridine- and Ulex europaeus-positive cells, but there was no evidence for hyperproliferation. Gastrin infusion of PC PC-Shh(KO)/GKO mice increased expression of Ihh and proliferation within the surface epithelium compared with mice given infusions of saline. In gastric organoids cocultured with immortalized stomach mesenchymal cells, antagonists of WNT and Smoothened inhibited gastrin-induced proliferation and WNT activity. Activity of WNT in media collected from immortalized stomach mesenchymal cells correlated with increased expression of glioma-associated oncogene homolog 1, and was inhibited by DKK1 or vismodegib. Ihh signaling mediates gastrin-induced proliferation of

  10. Intracellular calcium-release and protein kinase C-activation stimulate sonic hedgehog gene expression during gastric acid secretion

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L.

    2010-01-01

    Introduction Hypochlorhydria during Helicobacter pylori infection inhibits gastric Shh expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through Ca2+i-dependent protein kinase C (PKC) or cAMP-dependent protein kinase A (PKA)-activation. Method We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1 (sHip-1), a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, EGTA+BAPTA, PKC-overexpressing adenoviruses, and PKC-inhibitors were used to modulate Ca2+i-release, PKC-activity and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H+/K+-β-cholera-toxin overexpressing mice (Ctox). Results Mice that expressed sHip-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression was also repressed in the hyperchlorhydric Ctox model with elevated cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca2+i-release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin- and carbachol-mediated release of Ca2+i induced Shh expression. Ca2+-chelation with BAPTA+EGTA reduced Shh expression. Overexpression of PKC-α, -β and -δ (but not PKC-ε) induced Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Conclusion Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca2+i-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin. PMID:20816837

  11. Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus) in Urmia city, Iran: First report

    Science.gov (United States)

    Gorgani-Firouzjaee, Tahmineh; Pour-Reza, Behzad; Naem, Soraya; Tavassoli, Mousa

    2013-01-01

    Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of ticks (p > 0.05) but found in fleas (p 0.05). Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p < 0.05). The result of our survey revealed that infestation rate in hedgehog was high. According to zoonotic importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran. PMID:25653796

  12. Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus in Urmia city, Iran: First report

    Directory of Open Access Journals (Sweden)

    Tahmineh Gorgani-Firouzjaee

    2013-09-01

    Full Text Available Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70% were infested with ticks (Rhipicephalus turanicus. Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%. There was no significant differences between sex of ticks (p > 0.05 but found in fleas (p 0.05. Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p < 0.05. The result of our survey revealed that infestation rate in hedgehog was high. According to zoonotic importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran.

  13. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  14. Common Emergencies in Small Rodents, Hedgehogs, and Sugar Gliders.

    Science.gov (United States)

    McLaughlin, Alicia; Strunk, Anneliese

    2016-05-01

    Small exotic mammal pets such as rats, mice, hamsters, gerbils, degus, hedgehogs, and sugar gliders are becoming more popular. Because these animals are prone to a variety of health problems, and require specialized husbandry care to remain healthy, they may present to emergency hospitals in critical condition. This article provides a basic overview of common emergency presentations of these species. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development

    Science.gov (United States)

    Gong, Jianfeng; Yu, Mingyan; Zhang, Fangxiong; Sha, Haibo; Gao, Xiang

    2012-01-01

    Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling. PMID:22485132

  16. Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines

    DEFF Research Database (Denmark)

    Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie

    2017-01-01

    Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin...... to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1...... cells at 48 h, Panticancer drugs in localized and enhanced topical treatment of nonmelanoma skin cancer. Of importance in the clinical setting...

  17. OSTEOSARCOMA IN AFRICAN HEDGEHOGS (ATELERIX ALBIVENTRIS): FIVE CASES.

    Science.gov (United States)

    Reyes-Matute, Alonso; Méndez-Bernal, Adriana; Ramos-Garduño, Liliana-Aurora

    2017-06-01

    Osteosarcomas are unusual neoplasms in African hedgehogs ( Atelerix albiventris ) and have been reported in extraskeletal and skeletal locations, including mandible, ribs, and vertebra. Five hedgehogs with osteosarcoma submitted to the Pathology Department at Facultad de Medicina Veterinaria y Zootecnia, National Autonomous University of Mexico are reported. In two cases, the neoplasm arose from the skull; one case arose from the ribs with associated compression of the thoracic and abdominal cavity, and another case involved the vertebrae. In the last case, the neoplasm arose from the scapula. Histologic lesions were similar in all cases and consisted of well-demarcated nodules in which neoplastic cells were arranged in sheets of polyhedral to spindle-shaped cells with interspersed areas of necrosis. Numerous trabeculae of osteoid were present throughout the tumors. No metastases were detected. The predominant histologic pattern was osteoblastic, but a telangiectatic-like pattern was observed in the vertebral osteosarcoma. Electron microscopy was performed in two cases, and malignant osteoblasts had features consistent with descriptions in other species, including deposits of hydroxyapatite in osteoid. According to these cases and previously published data, axial osteosarcomas are more frequent in contrast to appendicular osteosarcomas in African hedgehogs, and metastases are rare.

  18. Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation.

    Science.gov (United States)

    Yao, Qinyu; Renault, Marie-Ange; Chapouly, Candice; Vandierdonck, Soizic; Belloc, Isabelle; Jaspard-Vinassa, Béatrice; Daniel-Lamazière, Jean-Marie; Laffargue, Muriel; Merched, Aksam; Desgranges, Claude; Gadeau, Alain-Pierre

    2014-04-10

    Recruitment of mural cells (MCs), namely pericytes and smooth muscle cells (SMCs), is essential to improve the maturation of newly formed vessels. Sonic hedgehog (Shh) has been suggested to promote the formation of larger and more muscularized vessels, but the underlying mechanisms of this process have not yet been elucidated. We first identified Shh as a target of platelet-derived growth factor BB (PDGF-BB) and found that SMCs respond to Shh by upregulating extracellular signal-regulated kinase 1/2 and Akt phosphorylation. We next showed that PDGF-BB-induced SMC migration was reduced after inhibition of Shh or its signaling pathway. Moreover, we found that PDGF-BB-induced SMC migration involves Shh-mediated motility. In vivo, in the mouse model of corneal angiogenesis, Shh is expressed by MCs of newly formed blood vessels. PDGF-BB inhibition reduced Shh expression, demonstrating that Shh is a target of PDGF-BB, confirming in vitro experiments. Finally, we found that in vivo inhibition of either PDGF-BB or Shh signaling reduces NG2(+) MC recruitment into neovessels and subsequently reduces neovessel life span. Our findings demonstrate, for the first time, that Shh is involved in PDGF-BB-induced SMC migration and recruitment of MCs into neovessels and elucidate the molecular signaling pathway involved in this process.

  19. Self-renewal of acute lymphocytic leukemia cells is limited by the Hedgehog pathway inhibitors cyclopamine and IPI-926.

    Directory of Open Access Journals (Sweden)

    Tara L Lin

    Full Text Available Conserved embryonic signaling pathways such as Hedgehog (Hh, Wingless and Notch have been implicated in the pathogenesis of several malignancies. Recent data suggests that Hh signaling plays a role in normal B-cell development, and we hypothesized that Hh signaling may be important in precursor B-cell acute lymphocytic leukemia (B-ALL. We found that the expression of Hh pathway components was common in human B-ALL cell lines and clinical samples. Moreover, pathway activity could be modulated by Hh ligand or several pathway inhibitors including cyclopamine and the novel SMOOTHENED (SMO inhibitor IPI-926. The inhibition of pathway activity primarily impacted highly clonogenic B-ALL cells expressing aldehyde dehydrogenase (ALDH by limiting their self-renewal potential both in vitro and in vivo. These data demonstrate that Hh pathway activation is common in B-ALL and represents a novel therapeutic target regulating self-renewal and persistence of the malignant clone.

  20. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog.

    Science.gov (United States)

    Wang, Chuandong; Shan, Shengzhou; Wang, Chenglong; Wang, Jing; Li, Jiao; Hu, Guoli; Dai, Kerong; Li, Qingfeng; Zhang, Xiaoling

    2017-03-15

    Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands.

    Science.gov (United States)

    Ruiz-Perez, Victor L; Goodship, Judith A

    2009-11-15

    Ellis-van Creveld syndrome (EvC; OMIM 225500) is a recessive disorder comprising chondrodysplasia, polydactyly, nail dysplasia, orofacial abnormalities and, in a proportion of patients, cardiovascular malformations. Weyers acrodental dysostosis (Weyers; OMIM 193530) is an allelic dominant disorder comprising polydactyly, nail dysplasia, and orofacial abnormalities. EvC results from loss-of-function mutations in EVC or EVC2, the phenotype associated with the mutations in these two genes being indistinguishable. Three convincing causative mutations have been identified in patients with Weyers acrodental dysostosis, which are clustered in the last coding exon of EVC2 and lead to production of a truncated protein lacking the final 43 amino acids. Localization and function of EVC and EVC2 are inferred from studying the murine orthologs. Both Evc and Evc2 proteins localize to the basal bodies of primary cilia and analysis of an Ellis-van Creveld mouse model, which includes the limb shortening and tooth abnormalities of EvC patients, has demonstrated Hedgehog signaling defects in the absence of Evc. The loss of Evc2 has not been studied directly, but Hedgehog signaling is impaired when a mutant murine Evc2 Weyer variant is expressed in vitro. We conclude that the phenotypic abnormalities in EvC and Weyers syndrome result from tissue specific disruption of the response to Hh ligands. Copyright 2009 Wiley-Liss, Inc.

  2. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation.

    Science.gov (United States)

    Spinella-Jaegle, S; Rawadi, G; Kawai, S; Gallea, S; Faucheu, C; Mollat, P; Courtois, B; Bergaud, B; Ramez, V; Blanchet, A M; Adelmant, G; Baron, R; Roman-Roman, S

    2001-06-01

    The proteins of the hedgehog (Hh) family regulate various aspects of development. Recently, members of this family have been shown to regulate skeletal formation in vertebrates and to control both chondrocyte and osteoblast differentiation. In the present study, we analyzed the effect of Sonic hedgehog (Shh) on the osteoblastic and adipocytic commitment/differentiation. Recombinant N-terminal Shh (N-Shh) significantly increased the percentage of both the pluripotent mesenchymal cell lines C3H10T1/2 and ST2 and calvaria cells responding to bone morphogenetic protein 2 (BMP-2), in terms of osteoblast commitment as assessed by measuring alkaline phosphatase (ALP) activity. This synergistic effect was mediated, at least partly, through the positive modulation of the transcriptional output of BMPs via Smad signaling. Furthermore, N-Shh was found to abolish adipocytic differentiation of C3H10T1/2 cells both in the presence or absence of BMP-2. A short treatment with N-Shh was sufficient to dramatically reduce the levels of the adipocytic-related transcription factors C/EBPalpha and PPARgamma in both C3H10T1/2 and calvaria cell cultures. Given the inverse relationship between marrow adipocytes and osteoblasts with aging, agonists of the Hh signaling pathway might constitute potential drugs for preventing and/or treating osteopenic disorders.

  3. Gli1 Protein Participates in Hedgehog-mediated Specification of Osteoblast Lineage during Endochondral Ossification*

    Science.gov (United States)

    Hojo, Hironori; Ohba, Shinsuke; Yano, Fumiko; Saito, Taku; Ikeda, Toshiyuki; Nakajima, Keiji; Komiyama, Yuske; Nakagata, Naomi; Suzuki, Kentaro; Takato, Tsuyoshi; Kawaguchi, Hiroshi; Chung, Ung-il

    2012-01-01

    With regard to Hedgehog signaling in mammalian development, the majority of research has focused on Gli2 and Gli3 rather than Gli1. This is because Gli1−/− mice do not show any gross abnormalities in adulthood, and no detailed analyses of fetal Gli1−/− mice are available. In this study, we investigated the physiological role of Gli1 in osteogenesis. Histological analyses revealed that bone formation was impaired in Gli1−/− fetuses compared with WT fetuses. Gli1−/− perichondrial cells expressed neither runt-related transcription factor 2 (Runx2) nor osterix, master regulators of osteogenesis, in contrast to WT cells. In vitro analyses showed that overexpression of Gli1 up-regulated early osteogenesis-related genes in both WT and Runx2−/− perichondrial cells, and Gli1 activated transcription of those genes via its association with their 5′-regulatory regions, underlying the function of Gli1 in the perichondrium. Moreover, Gli1−/−;Gli2−/− mice showed more severe phenotypes of impaired bone formation than either Gli1−/− or Gli2−/− mice, and osteoblast differentiation was impaired in Gli1−/−;Gli3−/− perichondrial cells compared with Gli3−/− cells in vitro. These data suggest that Gli1 itself can induce early osteoblast differentiation, at least to some extent, in a Runx2-independent manner. It also plays a redundant role with Gli2 and is involved in the repressor function of Gli3 in osteogenesis. On the basis of these findings, we propose that upon Hedgehog input, Gli1 functions collectively with Gli2 and Gli3 in osteogenesis. PMID:22493482

  4. Insulin/IGF-1 signaling, including class II/III PI3Ks, β-arrestin and SGK-1, is required in C. elegans to maintain pharyngeal muscle performance during starvation.

    Science.gov (United States)

    Dwyer, Donard S; Aamodt, Eric J

    2013-01-01

    In C. elegans, pharyngeal pumping is regulated by the presence of bacteria. In response to food deprivation, the pumping rate rapidly declines by about 50-60%, but then recovers gradually to baseline levels on food after 24 hr. We used this system to study the role of insulin/IGF-1 signaling (IIS) in the recovery of pharyngeal pumping during starvation. Mutant strains with reduced function in the insulin/IGF-1 receptor, DAF-2, various insulins (INS-1 and INS-18), and molecules that regulate insulin release (UNC-64 and NCA-1; NCA-2) failed to recover normal pumping rates after food deprivation. Similarly, reduction or loss of function in downstream signaling molecules (e.g., ARR-1, AKT-1, and SGK-1) and effectors (e.g., CCA-1 and UNC-68) impaired pumping recovery. Pharmacological studies with kinase and metabolic inhibitors implicated class II/III phosphatidylinositol 3-kinases (PI3Ks) and glucose metabolism in the recovery response. Interestingly, both over- and under-activity in IIS was associated with poorer recovery kinetics. Taken together, the data suggest that optimum levels of IIS are required to maintain high levels of pharyngeal pumping during starvation. This work may ultimately provide insights into the connections between IIS, nutritional status and sarcopenia, a hallmark feature of aging in muscle.

  5. Insulin/IGF-1 signaling, including class II/III PI3Ks, β-arrestin and SGK-1, is required in C. elegans to maintain pharyngeal muscle performance during starvation.

