A logical approach to fuzzy truth hedges
Czech Academy of Sciences Publication Activity Database
Esteva, F.; Godo, L.; Noguera, Carles
2013-01-01
Roč. 232, č. 1 (2013), s. 366-385 ISSN 0020-0255 Institutional support: RVO:67985556 Keywords : Mathematical fuzzy logic * Standard completeness * Truth hedges Subject RIV: BA - General Mathematics Impact factor: 3.893, year: 2013 http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469148.pdf
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Nguyen, Hung T
2005-01-01
THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Directory of Open Access Journals (Sweden)
Zoltan Erdei
2011-12-01
Full Text Available In this paper the authors present the usefulness of fuzzy logic in controlling engineering processes or applications. Although fuzzy logic does not represent a novelty for the scientific and engineering field, it enjoys a great appreciation from those involved in the two domains. The fact that fuzzy logic uses sentences kindred with the natural language make it easier to comprehend that a complex mathematical model required by the classic control theory. In MatLab software there are dedicated toolboxes to this subject that make the design of a fuzzy controller a facile one. In the paper design methods of a fuzzy controller are being presented both in Simulink and MatLab.
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Many-valued Logic and Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 27, č. 2 (2011), s. 315-324 ISSN 0970-7794 R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : many valued logic * fuzzy logic Subject RIV: BA - General Mathematics
Fuzzy logic particle tracking velocimetry
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
Mathematics of Fuzzy Sets and Fuzzy Logic
Bede, Barnabas
2013-01-01
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy infer...
Fuzzy logic of Aristotelian forms
Energy Technology Data Exchange (ETDEWEB)
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Ruspini, Enrique H.
1991-01-01
Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.
Morpho (?) phono (?) logical fuzzy edges
African Journals Online (AJOL)
Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Morpho (?) phono (?) logical fuzzy edges: The case of {-/}/{-/U/} semantic (?) contrast in Shona. K. G. Mkangwanwi. Abstract. (ZAMBEZIA: Journal of Humanities of the Univ of Zimbabwe, 2000 27(1): 47-54). Full Text: EMAIL FULL TEXT EMAIL FULL TEXT
Learning fuzzy logic control system
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the
Anaesthesia monitoring using fuzzy logic.
Baig, Mirza Mansoor; Gholamhosseini, Hamid; Kouzani, Abbas; Harrison, Michael J
2011-10-01
Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of off-line tests. The training and testing data set are selected randomly from 30 sets of patients' data. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.
Introduction to fuzzy logic using Matlab
Sivanandam, SN; Deepa, S N
2006-01-01
Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
DEFF Research Database (Denmark)
Badie, Farshad; Götzsche, Hans
had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming.......Ontologies based on Description Logics (DLs) have proved to be effective in formally sharing knowledge across semantic technologies, e.g. Semantic Web, Natural Language Processing, Text Analytics, Business intelligence. Our main goal is analysing ontology construction considering vagueness. We have...
IMPLEMENTATION OF FUZZY LOGIC BASED TEMPERATURE ...
African Journals Online (AJOL)
and Derivative) and Fuzzy logic controllers. Conclusions are made based on these control performances. The results show that the control performance for a Fuzzy controller is quite similar to PID controller but comparatively gives a better response. Key Words: Heat exchanger, Fuzzy logic controller, Proportional Integral ...
Fuzzy logic and hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Song, Y.H.; Dunn, R.W.
1997-12-31
The real world is complex, complexity in the world generally arises from uncertainty in the form of ambiguity. Electric power systems are large, complex, geographically widely distributed systems and influenced by unexpected events. These facts make it difficult to effectively deal with many power system problems through strict mathematical approaches. Therefore, intelligent techniques such as expert systems, artificial neural networks, genetic algorithms and fuzzy logic have emerged in recent years in power systems as a complement to mathematical approaches and have proved to be effective when properly coupled. As the real world power system problems may neither fit the assumptions of a single technique nor be effectively solved by the strengths and capabilities of a single technique, it is now becoming apparent that the integration of various intelligent techniques is a very important way forward in the next generation of intelligent systems. Traditional logic uses variables that have precise values, called ``crisp`` values. Fuzzy logic, on the other hand, attempts to model the impreciseness of human reasoning by representing uncertainty for the variables that are used by assignment of a ``set`` of values to the variable. Each value has a ``degree of membership`` of the set which represents the probability of the variable having that value. A ``membership function`` identifies the degree of membership over the range of possible values, known as the ``universe of discourse``. This function can be defined to represent an adjective, known as a ``linguistic value`` or ``fuzzy set``, which describes the set of values. It is this ability to handle common linguistic terminology that allows fuzzy logic to model qualitative reasoning and to be used in knowledge representation. (Author)
Fuzzy logic based robotic controller
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
Molecular processors: from qubits to fuzzy logic.
Gentili, Pier Luigi
2011-03-14
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Possible use of fuzzy logic in database
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2011-04-01
Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.
Fuzzy logic marketing models for sustainable development
Directory of Open Access Journals (Sweden)
Ioan Constantin ENACHE
2015-06-01
Full Text Available Fuzzy logic offers a different approach to describe economic and marketing phenomena. By providing a replacement for crisp values the fuzzy sets proved to be efficient alternatives for customer behaviour analysis. These advantages can provide a new way to address sustainable development issues. The present paper aims at presenting the main characteristics of fuzzy models and their main advantages. Evidence on how to implement a fuzzy model and what are its strong points are provided based on previous research and published scientific papers. It is concluded that fuzzy logic gives a different view on a wide range of topics
Fuzzy logic foundations of optimal inference
Directory of Open Access Journals (Sweden)
A. Averkin
1994-11-01
Full Text Available In this paper we propose to solve the problem of the optimal fuzzy model designing for the dynamic systems controlling, to develop new mathematical models of fuzzy inference, logical schemes of hardware support based on these models, software support, intellectual system based on these models. The proposed schemes will be able to perform an entire inference process required for real--time fuzzy control. Each scheme works independently of the number of control rules in the knowledge base. The necessary accuracy of the output results can be provided. Among the advantages of suggested architectures are: gain in memory size, simplicity in architectural decisions, fast implementation. The proposed intellectual system gives the new approaches to fuzzy logics acquisitionin the ES and FLC, based on t-norms approach. The system is supplied by cognitive graphics interface. The main functions of the system are: visualization of fuzzy logics by multi-color tables, fuzzy logics acquisition, simulation the fuzzy reasoning processes of the system, testing of fuzzy logics.
Opinion Mining from Online User Reviews Using Fuzzy Linguistic Hedges
Directory of Open Access Journals (Sweden)
Mita K. Dalal
2014-01-01
Full Text Available Nowadays, there are several websites that allow customers to buy and post reviews of purchased products, which results in incremental accumulation of a lot of reviews written in natural language. Moreover, conversance with E-commerce and social media has raised the level of sophistication of online shoppers and it is common practice for them to compare competing brands of products before making a purchase. Prevailing factors such as availability of online reviews and raised end-user expectations have motivated the development of opinion mining systems that can automatically classify and summarize users’ reviews. This paper proposes an opinion mining system that can be used for both binary and fine-grained sentiment classifications of user reviews. Feature-based sentiment classification is a multistep process that involves preprocessing to remove noise, extraction of features and corresponding descriptors, and tagging their polarity. The proposed technique extends the feature-based classification approach to incorporate the effect of various linguistic hedges by using fuzzy functions to emulate the effect of modifiers, concentrators, and dilators. Empirical studies indicate that the proposed system can perform reliable sentiment classification at various levels of granularity with high average accuracy of 89% for binary classification and 86% for fine-grained classification.
Fuzzy logic applications in engineering science
Harris, J
2006-01-01
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.
Nursing And Fuzzy Logic: An Integrative Review.
Jensen, Rodrigo; Lopes,Maria Helena Baena de Moraes
2015-01-01
This study conducted an integrative review investigating how fuzzy logic has been used in research with the participation of nurses. The article search was carried out in the CINAHL, EMBASE, SCOPUS, PubMed and Medline databases, with no limitation on time of publication. Articles written in Portuguese, English and Spanish with themes related to nursing and fuzzy logic with the authorship or participation of nurses were included. The final sample included 21 articles from eight countries. For ...
A SELF-ORGANISING FUZZY LOGIC CONTROLLER
African Journals Online (AJOL)
ES Obe
logic setting. Linkens and Nie [6] proposed some self- learning fuzzy controller structures, with the assumption that neither control experts nor teacher signals are available for the control problem. Each of the fuzzy controller structures adopted an architecture similar to that used by traditional model reference adaptive control.
Towards the future of fuzzy logic
Trillas, Enric; Kacprzyk, Janusz
2015-01-01
This book provides readers with a snapshot of the state-of-the art in fuzzy logic. Throughout the chapters, key theories developed in the last fifty years as well as important applications to practical problems are presented and discussed from different perspectives, as the authors hail from different disciplines and therefore use fuzzy logic for different purposes. The book aims at showing how fuzzy logic has evolved since the first theory formulation by Lotfi A. Zadeh in his seminal paper on Fuzzy Sets in 1965. Fuzzy theories and implementation grew at an impressive speed and achieved significant results, especially on the applicative side. The study of fuzzy logic and its practice spread all over the world, from Europe to Asia, America and Oceania. The editors believe that, thanks to the drive of young researchers, fuzzy logic will be able to face the challenging goals posed by computing with words. New frontiers of knowledge are waiting to be explored. In order to motivate young people to engage in the ...
Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Genito, Daniele
2010-01-01
2008-2009 Si trattano diversi aspetti della logica fuzzy, in particolare: 1) le proprietà preservate da un modello fuzzy ogniqualvolta esso è sottoposto a qualche genere di modifica; 2) la programmazione logica fuzzy, la logica della similarità e la metaprogrammazione, considerando la relazione di sinonimia tra predicati; 3) la connessione tra logica fuzzy e teoria dei bireticoli per il trattamento sia della verità che del grado di informazione. VIII n.s.
A Brief History of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2012-04-01
Full Text Available
The problems of uncertainty, imprecision and vagueness have been discussed for many years. These problems have been major topics in philosophical circles with much debate, in particular, about the nature of vagueness and the ability of traditional Boolean logic to cope with concepts and perceptions that are imprecise or vague. The Fuzzy Logic (which is usually translated into Castilian by “Lógica Borrosa”, or “Lógica Difusa”, but also by “Lógica Heurística” can be considered a bypass-valued logics (Multi-valued Logic, MVL, its acronym in English. It is founded on, and is closely related to-Fuzzy Sets Theory, and successfully applied on Fuzzy Systems. You might think that fuzzy logic is quite recent and what has worked for a short time, but its origins date back at least to the Greek philosophers and especially Plato (428-347 B.C.. It even seems plausible
to trace their origins in China and India. Because it seems that they were the first to consider that all things need not be of a certain type or quit, but there are a stopover between. That is, be the pioneers in considering that there may be varying degrees of truth and falsehood. In case of colors, for example, between white and black there is a whole infinite scale: the shades of gray. Some recent theorems show that in principle fuzzy logic can be used to model any continuous system, be it based
in AI, or physics, or biology, or economics, etc. Investigators in many fields may find that fuzzy, commonsense models are more useful, and many more accurate than are standard mathematical ones. We analyze here the history and development of this problem: Fuzziness, or “Borrosidad” (in Castilian, essential to work with Uncertainty.
Robust fuzzy logic stabilization with disturbance elimination.
Danapalasingam, Kumeresan A
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.
Fuzzy Logic Controller Design for Intelligent Robots
Directory of Open Access Journals (Sweden)
Ching-Han Chen
2017-01-01
Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.
Fuzzy logic in autonomous orbital operations
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Fault Diagnosis in Deaerator Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
S Srinivasan
2007-01-01
Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.
Random forest ensemble classification based fuzzy logic
Ben Ayed, Abdelkarim; Benhammouda, Marwa; Ben Halima, Mohamed; Alimi, Adel M.
2017-03-01
In this paper, we treat the supervised data classification, while using the fuzzy random forests that combine the hardiness of the decision trees, the power of the random selection that increases the diversity of the trees in the forest as well as the flexibility of the fuzzy logic for noise. We will be interested in the construction of a forest of fuzzy decision trees. Our system is validated on nine standard classification benchmarks from UCI repository and have the specificity to control some data, to reduce the rate of mistakes and to put in evidence more of hardiness and more of interoperability.
Application of fuzzy logic in robot control
Kemppainen, Seppo; Roening, Juha
1992-11-01
During the past several years, fuzzy control has emerged as a suitable control strategy for many complex and nonlinear control problems. The control provided by fuzzy logic is both smooth and accurate. Also the 'if-then' rules of fuzzy control systems are easy to understand and relatively easy to develop. This paper presents a toolkit which is used in the implementation of fuzzy control system. The toolkit consists of C++ class library which computes inferences in fuzzy logic. The toolkit is used to implement a fuzzy control system which controls the movement of a simulated mobile robot. The proposed architecture consists of several rulesets. Each ruleset specializes in some control task, for example, there are rulesets for going around an obstacle, avoiding a moving obstacle, going through a door, etc. The multiple ruleset fuzzy control system is used to guide the simulated mobile robot to a given goal in an unknown environment. With the proposed multiple ruleset architecture complex control problems can be solved while single rulesets remain simple and efficient.
Fuzzy Reasoning Based on First-Order Modal Logic,
Zhang, Xiaoru; Zhang, Z.; Sui, Y.; Huang, Z.
2008-01-01
As an extension of traditional modal logics, this paper proposes a fuzzy first-order modal logic based on believable degree, and gives out a description of the fuzzy first-order modal logic based on constant domain semantics. In order to make the reasoning procedure between the fuzzy assertions
Implementation of fuzzy logic control algorithm in embedded ...
African Journals Online (AJOL)
Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...
Pattern recognition using linguistic fuzzy logic predictors
Habiballa, Hashim
2016-06-01
The problem of pattern recognition has been solved with numerous methods in the Artificial Intelligence field. We present an unconventional method based on Lingustic Fuzzy Logic Forecaster which is primarily used for the task of time series analysis and prediction through logical deduction wtih linguistic variables. This method should be used not only to the time series prediction itself, but also for recognition of patterns in a signal with seasonal component.
Can fuzzy logic make things more clear?