    Directory of Open Access Journals (Sweden)

    Donard S Dwyer

    Full Text Available In C. elegans, pharyngeal pumping is regulated by the presence of bacteria. In response to food deprivation, the pumping rate rapidly declines by about 50-60%, but then recovers gradually to baseline levels on food after 24 hr. We used this system to study the role of insulin/IGF-1 signaling (IIS in the recovery of pharyngeal pumping during starvation. Mutant strains with reduced function in the insulin/IGF-1 receptor, DAF-2, various insulins (INS-1 and INS-18, and molecules that regulate insulin release (UNC-64 and NCA-1; NCA-2 failed to recover normal pumping rates after food deprivation. Similarly, reduction or loss of function in downstream signaling molecules (e.g., ARR-1, AKT-1, and SGK-1 and effectors (e.g., CCA-1 and UNC-68 impaired pumping recovery. Pharmacological studies with kinase and metabolic inhibitors implicated class II/III phosphatidylinositol 3-kinases (PI3Ks and glucose metabolism in the recovery response. Interestingly, both over- and under-activity in IIS was associated with poorer recovery kinetics. Taken together, the data suggest that optimum levels of IIS are required to maintain high levels of pharyngeal pumping during starvation. This work may ultimately provide insights into the connections between IIS, nutritional status and sarcopenia, a hallmark feature of aging in muscle.

  6. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Eric Dessaud

    Full Text Available Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh, which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.

  7. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Shimada

    Full Text Available Keratocystic odontogenic tumor (KCOT arises as part of Gorlin syndrome (GS or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1 showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2 less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3 consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.

  8. Helminth Parasites of Eastern European Hedgehog (Erinaceus concolor in Northern Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Youssefi

    2013-12-01

    Full Text Available Recently there is a high tendency among exotic pet owners for keeping hedgehogs. This mammal can transfer some significant zoonotic pathogens to human. Hence, the present study was conducted for the first time to prepare a list of helminth parasites of hedgehogs (Erinaceus concolor in North of Iran.Ten (four males and six females road killed hedgehogs were collected during April to January 2011 in rural areas of Babol city, Mazandaran province, Iran. All of internal organs were scrutinized for helminth burden. The extracted specimens were fixed and preserved in 70% ethanol and then cleared in Lacto-phenol solution. Helminth identification was carried out according to available systematic keys.All the examined hedgehogs (100% were infected with parasitic helminth as following: two hedgehogs (20% were infected with Crenosoma striatum, four hedgehogs (40% harbored Physaloptera clausa, one (10% host had Hymenolepis erinacei and three (30% of them were infected with Nephridiacanthus major.This is noteworthy that the current survey is the first report of helminth parasites fauna of Eastern European Hedgehog in Iran. Since, this is the first such investigation in our country, more researches are required to perform on unexplored areas of Iran in order to increase our knowledge regarding hedgehog parasitic diseases.

  9. Helminth Parasites of Eastern European Hedgehog (Erinaceus concolor) in Northern Iran.

    Science.gov (United States)

    Youssefi, Mohammad Reza; Rahimi, Mohammad Taghi; Halajian, Ali; Moosapour, Ali Asghar; Nikzad, Reza; Nikzad, Mohammad; Ramezanpour, Shahab; Ebrahimpour, Soheil

    2013-10-01

    Recently there is a high tendency among exotic pet owners for keeping hedgehogs. This mammal can transfer some significant zoonotic pathogens to human. Hence, the present study was conducted for the first time to prepare a list of helminth parasites of hedgehogs (Erinaceus concolor) in North of Iran. Ten (four males and six females) road killed hedgehogs were collected during April to January 2011 in rural areas of Babol city, Mazandaran province, Iran. All of internal organs were scrutinized for helminth burden. The extracted specimens were fixed and preserved in 70% ethanol and then cleared in Lacto-phenol solution. Helminth identification was carried out according to available systematic keys. All the examined hedgehogs (100%) were infected with parasitic helminth as following: two hedgehogs (20%) were infected with Crenosoma striatum, four hedgehogs (40%) harbored Physaloptera clausa, one (10%) host had Hymenolepis erinacei and three (30%) of them were infected with Nephridiacanthus major. This is noteworthy that the current survey is the first report of helminth parasites fauna of Eastern European Hedgehog in Iran. Since, this is the first such investigation in our country, more researches are required to perform on unexplored areas of Iran in order to increase our knowledge regarding hedgehog parasitic diseases.

  10. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hedgehog pathway does not play a role in hidradenitis suppurativa pathogenesis

    DEFF Research Database (Denmark)

    Mozeika, E.; Jemec, G.B.E.; Nürnberg, B.M.

    2011-01-01

    in normal embryonic skin, hair follicle, sebaceous and sweat gland development. Mutations of hedgehog pathway in adult skin have previously been found in basal cell carcinomas and in alopecia as well as in epidermal cysts and in odontogenic keratocysts. Therefore, we suggested that the hedgehog pathway...

  12. Maintaining protein composition in cilia.

    Science.gov (United States)

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  13. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia.

    Science.gov (United States)

    Caparrós-Martín, Jose A; Valencia, María; Reytor, Edel; Pacheco, María; Fernandez, Margarita; Perez-Aytes, Antonio; Gean, Esther; Lapunzina, Pablo; Peters, Heiko; Goodship, Judith A; Ruiz-Perez, Victor L

    2013-01-01

    Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyer's acrodental dysostosis (Evc2Δ43) caused mislocalization of Evc/Evc2Δ43 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2(-/-) chondrocytes. Moreover, Evc silencing in Sufu(-/-) cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation.

  14. Yeast Gup1(2 Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L: Facts and Implications

    Directory of Open Access Journals (Sweden)

    Cândida Lucas

    2016-11-01

    Full Text Available In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.

  15. Generalidades de la señalización molecular durante el desarrollo embrionario: El caso del Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    David Arias

    2016-12-01

    Full Text Available Histogenesis and organogenesis of the vertebrates –including humans– involves the interaction of an epithelium (derived from the ectoderm and endoderm and the underlying mesenchyme (derived from the intraembryonic mesoderm. This interaction is regulated by a paracrine signaling network that includes several ligands and their respective receptors, in addition to a series of transcription factors that control the whole system. Among these factors are fibroblast growth factors (Fgf, Hedgehog family (Hh, Wingless family (Wnt and beta-fibroblast growth factor superfamily (Tgf-β, which act to organize the morphogenetic pattern of a tissue, an organ, an apparatus and a morphofunctional system. One of the most studied factors is Sonic hedgehog (Shh, which is essential for regulating the formation of morphogenetic fields in specific places of the embryo’s body schema through cell proliferation, differentiation, migration and cell survival processes –in development or in the adult–. Therefore, the purpose of this literature review is to describe the role of Shh in the embryonic development of the neural tube, the limbs and the teeth.

  16. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Directory of Open Access Journals (Sweden)

    Lamia Ghezali

    Full Text Available Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  17. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Science.gov (United States)

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  18. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  19. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update

    Science.gov (United States)

    Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X.

    2015-01-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents. PMID:25850553

  20. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yue Wang

    Full Text Available The blood-brain barrier (BBB is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β, a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  1. Sonic Hedgehog-Induced Histone Deacetylase Activation Is Required for Cerebellar Granule Precursor Hyperplasia in Medulloblastoma

    Science.gov (United States)

    Lee, Seung Joon; Lindsey, Stephan; Graves, Bruce; Yoo, Soonmoon; Olson, James M.; Langhans, Sigrid A.

    2013-01-01

    Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease. PMID:23951168

  2. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  3. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  4. Hedgehog and wingless induce metameric pattern in the Drosophila visceral mesoderm.

    Science.gov (United States)

    Bilder, D; Scott, M P

    1998-09-01

    The Drosophila visceral mesoderm (VM) is a favorite system for studying the regulation of target genes by Hox proteins. The VM is formed by cells from only the anterior subdivision of each mesodermal parasegment (PS). We show here that the VM itself acquires modular anterior-posterior subdivisions similar to those found in the ectoderm. As VM progenitors merge to form a continuous band running anterior to posterior along the embryo, expression of connectin (con) in 11 metameric patches within the VM reveals VM subdivisions analagous to ectodermal compartments. The VM subdivisions form in response to ectodermal production of secreted signals encoded by the segment polarity genes hedgehog (hh) and wingless (wg) and are independent of Hox gene activity. A cascade of induction from ectoderm to mesoderm to endoderm thus subdivides the gut tissues along the A-P axis. Induction of VM subdivisions may converge with Hox-mediated information to refine spatial patterning in the VM. Con patches align with ectodermal engrailed stripes, so the VM subdivisions correspond to PS 2-12 boundaries in the VM. The PS boundaries demarcated by Con in the VM can be used to map expression domains of Hox genes and their targets with high resolution. The resultant map suggests a model for the origins of VM-specific Hox expression in which Hox domains clonally inherited from blastoderm ancestors are modified by diffusible signals acting on VM-specific enhancers. Copyright 1998 Academic Press.

  5. Targeted treatment for sonic hedgehog-dependent medulloblastoma

    Science.gov (United States)

    Kieran, Mark W.

    2014-01-01

    Novel treatment options, including targeted therapies, are needed for patients with medulloblastoma (MB), especially for those with high-risk or recurrent/relapsed disease. Four major molecular subgroups of MB have been identified, one of which is characterized by activation of the sonic hedgehog (SHH) pathway. Preclinical data suggest that inhibitors of the hedgehog (Hh) pathway could become valuable treatment options for patients with this subgroup of MB. Indeed, agents targeting the positive regulator of the pathway, smoothened (SMO), have demonstrated efficacy in a subset of patients with SHH MB. However, because of resistance and the presence of mutations downstream of SMO, not all patients with SHH MB respond to SMO inhibitors. The development of agents that target these resistance mechanisms and the potential for their combination with traditional chemotherapy and SHH inhibitors will be discussed. Due to its extensive molecular heterogeneity, the future of MB treatment is in personalized therapy, which may lead to improved efficacy and reduced toxicity. This will include the development of clinically available tests that can efficiently discern the SHH subgroup. The preliminary use of these tests in clinical trials is also discussed herein. PMID:24951114

  6. Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma.

    Science.gov (United States)

    Almazán-Moga, Ana; Zarzosa, Patricia; Vidal, Isaac; Molist, Carla; Giralt, Irina; Navarro, Natalia; Soriano, Aroa; Segura, Miguel F; Alfranca, Arantza; Garcia-Castro, Javier; Sánchez de Toledo, José; Roma, Josep; Gallego, Soledad

    2017-01-01

    Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be responsible for the onset and propagation of cancer, has been demonstrated in some neoplasia. Although the existence of CSC has been reported for eRMS, their existence in aRMS, the most malignant subtype, has not been demonstrated to date. Given the lack of suitable markers to identify this subpopulation in aRMS, we used cancer stem cell-enriched supracellular structures (spheres and holoclones) to study this subpopulation. This strategy allowed us to demonstrate the capacity of both aRMS and eRMS cells to form these structures and retain self-renewal capacity. Furthermore, cells contained in spheres and holoclones showed significant Hedgehog pathway induction, the inhibition of which (pharmacologic or genetic) impairs the formation of both holoclones and spheres. Our findings point to a crucial role of this pathway in the maintenance of these structures and suggest that Hedgehog pathway targeting in CSC may have great potential in preventing local relapses and metastases.

  7. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    Directory of Open Access Journals (Sweden)

    Reem Malek

    Full Text Available Disruption of cerebellar granular neuronal precursor (GNP maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro, which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/- mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.

  8. Ergonomics Contribution in Maintainability

    Science.gov (United States)

    Teymourian, Kiumars; Seneviratne, Dammika; Galar, Diego

    2017-09-01

    The objective of this paper is to describe an ergonomics contribution in maintainability. The economical designs, inputs and training helps to increase the maintainability indicators for industrial devices. This analysis can be helpful, among other cases, to compare systems, to achieve a better design regarding maintainability requirements, to improve this maintainability under specific industrial environment and to foresee maintainability problems due to eventual changes in a device operation conditions. With this purpose, this work first introduces the notion of ergonomics and human factors, maintainability and the implementation of assessment of human postures, including some important postures to perform maintenance activities. A simulation approach is used to identify the critical posture of the maintenance personnel and implements the defined postures with minimal loads on the personnel who use the equipment in a practical scenario. The simulation inputs are given to the designers to improve the workplace/equipment in order to high level of maintainability. Finally, the work concludes summarizing the more significant aspects and suggesting future research.

  9. Detection and molecular characterisation of Cryptosporidium parvum in British European hedgehogs (Erinaceus europaeus).

    Science.gov (United States)

    Sangster, Lucy; Blake, Damer P; Robinson, Guy; Hopkins, Timothy C; Sa, Ricardo C C; Cunningham, Andrew A; Chalmers, Rachel M; Lawson, Becki

    2016-02-15

    Surveillance was conducted for the occurrence of protozoan parasites of the genus Cryptosporidium in European hedgehogs (Erinaceus europaeus) in Great Britain. In total, 108 voided faecal samples were collected from hedgehogs newly admitted to eight wildlife casualty treatment and rehabilitation centres. Terminal large intestinal (LI) contents from three hedgehog carcasses were also analysed. Information on host and location variables, including faecal appearance, body weight, and apparent health status, was compiled. Polymerase Chain Reaction (PCR) targeting the 18S ribosomal RNA gene, confirmed by sequencing, revealed an 8% (9/111) occurrence of Cryptosporidium parvum in faeces or LI contents, with no significant association between the host or location variables and infection. Archived small intestinal (SI) tissue from a hedgehog with histological evidence of cryptosporidiosis was also positive for C. parvum by PCR and sequence analysis of the 18S rRNA gene. No other Cryptosporidium species were detected. PCR and sequencing of the glycoprotein 60 gene identified three known zoonotic C. parvum subtypes not previously found in hedgehogs: IIdA17G1 (n=4), IIdA19G1 (n=1) and IIdA24G1 (n=1). These subtypes are also known to infect livestock. Another faecal sample contained C. parvum IIcA5G3j which has been found previously in hedgehogs, and for which there is one published report in a human, but is not known to affect livestock. The presence of zoonotic subtypes of C. parvum in British hedgehogs highlights a potential public health concern. Further research is needed to better understand the epidemiology and potential impacts of Cryptosporidium infection in hedgehogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity.

    Science.gov (United States)

    Muñoz-Bravo, Jose Luis; Flores-Martínez, Alvaro; Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.

  11. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity

    Science.gov (United States)

    Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991

  12. Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid

    Science.gov (United States)

    Volpicelli, Floriana; Consales, Claudia; Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Perrone-Capano, Carla; di Porzio, Umberto

    2004-01-01

    We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, all TH+ neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction. PMID:15303305

  13. Ticks and Fleas Infestation on East Hedgehogs (Erinaceus concolor) in Van Province, Eastern Region of Turkey

    Science.gov (United States)

    Goz, Yaşar; Yilmaz, Ali Bilgin; Aydin, Abdulalim; Dicle, Yalçın

    2016-01-01

    Background: Ixodid ticks (Acari: İxodidae) and fleas (Siphonaptera) are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor) with ticks and fleas in Van Province, eastern region of Turkey. Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer). Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively. Conclusion: We detected ticks (R. turanicus) and fleas (A. erinacei) in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. PMID:27047971

  14. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden.