J.A. Hazelzet (Jan)
2009-01-01
textabstractIntensive care is a complex environment involving many signals, data and observations. Clinical decision support and artificial intelligence using fuzzy logic and closed loop techniques are methods that might help us to handle this complexity in a safe, effective and efficient way.
Automating Software Development Process using Fuzzy Logic
Marcelloni, Francesco; Aksit, Mehmet; Damiani, Ernesto; Jain, Lakhmi C.; Madravio, Mauro
2004-01-01
In this chapter, we aim to highlight how fuzzy logic can be a valid expressive tool to manage the software development process. We characterize a software development method in terms of two major components: artifact types and methodological rules. Classes, attributes, operations, and inheritance
Indeterminacy, linguistic semantics and fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Novak, V. [Univ. of Ostrava (Czech Republic)
1996-12-31
In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.
Mathematical Fuzzy Logic and Natural Numbers
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2007-01-01
Roč. 81, č. 1-3 (2007), s. 155-163 ISSN 0169-2968 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * arithmetic * essential undecidability Subject RIV: BA - General Mathematics Impact factor: 0.693, year: 2007
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Neurocontrol and fuzzy logic: Connections and designs
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
Modeling of Kefir Production with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Hüseyin Nail Akgül
2014-06-01
Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.
Fuzzy logic application for extruders replacement problem
Directory of Open Access Journals (Sweden)
Edison Conde Perez dos Santos
2017-03-01
Full Text Available In a scenario of uncertainty and imprecision, before taking the replacement analysis, a manager needs to consider the uncertain reality of a problem. In this scenario, the fuzzy logic makes an excellent option. Therefore, it is necessary to make a decision based on the fuzzy model. This study is based on the comparison of two methodologies used in the problem of asset replacement. The study, thus, was based on a comparison between two extruders for polypropylene yarn bibliopegy, comparing mainly the costs involved in maintaining the equipment.
Application of fuzzy logic to social choice theory
Mordeson, John N; Clark, Terry D
2015-01-01
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory.The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the ""union"" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's
control of a dc motor using fuzzy logic control algorithm
African Journals Online (AJOL)
user
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
Efficient fuzzy logic controller for magnetic levitation systems | Shu ...
African Journals Online (AJOL)
In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...
Searching the Arcane Origins of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-05-01
Full Text Available It is well-known that Artificial Intelligence requires Logic. But its Classical version shows too many insufficiencies. So, it is very necessary to introduce more sophisticated tools, as may be
Fuzzy Logic, Modal Logic, Non-Monotonic Logic, and so on. When you are searching the possible precedent of such new ideas, we may found that they are not totally new, because some ancient thinkers have suggested many centuries ago similar concepts, certainly without adequate mathematical formulation, but in the same line: against the dogmatism and the dualistic vision of
the world: absolutely true vs. absolutely false, black vs. white, good or bad by nature, 0 vs.1, etc. We attempt to analyze here some of these greatly unexplored, and very interesting early origins.
Fuzzy linguistic hedges for the selection of manufacturing process for prosthetic sockets
Directory of Open Access Journals (Sweden)
Richa Pandey
2014-08-01
Full Text Available In this paper, a comparison is presented between two prime methods of producing prosthetic sockets by using the fuzzy linguistic hedges approach on the qualitative feedback of Indian prosthetic users. Recent trends indicate that the Indian manufacturers have tried to adopt the newer technologies like reverse engineering (RE approach to achieve the desired goals. However, the satisfaction of the user is of utmost importance for the unique and customized products for rehabilitation. In order to analyze the effectiveness of the manufacturing approaches, user case studies are taken, based on the linguistic feedbacks, and a comparative study is conducted. Thirteen users from four different manufacturing units are taken for study and sockets made by conventional as well as RE are experimented. Fuzzy membership functions are constructed using the linguistic hedges based on the user feedbacks. An analytical hierarchy process (AHP is applied to arrive at a decision to select the manufacturing process for user satisfaction and manufacturing excellence.
Fuzzy Logic Based Autonomous Traffic Control System
Directory of Open Access Journals (Sweden)
Muhammad ABBAS
2012-01-01
Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.
Fuzzy logic for business, finance, and management
Bojadziev, George
1997-01-01
This is an interdisciplinary book for knowledge workers in business, finance, management, and socio-economic sciences. It provides a guide to and techniques for forecasting, decision making, conclusions, and evaluations in an environment involving uncertainty, vagueness, and impression. Traditional modeling techniques do not capture the nature of complex systems especially when humans are involved. Fuzzy logic provides effective tools for dealing with such systems. Emphasis is on applications presented in case studies including Time Forecasting for Project Management, New Product Pricing, Clie
Fuzzy Logic and Education: Teaching the Basics of Fuzzy Logic through an Example (By Way of Cycling)
Sobrino, Alejandro
2013-01-01
Fuzzy logic dates back to 1965 and it is related not only to current areas of knowledge, such as Control Theory and Computer Science, but also to traditional ones, such as Philosophy and Linguistics. Like any logic, fuzzy logic is concerned with argumentation, but unlike other modalities, which focus on the crisp reasoning of Mathematics, it deals…
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Safety regulations of fuzzy-logic control to nuclear reactors
Ruan, Da
2000-01-01
We present an R&D project on fuzzy-logic control applications to the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK•CEN). The project started in 1995 and aimed at investigating the added value of fuzzy logic control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project, with an understanding of the safety requirements for this real fuzzy-logic control ...
Mapping Shape Geometry And Emotions Using Fuzzy Logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2008-01-01
and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...... between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (emotion). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic model and showed a high...... correlation between the fuzzy logic model and user perception....
Fuzzy Logic Unmanned Air Vehicle Motion Planning
Directory of Open Access Journals (Sweden)
Chelsea Sabo
2012-01-01
Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.
Paraconsistency properties in degree-preserving fuzzy logics
Czech Academy of Sciences Publication Activity Database
Ertola, R.; Esteva, F.; Flaminio, T.; Godo, L.; Noguera, Carles
2015-01-01
Roč. 19, č. 3 (2015), s. 531-546 ISSN 1432-7643 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985556 Keywords : Mathematical fuzzy logic * degree-preserving fuzzy logic s * paraconsistent logic s * logic s of formal inconsistency Subject RIV: BA - General Mathematics Impact factor: 1.630, year: 2015 http://library.utia.cas.cz/separaty/2016/MTR/noguera-0469166.pdf
FUZZY LOGIC STATIC SYNCHRONOUS COMPENSATOR (FLSTATCOM
Directory of Open Access Journals (Sweden)
I Made Mataram
2016-06-01
Full Text Available Penerapan teknik fuzzy membawa perubahan yang signifikan khusus pada perhitungan dan analisis sistem konvensional. Peranan peralatan FACTS (Flexible AC Transmission System untuk memperbaiki kualitas tegangan dari pembangkit menuju beban sangat besar. STATCOM merupakan peralatan paling berpengaruh untuk memperbaiki tegangan pada jaringan transmisi tenaga listrik. Pembahasan pada penelitian ini dikhususkan pada FLSTATCOM. Model Fuzzy Logic dengan dua input digunakan sebagai pengontrol IGBT, sehingga mampu meningkatkan unjuk kerja STATCOM konvensional. Sistem Single Machine Infinite Bus menjadi sistem uji coba penggunaan FLSTATCOM.Hasil simulasi menggunakan simulink MATLAB, diperoleh nilai tegangan pada tiap sisi terima tanpa menggunakan STATCOM menghasilkan tegangan sebesar 217,3 kV, menggunakan STATCOM menghasilkan tegangan sebesar 220 kV, dan penggunaan FLSTATCOM mampu meningkatkan tegangan menjadi 228,9 kV (5,34%
Fuzzy Logic in Inverse Continuous Method
Directory of Open Access Journals (Sweden)
Víťazoslav Krúpa
2004-12-01
Full Text Available In the field of geotechnics, certain vagueness and ambiquity appears. We might not be able to design a mathematically accuratedescription of rock, whose properties change during the excavation (rock strength, discontinuities direction, dislocations, rock type.Furthermore, the excavation regime (thrust, revolutions, torque changes too, as well as the edge angle of cutting tools (due to wear andworking ability of cutterhead as result of sequential exchanges of worn-out cutterhead discs. All of these facts cause that the cutterheadoperates using the discs with different wear stage. The above mentioned problems led us to the decision to use the fuzzy logic and fuzzy sets,e.g. techniques operating with vagueness and ambiguity.
FUZZY LOGIC CONTROLLER IMPLEMENTATION FOR PHOTOVOLTAIC STATION
Directory of Open Access Journals (Sweden)
Imad Zein
2014-01-01
Full Text Available Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP, which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. This is why the controllers of all solar power electronic converters employ some method for maximum power point tracking (MPPT . Over the past years many MPPT techniques have been published and based on that the main paper’s objective is to analyze one of the most promising MPPT control algorithms: fuzzy logic controller.
Looking for Oriental fundamentals Fuzzy Logic
Directory of Open Access Journals (Sweden)
Angel Garrido
2013-10-01
Full Text Available For quite some time we have been trying to trace the river of Non-ClassicalLogics, and especially, Fuzzy Logic, trying to find the sources of this today flowing quite mighty river. Following from Lotfi A. Zadeh, we have traced his inspiring, the Polish logician Jan Lukasiewicz, who in turn was inspired by Aristotle's Peri Hermeneias (De Interpretatione. Also, Lukasiewicz occupies a central position in the Lvov-Warsaw School, who founded Kazimierz Twardowski, a student of Franz Brentano, and this in turn disciple of Bernard Bolzano. The connection with Leibniz and Bolzano come through medieval scholastic thinkers, especially John Duns Scotus and William of Ockham and the problem of future contingents, they had collected from the Aristotelian tradition. But there was to trace the “eastern (oriental track, which leads to the ancient Chinese and Indian philosophy. Here we will treat it as a first and necessary approach.
Comparison of Anti-Virus Programs using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Vaclav Bezdek
2013-07-01
Full Text Available This work follows the previous author´s paper: Possible use of Fuzzy Logic in Database. It tries to show application of Fuzzy Logic in selecting the best anti-virus software based on testing made by AV-Comparatives.
Fuzzy logic system for BBT based fertility prediction | Yazed | Journal ...
African Journals Online (AJOL)
This paper introduce a fuzzy logic system for fertility prediction to improve the BBT technique based on FAM. The development of the fertility prediction system using fuzzy logic is motivated by its ability to conduct a complex relationships that exist between the input and its factors, which can address the issue of imprecision ...
FUZZY LOGIC BASED TEMPERATURE CONTROL SYSTEM USING A MICROCONTROLLER
FİDAN, Uğur; BAY, Ö.FARUK
2002-01-01
This paper is aimed to illustrate the design and the implementation of a fuzzy logic controller(FLC) for an incubator using an AT89C205 microcontroller. The basis for fuzzy control and the general structure of the fuzzy logic controllers are illustrated. Then design and implementation steps of the FLC are explained. Experimental results are also included. The incubator temperature can be adjusted at any point between 25oC – 40 oC . The use of fuzzy logic controller in this application has pot...
Fingerprint Recognition using Fuzzy Logic with Triangular Pattern Template
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
in a fingerprint for identification. However, we propose a fingerprint recognition technique using fuzzy logic. This approach utilizes two types of features; ridge ending and bifurcation to construct triangles and the fuzzy logic determine the degree of membership for matching. The unique difference in our...... implementation is that fuzzy concept is used for matching rather than the feature extraction. The laboratory results obtained indicate that matching process efficiency can be improved using this technique....
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Active structural control by fuzzy logic rules: An introduction
Energy Technology Data Exchange (ETDEWEB)
Tang, Y.
1995-07-01
An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
Active structural control by fuzzy logic rules: An introduction
Energy Technology Data Exchange (ETDEWEB)
Tang, Yu [Argonne National Lab., IL (United States). Reactor Engineering Div.; Wu, Kung C. [Texas Univ., El Paso, TX (United States). Dept. of Mechanical and Industrial Engineering
1996-12-31
A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
On logical, algebraic, and probabilistic aspects of fuzzy set theory
Mesiar, Radko
2016-01-01
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...
Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty
Starczewski, Janusz T
2013-01-01
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...
Fuzzy Logic in Traffic Engineering: A Review on Signal Control
Directory of Open Access Journals (Sweden)
Milan Koukol
2015-01-01
Full Text Available Since 1965 when the fuzzy logic and fuzzy algebra were introduced by Lotfi Zadeh, the fuzzy theory successfully found its applications in the wide range of subject fields. This is mainly due to its ability to process various data, including vague or uncertain data, and provide results that are suitable for the decision making. This paper aims to provide comprehensive overview of literature on fuzzy control systems used for the management of the road traffic flow at road junctions. Several theoretical approaches from basic fuzzy models from the late 1970s to most recent combinations of real-time data with fuzzy inference system and genetic algorithms are mentioned and discussed throughout the paper. In most cases, fuzzy logic controllers provide considerable improvements in the efficiency of traffic junctions’ management.
Fuzzy logic and its application in football team ranking.
Zeng, Wenyi; Li, Junhong
2014-01-01
Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in physical education for tasks such as the selection for athletes, the evaluation for different training approaches, the team ranking, and the real-time monitoring of sports data. In this paper, we use fuzzy set theory and apply fuzzy clustering analysis in football team ranking. Based on some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T 7, T 3, T 1, T 9, T 10, T 8, T 11, T 12, T 2, T 6, T 5, T 4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.
Petr Hájek on mathematical fuzzy logic
Montagna, Franco
2014-01-01
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vague
Intermediate Syllogisms in Fuzzy Natural Logic
Directory of Open Access Journals (Sweden)
Petra Murinová
2016-06-01
Full Text Available The goal of this paper is twofold: first, we give overview of the results of one part of the Fuzzy Natural Logic - the formal theory of intermediate quantifiers and syllogisms based on them. We present 105 valid basic syllogisms and show that for the proof of validity of all of them, we need to prove validity of only few of them so that validity of the other ones immediately follows. In the second part of the paper, we focused on conditions under which non-trivial intermediate syllogisms are valid. The latter are syllogisms which contain two or even three general intermediate quantifiers (not equal to any of $\\forall$ or $\\exists$.
Fuzzy Logic Enhanced Digital PIV Processing Software
Wernet, Mark P.
1999-01-01
Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.