    Science.gov (United States)

    Bengtsson, Björn; Persson, Lotta; Ekström, Kerstin; Unnerstad, Helle Ericsson; Uhlhorn, Henrik; Börjesson, Stefan

    2017-08-01

    We investigated the occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden and characterized the obtained isolates. Samples from 55 hedgehogs from five counties of Sweden were cultivated selectively for MRSA and putative isolates were confirmed by real-time PCR detecting mecA, mecC, nuc and PVL genes. mecC-MRSA was confirmed in 35 (64%) animals from three geographically separated counties. Confirmed isolates were spa-typed and tested for antimicrobial susceptibility by broth microdilution. Eight different spa-types were identified (t843, t978, t3391, t9111, t10751, t10893, t11015, t15312) of which t843 (49%) was the most common. The spa-types t843, t3391 and t978 were found in isolates from two counties. The study shows that mecC-MRSA is common in wild hedgehogs in two counties of Sweden but occurs in hedgehogs also in other parts of the country. Our findings suggest that hedgehogs could be a reservoir for mecC-MRSA. In addition, similar spa-types of isolates from hedgehogs and isolates previously described in domesticated animals and in humans indicates transfer between these populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ticks and Fleas Infestation on East Hedgehogs (Erinaceus concolor in Van Province, Eastern Region of Turkey

    Directory of Open Access Journals (Sweden)

    Yaşar Goz

    2015-10-01

    Full Text Available Background: Ixodid ticks (Acari: İxodidae and fleas (Siphonaptera are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor with ticks and fleas in Van Province, eastern region of Turkey.Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer.Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively.Conclusion: We detected ticks (R. turanicus and fleas (A. erinacei in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. 

  16. Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype.

    Directory of Open Access Journals (Sweden)

    Shoko Onodera

    Full Text Available Gorlin syndrome is a genetic disorder of autosomal dominant inheritance that predisposes the affected individual to a variety of disorders that are attributed largely to heterozygous germline patched1 (PTCH1 mutations. PTCH1 is a hedgehog (Hh receptor as well as a repressor, mutation of which leads to constitutive activation of Hh pathway. Hh pathway encompasses a wide variety of cellular signaling cascades, which involve several molecules; however, no associated genotype-phenotype correlations have been reported. Recently, mutations in Suppressor of fused homolog (SUFU or PTCH2 were reported in patients with Gorlin syndrome. These facts suggest that multi-layered mutations in Hh pathway may contribute to the development of Gorlin syndrome. We demonstrated multiple mutations of Hh-related genes in addition to PTCH1, which possibly act in an additive or multiplicative manner and lead to Gorlin syndrome. High-throughput sequencing was performed to analyze exome sequences in four unrelated Gorlin syndrome patient genomes. Mutations in PTCH1 gene were detected in all four patients. Specific nucleotide variations or frameshift variations of PTCH1 were identified along with the inferred amino acid changes in all patients. We further filtered 84 different genes which are closely related to Hh signaling. Fifty three of these had enough coverage of over ×30. The sequencing results were filtered and compared to reduce the number of sequence variants identified in each of the affected individuals. We discovered three genes, PTCH2, BOC, and WNT9b, with mutations with a predicted functional impact assessed by MutationTaster2 or PolyPhen-2 (Polymorphism Phenotyping v2 analysis. It is noticeable that PTCH2 and BOC are Hh receptor molecules. No significant mutations were observed in SUFU. Multi-layered mutations in Hh pathway may change the activation level of the Hh signals, which may explain the wide phenotypic variability of Gorlin syndrome.

  17. Manually Maintained Serials Records.

    Science.gov (United States)

    Ortopan, LeRoy D.; And Others

    At the American Library Association Annual Conference in Dallas in 1971, the Serials Section of the Resources and Technical Services Division established a committee to produce a state-of-the-art report on the maintenance of serial records by manual methods in all types of libraries. The Ad Hoc Committee to Study Manually Maintained Serials…

  18. Maintaining dignity in vulnerability

    DEFF Research Database (Denmark)

    Høy, Bente

    2016-01-01

    to understand the meaning of the narrated text. Results. The meaning of maintaining dignity was constituted in a sense of vulnerability to the self, and elucidated in three major interrelated themes: Being involved as a human being, being involved as the person one is and strives to become, and being involved...

  19. Ihog and Boi elicit Hh signaling via Ptc but do not aid Ptc in sequestering the Hh ligand.

    Science.gov (United States)

    Camp, Darius; Haitian He, Billy; Li, Sally; Althaus, Irene W; Holtz, Alexander M; Allen, Benjamin L; Charron, Frédéric; van Meyel, Donald J

    2014-10-01

    Hedgehog (Hh) proteins are secreted molecules essential for tissue development in vertebrates and invertebrates. Hh reception via the 12-pass transmembrane protein Patched (Ptc) elicits intracellular signaling through Smoothened (Smo). Hh binding to Ptc is also proposed to sequester the ligand, limiting its spatial range of activity. In Drosophila, Interference hedgehog (Ihog) and Brother of ihog (Boi) are two conserved and redundant transmembrane proteins that are essential for Hh pathway activation. How Ihog and Boi activate signaling in response to Hh remains unknown; each can bind both Hh and Ptc and so it has been proposed that they are essential for both Hh reception and sequestration. Using genetic epistasis we established here that Ihog and Boi, and their orthologs in mice, act upstream or at the level of Ptc to allow Hh signal transduction. In the Drosophila developing wing model we found that it is through Hh pathway activation that Ihog and Boi maintain the boundary between the anterior and posterior compartments. We dissociated the contributions of Ptc from those of Ihog/Boi and, surprisingly, found that cells expressing Ptc can retain and sequester the Hh ligand without Ihog and Boi, but that Ihog and Boi cannot do so without Ptc. Together, these results reinforce the central role for Ptc in Hh binding in vivo and demonstrate that, although Ihog and Boi are dispensable for Hh sequestration, they are essential for pathway activation because they allow Hh to inhibit Ptc and thereby relieve its repression of Smo. © 2014. Published by The Company of Biologists Ltd.

  20. Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened.

    Directory of Open Access Journals (Sweden)

    Yongbin Chen

    2011-06-01

    Full Text Available Hedgehog (Hh signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo, but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.

  1. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    Science.gov (United States)

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Bmi1 Is Required for Hedgehog Pathway-Driven Medulloblastoma Expansion

    Directory of Open Access Journals (Sweden)

    Lowell Evan Michael

    2008-12-01

    Full Text Available Inappropriate Hedgehog (Hh signaling underlies development of a subset of medulloblastomas, and tumors with elevated HH signaling activity express the stem cell self-renewal gene BMI1. To test whether Bmi1 is required for Hh-driven medulloblastoma development, we varied Bmi1 gene dosage in transgenic mice expressing an oncogenic Hh effector, SmoA1, driven by a glial fibrillary acidic protein (GFAP promoter. Whereas 100% of SmoA1; Bmi1+/+ or SmoA1;Bmi1+/- mice examined between postnatal (P days 14 and 26 had typical medulloblastomas (N = 29, tumors were not detected in any of the SmoA1;Bmi1-/- animals examined (N = 6. Instead, small ectopic collections of cells were present in the region of greatest tumor load in SmoA1 animals, suggesting that medulloblastomas were initiated but failed to undergo expansion into frank tumors. Cells within these Bmi1-/- lesions expressed SmoA1 but were largely nonproliferative, in contrast to cells in Bmi1+/+ tumors (6.2% vs 81.9% PCNA-positive, respectively. Ectopic cells were negative for the progenitor marker nestin, strongly GFAP-positive, and highly apoptotic, relative to Bmi1+/+ tumor cells (29.6% vs 6.3% TUNEL-positive. The alterations in proliferation and apoptosis in SmoA1;Bmi1-/- ectopic cells are associated with reduced levels of Cyclin D1 and elevated expression of cyclin-dependent kinase inhibitor p19Arf, two inversely regulated downstream targets of Bmi1. These data provide the first demonstration that Bmi1 is required for spontaneous de novo development of a solid tumor arising in the brain, suggest a crucial role for Bmi1-dependent, nestin-expressing progenitor cells in medulloblastoma expansion, and implicate Bmi1 as a key factor required for Hh pathway-driven tumorigenesis.

  3. Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate.

    Directory of Open Access Journals (Sweden)

    Galen W Heyne

    Full Text Available The Hedgehog (Hh signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE, clefts of the lip with or without cleft palate (CL/P, and clefts of the secondary palate only (CPO. Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.

  4. Rho1 regulates signaling events required for proper Drosophila embryonic development.

    Science.gov (United States)

    Magie, Craig R; Parkhurst, Susan M

    2005-02-01

    The Rho small GTPase has been implicated in many cellular processes, including actin cytoskeletal regulation and transcriptional activation. The molecular mechanisms underlying Rho function in many of these processes are not yet clear. Here we report that in Drosophila, reduction of maternal Rho1 compromises signaling pathways consistent with defects in membrane trafficking events. These mutants fail to maintain expression of the segment polarity genes engrailed (en), wingless (wg), and hedgehog (hh), contributing to a segmentation phenotype. Formation of the Wg protein gradient involves the internalization of Wg into vesicles. The number of these Wg-containing vesicles is reduced in maternal Rho1 mutants, suggesting a defect in endocytosis. Consistent with this, stripes of cytoplasmic beta-catenin that accumulate in response to Wg signaling are narrower in these mutants relative to wild type. Additionally, the amount of extracellular Wg protein is reduced in maternal Rho1 mutants, indicating a defect in secretion. Signaling pathways downregulated by endocytosis, such as the epidermal growth factor receptor (EGFR) and Torso pathways, are hyperactivated in maternal Rho1 mutants, consistent with a general role for Rho1 in regulating signaling events governing proper patterning during Drosophila development.

  5. Nuclear power plant maintainability.

    Science.gov (United States)

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  6. How do cilia organize signalling cascades?

    Science.gov (United States)

    Nachury, Maxence V

    2014-09-05

    Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Fluralaner as a single dose oral treatment for Caparinia tripilis in a pygmy African hedgehog.

    Science.gov (United States)

    Romero, Camilo; Sheinberg Waisburd, Galia; Pineda, Jocelyn; Heredia, Rafael; Yarto, Enrique; Cordero, Alberto M

    2017-12-01

    African pygmy hedgehogs (Atelerix albiventris) are popular pets belonging to the Erinaceidae family of spined mammals. Amongst the most common skin diseases occurring in this species is infestation caused by the mite Caparinia spp. Due to their skin anatomy and spiny coat, detection of skin lesions in these hedgehogs can be difficult. This may result in delays in seeking medical care, which may lead to secondary bacterial infection and self-inflicted trauma. Multiple therapies have been used in the treatment of this skin condition including ivermectin, amitraz, fipronil and selamectin. A drug which could be administered as a single oral dose would be advantageous to these pets and their owners. To evaluate the effect of a single oral dose (15 mg/kg) of fluralaner on Caparinia tripilis infestation in the African pygmy hedgehog. A 10-month-old African pygmy hedgehog weighing 184 g. Response to treatment was monitored by dermatological examination and superficial skin scrapings repeated at 7, 14, 21, 30, 60, 90 and 120 days following fluralaner administration. On Day 7 after treatment, adult mites were observed exhibiting normal movement. On Day 14, only dead mites were observed. No life stages of the mites were found after Day 21. A single oral dose at 15 mg/kg of fluralaner was effective within 21 days after treatment for capariniasis in this case. Further studies are required to evaluate the drug's safety and toxicology in hedgehogs, and to confirm efficacy. © 2017 ESVD and ACVD.

  8. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus)

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Claire V., E-mail: claire.dowding@naturalengland.org.u [School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG (United Kingdom); Shore, Richard F.; Worgan, Andrew [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Baker, Philip J.; Harris, Stephen [School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG (United Kingdom)

    2010-01-15

    Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low-level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques. - Exposure of insectivorous hedgehogs to anticoagulant rodenticides in Britain is similar to predatory birds and mammals that specialise in eating small mammals, and hitherto exposure levels have been under-estimated using HPLC techniques.

  9. A dynamic Gli code interprets Hh signals to regulate induction, patterning, and endocrine cell specification in the zebrafish pituitary.

    Science.gov (United States)

    Devine, Christine A; Sbrogna, Jennifer L; Guner, Burcu; Osgood, Marcey; Shen, Meng-Chieh; Karlstrom, Rolf O

    2009-02-01

    Hedgehog (Hh) signaling is necessary for the induction and functional patterning of the pituitary placode, however the mechanisms by which Hh signals are interpreted by placodal cells are unknown. Here we show distinct temporal requirements for Hh signaling in endocrine cell differentiation and describe a dynamic Gli transcriptional response code that interprets these Hh signals within the developing adenohypophysis. Gli1 is required for the differentiation of selected endocrine cell types and acts as the major activator of Hh-mediated pituitary induction, while Gli2a and Gli2b contribute more minor activator functions. Intriguingly, this Gli response code changes as development proceeds. Gli1 continues to be required for the activation of the Hh response anteriorly in the pars distalis. In contrast, Gli2b is required to repress Hh target gene expression posteriorly in the pars intermedia. Consistent with these changing roles, gli1, gli2a, and gli2b, but not gli3, are expressed in pituitary precursor cells at the anterior neural ridge. Later in development, gli1 expression is maintained throughout the adenohypophysis while gli2a and gli2b expression are restricted to the pars intermedia. Given the link between Hh signaling and pituitary adenomas in humans, our data suggest misregulation of Gli function may contribute to these common pituitary tumors.

  10. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Sergey V Prykhozhij

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the zebrafish shh(-/- mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh(-/- mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh(-/- mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh(-/- mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53(-/-shh(-/- mutant retina suggesting the effect of p53 on retinal differentiation. CONCLUSIONS: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.

  11. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  12. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog.

    Science.gov (United States)

    Martinez-Lopez, Jesus E; Moreno-Bravo, Juan A; Madrigal, M Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh.

  13. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  14. Bromodomain and hedgehog pathway targets in small cell lung cancer.

    Science.gov (United States)

    Kaur, Gurmeet; Reinhart, Russell A; Monks, Anne; Evans, David; Morris, Joel; Polley, Eric; Teicher, Beverly A

    2016-02-28

    Small cell lung cancer (SCLC) is an extremely aggressive cancer that frequently recurs. Twenty-three human SCLC lines were selected representing varied Myc status. Gene expression of lung cancer, stem-like, hedgehog pathway, and notch pathway genes were determined by RT(2)-PCR array and Exon 1.0 ST array. Etoposide and topotecan concentration response was examined. The IC50's for etoposide and topotecan ranged over nearly 3 logs upon 96 hrs exposure to the drugs. Myc status, TOP2A, TOP2B and TOP1 mRNA expression or topoisomerase 1 and topoisomerase 2 protein did not account for the range in the sensitivity to the drugs. γ-secretase inhibitors, RO429097 and PF-03084014, had little activity in the SCLC lines over ranges covering the clinical Cmax concentrations. MYC amplified lines tended to be more sensitive to the bromodomain inhibitor JQ1. The Smo antagonists, erismodegib and vismodegib and the Gli antagonists, HPI1 and SEN-450 had a trend toward greater sensitivity of the MYC amplified line. Recurrent SCLC is among the most recalcitrant cancers and drug development efforts in this cancer are a high priority. Published by Elsevier Ireland Ltd.