CAC Algorithm Based on Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ľubomír DOBOŠ
2009-05-01
Full Text Available Quality of Service (QoS represent one ofmajor parameters that describe mobile wirelesscommunication systems. Thanks growing popularity ofmobile communication in last years, there is anincreasing expansion of connection admission controlschemes (CAC that plays important role in QoSdelivering in terms of connection blocking probability,connection dropping probability, data loss rate andsignal quality.With expansion of services provided by the mobilenetworks growing the requirements to QoS andtogether growing requirements to CAC schemes.Therefore, still more sophisticated CAC schemes arerequired to guarantee the QoS. This paper containsshort introduction into division of connectionadmission control schemes and presents thresholdoriented CAC scheme with fuzzy logic used foradaptation of the threshold value.
Interdisciplinarity, logic of uncertainty and fuzzy logic in primary school
Directory of Open Access Journals (Sweden)
Luciana Delli Rocili
2015-12-01
Full Text Available On the occasion of the 120th anniversary of Mathesis, this work wants to be a memory, a tribute to two great presidents of Mathesis: Bruno de Finetti and Angelo Fadini. Both have pursued the idea of interdisciplinary teaching and research. Bruno de Finetti, with his books on The invention of truth, (1934, and on Logic and Intuitive Mathematics, (1959, and his very famous "Theory of probability", (1970, shows a rejection of formal education, comfortable, monodisciplinary, made of certainties, and chooses the impervious way of addressing the problems that are to the base of science. Angelo Fadini, with his papers and books on Theory of Fuzzy Sets, shows first in Italy several logical questions which puts as the basis for practical applications in Architecture. This paper is an attempt to experiment, in an interdisciplinary framework, the basic ideas of Bruno de Finetti and Angelo Fadini in primary school, in the belief that in the Primary School are formed ideas and intuitions, while in the secondary school the attention is focused mainly on specific issues of Mathematics. We shows some results of a still ongoing experimentation. Interdisciplinarietà, logica dell'incerto e logica sfumata nella scuola primaria In occasione dei 120 anni della Mathesis, questo lavoro vuole essere un ricordo, un omaggio a due grandi Presidenti della Mathesis: Bruno de Finetti e Angelo Fadini. Entrambi hanno portato avanti l’idea della interdisciplinarietà nell’insegnamento e nella ricerca. Bruno de Finetti, con la sua “Matematica Logico Intuitiva” del 1959, e la sua “Teoria delle probabilità”, del 1970, e ancora prima, con “L’invenzione della verità”, del 1934, mostra un rifiuto dell’insegnamento formale, comodo, monodisciplinare, fatto di certezze, e sceglie la strada impervia dell’affrontare i problemi che sono alla base della scienza. Angelo Fadini, con la sua Teoria degli Insiemi Sfocati, mostra per primo in Italia varie questioni
Dynamic regimes of random fuzzy logic networks
Energy Technology Data Exchange (ETDEWEB)
Wittmann, Dominik M; Theis, Fabian J, E-mail: dominik.wittmann@helmholtz-muenchen.de [Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg (Germany); Centre for Mathematical Sciences, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany)
2011-01-15
Random multistate networks, generalizations of the Boolean Kauffman networks, are generic models for complex systems of interacting agents. Depending on their mean connectivity, these networks exhibit ordered as well as chaotic behavior with a critical boundary separating both regimes. Typically, the nodes of these networks are assigned single discrete states. Here, we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership (DOM) functions specifying the degree to which the nodes are in each of their discrete states. This allows our models to deal with imprecision and uncertainties. Compatible update rules are constructed by expressing the update rules of the multistate network in terms of Boolean operators and generalizing them to fuzzy logic (FL) operators. The standard choice for these generalizations is the Goedel FL, where AND and OR are replaced by the minimum and maximum of two DOMs, respectively. In mean-field approximations we are able to analytically describe the percolation and asymptotic distribution of DOMs in random Goedel FL networks. This allows us to characterize the different dynamic regimes of random multistate networks in terms of FL. In a low-dimensional example, we provide explicit computations and validate our mean-field results by showing that they agree well with network simulations.
Twenty-Five Years of the Fuzzy Factor: Fuzzy Logic, the Courts, and Student Press Law.
Plopper, Bruce L.; McCool, Lauralee
A study applied the structure of fuzzy logic, a fairly modern development in mathematical set theory, to judicial opinions concerning non-university, public school student publications, from 1975 to 1999. The study examined case outcomes (19 cases generated 27 opinions) as a function of fuzzy logic, and it evaluated interactions between fuzzy…
Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic
Verdegay, Jose; Esteva, Francesc
2015-01-01
This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
Fifty years of fuzzy logic and its applications
Rishe, Naphtali; Kandel, Abraham
2015-01-01
This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh’s seminal paper on “fuzzy sets,” published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh’s paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining, and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years’ anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments...
Type-2 Fuzzy Logic in Intelligent Control Applications
Castillo, Oscar
2012-01-01
We describe in this book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. Th...
Application of Fuzzy Logic in Control of Switched Reluctance Motor
Directory of Open Access Journals (Sweden)
Pavel Brandstetter
2006-01-01
Full Text Available The flux linkage of switched reluctance motor (SRM depends on the stator current and position between the rotor and stator poles. The fact determines that during control of SRM current with the help of classical PI controllers in a wide regulation range unsatisfied results occur. The main reasons of the mentioned situation are big changes of the stator inductance depending on the stator current and rotor position. In a switched reluctance motor the stator phase inductance is a non-linear function of the stator phase current and rotor position. Fuzzy controller and fuzzy logic are generally non-linear systems; hence they can provide better performance in this case. Fuzzy controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued changing parameters of other controller, so-called fuzzy supervisor. Referring to the usage of fuzzy logic as a supervisor of conventional PI controller in control of SRM possible improvement occurs.
Fuzzy logic color detection: Blue areas in melanoma dermoscopy images.
Lingala, Mounika; Stanley, R Joe; Rader, Ryan K; Hagerty, Jason; Rabinovitz, Harold S; Oliviero, Margaret; Choudhry, Iqra; Stoecker, William V
2014-07-01
Fuzzy logic image analysis techniques were used to analyze three shades of blue (lavender blue, light blue, and dark blue) in dermoscopic images for melanoma detection. A logistic regression model provided up to 82.7% accuracy for melanoma discrimination for 866 images. With a support vector machines (SVM) classifier, lower accuracy was obtained for individual shades (79.9-80.1%) compared with up to 81.4% accuracy with multiple shades. All fuzzy blue logic alpha cuts scored higher than the crisp case. Fuzzy logic techniques applied to multiple shades of blue can assist in melanoma detection. These vector-based fuzzy logic techniques can be extended to other image analysis problems involving multiple colors or color shades. Copyright © 2014 Elsevier Ltd. All rights reserved.
INDONESIA PUBLIC BANKS PERFORMANCE EVALUATION USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Sugiarto Sugiarto
2016-10-01
Full Text Available Return on Asset (ROA is a variable that has the greatest ability in predicting public banks stock prices in Indonesia. The coefficient of determination of ROA on public banks stock prices in Indonesia reached 54.8%. ROA has a significant positive influence on public bank stock prices in Indonesia. Fuzzy logic process on the performance of the 15 public banks in Indonesia have been carried out using the data of ROA for the period 2010 up to 2013. Bank reference performance according to ROA is based on Bank Indonesia Letter No. 6 / 23DPNP / 2011. The performance of each bank was analyzed by conventional methods and as a comparison used fuzzy logic. The evaluation with fuzzy logic method able to provide added value to the currently enforced performance evaluation method. There is significant difference in conclusion between the determination of fuzzy logic models and conventional method
Application of fuzzy logic in performance management: a literature review
Directory of Open Access Journals (Sweden)
Verónica Gurrea
2014-07-01
Full Text Available Performance management has become in a key success factor for any organization. Traditionally, performance management has focused uniquely in financial measures, mainly using quantitative measures, but two decades ago they were extended towards an integral view of the organization, appearing qualitative measures. This type of extended view and associated measures have a degree of uncertainty that needs to be bounded. One of the essential tools for uncertainty bounding is the fuzzy logic and, therefore,the main objective of this paper is the analysis of the literature about the application of fuzzy logic in performance measurement systems operating within uncertainty environments with the aim of categorizing, conceptualizing and classifying the works written so far. Finally, three categories are defined according to the different uses of fuzzy logic within performance management concluding that the most important application of fuzzy logic that counts with a higher number of studies is uncertainty bounding.
Inverted Pendulum Design with Hardware Fuzzy Logic Controller
Directory of Open Access Journals (Sweden)
Eric Minnaert
2008-06-01
Full Text Available An inverted pendulum robot has been designed and built using a fuzzy logic controller implemented in a Field Programmable Gate Array (FPGA. The Mamdani fuzzy controller has been implemented using integer numbers to simplify its construction and improve system throughput. An accelerometer and rate gyroscope are used along with a complementary filter to monitor the state of the robot. Using angular velocity and angle error the fuzzy controller can successfully balance the inverted pendulum robot.
USE OF FUZZY LOGIC TO INVESTIGATE WEATHER PARAMETER ...
African Journals Online (AJOL)
Load forecasting guides the power company to make some decisions on generation, transmission and distribution of electrical power. This work presents a solution methodology, using fuzzy logic approach for short term load forecasting (STLF) for Adamawa State University, Mubi. The proposed methodology utilized fuzzy ...
Different control applications on a vehicle using fuzzy logic control
Indian Academy of Sciences (India)
ksf and ksr are front and rear suspension spring constants; ktf and ktr are the stiffness of front and rear wheels; cf and cr are front and rear suspension damping ..... Rao M V C, Prahlad V 1997 A tunable fuzzy logic controller for vehicle active suspension systems. Fuzzy Sets and Systems, 85: 11–21. Sakman L E, Guclu R, ...
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
are faced with the problem of determining suspension spring and damper coefficients. Two important ... Replacement of spring damper suspensions of automobiles by active systems has the potential to ..... Rao M V C, Prahlad V 1997 A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets Syst.
Optimization of Fuzzy Logic Controller for Supervisory Power System Stabilizers
Directory of Open Access Journals (Sweden)
Y. A. Al-Turki
2012-01-01
Full Text Available This paper presents a powerful supervisory power system stabilizer (PSS using an adaptive fuzzy logic controller driven by an adaptive fuzzy set (AFS. The system under study consists of two synchronous generators, each fitted with a PSS, which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The proposed genetic adaptive fuzzy logic controller (GAFLC-PSS, using 25 rules, is compared with a static fuzzy logic controller (SFLC driven by a fixed fuzzy set (FFS which has 49 rules. Both fuzzy logic controller (FLC algorithms utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithmto tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the computational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic response of the system under study.
Neural-network-based fuzzy logic decision systems
Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen
1994-10-01
During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.
Saravanan, Vijayakumar; Lakshmi, P T V
2014-09-01
The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.
Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad
2017-10-01
The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.
PID Fuzzy Logic Controller System for DC Motor Speed Control
Directory of Open Access Journals (Sweden)
H Samsul Bachri
2010-10-01
Full Text Available A good controller system must have resilience to disturbance and must be able to response quickly and accurately. Problem usually appears when PID controller system was built sensitively hence the system's respon to the disturbance will yield big overshot/undershot then the possibility of oscillation to be happened is excelsior. When the controller system was built insensitively, the overshot/undershot will be small but the recovery time will be longer. Hybrid controller system could overcome those problems by combining PID control system with fuzzy logic. The main control of this system is PID controller while the fuzzy logic acts to reduce an overshot/undershot and a recovery time. The fuzzy logic controller is designed with two input error and delta error and one output of the motor speed. The output of fuzzy logic controller should be only half of the PID controller for limiting entirely fuzzy output. This hybrid system design has a better respon time controller system than PID controller without fuzzy logic.
Expanding Basic Fuzzy Logic with Truth Constants for Component Delimiters
Czech Academy of Sciences Publication Activity Database
Haniková, Zuzana
2012-01-01
Roč. 197, 16 June (2012), s. 95-107 ISSN 0165-0114 R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematics * non-classical logic s * algebra * basic fuzzy logic BL * propositional constants Subject RIV: BA - General Mathematics Impact factor: 1.749, year: 2012
Fuzzy logic an introductory course for engineering students
Trillas, Enric
2015-01-01
This book introduces readers to fundamental concepts in fuzzy logic. It describes the necessary theoretical background and a number of basic mathematical models. Moreover, it makes them familiar with fuzzy control, an important topic in the engineering field. The book offers an unconventional introductory textbook on fuzzy logic, presenting theory together with examples and not always following the typical mathematical style of theorem-corollaries. Primarily intended to support engineers during their university studies, and to spark their curiosity about fuzzy logic and its applications, the book is also suitable for self-study, providing a valuable resource for engineers and professionals who deal with imprecision and non-random uncertainty in real-world applications.
Fuzzy logic-based flight control system design
Nho, Kyungmoon
The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.
Fuzzy-logic-assisted surgical planning in adolescent idiopathic scoliosis.
Nault, Marie-Lyne; Labelle, Hubert; Aubin, Carl-Eric; Sangole, Archana; Balazinski, Marek
2009-06-01
Selection of appropriate curve fusion levels for surgery in adolescent idiopathic scoliosis (AIS) is a complex and difficult task and, despite numerous publications, still remains a highly controversial topic. To evaluate a fuzzy-logic-based surgical planning tool by comparing the results suggested by the software with the average outcome recommended by a panel of 5 expert spinal deformity surgeons. It is hypothesized that, given the same information, the fuzzy-logic tool will perform as favorably as the surgeons. Proof-of-concept study evaluating the use of a fuzzy-logic-assisted surgical planning tool in AIS to select the appropriate spinal curve to be instrumented. A cohort of 30 AIS surgical cases with a main thoracic curve was used. Each case included standard measurements recorded from preoperative standing postero-anterior and lateral, supine side bending, and 1-year postoperative standing radiographs. Five experienced spinal deformity surgeons evaluated each case independently and gave their preferred levels of instrumentation and fusion. The cases were then presented to the fuzzy-logic tool to determine whether the high thoracic and/or lumbar curves were to be instrumented. For each case, a percentage value was obtained indicating inclusion/exclusion of the respective curves in the surgical instrumentation procedure. Kappa statistics was used to compare the model output and the average decision of the surgeons. Kappa values of 0.71 and 0.64 were obtained, respectively, for the proximal thoracic and lumbar curves models, thus suggesting a good agreement of the fusion recommendations made by the fuzzy-logic tool and the surgeons. Given the same information, the fuzzy-logic-assisted recommendation of the curve to be instrumented compared favorably with the collective decision of the surgeons. The findings thus suggest that a fuzzy-logic approach is helpful in assisting surgeons with the preoperative selection of curve instrumentation and fusion levels in AIS.