  15. Hedgehog inhibitors in rhabdomyosarcoma: a comparison of 4 compounds and responsiveness of 4 cell lines

    Directory of Open Access Journals (Sweden)

    Rosalie eRidzewski

    2015-06-01

    Full Text Available Rhabdomyosarcoma (RMS are the most common soft tissue sarcoma in children and are divided into two major histological subgroups, i.e. embryonal (ERMS and alveolar RMS (ARMS. RMS can show HEDGEHOG/SMOOTHENED (HH/SMO signaling activity and several clinical trials using HH inhibitors for therapy of RMS have been launched. We here compared the antitumoral effects of the SMO inhibitors GDC-0449, LDE225, HhA and cyclopamine in two ERMS (RD, RUCH-2 and two ARMS (RMS-13, Rh41 cell lines. Our data show that the antitumoral effects of these SMO inhibitors are highly divers and do not necessarily correlate with inhibition of HH signaling. In addition, the responsiveness of the RMS cell lines to the drugs is highly heterogeneous. Whereas some SMO inhibitors (i.e. LDE225 and HhA induce strong proapoptotic and antiproliferative effects in some RMS cell lines, others paradoxically induce cellular proliferation at certain concentrations (e.g. 10 µM GDC-0449 or 5 µM cyclopamine in RUCH-2 and Rh41 cells or can increase HH signaling activity as judged by GLI1 expression (i.e. LDE225, HhA and cyclopamine. Similarly, some drugs (e.g. HhA inhibit PI3K/AKT signaling or induce autophagy (e.g. LDE225 in some cell lines, whereas others cannot (e.g. GDC-0449. In addition, the effects of SMO inhibitors are concentration-dependent (e.g. 1 µM and 10 µM GDC-0449 decrease GLI1 expression in RD cells whereas 30 µM GDC-0449 does not. Together these data show that some SMO inhibitors can induce strong antitumoral effects in some, but not all, RMS cell lines. Due to the highly heterogeneous response we propose to conduct thorough pretesting of SMO inhibitors in patient-derived short term RMS cultures or patient-derived xenograft mouse models before applying these drugs to RMS patients.

  16. Streptococcus pyogenes Infection in a Free-Living European Hedgehog (Erinaceus europaeus).

    Science.gov (United States)

    Franklinos, Lydia H V; Efstratiou, Androulla; Macgregor, Shaheed K; John, Shinto K; Hopkins, Timothy; Cunningham, Andrew A; Lawson, Becki

    2015-12-01

    Streptococcus pyogenes, a common pathogen of humans, was isolated from the carcass of a free-living European hedgehog (Erinaceus europaeus) found in northern England in June 2014. The animal had abscessation of the deep right cervical lymph node, mesenteric lymph nodes and liver. The S. pyogenes strain isolated from the lesions, peritoneal and pleural cavities was characterised as emm 28, which can be associated with invasive disease in humans. This is the first known report of S. pyogenes in a hedgehog and in any free-living wild animal that has been confirmed by gene sequencing. As close associations between wild hedgehogs and people in England are common, we hypothesise that this case might have resulted from anthroponotic infection.

  17. Maintaining Relationship Based Procurement

    Directory of Open Access Journals (Sweden)

    Peter Davis

    2012-11-01

    Full Text Available Alliance and relationship projects are increasingin number and represent a large pool of work. Tobe successful relationship style contracts dependon soft-dollar factors, particularly the participants'ability to work together within an agreedframework, generally they are not based on lowbid tendering. Participants should be prepared todo business in an open environment based ontrust and mutually agreed governance. Theresearch evaluates relationship maintenance inthe implementation phase of constructionalliances - a particular derivative of relationshipstyle contracts. To determine the factors thatcontribute to relationship maintenance forty-nineexperienced Australian alliance projectmanagers were interviewed. The main findingswere; the development of relationships early inthe project form building blocks of success fromwhich relationships are maintained and projectvalue added; quality facilitation plays animportant part in relationship maintenance and ahybrid organisation created as a result of alliancedevelopment overcomes destructiveorganisational boundaries. Relationshipmaintenance is integral to alliance project controland failure to formalise it and pay attention toprocess and past outcomes will undermine analliance project's potential for success.

  18. Differential Expression of Sonic Hedgehog Protein in Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma.

    Science.gov (United States)

    Al-Bahrani, Redha; Nagamori, Seishi; Leng, Roger; Petryk, Anna; Sergi, Consolato

    2015-09-01

    Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) are the two most common primary liver malignancies in adult patients. The molecular mechanisms underlying the pathogenesis of HCC and CCA are still poorly understood. Sonic hedgehog (SHH) signaling plays an essential role during mammalian development, i.e., promoting organ growth, tissue differentiation, and cell polarity. The upregulation of SHH has been observed during carcinogenesis, including colorectal carcinoma. Our aim was to investigate the expression pattern of SHH in HCC and CCA. We investigated 40 malignant tumors of the liver, including 21 HCC and 19 of intrahepatic CCA cases by immunohistochemistry (IHC) using a polyclonal antibody against SHH and Avidin-Biotin Complex method. We also investigated the co-localization of SHH and Bone morphogenetic protein 4 (BMP4) in CCA using indirect double IHC. Moreover, we examined whether SHH is expressed in two HCC cell lines HepG2 and HuH-7 and three CCA cell lines OZ, HuCCT1 and HuH28. We found that SHH was expressed in 15 out of 21 cases (71.4 %) of HCC and 100 % of CCA cases by immunohistochemistry. SHH expression showed a positive trend in liver tumors (HCC, CCA) with high grade (G2-G3). SHH localized to the epithelial cells, while BMP4 was expressed in the stromal cells in CCA by double IHC. However, both HCC and CCA cell lines showed SHH expression by Western blot analysis. In conclusion, SHH seems to be an interesting marker of de-differentiation in liver tumors and the simultaneous epithelial-mesenchymal expression may be an intriguing prompt to investigate cross-talks between SHH and BMP4.

  19. Multistate Outbreak of Human Salmonella Typhimurium Infections Linked to Pet Hedgehogs - United States, 2011-2013.

    Science.gov (United States)

    Anderson, T C; Marsden-Haug, N; Morris, J F; Culpepper, W; Bessette, N; Adams, J K; Bidol, S; Meyer, S; Schmitz, J; Erdman, M M; Gomez, T M; Barton Behravesh, C

    2017-06-01

    Zoonotic Salmonella infections cause approximately 130 000 illnesses annually in the United States. Of 72.9 million US households owning at least one pet, five million own small mammals; 3000 hedgehogs were documented by USDA in USDA-licensed breeding facilities and pet stores in 2012. State health department collaborators and PulseNet, the national bacterial subtyping network, identified human infections of a Salmonella Typhimurium outbreak strain, which were investigated by CDC, USDA-APHIS and state public and animal health officials. A case was defined as an illness in a person infected with the outbreak strain identified between 1 December 2011 and 3 June 2013. Investigators collected information on patient exposures, cultured animal and environmental specimens for Salmonella, and conducted traceback investigations of USDA-licensed hedgehog facilities. There were 26 cases in 12 states. Illness onset dates ranged from 26 December 2011 to 8 April 2013. The median patient age was 15 years (range = pet hedgehog contact in the week before illness onset. The outbreak strain was isolated from animal and environmental samples collected from three ill persons' homes in three states. Hedgehogs were purchased in geographically distant states from USDA-licensed breeders (10/17, 59%); a USDA-licensed pet store (1/17, 6%); unlicensed or unknown status breeders (3/17, 18%); and private individuals (3/17, 18%). Traceback investigations of USDA-licensed facilities did not reveal a single source of infection. Public and animal health collaboration linked pet hedgehog contact to human infections of Salmonella Typhimurium, highlighting the importance of a One Health investigative approach to zoonotic salmonellosis outbreaks. More efforts are needed to increase awareness among multiple stakeholders on the risk of illness associated with pet hedgehogs. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Paramyxoviruses of the morbilli group in the wild hedgehog Erinaceus europeus.

    Science.gov (United States)

    Vizoso, A. D.; Thomas, W. E.

    1981-01-01

    Dead and sick hedgehogs (Erinaceus europeus) were examined, together with apparently healthy individuals, and paramyxo virus of the morbilli group was isolated. One animal's symptoms were similar to those caused by canine distemper and the virus isolate from faecal suspensions from this animal were antigenically related in various degrees to measles, canine distemper, rinderpest and PPRV viruses. Isolates from normal hedgehogs were found to belong to the same group. The variability and host specificity of members of paramyxo morbilli group virus are discussed and the role of natural infections of wild communities is considered in relation to disease in domestic animals and man. Images Fig. PMID:7013778

  1. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling.

    Science.gov (United States)

    Lo, P-K; Kanojia, D; Liu, X; Singh, U P; Berger, F G; Wang, Q; Chen, H

    2012-05-24

    Human epidermal growth factor receptor 2 (HER2)/Neu is overexpressed in 20-30% of breast cancers and associated with aggressive phenotypes and poor prognosis. For deciphering the role of HER2/Neu in breast cancer, mouse mammary tumor virus (MMTV)-Her2/neu transgenic mice that develop mammary tumors resembling human HER2-subtype breast cancer have been established. Several recent studies have revealed that HER2/Neu is overexpressed in and regulates self renewal of breast tumor-initiating cells (TICs). However, in the MMTV-Her2/neu transgenic mouse model, the identity of TICs remains elusive, despite previous studies showing supportive evidence for existence of TICs in Her2/neu-induced mammary tumors. Through systematic screening and characterization, we identified that surface markers CD49f, CD61 and ESA were aberrantly overexpressed in Her2-overexpressing mammary tumor cells. Analysis of these markers and CD24 detected anomalous expansion of the luminal progenitor population in preneoplastic mammary glands of Her2/neu transgenic mice, indicating that aberrant luminal progenitors originated in Her2-induced mammary tumors. The combined markers, CD49f and CD61, further delineated the CD49f(high)CD61(high)-sorted fraction as a TIC-enriched population, which displayed increased tumorsphere formation ability, enhanced tumorigenicity both in vitro and in vivo and drug resistance to pacitaxel and doxorubicin. Moreover, the TIC-enriched population manifested increased transforming growth factor-β (TGFβ) signaling and exhibited gene expression signatures of stemness, TGFβ signaling and epithelial-to-mesenchymal transition. Our findings that self-renewal and clonogenicity of TICs were suppressed by pharmacologically inhibiting the TGFβ signaling further indicate that the TGFβ pathway is vital for maintenance of the TIC population. Finally, we showed that the integrin-β3 (CD61) signaling pathway was required for sustaining active TGFβ signaling and self-renewal of TICs

  2. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  3. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis.

    Science.gov (United States)

    Everson, Joshua L; Fink, Dustin M; Yoon, Joon Won; Leslie, Elizabeth J; Kietzman, Henry W; Ansen-Wilson, Lydia J; Chung, Hannah M; Walterhouse, David O; Marazita, Mary L; Lipinski, Robert J

    2017-06-01

    Cleft lip is one of the most common human birth defects, yet our understanding of the mechanisms that regulate lip morphogenesis is limited. Here, we show in mice that sonic hedgehog (Shh)-induced proliferation of cranial neural crest cell (cNCC) mesenchyme is required for upper lip closure. Gene expression profiling revealed a subset of Forkhead box (Fox) genes that are regulated by Shh signaling during lip morphogenesis. During cleft pathogenesis, reduced proliferation in the medial nasal process mesenchyme paralleled the domain of reduced Foxf2 and Gli1 expression. SHH ligand induction of Foxf2 expression was dependent upon Shh pathway effectors in cNCCs, while a functional GLI-binding site was identified downstream of Foxf2 Consistent with the cellular mechanism demonstrated for cleft lip pathogenesis, we found that either SHH ligand addition or FOXF2 overexpression is sufficient to induce cNCC proliferation. Finally, analysis of a large multi-ethnic human population with cleft lip identified clusters of single-nucleotide polymorphisms in FOXF2 These data suggest that direct targeting of Foxf2 by Shh signaling drives cNCC mesenchyme proliferation during upper lip morphogenesis, and that disruption of this sequence results in cleft lip. © 2017. Published by The Company of Biologists Ltd.

  4. Oroxyloside A Overcomes Bone Marrow Microenvironment-Mediated Chronic Myelogenous Leukemia Resistance to Imatinib via Suppressing Hedgehog Pathway

    Directory of Open Access Journals (Sweden)

    Xiaobo Zhang

    2017-08-01

    Full Text Available Imatinib (IM, as first inhibitor of the oncogenic tyrosine kinase BCR-ABL, has been widely used to treat chronic myeloid leukemia (CML for decades in clinic. However, resistance to IM usually occurs in CML patients. The bone marrow (BM, as the predominant microenvironment of CML, secretes an abundant amount of cytokines, which may contribute to drug resistance. In current study, we utilized in vitro K562 co-culture model with BM stroma to investigate IM resistance. As a result, co-culturing of K562 with BM stroma was sufficient to cause resistance to IM, which was accompanied with the activation of hedgehog (Hh signaling pathway and upregulation of BCR-ABL as well as its downstream proteins like phosphorylated Akt, Bcl-xL and survivin, etc. On the other hand, oroxyloside A (OAG, a metabolite of oroxylin A from the root of Scutellaria baicalensis Georgi, which had low toxic effect on K562 cells, was able to sensitize K562 cells co-cultured with BM stroma to IM treatment in vitro and in vivo. We observed that OAG suppressed Hh pathway and subsequently nuclear translocation of GLI1, followed by downregulation of BCR-ABL and its downstream effectors, thus facilitating IM to induce apoptosis of K562 cells. Together, BM microenvironment rendered K562 cells drug resistance through activating Hh signaling, however, OAG could overcome IM resistance of CML cells through inhibiting Hh-BCR-ABL axis in vitro and in vivo.

  5. Life on the edge : hedgehog traffic victims and mitigation strategies in an anthropogenic landscape

    NARCIS (Netherlands)

    Huijser, M.P.

    2000-01-01

    This study focused on the most frequently recorded mammal species in road-kill surveys in western Europe: the hedgehog (Erinaceus europaeus). Investigations were conducted in an anthropogenic landscape and had two major aims:

    1. to quantify the effects of traffic

    2. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain

      Science.gov (United States)

      Molina-López, R. A.; Adelantado, C.; Arosemena, E. L.; Obón, E.; Darwich, L.; Calvo, M. A.

      2012-01-01

      There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ 2 = 8,633) and Arthrinium (P = 0,043; χ 2 = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ 2 = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ 2 = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757

    3. Characterization of a Novel Betacoronavirus Related to Middle East Respiratory Syndrome Coronavirus in European Hedgehogs

      Science.gov (United States)

      Corman, Victor Max; Kallies, René; Philipps, Heike; Göpner, Gertraude; Müller, Marcel Alexander; Eckerle, Isabella; Brünink, Sebastian

      2014-01-01

      Bats are known to host viruses closely related to important human coronaviruses (HCoVs), such as HCoV-229E, severe-acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV). As RNA viruses may coevolve with their hosts, we sought to investigate the closest sister taxon to bats, the Eulipotyphla, and screened European hedgehogs (Erinaceus europaeus) from Germany for CoV by nested reverse transcriptase PCR. A novel betacoronavirus species in a phylogenetic sister relationship to MERS-CoV and clade c bat CoVs was detected and characterized on the whole-genome level. A total of 58.9% of hedgehog fecal specimens were positive for the novel CoV (EriCoV) at 7.9 log10 mean RNA copies per ml. EriCoV RNA concentrations were higher in the intestine than in other solid organs, blood, or urine. Detailed analyses of the full hedgehog intestine showed the highest EriCoV concentrations in lower gastrointestinal tract specimens, compatible with viral replication in the lower intestine and fecal-oral transmission. Thirteen of 27 (48.2%) hedgehog sera contained non-neutralizing antibodies against MERS-CoV. The animal origins of this betacoronavirus clade that includes MERS-CoV may thus include both bat and nonbat hosts. PMID:24131722

    4. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead.

      Science.gov (United States)

      Lorenzo, Yolanda; Costa, Solange; Collins, Andrew R; Azqueta, Amaya

      2013-07-01

      DNA damage is commonly measured at the level of individual cells using the so-called comet assay (single-cell gel electrophoresis). As the frequency of DNA breaks increases, so does the fraction of the DNA extending towards the anode, forming the comet tail. Comets with almost all DNA in the tail are often referred to as 'hedgehog' comets and are widely assumed to represent apoptotic cells. We review the literature and present theoretical and empirical arguments against this interpretation. The level of DNA damage in these comets is far less than the massive fragmentation that occurs in apoptosis. 'Hedgehog' comets are formed after moderate exposure of cells to, for example, H2O2, but if the cells are incubated for a short period, 'hedgehogs' are no longer seen. We confirm that this is not because DNA has degraded further and been lost from the gel, but because the DNA is repaired. The comet assay may detect the earliest stages of apoptosis, but as it proceeds, comets disappear in a smear of unattached DNA. It is clear that 'hedgehogs' can correspond to one level on a continuum of genotoxic damage, are not diagnostic of apoptosis and should not be regarded as an indicator of cytotoxicity.

    5. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus).

      Science.gov (United States)

      Dowding, Claire V; Shore, Richard F; Worgan, Andrew; Baker, Philip J; Harris, Stephen

      2010-01-01

      Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed on predatory birds and mammals; insectivores have rarely been studied. We investigated the exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- and second-generation anticoagulant rodenticides (FGARs and SGARs) using high performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid-chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability to detect low-level contamination. The overall proportion of hedgehogs with LCMS-detected residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests that hitherto exposure of non-targets is likely to have been under-estimated using HPLC techniques.

    6. Ectoparasites infestation of free-ranging hedgehog (Etelerix algirus) in north western Libya

      Science.gov (United States)

      Hosni, M.M.; Maghrbi, A.A. El

      2014-01-01

      The aim of this study was to assess the prevalence of ectoparasites in hedgehogs (Etelerix algirus) in north western region of Libya. Seventy hedgehogs were sampled, and 39 (55.7%) were infested with external parasites. A total of 44 ticks, 491 fleas were collected from the infested hedgehogs and four species of ectoparasites were identified, one mite (Sarcoptes scabiei), one tick (Rhipicephalus appendiculatus) and two fleas (Xenopsylla cheopis and Ctenocephalides canis). For ectoparasites, 10/39 (25.6%) were infested by S. scabiei, 8/39 (20.5%) by Rh. appendiculatus and 11/39 (28.2%) by fleas. The prevalence of mixed infestation with S. scabiei and C. canis was 3(7.7%), Rh. appendiculatus and C. canis was 2 (5.1%) and infestation by two species of fleas was 5 (12.8%). The overall mixed infestation was 10 (25.6%). We concluded that the hedgehogs may play an important role in spreading external parasites and transmission of diseases from one region to another and from wildlife animals to domestic animals and human. PMID:26623333

    7. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

      Science.gov (United States)

      Cao, Zhen; Dou, Ce; Dong, Shiwu

      2017-01-01

      Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

    8. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

      Science.gov (United States)

      Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

      2014-01-01

      Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

    9. Assessing optimal software architecture maintainability

      NARCIS (Netherlands)

      Bosch, Jan; Bengtsson, P.O.; Smedinga, Rein; Sousa, P; Ebert, J

      2000-01-01

      Over the last decade, several authors have studied the maintainability of software architectures. In particular, the assessment of maintainability has received attention. However, even when one has a quantitative assessment of the maintainability of a software architecture, one still does not have

    10. Differential developmental strategies by Sonic hedgehog in thalamus and hypothalamus.

      Science.gov (United States)

      Zhang, Yuanfeng; Alvarez-Bolado, Gonzalo

      2016-09-01

      The traditional concept of diencephalon (thalamus plus hypothalamus) and with it the entire traditional subdivision of the developing neural tube are being challenged by novel insights obtained by mapping the expression of key developmental genes. A model in which the hypothalamus is placed in the most rostral portion of the neural tube, followed caudally by a diencephalon formed by prethalamus, thalamus and pretectum has been proposed. The adult thalamus and hypothalamus are quite unlike each other in connectivity and functions. Here we review work on the role of the secreted morphogen protein Sonic hedgehog (Shh) in the developing diencephalon and hypothalamic region to show how different these two regions are also from this point of view. Shh from the prechordal plate (PCP) induces and patterns the hypothalamus but there is no evidence that this role is fulfilled by a morphogen gradient. Later, the hypothalamic primordium itself expresses Shh and a large part of the hypothalamus belongs to the Shh lineage, including the ventral domains. Neural Shh is necessary to complete the specification (lateral hypothalamus), differentiation and growth of the hypothalamus. Although Gli2A is the major effector of Shh in this region, hypothalamic specification also depends on the suppression of Gli3R by Shh secreted by the PCP as well as the neuroepithelium. The thalamus is patterned by an Shh morphogen gradient originated in the ZLI following similar mechanisms to those in the spinal cord. The thalamus itself does not belong to the Shh lineage. Gli2A is necessary for appropriate growth and specification of the thalamic nuclei, to the exception of the medial and intralaminar groups (limbic-related), whose development depends on Gli3R. Beyond specification and patterning, the scarce data available about cell sorting and aggregation in these two regions shows key differences between them as well. In summary, not only expression patterns but also developmental mechanisms support

    11. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain

      NARCIS (Netherlands)

      Vermeulen, F.; Covaci, A.; Havé, D' H.; Brink, van den N.W.; Blust, R.; Coen, De W.; Bervoets, L.

      2010-01-01

      The bioaccumulation of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and DDT and metabolites, was investigated in the soil–earthworm–hedgehog food chain. Concentrations of selected POPs were measured in soil and earthworms

    12. Organisation of the lamprey ( Lampetra fluviatilis) embryonic brain: Insights from LIM-homeodomain, Pax and hedgehog genes

      National Research Council Canada - National Science Library

      Osorio, Joana; Mazan, Sylvie; Rétaux, Sylvie

      2005-01-01

      To investigate the embryonic development of the central nervous system of the lamprey Lampetra fluviatilis, we have isolated and analysed the expression patterns of members of the LIM-homeodomain, Pax, Hedgehog and Nkx2.1 families...

    13. Efficacy of a combination of 10% imidacloprid and 1% moxidectin against Caparinia tripilis in African pygmy hedgehog (Atelerix albiventris

      Directory of Open Access Journals (Sweden)

      Kim Kyu-Rim

      2012-08-01

      Full Text Available Abstract Background The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany was tested in 40 African pygmy hedgehogs (Atelerix albiventris naturally infested with Caparinia tripilis. Methods The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w., and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Results Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. Conclusions This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs.

    14. Hedgehogs (Erinaceus europaeus) as a Source of Ectoparasites in Urban-suburban Areas of Northwest of Iran

      Science.gov (United States)

      Hajipour, Nasser; Tavassoli, Mousa; Gorgani-Firouzjaee, Tahmineh; Naem, Soraya; Pourreza, Behzad; Bahramnejad, Kia; Arjmand, Jafar

      2015-01-01

      Background: Hedgehogs are small, nocturnal mammals which become popular in the world and have important role in transmission of zoonotic agents. Thus, the present study aimed to survey ectoparasite infestation from April 2010 to December 2011 in urban and suburban parts of Urmia and Tabriz Cities, Northwest of Iran. Methods: A total number of 84 hedgehogs (40 females and 44 males) were examined. They have been carefully inspected for ectoparasites and collected arthropods were stored in 70% ethanol solution. The identification of arthropods was carried out using morphological diagnostic keys. Results: The occurrence of ticks on hedgehogs was 23 (67.7%) with Rhipicephalus turanicus in Urmia and 11 (22%) as well as 1(2%) with Rh. turanicus and Hyalomma anatolicum anatolicum in Tabriz, respectively. One flea species, Archaeopsylla erinacei, was found with prevalence of 19 (55.9%) and 27 (54%) in Urmia and Tabriz Cities, respectively. Prevalence of infestation with Rh. turanicus and A. erinacei were not different (P> 0.05) between sexes of hedgehogs in two study areas. Highest prevalence of tick and flea infestation was in June in Urmia, whereas it was observed in August in Tabriz. Both tick and flea parasitizing hedgehogs showed seasonal difference in prevalence (P 0.05). Conclusion: The result showed the high occurrence of ectoparasites in hedgehog population and according to the zoonotic potential of these animals as vector of some agents further studies are needed to investigate in different parts of Iran. PMID:26114147

    15. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence.

      Science.gov (United States)

      Santiquet, Nicolas W; Greene, Alison F; Becker, John; Barfield, Jennifer P; Schoolcraft, William B; Krisher, Rebecca L

      2017-09-01

      Can a pre-in vitro maturation (pre-IVM) medium containing signaling molecules rather than chemical/pharmaceutical agents, sustain meiotic arrest and improve developmental competence of in vitro matured oocytes in CF1 outbred mice? A short 2 h period of pre-IVM prevents spontaneous meiotic resumption, improves mitochondria activity in subsequently matured oocytes, and increases developmental competence, pregnancy rate and implantation of resulting embryos. Spontaneous resumption of meiosis in vitro is detrimental for oocyte developmental competence. Pre-IVM systems that prevent spontaneous meiotic resumption with chemical/pharmaceutical agents are a promising approach to improving IVM oocyte competence; however, the success of these methods has proven to be inconsistent. This study consisted of a series of experiments using cumulus oocyte complexes (COC) derived from outbred mice following ovarian stimulation. The study was designed to examine if a novel, ligand/receptor-based pre-IVM treatment could sustain meiotic arrest in vitro and improve oocyte developmental competence, compared to control IVM. Two pre-IVM durations (2 h and 24 h) were evaluated, and the effect of the mitochondrial stimulator PQQ during 24 h pre-IVM was studied. Murine (outbred CF1) immature COC were cultured in vitro in the presence of C-type natriuretic peptide (CNP) (30 nM), estradiol (100 nM), FSH (1 × 10-4 IU/ml) and bone morphogenic protein 15 (BMP15) (100 ng/ml) for 2 h or 24 h prior to IVM. Meiotic status during pre-IVM and IVM was analyzed using orcein staining, and functionality of gap junction communication was confirmed using the functional gap junction inhibitor carbenoxolone (CBX). Oocytes exposed to pre-IVM treatment were compared to control oocytes collected on the same day from the same females and undergoing standard IVM. Developmental competence and embryo viability was assessed by oocyte mitochondrial activity and ATP concentration, in vitro embryo development following

    16. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate

      OpenAIRE

      Flynt, Alex S.; Li, Nan; Thatcher, Elizabeth J.; Solnica-Krezel, Lilianna; Patton, James G

      2007-01-01

      Numerous microRNAs (miRNAs) have been discovered in the genomes of higher eukaryotes, and functional studies indicate that they are important during development. However, little is known concerning the function of individual miRNAs. We approached this problem in zebrafish by combining identification of miRNA expression, functional analyses and experimental validation of potential targets. We show that miR-214 is expressed during early segmentation stages in somites and that varying its expres...

  1. A Novel Strategy to Inhibit Hedgehog Signaling and Control Growth of Androgen Independent Prostate Cancer Cells

    Science.gov (United States)

    2013-06-01

    FINANCIAL INSTABILITY, INSOLVENCY , BANKRUPTCY OR RECEIVERSHIP a. The recipient shall immediately notify the USAMRAA Grants Officer of the occurrence of...5) the recipient’s insolvency due to its inability to pay its debts generally as they become due. b. Such notification shall be in writing

  2. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    Pancreatic ductal adenocarcinoma is one of the deadliest carcinomas and is characterized by highly tumorigenic and metastatic cancer stem cells (CSC). CSCs evade available therapies, which preferentially target highly proliferative and more differentiated progenies, leaving behind CSCs...... as a putative source for disease relapse. Thus, to identify potentially more effective treatment regimens, we screened established and new compounds for their ability to eliminate CSCs in primary pancreatic cancer (stem) cells in vitro and corresponding patient-derived pancreatic cancer tissue xenografts...... in vivo. Intriguingly, we found that in vitro treatment with the antimalarial agent chloroquine significantly decreased CSCs, translating into diminished in vivo tumorigenicity and invasiveness in a large panel of pancreatic cancers. In vivo treatment in combination with gemcitabine was capable of more...

  3. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  4. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway

    Science.gov (United States)

    Patterson, Victoria L.; Damrau, Christine; Paudyal, Anju; Reeve, Benjamin; Grimes, Daniel T.; Stewart, Michelle E.; Williams, Debbie J.; Siggers, Pam; Greenfield, Andy; Murdoch, Jennifer N.

    2009-01-01

    The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data. PMID:19223390

  5. A Maintainability Checklist for Spreadsheets

    OpenAIRE

    Vlootman, Henk; Hermans, Felienne

    2014-01-01

    Spreadsheets are widely used in industry, because they are flexible and easy to use. Often, they are even used for business-critical applications. It is however difficult for spreadsheet users to correctly assess the maintainability of spreadsheets. Maintainability of spreadsheets is important, since spreadsheets often have a long lifespan, during which they are used by several users. In this paper, we present a checklist aimed at measuring the maintainability of a spreadsheet. This is achiev...

  6. Tbx2 terminates shh/fgf signaling in the developing mouse limb bud by direct repression of gremlin1

    NARCIS (Netherlands)

    Farin, Henner F.; Lüdtke, Timo H.-W.; Schmidt, Martina K.; Placzko, Susann; Schuster-Gossler, Karin; Petry, Marianne; Christoffels, Vincent M.; Kispert, Andreas

    2013-01-01

    Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to

  7. The European hedgehog (Erinaceus europaeus), as a reservoir for helminth parasites in Iran

    Science.gov (United States)

    Naem, Soraya; Pourreza, Behzad; Gorgani-Firouzjaee, Tahmineh

    2015-01-01

    From April 2009 to December 2011, 44 dead hedgehogs (Erinaceus europaeus) were collected incidentally from areas of Urmia, Iran. The overall prevalence of helminth infections was 95.0%. Specific parasites and their prevalences were: Physaloptera clausa (93.0%), Crenosoma striatum (61.0%), Capillaria aerophila (9.0%), Capillarias spp. (4.0%), Brachylaemus erinacei (2.0%) and Hymenolepis erinacei (16.0%). There were no significant differences in helminth occurrence between hedgehog sexes, either in single or in mixed infections (p > 0.05). The mixed infection involving Crenosoma striatum and P. clausa occurred significantly more frequently than other mixed infection (p < 0.05). There were significant differences in prevalence among seasons, with the highest prevalence in summer and spring especially among P. clausa and C. striatum (p < 0.05). PMID:26261711

  8. Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus)

    DEFF Research Database (Denmark)

    Jones, Carolyn J P; Carter, A M; Allen, W R

    2016-01-01

    INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology...... acid and various other glycans. Glycogen was present in large cells situated between the spongy zone and the endometrium. Trophoblast cells in the placental disc and under Reichert's membrane, as well as yolk sac endoderm and mesothelium, were cytokeratin positive. Reichert's membrane was heavily...... glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION: New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures...