Improvements to Earthquake Location with a Fuzzy Logic Approach
Gökalp, Hüseyin
2018-01-01
In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
Fuzzy logic, neural networks, and soft computing
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Energy Technology Data Exchange (ETDEWEB)
Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)
2002-04-01
Grate-control is a complex task in many ways. The relations between controlled variables and the values they depend on are mostly unknown. Research projects are going on to create grate models based on physical laws. Those models are too complex for control implementation. The evaluation time is to long for control use. Another fundamental difficulty is that the relationships are none linear. That is, for a specific change in control value, the change in controlled value depends on the original size of control value, process disturbances and controlled values. There are extensive theories for linear process control. Non-linear control theory is used in robotic applications, but not in process and combustion control. The aim of grate control is to use as much of the grate area as possible, without having unburned material in ash. The outlined strategy is: To keep the position of the final bum out zone constant and its extension controlled. The control variables should be primary airflow, distribution of primary air, and fuel flow. Disturbances that should be measured are the fuel moisture content, the temperature of primary air and the grate temperature under the fuel bed. Technologies used are, fuzzy-logic and neural networks. A combination of booth could be used as well as any of them separately. A Fuzzy-logic controller acts as a computerised operator. Rules are specified with 'if - then' thesis. An example of that is: - if temperature is low, then close the valve The boundaries between the rules are made fuzzy. That makes it possible for the temperature to be just a bit low, which makes the valve open a bit. A lot of rules are created so that the controller knows what to do in every situation. Neural networks are sort of multi dimensional curves, with arbitrary degrees of freedom. The nets are used to predict future process values from measured ones. The model is evaluated from collected data. Parameters are adjusted for best correspondence between
Fuzzy logic based clustering in wireless sensor networks: a survey
Singh, Ashutosh Kumar; Purohit, N.; Varma, S.
2013-01-01
Wireless sensor networks (WSNs) have limited resources, thus extending the lifetime has always been an issue of great interest. Recent developments in WSNs have led to various new fuzzy systems, specifically designed for WSNs where energy awareness is an essential consideration. In several applications, the clustered WSN are known to perform better than flat WSN, if the energy consumption in clustering operation itself could be minimised. Routing in clustered WSN is very efficient, especially when the challenge of finding the optimum number of intermediate cluster heads can be resolved. Fortunately, several fuzzy logic based solutions have been proposed for these jobs. Both single- and two-level fuzzy logic approaches are being used for cluster head election in which several distinguished features of WSN have been considered in making a decision. This article surveys the recent fuzzy applications for cluster head selection in WSNs and presents a comparative study for the various approaches pursued.
Fuzzy logic applications to expert systems and control
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
Fuzzy Logic Temperature Control System For The Induction Furnace
Directory of Open Access Journals (Sweden)
Lei Lei Hnin
2015-08-01
Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.
Experiments on neural network architectures for fuzzy logic
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Towards rational closure for fuzzy logic: The case of propositional Godel logic
CSIR Research Space (South Africa)
Casini, G
2013-12-01
Full Text Available In the field of non-monotonic logics, the notion of rational closure is acknowledged as a landmark and we are going to see whether such a construction can be adopted in the context of mathematical fuzzy logic, a so far (apparently) unexplored...
HUBUNGAN FUZZY LOGIC DENGAN BOSTON CONSULTING GROUP UNTUK EVALUASI PRODUK
Directory of Open Access Journals (Sweden)
Titin Winarti
2010-07-01
Full Text Available Dalam perkembangan teknologi yang semakin pesat ini kebutuhan hari informasi yang benar akurat dan real sangat dibutuhkan oleh banyak orang. Dengan informasi, kita dapat melakukan apa yang akan kita lakukan ke depan dengan memiliki informasi. Informasi dapat menyediakan data yang relevan, akurat, dapat mengerti, pada jadwal untuk semua orang sehingga dapat dibuat untuk membuat keputusan. Fuzzy Logic dengan Boston Consulting Group digunakan untuk mengevaluasi produk untuk mendapatkan keputusan yang relevan Fuzzy Logic adalah metode diterapkan untuk mendukung proses evaluasi. Fuzzy Logic adalah metodologi yang telah ditetapkan dan secara luas digunakan untuk sistem model yang variabelnya bersifat kontinu, tidak pasti, atau ambigu. Ide utama dari Logika Fuzzy adalah bahwa hal-hal dalam dunia realitas yang lebih baik digambarkan dengan memiliki fungsi keanggotaan parsial pada pertemuan yang masing-masing saling melengkapi selain memiliki fungsi keanggotaan yang lengkap dalam sebuah pertemuan eksklusif. Proses evaluasi produk dilakukan sebagai berarti untuk menganalisis performansi produk di lapangan dilihat dari beberapa parameter tertentu. Output dari proses ini adalah mengevaluasi strategi rekomendasi untuk menjadi acuan dalam pengambilan keputusan atau rencana aksi untuk kelanjutan produk. Rencana Aksi ini merupakan strategi ini atau perlakuan yang akan diberlakukan untuk produk dievaluasi. Kata Kunci : Fuzzy Logic, Boston Consulting Group, Pengambilan Keputusan
Foundations of fuzzy logic and semantic web languages
Straccia, Umberto
2013-01-01
Managing vagueness/fuzziness is starting to play an important role in Semantic Web research, with a large number of research efforts underway. Foundations of Fuzzy Logic and Semantic Web Languages provides a rigorous and succinct account of the mathematical methods and tools used for representing and reasoning with fuzzy information within Semantic Web languages. The book focuses on the three main streams of Semantic Web languages: Triple languages RDF and RDFS Conceptual languages OWL and OWL 2, and their profiles OWL EL, OWL QL, and OWL RL Rule-based languages, such as SWRL and RIF Written b
Performance evaluation of the distance education system with fuzzy logic
Armaǧan, Hamit; Yiǧit, Tuncay
2017-07-01
Distance education is a kind of education that brought together course advisor, student and educational materials in a different time and place through communicational technologies. In this educational system the success of education is directly related to audio, video and interaction. In this study, a model is created by using fuzzy logic with the success of distance education students and the components of distance education. This study is made by MATLAB fuzzy logic toolbox. Audio, video, educational technology, student achievement are used as parameters in the evaluation. System assessment is carried out depending on parameter.
Fuzzy Logic as a Tool for Assessing Students' Knowledge and Skills
Voskoglou, Michael Gr.
2013-01-01
Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, provides a rich and meaningful addition to standard logic. The applications which may be generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for modeling under conditions which are imprecisely defined. In this article we develop a fuzzy…
Complexity of Some Language Fragments of Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Haniková, Zuzana
2017-01-01
Roč. 21, č. 1 (2017), s. 69-77 ISSN 1432-7643 R&D Projects: GA ČR GAP202/11/1632 Institutional support: RVO:67985807 Keywords : fuzzy logic * propositional logic * language fragment * implicational fragment * commutative semigroup * equational theory * computational complexity Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.472, year: 2016
A practical introduction to fuzzy logic using LISP
Argüelles Mendez, Luis
2016-01-01
This book makes use of the LISP programming language to provide readers with the necessary background to understand and use fuzzy logic to solve simple to medium-complexity real-world problems. It introduces the basics of LISP required to use a Fuzzy LISP programming toolbox, which was specifically implemented by the author to “teach” the theory behind fuzzy logic and at the same time equip readers to use their newly-acquired knowledge to build fuzzy models of increasing complexity. The book fills an important gap in the literature, providing readers with a practice-oriented reference guide to fuzzy logic that offers more complexity than popular books yet is more accessible than other mathematical treatises on the topic. As such, students in first-year university courses with a basic tertiary mathematical background and no previous experience with programming should be able to easily follow the content. The book is intended for students and professionals in the fields of computer science and engineering, ...
Fuzzy logic control of the building structure with CLEMR dampers
Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao
2013-04-01
The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.
Implementation of a Fuzzy Logic Speed Controller for a Permanent ...
African Journals Online (AJOL)
The purpose is to achieve accurate trajectory control of the speed of permanent magnet brushless DC Motor, especially when the motor and load parameters are unknown. Based on the mathematic model of BLDCM, a fuzzy logic controller is designed, and the membership function is composed by Gauss function.
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
Indian Academy of Sciences (India)
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...
Minimising tremor in a joystick using fuzzy logic
van der Zwaag, B.J.; Corbett, Dan; Jain, Lakhmi; Kappen, H.J.; Duin, R.P.W.; Krose, B.J.A.; Segeth, W.
We have designed and built a fuzzy logic controller which minimises the effect of Multiple Sclerosis (MS) hand tremors. The aim of our project has been to give people with Multiple Sclerosis better control of an electronic wheelchair by removing tremors from the joystick signal. The system
Capturing hand tremors with a fuzzy logic wheelchair joystick controller
van der Zwaag, B.J.; Corbett, Dan
We have designed and built a fuzzy logic wheelchair controller which minimizes the effect of Multiple Sclerosis and tremors. The aim of our project has been to give people with Multiple Sclerosis better control of an electric wheelchair by removing tremors from the joystick signal. The system
Comments on Interpretability and Decidability in Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 21, č. 5 (2011), s. 823-828 ISSN 0955-792X R&D Projects: GA ČR GEICC/08/E018 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * interpretability * decidability Subject RIV: BA - General Mathematics Impact factor: 0.611, year: 2011
SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER ...
African Journals Online (AJOL)
2010-06-30
Jun 30, 2010 ... SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER POINT. TRACKER FOR PHOTOVOLTAIC ARRAY. H. Serhoud*, D. Benattous, Y. Labbi. Institute of Science Technology, Departement of Electrotechnics University Center of. EL-Oued, Algeria. Received: 01 February 2010 / Accepted: 02 ...
Pneumatic motor speed control by trajectory tracking fuzzy logic ...
Indian Academy of Sciences (India)
MS received 2 August 2008; revised 21 October 2009; accepted 5 November 2009. Abstract. In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed.
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
user
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
A Self-Organising Fuzzy Logic Controller | Ekemezie | Nigerian ...
African Journals Online (AJOL)
One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a rule- base that is suitable for the controlled process. In this paper we tackle this problem by proposing an algorithm that allows a designer to initially specify a possibly inaccurate rule-base, which is then made more and more ...
Application of ANN and fuzzy logic algorithms for streamflow ...
Indian Academy of Sciences (India)
The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years ...
A fuzzy logic based clustering strategy for improving vehicular ad ...
Indian Academy of Sciences (India)
Abstract. This paper aims to improve the clustering of vehicles by using fuzzy logic in Vehicular Ad-Hoc Networks (VANETs) for making the network more robust and scalable. High mobility and scalability are two vital topics to be considered while providing efficient and reliable communication in VANETs. Clustering is of ...
Pneumatic motor speed control by trajectory tracking fuzzy logic ...
Indian Academy of Sciences (India)
In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is deﬁned to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to ﬁnd the TTFLC boundary values of membership functions ...
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2017-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Bicycle Frame Prediction Techniques with Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-03-01
Full Text Available In general, an appropriate size bike frame would get comfort to the rider while biking. This study aims to predict the simulation system on the bike frame sizes with fuzzy logic. Testing method used is the simulation test. In this study, fuzzy logic will be simulated using Matlab language to test their performance. Mamdani fuzzy logic using 3 variables and 1 output variable intake. Triangle function for the input and output. The controller is designed in the type mamdani with max-min composition and the method deffuzification using center of gravity method. The results showed that height, inseam and Crank Size generating appropriate frame size for the rider associated with comfort. Has a height range between 142 cm and 201 cm. Inseam has a range between 64 cm and 97 cm. Crank has a size range between 175 mm and 180 mm. The simulation results have a range of frame sizes between 13 inches and 22 inches. By using the fuzzy logic can be predicted the size frame of bicycle suitable for the biker.
Towards Metamathematics of Weak Arithmetics over Fuzzy Logic
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2011-01-01
Roč. 19, č. 3 (2011), s. 467-475 ISSN 1367-0751 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : weak arithmetics * mathematical fuzzy logic * Gödel’s theorem * essential undecidability Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2011
Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller
Directory of Open Access Journals (Sweden)
Omur Can Ozguney
2017-08-01
Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.
use of fuzzy logic to investigate weather parameter impact
African Journals Online (AJOL)
user
2016-07-03
Jul 3, 2016 ... network”, Proceeding of the World Congress on. Engineering and Computer Science, San Fransico,. USA, Vol. 1, October 24-26, 2012 , pp. 1-5. [3]. Manoj,P.P and Ashish P. S.“Fuzzy logic methodology for short load forecasting”, International Journal of. Research in Engineering and Technology Vol. 03,.
Advanced Fuzzy Logic Based Admission Control for UMTS System
Directory of Open Access Journals (Sweden)
P. Kejik
2010-12-01
Full Text Available The capacity of CDMA (Code Division Multiple Access systems is interference limited. Therefore radio resources management (RRM functions are used. They are responsible for supplying optimum coverage, ensuring efficient use of physical resources, and providing the maximum planned capacity. This paper deals with admission control techniques for UMTS (Universal Mobile Telecommunication System. A UMTS system model and four fuzzy logic based admission control algorithms are presented in this paper. Two new versions of fuzzy logic based admission control algorithms are presented there. All algorithms are mutually compared via simulations. Simulations show that the novel advanced fuzzy algorithm outperforms the other simulated algorithms (in terms of blocking probability, dropping probability and the number of active UEs in cell.
Stock and option portfolio using fuzzy logic approach
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
Fuzzy Logic and the Semantic Web
van Harmelen, Frank
2006-01-01
The publication Capturing Intelligence, Volume 1, focuses on research from all disciplines related to the issue of understanding and reproducing intelligent artificial systems. The volume presents a classical, rich and well-established area—namely the representation of fuzzy, noncrisp concepts, with
Heterogeneous fuzzy logic networks: fundamentals and development studies.
Pedrycz, Witold
2004-11-01
The recent trend in the development of neurofuzzy systems has profoundly emphasized the importance of synergy between the fundamentals of fuzzy sets and neural networks. The resulting frameworks of the neurofuzzy systems took advantage of an array of learning mechanisms primarily originating within the theory of neurocomputing and the use of fuzzy models (predominantly rule-based systems) being well established in the realm of fuzzy sets. Ideally, one can anticipate that neurofuzzy systems should fully exploit the linkages between these two technologies while strongly preserving their evident identities (plasticity or learning abilities to be shared by the transparency and full interpretability of the resulting neurofuzzy constructs). Interestingly, this synergy still becomes a target yet to be satisfied. This study is an attempt to address the fundamental interpretability challenge of neurofuzzy systems. Our underlying conjecture is that the transparency of any neurofuzzy system links directly with the logic fabric of the system so the logic fundamentals of the underlying architecture become of primordial relevance. Having this in mind the development of neurofuzzy models hinges on a collection of logic driven processing units named here fuzzy (logic) neurons. These are conceptually simple logic-oriented elements that come with a well-defined semantics and plasticity. Owing to their diversity, such neurons form essential building blocks of the networks. The study revisits the existing categories of logic neurons, provides with their taxonomy, helps understand their functional features and sheds light on their behavior when being treated as computational components of any neurofuzzy architecture. The two main categories of aggregative and reference neurons are deeply rooted in the fundamental operations encountered in the technology of fuzzy sets (including logic operations, linguistic modifiers, and logic reference operations). The developed heterogeneous networks
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Fuzzy logic based variable speed wind generation system
Energy Technology Data Exchange (ETDEWEB)
Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.
1996-12-31
This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.
Fuzzy logic for pipelines risk assessment
Directory of Open Access Journals (Sweden)
Ali Alidoosti
2012-08-01
Full Text Available Pipelines systems are identified to be the safest way of transporting oil and natural gas. One of the most important aspects in developing pipeline systems is determining the potential risks that implementers may encounter. Therefore, risk analysis can determine critical risk items to allocate the limited resources and time. Risk Analysis and Management for Critical Asset Protection (RAMCAP is one of the best methodologies for assessing the security risks. However, the most challenging problem in this method is uncertainty. Therefore, fuzzy set theory is used to model the uncertainty. Thus, Fuzzy RAMCAP is introduced in order to risk analysis and management for pipeline systems. Finally, a notional example from pipeline systems is provided to demonstrate an application of the proposed methodology.
Fuzzy logic estimator of rotor time constant in induction motors
Energy Technology Data Exchange (ETDEWEB)
Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory
1997-12-31
Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.
LA LÓGICA DIFUSA COMPENSATORIA / THE COMPENSATORY FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Jesús Cejas-Montero
2011-06-01
Full Text Available
La Lógica Difusa Compensatoria es un modelo lógico que permite la modelación simultánea de los procesos deductivos y de toma de decisiones. Sus características más importantes son: la flexibilidad, la tolerancia con la imprecisión, la capacidad para moldear problemas no-lineales y su fundamento en el lenguaje de sentido común. El artículo pretende llevar a la comunidad académico-empresarial las ideas fundamentales de la Lógica Difusa Compensatoria, ilustrándola en sus posibles campos de aplicación para lograr la competitividad de una organización.
Abstract
The Compensatory Fuzzy Logic is a logical model that allows the simultaneous modeling of the deductive and decision-making processes. The most important characteristics of Compensatory Fuzzy Logic are: the flexibility, the tolerance with the inaccuracy, the capacity to model no-lineal problems and its foundation in the language of common sense. The article seeks to bring the basic ideas of the Compensatory Fuzzy Logic to the academic–managerial community, illustrating it in its possible fields of application, in order to achieve the competitiveness of an organization.
Control of a dc motor using fuzzy logic control algorithm | Usoro ...
African Journals Online (AJOL)
This study sought to establish the impact of a fuzzy logic controller (FLC) and a Proportional-Integral-Derivative (PID) controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic controller was developed on the basis of Mamdani type fuzzy inference system (FIS). The centroid method ...
A Fuzzy Logic Optimal Control Law Solution to the CMMCA Tracking Problem
1993-03-01
Pussy Sots. The concept of a fuzzy set is fundamental to fuzzy logic. A fuzzy set is any set in which elements may have In- between membership in...logical NOT) is "u(NOT A) - 1 - UAx)M 2.6.4 Pussy Control. With the linguistic sets defined for the j input and output variables of a given system
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Edge detection methods based on generalized type-2 fuzzy logic
Gonzalez, Claudia I; Castro, Juan R; Castillo, Oscar
2017-01-01
In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preproc...
An architecture for designing fuzzy logic controllers using neural networks
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Fuzzy temporal logic based railway passenger flow forecast model.
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models.
Fuzzy-logic optical optimization of mainframe CPU and memory.
Zalevsky, Zeev; Gur, Eran; Mendlovic, David
2006-07-01
The allocation of CPU time and memory resources is a familiar problem in organizations with a large number of users and a single mainframe. Usually the amount of resources allocated to a single user is based on the user's own statistics not on the statistics of the entire organization, therefore patterns are not well identified and the allocation system is prodigal. A fuzzy-logic-based algorithm to optimize the CPU and memory distribution among users based on their history is suggested. The algorithm works on heavy and light users separately since they present different patterns to be observed. The result is a set of rules generated by the fuzzy-logic inference engine that will allow the system to use its computing ability in an optimized manner. Test results on data taken from the Faculty of Engineering of Tel Aviv University demonstrate the capabilities of the new algorithm.
Fuzzy Logic Applied to an Oven Temperature Control System
Directory of Open Access Journals (Sweden)
Nagabhushana KATTE
2011-10-01
Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.
IDENTIFIKASI SINYAL ECG IRAMA MYOCARDIAL ISCHEMIA DENGAN PENDEKATAN FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Azhar A N
2009-07-01
Full Text Available The heart is one of vital organs in human body. Incidence of heart disease can be fatal for the patient. Myocardial ischemia, the disease that is often suffered by the human, is a disease due to clogged heart arteries blood vessels. One of the ways to detect this disease is by reading the graph output of electrocardiogram (ECG signal. ECG signal represents the condition and activity of the heart. Specialized knowledge, accuration and expertise are required to read ECG graph. To help expert or doctor, expert system based on artificial intelligent, such as Fuzzy Logic approach, can be applied to improve diagnostic accuracy and thoroughness. Fuzzy logic can be applied because of it flexibility to understand the linguistic variables used in identifying myocardial ischemia disease.
Intelligent control based on fuzzy logic and neural net theory
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
Rule based fuzzy logic approach for classification of fibromyalgia syndrome.
Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem
2016-06-01
Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Switch Reluctance Motor Control Based on Fuzzy Logic System
Directory of Open Access Journals (Sweden)
S. V. Aleksandrovsky
2012-01-01
Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.
Induction Motor Speed Control Using Fuzzy Logic Controller
V. Chitra; R. S. Prabhakar
2008-01-01
Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. T...
Development of fuzzy logic algorithm for water purification plant
SUDESH SINGH RANA; SUDESH SINGH RANA
2015-01-01
This paper propose the design of FLC algorithm for industrial application such application is water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical at rates related to water quality. The feed of chemical rates judged and determined by the skilled operator. Yagishita et al.[1] structured a system based on fuzzy logic so that the feed rate of the coagulant can be judged automatically without any skilled operator. We perfor...
Optimization of heat pump using fuzzy logic and genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)
2011-12-15
Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)
Efficient Fuzzy Logic Controller for Magnetic Levitation Systems
Directory of Open Access Journals (Sweden)
D. S. Shu’aibu
2016-12-01
Full Text Available Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system in air against gravity without using fixed structure for supporting is highly unstable and complex. In the previous research many techniques of stabilizing magnetic levitation systems were discussed. In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input signals were investigated. Using unit step input signal, the proposed controller has a settling time of 0.35 secs, percentage overshoot of 0% and there is no oscillation. The proposed controller is validated with a model of an existing practical conventional proportional plus derivatives (PD controller. The PD controller has a settling time of 0.45 secs, percentage overshoot of 7% and with oscillation. Similarly, with sinusoidal input, the FLC has a phase shift and peak response of 0^0 and 0.9967 respectively, while PD controller has a phase shift and peak response of 24.48o and 0.9616 respectively. A disturbance signal was applied to the input of the control system. Fuzzy controller succeeded in rejecting the disturbance signal without further turning of the parameters whereby PD controller failed.
Learning and tuning fuzzy logic controllers through reinforcements
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes
Duerksen, Noel
1996-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Directory of Open Access Journals (Sweden)
Minh Vu Trieu
2017-03-01
Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Model Reduction of Fuzzy Logic Systems
Directory of Open Access Journals (Sweden)
Zhandong Yu
2014-01-01
Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Fuzzy Logic: A New Tool for the Analysis and Organization of International Business Communications.
Sondak, Norman E.; Sondak, Eileen M.
Classical western logic, built on a foundation of true/false, yes/no, right/wrong statements, leads to many difficulties and inconsistencies in the logical analysis and organization of international business communications. This paper presents the basic principles of classical logic and of fuzzy logic, a type of logic developed to allow for…
Security risk assessment: applying the concepts of fuzzy logic.
Bajpai, Shailendra; Sachdeva, Anish; Gupta, J P
2010-01-15
Chemical process industries (CPI) handling hazardous chemicals in bulk can be attractive targets for deliberate adversarial actions by terrorists, criminals and disgruntled employees. It is therefore imperative to have comprehensive security risk management programme including effective security risk assessment techniques. In an earlier work, it has been shown that security risk assessment can be done by conducting threat and vulnerability analysis or by developing Security Risk Factor Table (SRFT). HAZOP type vulnerability assessment sheets can be developed that are scenario based. In SRFT model, important security risk bearing factors such as location, ownership, visibility, inventory, etc., have been used. In this paper, the earlier developed SRFT model has been modified using the concepts of fuzzy logic. In the modified SRFT model, two linguistic fuzzy scales (three-point and four-point) are devised based on trapezoidal fuzzy numbers. Human subjectivity of different experts associated with previous SRFT model is tackled by mapping their scores to the newly devised fuzzy scale. Finally, the fuzzy score thus obtained is defuzzyfied to get the results. A test case of a refinery is used to explain the method and compared with the earlier work.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.
Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing
Siddique, Nazmul
2013-01-01
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect
Development of Fuzzy-Logic-Based Self Tuning PI Controller for Servomotor
Saad, Nordin; Wahyunggoro, Oyas
2010-01-01
This work discusses the modeling of a DC servomotor from gray box identification and performance evaluations of real time experiment using a fuzzy-logic-based self tuning PI controller as compared to fuzzy-logic-based self tuning PID controller, fuzzy logic controller, PID controller and PI controller on the DC servomotor system. Here, the s-model transfer function of a DC servomotor is identified as a third order transfer function without
Moini, A
2002-01-01
In this paper, genetic algorithms are used in the design and robustification various mo el-ba ed/non-model-based fuzzy-logic controllers for robotic manipulators. It is demonstrated that genetic algorithms provide effective means of designing the optimal set of fuzzy rules as well as the optimal domains of associated fuzzy sets in a new class of model-based-fuzzy-logic controllers. Furthermore, it is shown that genetic algorithms are very effective in the optimal design and robustification of non-model-based multivariable fuzzy-logic controllers for robotic manipulators.
Geo-Spatial Tactical Decision Aid Systems: Fuzzy Logic for Supporting Decision Making
National Research Council Canada - National Science Library
Grasso, Raffaele; Giannecchini, Simone
2006-01-01
.... This paper describes a tactical decision aid system based on fuzzy logic reasoning for data fusion and on current Open Geospatial Consortium specifications for interoperability, data dissemination...
Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.
A Temporal Fuzzy Logic Formalism for Knowledge Based Systems
Directory of Open Access Journals (Sweden)
Vasile MAZILESCU
2012-11-01
Full Text Available This paper shows that the influence of knowledge on new forms of work organisation can be described as mutual relationships. Different changes in work organisation also have a strong influence on the increasing importance of knowledge of different individual and collective actors in working situations. After that, we characterize a piece of basic formal system, an Extended Fuzzy Logic System (EFLS with temporal attributes, to conceptualize future DKMSs based on human imprecise for distributed just in time decisions. The approximate reasoning is perceived as a derivation of new formulas with the corresponding temporal attributes, within a fuzzy theory defined by the fuzzy set of special axioms. In a management application, the reasoning is evolutionary because of unexpected events which may change the state of the DKMS. In this kind of situations it is necessary to elaborate certain mechanisms in order to maintain the coherence of the obtained conclusions, to figure out their degree of reliability and the time domain for which these are true. These last aspects stand as possible further directions of development at a basic logic level for future technologies that must automate knowledge organizational processes.
Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications
Hardy, Terry L.
1994-01-01
Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.
Včelař, František; Pátíková, Zuzana
2017-07-01
For the case of classical Tarski's theorem on fixed points of isotone maps we show that embedding of this statement into fuzzy logical environment leads to surprising results, which cannot be easily seen and awaited in classical logical environment.
Cluster forest based fuzzy logic for massive data clustering
Lahmar, Ines; Ben Ayed, Abdelkarim; Ben Halima, Mohamed; Alimi, Adel M.
2017-03-01
This article is focused in developing an improved cluster ensemble method based cluster forests. Cluster forests (CF) is considered as a version of clustering inspired from Random Forests (RF) in the context of clustering for massive data. It aggregates intermediate Fuzzy C-Means (FCM) clustering results via spectral clustering since pseudo-clustering results are presented in the spectral space in order to classify these data sets in the multidimensional data space. One of the main advantages is the use of FCM, which allows building fuzzy membership to all partitions of the datasets due to the fuzzy logic whereas the classical algorithms as K-means permitted to build just hard partitions. In the first place, we ameliorate the CF clustering algorithm with the integration of fuzzy FCM and we compare it with other existing clustering methods. In the second place, we compare K-means and FCM clustering methods with the agglomerative hierarchical clustering (HAC) and other theory presented methods using data benchmarks from UCI repository.
Fuzzy logic of quasi-truth an algebraic treatment
Di Nola, Antonio; Turunen, Esko
2016-01-01
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...