  9. Myxoma of the penis in an African pygmy hedgehog (Atelerix albiventris).

    Science.gov (United States)

    Takami, Yoshinori; Yasuda, Namie; Une, Yumi

    2017-01-20

    A penile tumor (4 × 2.5 × 1 cm) was surgically removed from an African pygmy hedgehog (Atelerix albiventris) aged 3 years and 5 months. The tumor was continuous with the dorsal fascia of the penile head. Histopathologically, tumor cells were pleomorphic (oval-, short spindle- and star-shaped cells) with low cell density. Abundant edematous stroma was weakly positive for Alcian blue staining and positive for colloidal iron reaction. Tumor cells displayed no cellular atypia or karyokinesis. Tumor cell cytoplasm was positive for vimentin antibody, while cytoplasm and nuclei were positive for S-100 protein antibody. Tumor cell ultrastructure matched that of fibroblasts, and the rough endoplasmic reticulum was enlarged. The tumor was diagnosed as myxoma. This represents the first report of myxoma in a hedgehog.

  10. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice

    OpenAIRE

    Dang, Mai T.; Suzanne Wehrli; Dang, Chi V.; Tom Curran

    2015-01-01

    The altered metabolism of cancer cells has long been viewed as a potential target for therapeutic intervention. In particular, brain tumors often display heightened glycolysis, even in the presence of oxygen. A subset of medulloblastoma, the most prevalent malignant brain tumor in children, arises as a consequence of activating mutations in the Hedgehog (HH) pathway, which has been shown to promote aerobic glycolysis. Therefore, we hypothesized that a low carbohydrate, high fat ketogenic diet...

  11. Hematologic and biochemical variables of hedgehogs (Erinaceus europaeus) after overwintering in rehabilitation centers.

    Science.gov (United States)

    Rossi, Gabriele; Mangiagalli, Gerard; Paracchini, Giulia; Paltrinieri, Saverio

    2014-03-01

    Information about laboratory reference intervals (RIs) of European Hedgehog (Erinaceus europaeus) hospitalized at rehabilitation centers is scarce. The purpose of this study was to establish hematologic and biochemical RIs for rehabilitated hedgehogs before the release into the wild, and to assess whether sex and management of the center influence laboratory results. Blood was collected from 50 hedgehogs at 3 centers. Thirty-eight animals were included in the study based on normal body weight, absence of clinical signs of disease, Bunnell index > 0.80, and absence of hibernation during overwintering. CBCs were performed using an automated laser cell counter followed by morphologic analysis of blood smears. Clinical biochemistry was performed using an automated spectrophotometer. RIs were determined as recommended by the ASVCP guidelines. Hematology profiles revealed a prevalence of lymphocytes, a constant presence of nucleated RBCs, Howell-Jolly bodies and basophils, and bilobed nuclei in neutrophils and eosinophils. Biochemistry profiles were characterized by higher creatinine and urea concentrations, and higher ALP and GGT activities compared with other domestic species. The sex did not influence the results. Conversely, numbers of eosinophils, activated and large granular lymphocytes, and concentrations of total protein, glucose and cholesterol were different among the centers, likely due to different management practices (eg, antiparasitic treatments, environmental exposure to microorganisms, diet). The RIs established in this study can be used to monitor the health status of hedgehogs in rehabilitation centers. As management practices appeared to influence some variables, it is recommended to standardize the management protocols to minimize their influence on laboratory data. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  12. AB307. SPR-34 Optimization of sonic hedgehog delivery from self-assembled nanofiber hydrogels

    OpenAIRE

    Choe, Shawn; Harrington, Daniel A.; Stupp, Samuel I.; McVary, Kevin T; Podlasek, Carol A.

    2016-01-01

    Objective Sonic hedgehog (SHH) protein delivered by nanoparticle based peptide amphiphile (PA) hydrogels to the penis suppress apoptosis in a rat cavernous nerve (CN) resection model. We examine the hypothesis that SHH PA will suppress morphology changes in the penis in a CN crush model that more readily reflects injury observed in prostatectomy patients. Optimization of delivery conditions is essential for clinical translation. Methods Bilateral CN crush was performed on Sprague Dawley rats ...

  13. TEST & EVALUATION REPORT FOR THE HEDGEHOG-II PACKAGING SYSTEMS DOT-7A TYPE A CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, D.L.

    2003-12-29

    This report documents the US. Department of Transportation Specification 7A (DOT-7A) Type A compliance test and evaluation results for the Hedgehog-II packaging systems. The approved Hedgehog-II packaging configurations provide primary and secondary containment. The approved packaging configurations described within this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids transported in the approved 1 L glass bottle assembly shall have a specific gravity of less than or equal to 1.6. Liquids transported in all other approved configurations shall have a specific gravity of less than or equal to 2.0. The solid contents, including packaging, are limited in weight to the gross weight of the as-tested liquids and bottles. The approved Hedgehog-II packaging configurations described in this report may be transported by air, and have been evaluated as meeting the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT requirements.

  14. Different Parasite Faunas in Sympatric Populations of Sister Hedgehog Species in a Secondary Contact Zone

    Science.gov (United States)

    Pfäffle, Miriam; Černá Bolfíková, Barbora; Hulva, Pavel; Petney, Trevor

    2014-01-01

    Providing descriptive data on parasite diversity and load in sister species is a first step in addressing the role of host-parasite coevolution in the speciation process. In this study we compare the parasite faunas of the closely related hedgehog species Erinaceus europaeus and E. roumanicus from the Czech Republic where both occur in limited sympatry. We examined 109 hedgehogs from 21 localities within this secondary contact zone. Three species of ectoparasites and nine species of endoparasites were recorded. Significantly higher abundances and prevalences were found for Capillaria spp. and Brachylaemus erinacei in E. europaeus compared to E. roumanicus and higher mean infection rates and prevalences for Hymenolepis erinacei, Physaloptera clausa and Nephridiorhynchus major in E. roumanicus compared to E. europaeus. Divergence in the composition of the parasite fauna, except for Capillaria spp., which seem to be very unspecific, may be related to the complicated demography of their hosts connected with Pleistocene climate oscillations and consequent range dynamics. The fact that all parasite species with different abundances in E. europaeus and E. roumanicus belong to intestinal forms indicates a possible diversification of trophic niches between both sister hedgehog species. PMID:25469872

  15. Different parasite faunas in sympatric populations of sister hedgehog species in a secondary contact zone.

    Directory of Open Access Journals (Sweden)

    Miriam Pfäffle

    Full Text Available Providing descriptive data on parasite diversity and load in sister species is a first step in addressing the role of host-parasite coevolution in the speciation process. In this study we compare the parasite faunas of the closely related hedgehog species Erinaceus europaeus and E. roumanicus from the Czech Republic where both occur in limited sympatry. We examined 109 hedgehogs from 21 localities within this secondary contact zone. Three species of ectoparasites and nine species of endoparasites were recorded. Significantly higher abundances and prevalences were found for Capillaria spp. and Brachylaemus erinacei in E. europaeus compared to E. roumanicus and higher mean infection rates and prevalences for Hymenolepis erinacei, Physaloptera clausa and Nephridiorhynchus major in E. roumanicus compared to E. europaeus. Divergence in the composition of the parasite fauna, except for Capillaria spp., which seem to be very unspecific, may be related to the complicated demography of their hosts connected with Pleistocene climate oscillations and consequent range dynamics. The fact that all parasite species with different abundances in E. europaeus and E. roumanicus belong to intestinal forms indicates a possible diversification of trophic niches between both sister hedgehog species.

  16. The role of small rodents and hedgehogs in a natural focus of tick-borne encephalitis*

    Science.gov (United States)

    Kožuch, O.; Grešíková, M.; Nosek, J.; Lichard, M.; Sekeyová, M.

    1967-01-01

    The role of small rodents and hedgehogs in the circulation of tick-borne encephalitis in natural foci in the Tribeč region of Czechoslovakia has been studied. Isolation of virus from the blood of Apodemus flavicollis, Clethrionomys glareolus and Erinaceus roumanicus, as well as the demonstration of antibodies in the sera of these mammals and of A. sylvaticus, Microtus arvalis and Sciurus vulgaris, showed that these mammals had been in contact with the virus in recent years. The proportion of positive sera was low, ranging from 4% to 11% for A. flavicollis in various parts of the Tribeč region. In a study of the elementary focus at Jarok, it was found that the frequency of antibodies was considerably higher in hedgehogs than in small rodents; this may be due to the longer life-cycle of the former, which makes the probability of reinfection greater. Clearly, the hedgehog and the small rodents studied are important hosts of ticks and reservoirs of tick-borne encephalitis virus in the Tribeč region. PMID:5298543

  17. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    Science.gov (United States)

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Morpholoical Study of the Brandt’s Hedgehog, Paraechinus hypomelas (Eulipotyphla, Erinaceidae, Tongue

    Directory of Open Access Journals (Sweden)

    Goodarzi N.

    2016-10-01

    Full Text Available The morphology and histological structure of two adult Brandt’s hedgehog, Paraechinus hypomelas, (Brandt, 1836 tongue were examined by light and scanning electron microscopy. On the dorsal surface of the tongue, three types of papillae were observed: filiform, fungiform and vallate papillae. Apex and corpus of the tongue as well as the lateral surface of the corpus were covered with numerous filiform papillae with bifurcated tip, while the epithelium lining the ventral lingual surface was free from papillae. Discoid shape fungiform papillae were scattered over the entire surface of the lingual apex, corpus and lateral surface uniformly between the filiform ones without regional variation in number and size. Three elliptical or oval vallate papillae in an inverted triangle form were found on the root of the tongue. Each papilla had a lobulated and very irregular dorsal surface. Both fungiform and vallate papillae contain taste buds. The foliate papillae was absent. Overall, the present findings reveal that despite some similarities, the lingual papillae of the Brandt’s hedgehog as an omnivore animal has spices-specific characteristics compare to the Erinaceous auritus as an insectivore species. This finding provides a set of basic data about the morphology of tongue and its lingual papillae in Brandt’s hedgehog.

  19. Forced chondrocyte expression of sonic hedgehog impairs joint formation affecting proliferation and apoptosis.

    Science.gov (United States)

    Tavella, S; Biticchi, R; Morello, R; Castagnola, P; Musante, V; Costa, D; Cancedda, R; Garofalo, S

    2006-09-01

    Proliferation and apoptosis are two fundamental processes that occur during limb development, and in particular in joint formation. To study the role of hedgehog proteins in limbs, we have misexpressed Sonic Hedgehog specifically in chondrocytes. We found that the appendicular skeleton was severely misshapen while pelvic and shoulder girdles developed normally. In particular, we detected fusion of the elbow/knee joint, no definite carpal/tarsal, metacarpal/metatarsal bones and absence of distinct phalanges, fused in a continuous cartilaginous rod. Molecular markers of joints, such as Gdf5 and sFrp2 were absent at presumptive joint sites and Tenascin C, a molecule associated with joint formation and expressed in permanent cartilage, was expressed in a wider region in transgenic animals as compared to the wild type. The ratio of proliferating to non-proliferating chondrocytes was about two times higher in transgenic developing cartilage as compared to the wild type. Accordingly, the proapoptotic gene Bax was barely detectable in the growth plate of transgenic mice and Tunel assay showed the absence of apoptosis in presumptive joints at E15.5. Taken together, these results suggest that misexpression of Sonic Hedgehog causes apoptosis and proliferation defects leading to the lack of joint cavity and fusion of selected limb skeletal elements.

  20. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Hsiang-Yun Tang

    Full Text Available Misfolded proteins of the endoplasmic reticulum (ER are eliminated by the ER-associated degradation (ERAD in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH, a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.

  1. GLI3 repressor determines Hedgehog pathway activation and is required for response to SMO antagonist glasdegib in AML.

    Science.gov (United States)

    Chaudhry, Parvesh; Singh, Mohan; Triche, Timothy J; Guzman, Monica; Merchant, Akil A

    2017-06-29

    The Hedgehog (Hh) signaling pathway is activated in many cancers and is a promising target for therapeutic development. Deletions in the receptor Patched (PTCH) or activating mutations in Smoothened (SMO) have been reported in basal cell carcinoma and medulloblastoma, but are largely absent in most tumor types. Therefore, the mechanism of pathway activation in most cancers, including hematological malignancies, remains unknown. In normal tissues, Hh pathway activation via PTCH/SMO causes an increase in the downstream transcriptional activator GLI1 and a decrease in the GLI3 transcriptional repressor (GLI3R). In this article, we confirm that the Hh pathway is active in acute myeloid leukemia (AML), however, this activity is largely independent of SMO. Epigenetic and gene expression analysis of The Cancer Genome Atlas AML data set reveals that GLI3 expression is silenced in most AML patient samples, and the GLI3 locus is abnormally methylated. We show that GLI3R is required for the therapeutic effect of SMO antagonists in AML samples and restoration of GLI3R suppresses the growth of AML. We additionally demonstrate that GLI3R represses AML growth by downregulating AKT expression. In summary, this study provides the first evidence that GLI3R plays an essential role in SMO-independent Hh signaling in AML, and suggests that GLI3R could serve as a potential biomarker for patient selection in SMO antagonist clinical trials. Furthermore, these data support rational combinations of hypomethylating agents with SMO antagonists in clinical trials. © 2017 by The American Society of Hematology.

  2. Marshal: Maintaining Evolving Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  3. Vismodegib and the hedgehog pathway: a new treatment for basal cell carcinoma.