Development of erosion risk map using fuzzy logic approach
Directory of Open Access Journals (Sweden)
Fauzi Manyuk
2017-01-01
Full Text Available Erosion-hazard assessment is an important aspect in the management of a river basin such as Siak River Basin, Riau Province, Indonesia. This study presents an application of fuzzy logic approach to develop erosion risk map based on geographic information system. Fuzzy logic is a computing approach based on “degrees of truth” rather than the usual “true or false” (1 or 0 Boolean logic on which the modern computer is based. The results of the erosion risk map were verified by using field measurements. The verification result shows that the parameter of soil-erodibility (K indicates a good agreement with field measurement data. The classification of soil-erodibility (K as the result of validation were: very low (0.0–0.1, medium (0.21-0.32, high (0.44-0.55 and very high (0.56-0.64. The results obtained from this study show that the erosion risk map of Siak River Basin were dominantly classified as medium level which cover about 68.54%. The other classifications were high and very low erosion level which cover about 28.84% and 2.61% respectively.
Intelligent Paging Based Mobile User Tracking Using Fuzzy Logic
Saha, Sajal; Dutta, Raju; Debnath, Soumen; Mukhopadhyay, Asish K.
2010-11-01
In general, a mobile user travels in a predefined path that depends mostly on the user's characteristics. Thus, tracking the locations of a mobile user is one of the challenges for location management. In this paper, we introduce a movement pattern learning strategy system to track the user's movements using adaptive fuzzy logic. Our fuzzy inference system extracts patterns from the historical data record of the cell numbers along with the date and time stamp of the users occupying the cell. Implementation of this strategy has been evaluated with the real time user data which proves the efficiency and accuracy of the model. This mechanism not only reduces user location tracking costs, but also significantly decreases the call-loss rates and average paging delays.
Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.
Omrane, Hajer; Masmoudi, Mohamed Slim; Masmoudi, Mohamed
This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.
Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation
Directory of Open Access Journals (Sweden)
Hajer Omrane
2016-01-01
Full Text Available This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.
A reinforcement learning-based architecture for fuzzy logic control
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.
Koller, Walter; de Bruin, Jeroen S; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2015-01-01
By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written with extensive use of fuzzy sets and fuzzy logic, allowing the inherent un-sharpness of clinical terms and the inherent uncertainty of clinical conclusions to be a part of Moni's output. Thus, linguistic as well as propositional uncertainty became a part of Moni, which can now report retrospectively on HAIs according to traditional crisp HAI surveillance definitions, as well as support clinical bedside work by more complex crisp and fuzzy alerts and reminders. This improved approach can bridge the gap between classical retrospective surveillance of HAIs and ongoing prospective clinical-decision-oriented HAI support.
PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC
Directory of Open Access Journals (Sweden)
Bambang Prio Hartono
2012-09-01
Full Text Available Abstract: Using system fuzzy logic as control technology have been used on low load dc-dc converter with combined parallel compiled dc-dc converter can obtain big load. With existence of differrence of component parameter and each parallel compiled converter can obtained different current and voltage output. Function of controller for to do adjustment, so that current which is applied to load by each converter can be obtained difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is combined with using FLC so that obtain better performance. To get better performance have been made plant model and simulation with CDE method. The more systematic system and design is needed to overcome bigger load on dc-dc converter, so that parallel compiled current master slave control system on dc-dc converter with using fuzzy logic controller is used. Result of research showed that error or difference of current which is applied to load can handled by fuzzy logic controller. Technic of current and voltage controller co to do adjustment current and voltage distribution equally to load. Distribution of iL1,iL2 and output voltage Vo on dc-dc converter with load 2,25 until 7,875 and voltage 100 until 120 volt, load current beetwen 12 until 48, % relatif error Vo 0,4% until 0,9%.
Fuzzy Logic Approach to Diagnosis of Feedwater Heater Performance Degradation
Energy Technology Data Exchange (ETDEWEB)
Kang, Yeon Kwan; Kim, Hyeon Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Sang, Seok Yoon [Engineering and Technical Center, Korea Hydro, Daejeon (Korea, Republic of)
2014-08-15
Since failure in, damage to, and performance degradation of power generation components in operation under harsh environment of high pressure and high temperature may cause both economic and human loss at power plants, highly reliable operation and control of these components are necessary. Therefore, a systematic method of diagnosing the condition of these components in its early stages is required. There have been many researches related to the diagnosis of these components, but our group developed an approach using a regression model and diagnosis table, specializing in diagnosis relating to thermal efficiency degradation of power plant. However, there was a difficulty in applying the method using the regression model to power plants with different operating conditions because the model was sensitive to value. In case of the method that uses diagnosis table, it was difficult to find the level at which each performance degradation factor had an effect on the components. Therefore, fuzzy logic was introduced in order to diagnose performance degradation using both qualitative and quantitative results obtained from the components' operation data. The model makes performance degradation assessment using various performance degradation variables according to the input rule constructed based on fuzzy logic. The purpose of the model is to help the operator diagnose performance degradation of components of power plants. This paper makes an analysis of power plant feedwater heater by using fuzzy logic. Feedwater heater is one of the core components that regulate life-cycle of a power plant. Performance degradation has a direct effect on power generation efficiency. It is not easy to observe performance degradation of feedwater heater. However, on the other hand, troubles such as tube leakage may bring simultaneous damage to the tube bundle and therefore it is the object of concern in economic aspect. This study explains the process of diagnosing and verifying typical
Fuzzy Logic Trajectory Tracking Controller for a Tanker
Directory of Open Access Journals (Sweden)
Dur Muhammad Pathan
2012-04-01
Full Text Available This paper proposes a fuzzy logic controller for design of autopilot of a ship. Triangular membership functions have been use for fuzzification and the centroid method for defuzzification. A nonlinear mathematical model of an oil tanker has been considered whose parameters vary with the depth of water. The performance of proposed controller has been tested under both course changing and trajectory keeping mode of operations. It has been demonstrated that the performance is robust in shallow as well as deep waters.
Indonesia Public Banks Performance Evaluation Using Fuzzy Logic
Sugiarto, Sugiarto; Pandiangan, Tumpal
2016-01-01
Return on Asset (ROA) is a variable that has the greatest ability in predicting public banks stock prices in Indonesia. The coefficient of determination of ROA on public banks stock prices in Indonesia reached 54.8%. ROA has a significant positive influence on public bank stock prices in Indonesia. Fuzzy logic process on the performance of the 15 public banks in Indonesia have been carried out using the data of ROA for the period 2010 up to 2013. Bank reference performance according to ROA is...
A fuzzy logic based network intrusion detection system for predicting the TCP SYN flooding attack
CSIR Research Space (South Africa)
Mkuzangwe, Nenekazi NP
2017-04-01
Full Text Available Fuzzy logic is one of the powerful tools for reasoning under uncertainty and since uncertainty is an intrinsic characteristic of intrusion analysis, Fuzzy logic is therefore an appropriate tool to use to analyze intrusions in a Network. This paper...
Fuzzy logic analysis optimizations for pattern recognition - Implementation and experimental results
Hires, Matej; Habiballa, Hashim
2017-07-01
The article presents an practical results of optimization of the fuzzy logic analysis method for pattern recognition. The theoretical background of the proposed theory is shown in the former article extending the original fuzzy logic analysis method. This article shows the implementation and experimental verification of the approach.
Fuzzy-logic control applications to the belgian reactor 1 (BR1)
Da Ruan; Xiaozhong Li
2012-01-01
Fuzzy-logic control (FLC) applications in nuclear industry present a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear industry and the very strict safety regulations in force for nuclear power plants. The very same regulations prevent a researcher from quickly introducing novel fuzzy-logic methods into this field. On the other hand, the application of FLC has, despite the ominous sound of the word "fuzzy" to nuclear engineers...
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
Toward a fuzzy logic control of the infant incubator.
Reddy, Narender P; Mathur, Garima; Hariharan, S I
2009-10-01
Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.
Controlling Smart Green House Using Fuzzy Logic Method
Directory of Open Access Journals (Sweden)
Rafiuddin Syam
2015-10-01
Full Text Available To increase agricultural output it is needed a system that can help the environmental conditions for optimum plant growth. Smart greenhouse allows for plants to grow optimally, because the temperature and humidity can be controlled so that no drastic changes. It is necessary for optimal smart greenhouse needed a system to manipulate the environment in accordance with the needs of the plant. In this case the setting temperature and humidity in the greenhouse according to the needs of the plant. So using an automated system for keeping such environmental condition is important. In this study, the authors use fuzzy logic to make the duration of watering the plants more dynamic in accordance with the input temperature and humidity so that the temperature and humidity in the green house plants maintained in accordance to the reference condition. Based on the experimental results using fuzzy logic method is effective to control the duration of watering and to maintain the optimum temperature and humidity inside the greenhouse
Fuzzy logic anti-skid control for commercial trucks
Akey, Mark L.
1995-06-01
A fuzzy logic (FL) anti-skid brake controller (ABS) is proposed as the next generation ABS replacing current generation finite state (FS) control. The FL controller is part of a commercial truck braking system, encompassing reverse front-back braking proportions on an articulated vehicle as compared to that found on fixed, passenger car systems. In this early research, the FL controller must satisfy three goals. The first goal is to produce superior braking distances over that of the finite state controller, specifically under low (mu) conditions. The second goal is to provide superior braking under varying system conditions (road surface conditions, physical brake parameters, wheel velocity sensor parameters). The third goal is to provide a convenient, flexible, and tractable ABS solution which is amenable to redevelopemnt to different vehicular platforms. Monte Carlo simulation results illustrate stopping distance improvements of 5 to 10 % averaged over all (mu) surfaces for varying wheel loads. On low (mu) surfaces, the improvement increases to 15% (up to a full tractor-trailer length). These results are obtained while varying other system parameters demonstrating robustness. Finally, the fuzzy logic rule sets and the overall configuration illustrate a straight-forward design and maturation process for the rule sets.
A Grey Fuzzy Logic Approach for Cotton Fibre Selection
Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati
2017-06-01
It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.
Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices.
Bhattacharjee, Debjyoti; Kim, Wonjoo; Chattopadhyay, Anupam; Waser, Rainer; Rana, Vikas
2018-01-08
Among emerging non-volatile storage technologies, redox-based resistive switching Random Access Memory (ReRAM) is a prominent one. The realization of Boolean logic functionalities using ReRAM adds an extra edge to this technology. Recently, 7-state ReRAM devices were used to realize ternary arithmetic circuits, which opens up the computing space beyond traditional binary values. In this manuscript, we report realization of multi-valued and fuzzy logic operators with a representative application using ReRAM devices. Multi-valued logic (MVL), such as Łukasiewicz logic generalizes Boolean logic by allowing more than two truth values. MVL also permits operations on fuzzy sets, where, in contrast to standard crisp logic, an element is permitted to have a degree of membership to a given set. Fuzzy operations generally model human reasoning better than Boolean logic operations, which is predominant in current computing technologies. When the available information for the modelling of a system is imprecise and incomplete, fuzzy logic provides an excellent framework for the system design. Practical applications of fuzzy logic include, industrial control systems, robotics, and in general, design of expert systems through knowledge-based reasoning. Our experimental results show, for the first time, that it is possible to model fuzzy logic natively using multi-state memristive devices.
Allaoua, Boumediene; Laoufi, Abdellah; Gasbaoui, Brahim; Abdelfatah NASRI; Abdessalam ABDERRAHMANI
2008-01-01
In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...
Utility of Arden Syntax for Representation of Fuzzy Logic in Clinical Quality Measures.
Jenders, Robert A
2015-01-01
Prior work has established that fuzzy logic is prevalent in clinical practice guidelines and that Arden Syntax is suitable for representing clinical quality measures (CQMs). Approved since then, Arden Syntax v2.9 (2012) has formal constructs for fuzzy logic even as new formalisms are proposed to represent quality logic. Determine the prevalence of fuzzy logic in CQMs and assess the utility of a contemporary version of Arden Syntax for representing them. Linguistic variables were tabulated in the 329 Assessing Care of the Vulnerable Elderly (ACOVE-3) CQMs, and these logic statements were encoded in Arden Syntax. In a total of 392 CQMs, linguistic variables occurred in 30.6%, and Arden Syntax could be used to represent these formally. Fuzzy logic occurs commonly in CQMs, and Arden Syntax offers particular utility for the representations of these constructs.
SISTEM PENGEMBANGAN KENDALI FUZZY LOGIC BERBASIS MIKROKONTROLER KELUARGA MCS51 (PetraFuz
Directory of Open Access Journals (Sweden)
Thiang Thiang
1999-01-01
Full Text Available This paper presents a Fuzzy Logic Development Tool called PetraFuz which has been developed at Control System Laboratory, Electrical Engineering Department, Petra Christian University. The system consists of a hardware target based on MCS51 microcontroller and a software support running under PC Windows. The system is targeted for developing fuzzy logic based systems. It supports fuzzy logic design, evaluation, assembly language generator and downloading process to the target hardware to perform on-line fuzzy process. Process action and fuzzy parameters could be transferred to PC monitor via RS-232 serial communication, this on-line process parameters is used for fuzzy tuning, i.e. fuzzy if-then rules and fuzzy membership functions. The PetraFuz tool helps very much for Fuzzy system developments, it could reduce development time significantly. The tool could spur the development of fuzzy systems based on microcontroller systems such as fuzzy control systems, fuzzy information processing, etc. Abstract in Bahasa Indonesia : Makalah ini menyajikan sebuah sistem pengembangan kendali fuzzy logic (PetraFuz, Petra Fuzzy Development System yang dikembangkan oleh laboratorium Sistem Kontrol, Jurusan Teknik Elektro, Universitas Kristen Petra Surabaya. Sistem ini terdiri dari perangkat keras sistem mikrokontroler MCS51 dan perangkat lunak pendukung yang berjalan pada PC. Sistem PetraFuz digunakan untuk mengembangkan sistem berbasis fuzzy logic utamanya pada bidang kendali. Kemampuan sistem meliputi pengembangan pada fase perancangan kendali, evaluasi kendali, pembentukan program bahasa assembly MCS51 dan proses downloading program menuju target sistem mikrokontroler MCS51 untuk dieksekusi melakukan kendali pada plant yang nyata. Aksi kendali dapat diakuisi oleh program PC melalui komunikasi serial RS232 sehingga respon kendali dapat digambarkan pada layar monitor untuk dilakukan analisis lebih lanjut yang diperlukan pada proses tuning if-then fuzzy rules
A few categories of electromagnetic field problems treated through Fuzzy Logic
Lolea, M. S.; Dzitac, S.
2018-01-01
The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology
Rushdi, Ali Muhammad; Zarouan, Mohamed; Alshehri, Taleb Mansour; Rushdi, Muhammad Ali
2015-01-01
The Modern Syllogistic Method (MSM) of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL) and in Intuitionistic Fuzzy Logic (IFL) with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT) which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology) by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology. PMID:26380357
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology.
Rushdi, Ali Muhammad; Zarouan, Mohamed; Alshehri, Taleb Mansour; Rushdi, Muhammad Ali
2015-01-01
The Modern Syllogistic Method (MSM) of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL) and in Intuitionistic Fuzzy Logic (IFL) with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT) which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology) by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology.
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology
Directory of Open Access Journals (Sweden)
Ali Muhammad Rushdi
2015-01-01
Full Text Available The Modern Syllogistic Method (MSM of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL and in Intuitionistic Fuzzy Logic (IFL with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology.
Energy Technology Data Exchange (ETDEWEB)
Brouwer, A.J.; Peitsman, H.C. [Afdeling Binnenmilieu, Bouwfysica en Installaties, TNO Bouw, Delft (Netherlands)
1994-01-01
Within the department Indoor Climate, Building Physics and Installations of the Dutch research institute TNO the options to improve and optimize climate control systems are investigated. In two articles the theory of fuzzy logic and the principle of the fuzzy regulator are discussed, focusing on the use of fuzzy logic and regulators in the indoor climate technique. 7 figs., 1 tab., 5 refs.
Semiactive Self-Tuning Fuzzy Logic Control of Full Vehicle Model with MR Damper
Directory of Open Access Journals (Sweden)
Mahmut Paksoy
2014-09-01
Full Text Available Intelligent controllers are studied for vibration reduction of a vehicle consisting in a semiactive suspension system with a magnetorheological(MR damper. The vehicle is modeled with seven degrees of freedom as a full vehicle model. The semiactive suspension system consists of a linear spring and an MR damper. MR damper is modeled using Bouc-Wen hysteresis phenomenon and applied to a full vehicle model. Fuzzy Logic based controllers are designed to determine the MR damper voltage. Fuzzy Logic and Self-Tuning Fuzzy Logic controllers are applied to the semiactive suspension system. Results of the system are investigated by simulation studies in MATLAB-Simulink environment. The performance of the semiactive suspension system is analyzed with and without control. Simulation results showed that both Fuzzy Logic and Self-Tuning Fuzzy Logic controllers perform better compared to uncontrolled case. Furthermore, Self-Tuning Fuzzy Logic controller displayed a greater improvement in vibration reduction performance compared to Fuzzy Logic controller.
A critical study of fuzzy logic as a scientific method in social sciences ...
African Journals Online (AJOL)
The logic of the social sciences, from its inception, has been certain and classic. By advent of Fuzzy logic, gradually making use of it was common because of frequent capabilities and applications that in resolving problems of this science was been attributed to it. Changing of logic in a science or epistemic system has many ...
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive process control using fuzzy logic and genetic algorithms
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Access Network Selection Based on Fuzzy Logic and Genetic Algorithms
Directory of Open Access Journals (Sweden)
Mohammed Alkhawlani
2008-01-01
Full Text Available In the next generation of heterogeneous wireless networks (HWNs, a large number of different radio access technologies (RATs will be integrated into a common network. In this type of networks, selecting the most optimal and promising access network (AN is an important consideration for overall networks stability, resource utilization, user satisfaction, and quality of service (QoS provisioning. This paper proposes a general scheme to solve the access network selection (ANS problem in the HWN. The proposed scheme has been used to present and design a general multicriteria software assistant (SA that can consider the user, operator, and/or the QoS view points. Combined fuzzy logic (FL and genetic algorithms (GAs have been used to give the proposed scheme the required scalability, flexibility, and simplicity. The simulation results show that the proposed scheme and SA have better and more robust performance over the random-based selection.
Optimum selection of an energy resource using fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Abouelnaga, Ayah E., E-mail: ayahabouelnaga@hotmail.co [Nuclear Engineering Department, Faculty of Engineering, Alexandria University, 21544 Alexandria (Egypt); Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed [Nuclear Engineering Department, Faculty of Engineering, Alexandria University, 21544 Alexandria (Egypt)
2009-12-15
Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO{sub 2} emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.
Assessment of Benefits and Drawbacks of Using Fuzzy Logic, Especially in Fire Control Systems
1994-03-01
Netherlands, June 1991 [2] ’Technologieverkenning Vage Logica ’ (Dutch), Stam Tijdschriften, The Netherlands, April 1992 [3] ’ Fuzzy Logic; vage logica voor...benefits and drawbacks of’ using fuzzy logic.N WO especially in fire control systems II 4 ~ - ~author(s): - N.M. de Reus ¶IL¶D C:K RAPPORTNC7EN1TPJk...8217,,i .,¾.li uiv ~all’IC’nvirvries qiver to TNO TNO report 2 MANAGEMENTUITITREKSEL Titel Beoordeling van voor- en nadelen van ’ fuzzy logic’, in het
Using fuzzy logic for automatic control: Case study of a problem of cereals samples classification
Directory of Open Access Journals (Sweden)
Lakhoua Najeh Mohamed
2009-01-01
Full Text Available The aim of this paper is to present the use of fuzzy logic for automatic control of industrial systems particularly the way to approach a problem of classification. We present a case study of a grading system of cereals that allows us to determine the price of transactions of cereals in Tunisia. Our contribution in this work consists in proposing not only an application of the fuzzy logic on the grading system of cereals but also a methodology enabling the proposing of a new grading system based on the concept of 'Grade' while using the fuzzy logic techniques. .
Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control
Directory of Open Access Journals (Sweden)
M. Boukhnifer
2012-11-01
Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.
Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning
Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok
2015-03-01
In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
Fuzzy logic as support for security and safety solution in soft targets
Directory of Open Access Journals (Sweden)
Ďuricová Lucia
2016-01-01
Full Text Available Security and safety situations in objects, which are categorized as soft targets, is difficult. The current solving is based on several different type of solving. Soft targets are specific objects, and it requires special software solution. The proposal is based on fuzzy logic. Fuzzy logic could apply more expert’s knowledges and it could help owners and managers with adequate responses in critical situation, and also definition of adequate preventive actions. System solving could help effectivity of proposed measures. The decision making is based on this fuzzy logic support and aim is explained in paper.
CONTROLLING MECHANICAL VENTILATION IN ARDS WITH FUZZY LOGIC
Nguyen, Binh; Bernstein, David B.; Bates, Jason H.T.
2014-01-01
Purpose The current ventilatory care goal for acute respiratory distress syndrome (ARDS), and the only evidence-based approach for managing ARDS, is to ventilate with a tidal volume (VT) of 6 ml/kg predicted body weight (PBW). However, it is not uncommon for some caregivers to feel inclined to deviate from this strategy for one reason or another. To accommodate this inclination in a rationalized manner, we previously developed an algorithm that allows for VT to depart from 6 ml/kg PBW based on physiological criteria. The goal of the present study was to test the feasibility of this algorithm in a small retrospective study. Materials and Methods Current values of peak airway pressure (PAP), positive end-expiratory pressure (PEEP) and arterial oxygen saturation (SaO2) are used in a fuzzy logic algorithm to decide how much VT should differ from 6 ml/kg PBW and how much PEEP should change from its current setting. We retrospectively tested the predictions of the algorithm against 26 cases of decision making in 17 patients with ARDS. Results Differences between algorithm and physician VT decisions were within 2.5 ml/kg PBW except in 1 of 26 cases, and differences between PEEP decisions were within 2.5 cm H2O except in 3 of 26 cases. The algorithm was consistently more conservative than physicians in changing VT, but was slightly less conservative when changing PEEP. Conclusions Within the limits imposed by a small retrospective study, we conclude that our fuzzy logic algorithm makes sensible decisions while at the same time keeping practice close to the current ventilatory care goal. PMID:24721387
A fuzzy logic controller for an autonomous mobile robot
Yen, John; Pfluger, Nathan
1993-01-01
The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Energy Technology Data Exchange (ETDEWEB)
Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
Zhan Wei Siew
2012-12-01
Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.
Using Fuzzy Logic to Enhance Stereo Matching in Multiresolution Images
Directory of Open Access Journals (Sweden)
Marcos D. Medeiros
2010-01-01
Full Text Available Stereo matching is an open problem in Computer Vision, for which local features are extracted to identify corresponding points in pairs of images. The results are heavily dependent on the initial steps. We apply image decomposition in multiresolution levels, for reducing the search space, computational time, and errors. We propose a solution to the problem of how deep (coarse should the stereo measures start, trading between error minimization and time consumption, by starting stereo calculation at varying resolution levels, for each pixel, according to fuzzy decisions. Our heuristic enhances the overall execution time since it only employs deeper resolution levels when strictly necessary. It also reduces errors because it measures similarity between windows with enough details. We also compare our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic. Our algorithm performs faster and/or better than all those approaches, becoming, thus, a good candidate for robotic vision applications. We also discuss the system architecture that efficiently implements our solution.
Autonomous Control of a Quadrotor UAV Using Fuzzy Logic
Sureshkumar, Vijaykumar
UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a
Directory of Open Access Journals (Sweden)
Mohammed Shoeb Mohiuddin
2014-09-01
Full Text Available It is often difficult to develop an accurate mathematical model of DC motor due to unknown load variation, unknown and unavoidable parameter variations or nonlinearities due to saturation temperature variations and system disturbances. Fuzzy logic application can handle such nonlinearities so that the controller design is fundamentally robust which is not possible in conventional controllers. The knowledge base of a fuzzy logic controller (FLC encapsulates expert knowledge and consists of the Data base (membership functions and Rule-Base of the controller. Optimization of both these knowledge base components is critical to the performance of the controller and has traditionally been achieved through a process of trial and error. Such an approach is convenient for FLCs having low numbers of input variables however for greater numbers of inputs, more formal methods of knowledge base optimization are required. In this work, we study the challenging task of controlling the speed of DC motor. The feasibility of such controller design is evaluated by simulation in the MATLAB/Simulink environment. In this study Conventional Proportional Integral Derivative controller, Fuzzy logic controller using a chopper circuit and Fuzzy tuned PID controller are analyzed and compared. Simulation software like MATLAB with Simulink has been used for modeling and simulation purpose. The performance comparison of conventional controller with Fuzzy logic controller using chopper circuit and Fuzzy tuned PID controller has been done in terms of several performance measures Such as Settling time, Rise time and Overshoot.
Directory of Open Access Journals (Sweden)
Oscar Castillo
2013-01-01
Full Text Available Ant Colony Optimization (ACO is a population-based constructive meta-heuristic that exploits a form of past performance memory inspired by the foraging behaviour of real ants. The behaviour of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach to diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of certain parameters. The performance of different variants of the ACO algorithm was observed to choose one as the basis for the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results have been obtained on its application to the design of fuzzy controllers. In particular, the optimization of membership functions for a unicycle mobile robot trajectory control is presented with the proposed method.
Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system
Energy Technology Data Exchange (ETDEWEB)
Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)
2017-05-15
Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.
Preventive Maintenance Prioritization by Fuzzy Logic for Seamless Hydro Power Generation
Roy, P. K.; Adhikary, P.; Mazumdar, A.
2014-06-01
Preventive maintenance prioritization is one of the most important criteria for the electricity generation planners to minimize the down time and production costs. Break down of equipments increases costs and plant down time results in loss of business. This work focuses on prioritizing the preventive maintenance for seamless hydro power generation considering (24 × 7) client's power demand using fuzzy logic. The main task involves prioritizing the maintenance work considering constraints of varied power demand and hydro turbine plant breakdown. Fuzzy logic is used to optimize the preventive maintenance prioritization under the main constraints. Manual fuzzy arithmetic is used to develop the model and MATLAB Fuzzy Inference System editor used to validate the same. This novel fuzzy logic approach of preventive maintenance prioritizing for hydro power generation is absent in renewable power generation and industrial engineering literatures due to its assessment complexity.
ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers
César, Manuel Braz; Barros, Rui Carneiro
2016-11-01
In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.
PENGENDALIAN KELAJUAN KENDARAAN MENGGUNAKAN FUZZY LOGIC CONTROLLER (FLC PADA SISTEM CRUISE KONTROL
Directory of Open Access Journals (Sweden)
S. Susanto
2016-11-01
Full Text Available Pengendalian kelajuan kendaraan menggunakan FLC pada cruise control telah dilakukan dengan menginjeksi sistem fuzzy pada sistem gerak kendaraan. Sistem fuzzy terdiri dari dua himpunan masukan berupa error kelajuan dan laju error kelajuan sistem. Penambahan Fuzzy Logic Controller pada sistem gerak kendaraan berpengaruh terhadap respon sistem untuk mencapai kecepatan yang diinginkan. Dengan penambahan FLC respon kecepatan dalam mencapai kecepatan yang diinginkan semakin cepat sehingga sesuai untuk diterapkan pada cruise control.Control vehicle speed using the cruise control FLC has been done by injecting a fuzzy system on the vehicle motion system. The system consists of two sets fuzzy input is the speed error and the error rate of the speed of the system. The addition of Fuzzy Logic Controller in the vehicle motion system affect the response of the system to achieve the desired speed. With the addition of FLC response speed in reaching the desired speed more quickly so appropriate to be applied to the cruise control.
A Note on Axiomatizations of Pavelka-style Complete Fuzzy Logics
Czech Academy of Sciences Publication Activity Database
Cintula, Petr
2016-01-01
Roč. 292, 1 June (2016), s. 160-174 ISSN 0165-0114 R&D Projects: GA ČR GAP202/10/1826 Institutional support: RVO:67985807 Keywords : mathematical fuzzy logic * Pavelka-style completeness * MTL logic * Lukasiewicz logic s * Product Logic * truth constants * Monteiro–Baaz delta Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.