    Science.gov (United States)

    Cirrone, Frank; Harris, Christy S

    2012-10-01

    Vismodegib is an oral inhibitor of the Hedgehog pathway approved by the US Food and Drug Administration. It is the first systemic treatment for patients with locally advanced or metastatic basal cell carcinoma that is not amenable to surgery and radiation. This is the first drug to use the Hedgehog pathway to inhibit the proliferation of tumors and is also implicated in the development of other cancers such as medulloblastoma. The goal of this review was to summarize the development, pharmacology, efficacy, and safety of vismodegib. Relevant English-language literature was identified and then evaluated based on results from database searches of MEDLINE and EMBASE from 1975 to June 19, 2012. The terms searched included, but were not limited to, vismodegib, Erivedge, GDC-0449, basal cell carcinoma, and 2-chloro-N-[4-chloro-3-(pyridin-2-yl)phenyl]-4-(methylsulfonyl)benzamide. Additional literature was identified by assessing the reference lists of previously identified articles and through abstracts presented by the American Society of Clinical Oncology. A total of 70 full text citations were identified although two national conference proceedings were then excluded. An additional 10 published abstracts were also identified. A Phase II, nonrandomized, multicenter, international study demonstrated a 30.3% objective response rate in metastatic basal cell carcinoma and a 42.9% objective response rate in locally advanced basal cell carcinoma. The adverse effect profile for vismodegib is similar to other identified Hedgehog pathway inhibitors; muscle cramps (71.7%), alopecia (63.8%), and dysgeusia (55.1%) were the most common adverse effects seen in trials. A Phase II, randomized, placebo-controlled trial in Gorlin syndrome patients with basal cell carcinoma concluded that vismodegib was significantly better than placebo at reducing new basal cell carcinoma lesions (P basal cell carcinoma or where resection would be cosmetically disadvantageous, vismodegib is an effective

  4. Dutch hedgehogs Erinaceus europaeus are nowadays mainly found in urban areas, possibly due to the negative Effects of badgers Meles meles

    NARCIS (Netherlands)

    Poel, van de J.; Dekker, J.J.A.; Langevelde, van F.

    2015-01-01

    In several west European countries, the distribution of hedgehogs Erinaceus europaeus is declining. In the UK, predation by the European badger Meles meles is considered to be the main death cause of hedgehogs. In the Netherlands, badger density is rising, which suggests the same cause for the

  5. Patterns in the distribution and directional asymmetry of fleas living on the northern white-breasted hedgehog Erinaceus roumanicus.

    Science.gov (United States)

    Dudek, Krzysztof; Foldvari, Gabor; Majlathova, Viktoria; Majlath, Igor; Rigo, Krisztina; Molnar, Viktor; Toth, Maria; Jankowiak, Lukasz; Tryjanowski, Piotr

    2017-08-04

    Fleas infecting northern white-breasted hedgehogs, Erinaceus roumanicus (Barrett-Hamilton), collected from 2009-2011 in Budapest (Hungary) were studied. A total of 305 white-breasted hedgehogs were captured and 1,251 fleas were collected. The flea community comprised two species, the hedgehog flea Archaeopsylla erinacei (Bouche, 1835) and the dog flea Ctenocephalides canis (Curtis, 1826), although the latter was only found on three hedgehogs. Fleas were found on half of the host specimens (51%; n = 156) where their distribution was strongly aggregated. The sex ratio of A. erinacei was biased towards females and was correlated with host size. Interestingly, the sex ratio of fleas became more equal on heavier hosts. It had been expected that, under high competition, the sex ratio would be female biased because it is known that female ectoparasites dominate on poorer hosts. The body size of a random sample of 200 fleas (100 female and 100 male) was measured under a microscope. The analyses showed directional asymmetry in two features - the distance between the top of the head and the eye, and head length. In this two body traits the left side was significantly greater than right side in both sexes of A. erinacei. Our data shed light on the complex nature of the flea population infecting northern white-breasted hedgehogs in an urban area.

  6. Comparison of two systemic antifungal agents, itraconazole and terbinafine, for the treatment of dermatophytosis in European hedgehogs (Erinaceus europaeus).

    Science.gov (United States)

    Bexton, Steve; Nelson, Helen

    2016-12-01

    Dermatophytosis caused by Trichophyton erinacei is a common scaling and crusting skin disease affecting European hedgehogs (Erinaceus europaeus) admitted to wildlife rescue centres. The application of topical therapy can be challenging because wild hedgehogs are subject to stress and often roll into a ball when handled. Systemic antifungal therapy is more convenient but has not been evaluated in this species. To compare the efficacy of oral itraconazole versus oral terbinafine for the treatment of dermatophytosis affecting hedgehogs. A treatment trial was undertaken in a wildlife hospital involving 165 hedgehogs with naturally occurring dermatophytosis. Animals were randomly divided into two groups and treated with either itraconazole or terbinafine orally for 28 days. The therapeutic efficacy was evaluated after 14 and 28 days by mycological culture and clinical dermatological lesion scores. Both drugs were well tolerated and clinically effective. After 14 and 28 days of treatment, the respective mycological cure rate was 36.6% and 65.9% for the itraconazole-treated group and 92.8% and 98.8% for the terbinafine-treated group. Itraconazole and terbinafine were both effective for the treatment of dermatophytosis affecting hedgehogs; however, terbinafine was more effective. © 2016 ESVD and ACVD.

  7. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking

    Science.gov (United States)

    Liem, Karel F.; Ashe, Alyson; He, Mu; Satir, Peter; Moran, Jennifer; Beier, David; Wicking, Carol

    2012-01-01

    Two intraflagellar transport (IFT) complexes, IFT-A and IFT-B, build and maintain primary cilia and are required for activity of the Sonic hedgehog (Shh) pathway. A weak allele of the IFT-A gene, Ift144, caused subtle defects in cilia structure and ectopic activation of the Shh pathway. In contrast, strong loss of IFT-A, caused by either absence of Ift144 or mutations in two IFT-A genes, blocked normal ciliogenesis and decreased Shh signaling. In strong IFT-A mutants, the Shh pathway proteins Gli2, Sufu, and Kif7 localized correctly to cilia tips, suggesting that these pathway components were trafficked by IFT-B. In contrast, the membrane proteins Arl13b, ACIII, and Smo failed to localize to primary cilia in the absence of IFT-A. We propose that the increased Shh activity seen in partial loss-of-function IFT-A mutants may be a result of decreased ciliary ACIII and that the loss of Shh activity in the absence of IFT-A is a result of severe disruptions of cilia structure and membrane protein trafficking. PMID:22689656

  8. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Directory of Open Access Journals (Sweden)

    Mohammad A Abu Baker

    Full Text Available Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀ and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀. Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g in comparison to the natural desert area (376.37±12.71SE g. Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE for males and 42 ha (±11SE for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE for males and 150 ha (±29 SE for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats, whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle

  9. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs.

    Science.gov (United States)

    Abu Baker, Mohammad A; Reeve, Nigel; Conkey, April A T; Macdonald, David W; Yamaguchi, Nobuyuki

    2017-01-01

    Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where

  10. The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration.

    Directory of Open Access Journals (Sweden)

    Girish Deshpande

    Full Text Available The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs and the Somatic Gonadal Precursor cells (SGPs. The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh pathway gene shifted (shf in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification.

  11. Peptide amphiphile nanofiber delivery of sonic hedgehog protein to reduce smooth muscle apoptosis in the penis after cavernous nerve resection.

    Science.gov (United States)

    Bond, Christopher W; Angeloni, Nicholas L; Harrington, Daniel A; Stupp, Samuel I; McKenna, Kevin E; Podlasek, Carol A

    2011-01-01

    Erectile dysfunction (ED) is a serious medical condition that affects 16-82% of prostate cancer patients treated by radical prostatectomy and current treatments are ineffective in 50-60% of prostatectomy patients. The reduced efficacy of treatments makes novel therapeutic approaches to treat ED essential. The secreted protein Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle and apoptosis that is decreased in cavernous nerve (CN) injury and diabetic ED models. Past studies using Affi-Gel beads have shown SHH protein to be effective in suppressing apoptosis caused by CN injury. We hypothesize that SHH protein delivered via novel peptide amphiphile (PA) nanofibers will be effective in suppressing CN injury-induced apoptosis. Adult Sprague Dawley rats (n=50) were used to optimize PA injection in vivo. PA with SHH protein (n=16) or bovine serum albumin (BSA) (control, n=14) was injected into adult rats that underwent bilateral CN cut. Rats were sacrificed at 2, 4, and 7 days. Alexa Fluor-labeled SHH protein was used to determine the target of SHH signaling (n=3). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and semiquantitative immunohistochemical analysis for SHH protein and cluster differentiation protein three (CD3) were performed. SHH-PA caused a 25% and 16% reduction in apoptosis at 4 and 7 days after CN injury and a 9.3% and 19% increase in SHH protein at 4 and 7 days after CN injury. CD3 protein was not observed in SHH-PA-treated penis. In vitro, 73% of SHH protein diffused from PA within 6 days. Labeled SHH was observed in smooth muscle. PA technology is effective in delivering SHH protein to the penis and SHH is effective in suppressing CN injury-induced apoptosis. These results suggest substantial translational potential of this methodology and show that only a short duration of SHH treatment is required to impact the apoptotic index. © 2010 International Society for Sexual Medicine.

  12. Hedgehogs (Erinaceus europaeus as a Source of Ectoparasites in Urban-suburban Areas of Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Nasser Hajipour

    2015-10-01

    Full Text Available Background: Hedgehogs are small, nocturnal mammals which become popular in the world and have important role in transmission of zoonotic agents. Thus, the present study aimed to survey ectoparasite infestation from April 2010 to December 2011 in urban and suburban parts of Urmia and Tabriz Cities, Northwest of Iran.Methods: A total number of 84 hedgehogs (40 females and 44 males were examined. They have been carefully inspected for ectoparasites and collected arthropods were stored in 70% ethanol solution. The identification of arthropods was carried out using morphological diagnostic keys.Results: The occurrence of ticks on hedgehogs was 23 (67.7% with Rhipicephalus turanicus in Urmia and 11 (22% as well as 1(2% with Rh. turanicus and Hyalomma anatolicum anatolicum in Tabriz, respectively. One flea species, Archaeopsylla erinacei, was found with prevalence of 19 (55.9% and 27 (54% in Urmia and Tabriz Cities, respectively. Prevalence of infestation with Rh. turanicus and A. erinacei were not different (P> 0.05 between sexes of hedgehogs in two study areas. Highest prevalence of tick and flea infestation was in June in Urmia, whereas it was observed in August in Tabriz. Both tick and flea parasitizing hedgehogs showed seasonal difference in prevalence (P< 0.05 in Urmia, but it was not detected in Tabriz (P> 0.05.Conclusion: The result showed the high occurrence of ectoparasites in hedgehog population and according to the zoonotic potential of these animals as vector of some agents further studies are needed to investigate in different parts of Iran.

  13. Maintaining Healthy Skin -- Part 1

    Science.gov (United States)

    ... problems. Tips for maintaining good skin care: Avoid soaps labeled "antibacterial" or "antimicrobial." These tend to reduce the skin's acidity, which acts as a protection from infection. Keep the skin clean and dry. Wash with soap and water daily, then rinse and dry thoroughly. ...

  14. DYNAMICALLY MAINTAINING THE VISIBILITY GRAPH

    NARCIS (Netherlands)

    VEGTER, G

    1991-01-01

    An algorithm is presented to maintain the visibility graph of a set of N line segments in the plane in O(log2 N + K log N) time, where K is the total number of arcs of the visibility graph that are destroyed or created upon insertion or deletion of a line segment. The line segments should be

  15. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options – role of smoothened inhibitors

    Directory of Open Access Journals (Sweden)

    Fecher LA

    2015-11-01

    Full Text Available Leslie A Fecher,1,3 William H Sharfman2 1Department of Internal Medicine and Dermatology, Indiana University Health Simon Cancer Center, Indianapolis, IN, USA; 2The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA, 3Department of Internal Medicine and Dermatology, University of Michigan, MI, USA Abstract: Cutaneous basal cell carcinoma (BCC is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449, a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. Keywords: basal cell carcinoma, hedgehog, smoothened, vismodegib, Gorlin, basal cell nevus syndrome

  16. Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus).

    Science.gov (United States)

    Ferrer, I; Zujar, M J; Admella, C; Alcantara, S

    1992-01-01

    To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472

  17. Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.

    Science.gov (United States)

    Michaloudi, H C; Papadopoulos, G C

    1996-01-01

    Immunocytochemistry with antisera against serotonin (5-HT), dopamine (DA) and noradrenaline (NA) was used to detect monoaminergic (MA) fibres in the ventricular system of the hedgehog Erinaceus europaeus. Light microscopic examination of immunocytochemically stained sections revealed that the ventricular system of the hedgehog is unique among mammals in that the choroid plexuses receive CA axons and that the supraependyma and subependyma of the cerebral ventricles and the spinal central canal are innervated both by serotoninergic and catecholaminergic (CA) fibres. Supraependymal 5-HT axons were generally more abundant and created at places a large number of interconnected basket-like structures, whereas CA fibres were usually directed towards the ventricular lumen. In the lateral ventricles, CA fibres were more numerous in the ependyma lining grey matter, whereas a higher 5-HT innervation density was observed in the area between the corpus callosum and the caudate nucleus or the septum. In the 3rd ventricle, the ependyma of its dorsal part exhibited a higher 5-HT and NA innervation density, whereas DA fibres were preferentially distributed in the ventral half of the basal region. The ependyma lining the cerebral aqueduct displayed a higher MA innervation density in its ventral part. The ependymal wall of the 4th ventricle exhibited an extremely dense 5-HT innervation, mainly in the floor of the ventricle, relatively fewer NA fibres and only sparse DA ones. Few NA and relatively more 5-HT fibres were detected in the ependyma of the central canal. Finally, the circumventricular organs were unevenly innervated by the 3 types of MA fibres. The extensive monoaminergic innervation of the hedgehog ventricular system described here probably reflects a transitory evolutionary stage in the phylogeny of the MA systems with presently unknown functional implications. Images Fig. 1 Fig. 2 Figs 3-8 Figs 9-14 Figs 15-20 PMID:8886949

  18. Scanning electron microscopy observations of the hedgehog stomach worm, Physaloptera clausa (Spirurida: Physalopteridae)

    Science.gov (United States)

    2013-01-01

    Background Physaloptera clausa (Spirurida: Physalopteridae) nematodes parasitize the stomach of the European hedgehog (Erinaceus europaeus) and cause weight loss, anorexia and gastric lesions. The present study provides the first morphological description of adult P. clausa from the stomachs of infected hedgehogs, using scanning electron microscopy (SEM). Methods From June to October 2011, 10 P. clausa from European hedgehogs were fixed, dried, coated and subjected to SEM examination. Results Males and females (22–30 mm and 28–47 mm, respectively) were stout, with the cuticle reflecting over the lips to form a large cephalic collarette and showing fine transverse striations in both sexes. The mouth was characterized by two large, simple triangular lateral pseudolabia, each armed with external and internal teeth. Inside the buccal cavity, a circle of internal small teeth can be observed. Around the mouth, four sub-median cephalic papillae and two large amphids were also observed. The anterior end of both male and female bore an excretory pore on the ventral side and a pair of lateral ciliated cervical papillae. In the female worm, the vulva was located in the middle and the eggs were characterized by smooth surfaces. The posterior end of the female worm was stumpy with two large phasmids in proximity to its extremity. The posterior end of the male had large lateral alae, joined together anteriorly across the ventral surface, with subequal and dissimilar spicules, as well as four pairs of stalked pre-cloacal papillae, three pairs of post-cloacal papillae, and two phasmids. Three sessile papillae occured anteriorly and four posteriorly to the cloaca. Conclusions The present SEM study provides the first in-depth morphological characterization of adult P. clausa, and highlights similarities and differences with P. bispiculata P. herthameyerae, Heliconema longissimum and Turgida turgida. PMID:23566611

  19. Natural infection of Algerian hedgehog, Atelerix algirus (Lereboullet 1842) with Leishmania parasites in Tunisia.

    Science.gov (United States)

    Chemkhi, Jomaa; Souguir, Hejer; Ali, Insaf Bel Hadj; Driss, Mehdi; Guizani, Ikram; Guerbouj, Souheila

    2015-10-01

    In Tunisia, Leishmania parasites are responsible of visceral leishmaniasis, caused by Leishmania infantum species while three cutaneous disease forms are documented: chronic cutaneous leishmaniasis due to Leishmania killicki, sporadic cutaneous form (SCL) caused by L. infantum and the predominant zoonotic cutaneous leishmanaisis (ZCL) due to Leishmania major. ZCL reservoirs are rodents of the Psammomys and Meriones genera, while for SCL the dog is supposed to be a reservoir. Ctenodactylus gundii is involved in the transmission of L. killicki. However, other mammals could constitute potential reservoir hosts in Tunisia and other North African countries. In order to explore the role of hedgehogs as potential reservoirs of leishmaniasis, specimens (N=6) were captured during July-November period in 2011-2013 in an SCL endemic area in El Kef region, North-Western Tunisia. Using morphological characteristics, all specimens were described and measured. Biopsies from liver, heart, kidney and spleen of each animal were used to extract genomic DNA, which was further used in PCR assays to assess the presence of Leishmania parasites. Different PCRs targeting kinetoplast minicircles, ITS1, mini-exon genes and a repetitive Leishmania- specific sequence, were applied. To further identify Leishmania species involved, RFLP analysis of amplified fragments was performed with appropriate restriction enzymes. Using morphological characters, animals were identified as North African hedgehogs, also called Algerian hedgehogs, that belong to the Erinaceidae family, genus Atelerix Pomel 1848, and species algirus (Lereboullet, 1842). PCR results showed in total that all specimens were Leishmania infected, with different organs incriminated, mainly liver and spleen. Results were confirmed by direct sequencing of amplified fragments. Species identification showed that all specimens were infected with L. major, three of which were additionally co-infected with L. infantum. The present study

  20. DESTINACION DE SONIC HEDGEHOG HACIA LA SUPERFICIE DE CELULAS EPITELIALES POLARIZADAS

    OpenAIRE

    LABARCA LIRA, MARIANA

    2010-01-01

    La proteína Sonic hedgehog (Shh) regula el destino celular y la morfogénesis de diversos órganos durante el desarrollo embrionario y también se ha involucrado en cáncer. Shh se expresa en diversos epitelios. Las células epiteliales tienen una superficie dividida en un polo apical y otro basolateral, separados por las uniones estrechas y destinan distintas proteínas a cada polo a través de las rutas exocíticas y endocíticas. Por ello, es importante resolver la(s) ruta(s) que sigue Shh de...

  1. DESTINACION DE SONIC HEDGEHOG HACIA LA SUPERFICIE DE CELULAS EPITELIALES POLARIZADAS

    OpenAIRE

    LABARCA LIRA; MARIANA

    2010-01-01

    La proteína Sonic hedgehog (Shh) regula el destino celular y la morfogénesis de diversos órganos durante el desarrollo embrionario y también se ha involucrado en cáncer. Shh se expresa en diversos epitelios. Las células epiteliales tienen una superficie dividida en un polo apical y otro basolateral, separados por las uniones estrechas y destinan distintas proteínas a cada polo a través de las rutas exocíticas y endocíticas. Por ello, es importante resolver la(s) ruta(s) qu...

  2. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  3. NMG documentation, part 3: maintainer`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, F.N.; Dickinson, R.P. Jr.

    1996-07-01

    This is the third of a three-part report documenting NMG, the Numerical Mathematics Guide. Part I is aimed at the user of the systenL It contains an introduction, with an out- line of the complete report, and Chapter 1, User`s Point of View. Part II is aimed at the programmer and contains Chapter 2, How It Works. Part III is aimed at the maintainer of NMG and contains Chapter 3, Maintenance, and Chapter 4, Validation. Because its contents are so specialized, Part III will receive only limited distribution. Note that each chapter has its own page numbering and table of contents.

  4. Ophthalmological abnormalities in wild European hedgehogs (Erinaceus europaeus): a survey of 300 animals.

    Science.gov (United States)

    Williams, David; Adeyeye, Nina; Visser, Erni

    2017-01-01

    In this study we aimed to examine wild European hedgehogs (Erinaceus europaeus) in rescue centres and to determine ocular abnormalities in this animal population. Three hundred animals varying in age from 2 months to 5 years were examined, 147 being male and 153 female. All animals were evaluated with direct and indirect ophthalmoscopy and slit lamp biomicroscopy in animals where lesions were detected. Tonometry using the Tonovet rebound tonometer was undertaken in selected animals as was assessment of tear production using the Schirmer I tear test. Four animals were affected by orbital infection, 3 were anophthalmic, 2 unilaterally and one bilaterally, 3 by conjunctivitis, 3 by non-ulcerative keratitis and 4 by uveitis with corneal oedema. Fifty seven animals were affected by cataract, 54 with bilateral nuclear lens opacities. Twenty six of these animals were young animals considered too small to hibernate. This report documents the first prospective study of ocular disease in the European hedgehog. The predominant finding was bilateral nuclear cataract seen particularly in young poorly growing animals. Investigation into the potential causation of cataracts by poor nutrition or poor feeding ability by lens opacification requires further study.

  5. Ophthalmological abnormalities in wild European hedgehogs (Erinaceus europaeus: a survey of 300 animals

    Directory of Open Access Journals (Sweden)

    David Williams

    2017-09-01

    Full Text Available In this study we aimed to examine wild European hedgehogs (Erinaceus europaeus in rescue centres and to determine ocular abnormalities in this animal population. Three hundred animals varying in age from 2 months to 5 years were examined, 147 being male and 153 female. All animals were evaluated with direct and indirect ophthalmoscopy and slit lamp biomicroscopy in animals where lesions were detected. Tonometry using the Tonovet rebound tonometer was undertaken in selected animals as was assessment of tear production using the Schirmer I tear test. Four animals were affected by orbital infection, 3 were anophthalmic, 2 unilaterally and one bilaterally, 3 by conjunctivitis, 3 by non-ulcerative keratitis and 4 by uveitis with corneal oedema. Fifty seven animals were affected by cataract, 54 with bilateral nuclear lens opacities. Twenty six of these animals were young animals considered too small to hibernate. This report documents the first prospective study of ocular disease in the European hedgehog. The predominant finding was bilateral nuclear cataract seen particularly in young poorly growing animals. Investigation into the potential causation of cataracts by poor nutrition or poor feeding ability by lens opacification requires further study.

  6. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options – role of smoothened inhibitors

    Science.gov (United States)

    Fecher, Leslie A; Sharfman, William H

    2015-01-01

    Cutaneous basal cell carcinoma (BCC) is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449), a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA)-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. PMID:26604681

  7. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    Science.gov (United States)

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  8. EVALUATION OF CARBONIZATION OF THE HEDGEHOG OF BRAZIL NUT IN OVEN TYPE METAL DRUMS

    Directory of Open Access Journals (Sweden)

    R. M. Nogueira

    2014-07-01

    Full Text Available This work aimed to evaluate the production of charcoal from the hedgehog of the Brazil nut using metal drums as a reactor, considering the adaptive feature for mobility, typical of this exploitation. The average time of carbonization was relatively short, 4:45 hours, which generated a yield of charcoal of 19.11%. The content of material with incomplete carbonization was of 35.77%. His basic density was 0.631g.cm-3, since the bulk density was 0.231 g.cm-3. The average moisture content of the charcoal produced was 4.71%. Volatile materials, amounted to 20.79% of the total mass. The ash content was 0.87% and the fixed carbon was 78.33%. The calorific value was 7252.98 kCal.kg-1. Thus, it can be conclude that the method of the drum is adapted to charcoal producing from the hedgehog of the Brazil nut, however, improvements in thermal insulation of the reactor can be proposed for future work; gravimetric yield in charcoal was low when its performance is compared to other methods of carbonization, probably by the lack of thermal insulation; carbonization time in the reactor was considerably lower than those obtained for the carbonization in muffle for similar products

  9. Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model.

    Science.gov (United States)

    Das, Ishita; Park, Joo-Min; Shin, Jung H; Jeon, Soo Kyeong; Lorenzi, Hernan; Linden, David J; Worley, Paul F; Reeves, Roger H

    2013-09-04

    Down syndrome (DS) is among the most frequent genetic causes of intellectual disability, and ameliorating this deficit is a major goal in support of people with trisomy 21. The Ts65Dn mouse recapitulates some major brain structural and behavioral phenotypes of DS, including reduced size and cellularity of the cerebellum and learning deficits associated with the hippocampus. We show that a single treatment of newborn mice with the Sonic hedgehog pathway agonist SAG 1.1 (SAG) results in normal cerebellar morphology in adults. Further, SAG treatment at birth rescued phenotypes associated with hippocampal deficits that occur in untreated adult Ts65Dn mice. This treatment resulted in behavioral improvements and normalized performance in the Morris water maze task for learning and memory. SAG treatment also produced physiological effects and partially rescued both N-methyl-d-aspartate (NMDA) receptor-dependent synaptic plasticity and NMDA/AMPA receptor ratio, physiological measures associated with memory. These outcomes confirm an important role for the hedgehog pathway in cerebellar development and raise the possibility for its direct influence in hippocampal function. The positive results from this approach suggest a possible direction for therapeutic intervention to improve cognitive function for this population.

  10. The impact of neoadjuvant hedgehog inhibitor therapy on the surgical treatment of extensive basal cell carcinoma.

    Science.gov (United States)

    Ching, Jessica A; Curtis, Heather L; Braue, Jonathan A; Kudchadkar, Ragini R; Mendoza, Tania I; Messina, Jane L; Cruse, C Wayne; Smith, David J; Harrington, Michael A

    2015-06-01

    Although hedgehog inhibitor therapy (HHIT) is offered as isolated medical treatment for extensive basal cell carcinoma (BCC), there is little evidence on the use of HHIT before definitive surgical intervention. In order to better define the utilization of HHIT for extensive BCC, we evaluated the impact of neoadjuvant HHIT on the subsequent surgical resection and reconstruction. An IRB-approved, retrospective chart review was performed of patients who received HHIT as initial treatment for extensive BCC. Patients who discontinued HHIT and underwent surgical resection were included. Evaluation included BCC tumor response to HHIT, operative data, pathological data, radiation requirements, and evidence of tumor recurrence. Six patients were identified with tumors of the face/scalp (n = 4), trunk (n = 1) and upper extremity (n = 1). Hedgehog inhibitor therapy continued until tumors became unresponsive (n = 3, mean = 71 weeks) or side effects became intolerable (n = 3, mean = 31 weeks). In each case, a less extensive surgery was performed than estimated before HHIT. In 3 cases, significant bone resection was avoided. All resected specimens contained BCC. Four specimens exhibited clear margins. Postoperative radiation was performed in cases with positive margins (n = 2), and 1 patient experienced local recurrence. Length of follow-up was 5.7 to 11.8 months (mean = 8.23 months). Although HHIT was not curative for extensive BCC, HHIT can decrease the morbidity of surgical treatment and increase the likelihood of curative resection. For patients with extensive BCC, a combined neoadjuvant use of HHIT and surgical treatment should be considered.

  11. Spacecraft reliability/maintainability optimization.

    Science.gov (United States)

    Sharmahd, J. N.

    1972-01-01

    Description of a procedure to develop a methodology to optimize man-serviced systems for reliability and maintainability. The spacecraft systems are analyzed using failure modes and effects analysis and maintenance analysis, component mean-time-between failure, duty cycle, type of redundancy, and cost information to develop parametric data on various time intervals. Included are crew time-to-repair, cost, weight, and volume effects of increasing subsystem reliability above the baseline. Results are presented for space systems using the existing data from a research and applications module. These results show the minimum cost of sustaining mission operations.

  12. Infestation of urban populations of the Northern white-breasted hedgehog, Erinaceus roumanicus, by Ixodes spp. ticks in Poland.

    Science.gov (United States)

    Dziemian, S; Michalik, J; Pi Łacińska, B; Bialik, S; Sikora, B; Zwolak, R

    2014-12-01

    Infestation by the nest-dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white-breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4-year study in residential areas of the city of Poznań, west-central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas. © 2014 The Royal Entomological Society.

  13. Assessing the efficacy of the hedgehog pathway inhibitor vitamin D3 in a murine xenograft model for pancreatic cancer

    NARCIS (Netherlands)

    Brüggemann, Lois W.; Queiroz, Karla C. S.; Zamani, Khatera; van Straaten, Amber; Spek, C. Arnold; Bijlsma, Maarten F.

    2010-01-01

    The developmental Hedgehog (Hh) pathway has been shown to cause malignancies in the adult organism, specifically in the proximal gastrointestinal tract. Previous studies have used the Hh-inhibitory alkaloid cyclopamine to treat Hh-dependent tumor growth. The present study aimed to determine the

  14. Direct functional consequences of ZRS enhancer mutation combine with secondary long range SHH signalling effects to cause preaxial polydactyly.

    Science.gov (United States)

    Johnson, Edward J; Neely, David M; Dunn, Ian C; Davey, Megan G

    2014-08-15

    Sonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with quantitative protein analysis, we measure allele specific changes in SHH mRNA and concentration of SHH protein over time. This confirms that the Slk ZRS enhancer mutation causes increased SHH expression in the posterior leg mesenchyme. Secondary consequences of this increased SHH signalling include increased FGF pathway signalling and growth as predicted by the SHH/GREM1/FGF feedback loop and the Growth/Morphogen models. Manipulation of Hedgehog, FGF signalling and growth demonstrate that anterior-ectopic expression of SHH and induction of preaxial polydactyly is induced secondary to increased SHH signalling and Hedgehog-dependent growth directed from the posterior limb. We predict that increased long range SHH signalling acts in combination with changes in activation of SHH transcription from the Slk ZRS allele. Through analysis of the temporal dynamics of anterior SHH induction we predict a gene regulatory network which may contribute to activation of anterior SHH expression from the Slk ZRS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. 46,XY Gonadal Dysgenesis due to a Homozygous Mutation in Desert Hedgehog (DHH) Identified by Exome Sequencing.

    Science.gov (United States)

    Werner, Ralf; Merz, Hartmut; Birnbaum, Wiebke; Marshall, Louise; Schröder, Tatjana; Reiz, Benedikt; Kavran, Jennifer M; Bäumer, Tobias; Capetian, Philipp; Hiort, Olaf

    2015-07-01

    46,XY disorders of sex development (DSD) comprise a heterogeneous group of congenital conditions. Mutations in a variety of genes can affect gonadal development or androgen biosynthesis/action and thereby influence the development of the internal and external genital organs. The objective of the study was to identify the genetic cause in two 46,XY sisters of a consanguineous family with DSD and gonadal tumor formation. We used a next-generation sequencing approach by exome sequencing. Electrophysiological and high-