Priority-based queuing and transmission rate management using a fuzzy logic controller in WSNs
Directory of Open Access Journals (Sweden)
Imen Bouazzi
2017-06-01
Full Text Available Wireless sensor networks (WSNs operate under challenging conditions, such as maintaining message latency and the reliability of data transmission and maximizing the battery life of sensor nodes. The aim of this study is to propose a fuzzy logic algorithm for solving these issues, which are difficult to address with traditional techniques. The idea, in this study, is to employ a fuzzy logic scheme to optimize energy consumption and minimize packet drops. We demonstrated how fuzzy logic can be used to tackle this specific communication problem with minimal computational complexity. In this context, the implementation of a fuzzy logic in the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA mechanism is achieved through filling the queue length and the traffic rate at each node. Through simulations, we show that our proposed technique has a better performance in terms of energy consumption compared to the basic implementation of CSMA/CA.
Real-Time Implementation of a Fuzzy Logic Controller for DC-DC Switching Converters
National Research Council Canada - National Science Library
Rubaai, Ahmed
2005-01-01
This report presents a successful implementation of a fuzzy logic controller structure for dc-dc switching converters and evaluates experimentally its sensitivity for variable supply voltages and load...
A new approach of active compliance control via fuzzy logic control for multifingered robot hand
Jamil, M. F. A.; Jalani, J.; Ahmad, A.
2016-07-01
Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.
Directory of Open Access Journals (Sweden)
Rico Adrial
2017-08-01
Full Text Available Breast cancer treatable while still stadium early. The first step in the treatment of disease breast cancer is detection by true that symptoms appearing on the body patient is really cancer cells. Stadium cancer is the result of diagnostic by physicians so that ease in understanding for patients . On this research used fuzzy logic as a method that helps in making the support system of decision in determining stadium breast cancer. today much android applications are made in the provision of information in the field of health. By combining knowledge in the health sector , fuzzy logic and android is expected to become an application latest supporters of intelligible decision by many people on the health sector. The support system decision stadium disease breast cancer using fuzzy logic android based was designed . We can conclude that the application apply calculation based on fuzzy logic method sugeno and has been tested by calculation on matlab and manually.
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench–top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application
Directory of Open Access Journals (Sweden)
Khaled MAMMAR
2009-07-01
Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.
Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control
Aris Triwiyatno; Sumardi Sumardi
2012-01-01
In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...
Fuzzy Logic Based The Application of Multi-Microcontroller in Mobile Robot Model
Directory of Open Access Journals (Sweden)
Nuryono Satya Widodo
2009-12-01
Full Text Available This paper proposed a fuzzy logic based mobile robot as implemented in a multimicrocontroller system. Fuzzy logic controller was developed based on a behavior based approach. The Controller inputs were obtained from seven sonar sensor and three tactile switches. Behavior based approach was implemented in different level priority of behaviors. The behaviors were: obstacle avoidance, wall following and escaping as the emergency behavior. The results show that robot was able to navigate autonomously and avoid the entire obstacle.
evaluation of a multi-variable self-learning fuzzy logic controller
African Journals Online (AJOL)
Dr Obe
2003-03-01
Mar 1, 2003 ... ABSTRACT. In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of ...
Obtaining ABET Student Outcome Satisfaction from Course Learning Outcome Data Using Fuzzy Logic
Imam, Muhammad Hasan; Tasadduq, Imran Ali; Ahmad, Abdul-Rahim; Aldosari, Fahd
2017-01-01
One of the approaches for obtaining the satisfaction data for ABET "Student Outcomes" (SOs) is to transform Course Learning Outcomes (CLOs) satisfaction data obtained through assessment of CLOs to SO satisfaction data. Considering the fuzzy nature of metrics of CLOs and SOs, a Fuzzy Logic algorithm has been proposed to extract SO…
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2009-01-01
with a different set of geometric features and shapes. In this paper the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotion using fuzzy logic. In addition automatically generated fuzzy rules and sets are developed and compared...
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer...
Fuzzy logic controller for crude oil levels at Escravos Tank Farm ...
African Journals Online (AJOL)
Fuzzy logic controller (FLC) for crude oil flow rates and tank levels was designed for monitoring flow and tank level management at Escravos Tank Farm in Nigeria. The fuzzy control system incorporated essence of expert knowledge required to handle the tasks. Proportional Integral Derivative (PID) control of crude flow ...
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer....
Evaluation of a Multi-Variable Self-Learning Fuzzy Logic Controller ...
African Journals Online (AJOL)
In spite of the usefulness of fuzzy control, its main drawback comes from lack of a systematic control design methodology. The most challenging aspect of the design of a fuzzy logic controller is the elicitation of the control rules for its rule base. In this paper, a scheme capable of elicitation of acceptable rules for multivariable ...
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
Fuzzy-logic based learning style prediction in e-learning using web ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 40; Issue 2. Fuzzy-logic based ... This paper identifies Felder–Silverman learning style model as a suitable model for learning style prediction, especially in web environments and proposes to use Fuzzy rules to handle the uncertainty in the learning style predictions. The evaluations have ...
Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach
Directory of Open Access Journals (Sweden)
Rana Dinesh Singh
2015-01-01
Full Text Available Fuzzy control is regarded as the most widely used application of fuzzy logic. Fuzzy logic is an innovative technology to design solutions for multiparameter and non-linear control problems. One of the greatest advantages of fuzzy control is that it uses human experience and process information obtained from operator rather than a mathematical model for the definition of a control strategy. As a result, it often delivers solutions faster than conventional control design techniques. The proposed system is an attempt to apply fuzzy logic techniques to predict the stress factor on the fish, based on line data and rule base generated using domain expert. The proposed work includes a use of Data acquisition system, an interfacing device for on line parameter acquisition and analysis, fuzzy logic controller (FLC for inferring the stress factor. The system takes stress parameters on the fish as inputs, fuzzified by using FLC with knowledge base rules and finally provides single output. All the parameters are controlled and calibrated by the fuzzy logic toolbox and MATLAB programming.
Barbosa, A Márcia; Real, Raimundo
2012-01-01
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation "A and not B") were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Directory of Open Access Journals (Sweden)
A. Márcia Barbosa
2012-01-01
Full Text Available We modelled the distributions of two toads (Bufo bufo and Epidalea calamita in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B” were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators.
Bárdossy, András; Blinowska, Aleksandra; Kuzmicz, Wieslaw; Ollitrault, Jacky; Lewandowski, Michał; Przybylski, Andrzej; Jaworski, Zbigniew
2014-02-01
total 57 shocks and 28 antitachycardia pacing (ATP) therapies were delivered by ICDs. 25 out of 57 shocks were unjustified: 7 for ST, 12 for DAI, 6 for ATF. Our fuzzy rule-based diagnostic algorithm correctly recognized all episodes of VF and VT, except for one case where VT was recognized as VF. In four cases short lasting, spontaneously ending VT episodes were not detected (in these cases no therapy was needed and they were not detected by ICDs either). In other words, a fuzzy logic algorithm driven ICD would deliver one unjustified shock and deliver correct therapies in all other cases. In the tests, no adjustments of our algorithm to individual patients were needed. The sensitivity and specificity calculated from the results were 100% and 98%, respectively. In 126 ECG recordings from PhysioBank (about 30min each) our algorithm incorrectly detected 4 episodes of VT, which should rather be classified as fast supraventricular tachycardias. The estimated power consumption of the dedicated integrated circuit implementing the algorithm was below 120nW. The paper presents a fuzzy logic-based control algorithm for ICD. Its main advantages are: simplicity and ability to decrease the rate of occurrence of inappropriate therapies. The algorithm can work in real time (i.e. update the diagnosis after every RR-interval) with very limited computational resources. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohamad Agung Prawira Negara
2017-08-01
Full Text Available Telecommunications and robotics technology is being developed to assist and facilitate the work of a human. In the field of telecommunications particularly smartphone has reached the planting of operating systems like android until planting sensors such as an accelerometer, gyro, proximity, etc. We would like to take advantage of the accelerometer sensor on a smartphone as robot control. We will compare the use of Sugeno Fuzzy Logic and Mamdani Fuzzy Logic to determine the best control method. The basic components of the robot are the Bluetooth module HC-05 as a medium of communication with the android, arduino as the control system and actuators such as DC motors drive the rear wheels to adjust the speed of the robot, and servo motor drives the front wheels to adjust the degree of turn robot. In robot’s movement test, 4 of 8 trials or approximately 50% stated better Sugeno Fuzzy Logic than Mamdani Fuzzy Logic in terms of linearity. In robot's controller response test, for Sugeno Fuzzy Logic method the average delay is 0.41 seconds, and for Mamdani Fuzzy Logic method the average delay is 10.80 seconds.
Energy Technology Data Exchange (ETDEWEB)
Legius, M. (ENCI, Maastricht (Netherlands))
1992-11-01
The results of the implementation of fuzzy logic in the Dutch cement factory ENCI in Maastricht, Netherlands, are a considerable increase of the production and, for the long term, 5% energy conservation. Most of the energy conservation and production increase result from the decrease of the number of brick oven stops. 3 ills.
On enhancing on-line collaboration using fuzzy logic modeling
Directory of Open Access Journals (Sweden)
Leontios J. Hadjileontiadis
2004-04-01
Full Text Available Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training may be enhanced even more. Designing considerations towards this direction include the close follow-up of the collaborative activity and provision of support grounded upon a pedagogical background. To this vein, a fuzzy logic-based expert system, namely Collaboration/Reflection-Fuzzy Inference System (C/R-FIS, is presented in this paper. By means of interconnected FISs, the C/R-FIS expert system automatically evaluates the collaborative activity of two peers, during their asynchronous, written, web-based collaboration. This information is used for the provision of adaptive support to peers during their collaboration, towards equilibrium of their collaborative activity. In particular, this enhanced formative feedback aims at diminishing the possible dissonance between the individual collaborative skills by challenging self-adjustment procedures. The proposed model extents the evaluation system of a web-based collaborative tool namely Lin2k, which has served as a test-bed for the C/R-FIS experimental use. Results from its experimental use have proved the potentiality of the proposed model to significantly contribute to the enhancement of the collaborative activity and its transferability to other collaborative learning contexts, such as medicine, environmental engineering, law, and music education.
Chen, Shyi-Ming; Manalu, Gandhi Maruli Tua; Pan, Jeng-Shyang; Liu, Hsiang-Chuan
2013-06-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization (PSO) techniques. First, we fuzzify the historical training data of the main factor and the secondary factor, respectively, to form two-factors second-order fuzzy logical relationships. Then, we group the two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, we obtain the optimal weighting vector for each fuzzy-trend logical relationship group by using PSO techniques to perform the forecasting. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index and the NTD/USD exchange rates. The experimental results show that the proposed method gets better forecasting performance than the existing methods.
Energy Technology Data Exchange (ETDEWEB)
Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)
2016-07-25
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.
2016-07-01
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
Dynamic Fuzzy Logic-Ant Colony System-Based Route Selection System
Directory of Open Access Journals (Sweden)
Hojjat Salehinejad
2010-01-01
Full Text Available Route selection in metropolises based on specific desires is a major problem for city travelers as well as a challenging demand of car navigation systems. This paper introduces a multiparameter route selection system which employs fuzzy logic (FL for local pheromone updating of an ant colony system (ACS in detection of optimum multiparameter direction between two desired points, origin and destination (O/D. The importance rates of parameters such as path length and traffic are adjustable by the user. In this system, online traffic data are supplied directly by a traffic control center (TCC and further minutes traffic data are predicted by employing artificial neural networks (ANNs. The proposed system is simulated on a region of London, United Kingdom, and the results are evaluated.
Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control
Directory of Open Access Journals (Sweden)
Ivković Sanja
2014-01-01
Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.
Using fuzzy logic to control active suspension system of one-half-car model
Directory of Open Access Journals (Sweden)
Kruczek Ale
2003-12-01
Full Text Available In the paper, fuzzy logic is used to control active suspension of a one-half-car model. Velocity and acceleration of the front and rear wheels and undercarriage velocity above the mentioned wheels are taken as input data of the fuzzy logic controller. Active forces improving vehicle driving, ride comfort and handling properties are considered to be the controller outputs. The controller design is proposed to minimize chassis and wheels deflection when uneven road surfaces, pavement points, etc. are acting on the tires of running cars. In the conclusion, a comparison of active suspension fuzzy control and spring/damper passive suspension is shown using MATLAB simulations.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Development of fuzzy logic system to predict the SAW weldment shape profiles
Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.
2012-09-01
A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial design matrix. The design matrix consisted of three levels of input welding process parameters. The welds were cross-sectioned and etched, and the zones were measured. A mapping technique was used to measure the various segments of the weld zones. These mapped zones were used to build a fuzzy logic model. The membership functions of the fuzzy model were chosen for the accurate prediction of the weld zone. The fuzzy model was further tested for a set of test case data. The weld zone predicted by the fuzzy logic model was compared with the experimentally obtained shape profiles and close agreement between the two was noted. The mapping technique developed for the weld zones and the fuzzy logic model can be used for on-line control of the SAW process. From the SAW fuzzy logic model an estimation of the fusion and HAZ can also be developed.
A new adaptive configuration of PID type fuzzy logic controller.
Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed
2015-05-01
In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Automated mango fruit assessment using fuzzy logic approach
Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent
2014-06-01
In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.
Fuzzy Logic-Based Scenario Recognition from Video Sequences
Directory of Open Access Journals (Sweden)
E. Elbaşi
2013-10-01
Full Text Available In recent years, video surveillance and monitoring have gained importance because of security and safety concerns. Banks, borders, airports, stores, and parking areas are the important application areas. There are two main parts in scenario recognition: Low level processing, including moving object detection and object tracking, and feature extraction. We have developed new features through this work which are RUD (relative upper density, RMD (relative middle density and RLD (relative lower density, and we have used other features such as aspect ratio, width, height, and color of the object. High level processing, including event start-end point detection, activity detection for each frame and scenario recognition for sequence of images. This part is the focus of our research, and different pattern recognition and classification methods are implemented and experimental results are analyzed. We looked into several methods of classification which are decision tree, frequency domain classification, neural network-based classification, Bayes classifier, and pattern recognition methods, which are control charts, and hidden Markov models. The control chart approach, which is a decision methodology, gives more promising results than other methodologies. Overlapping between events is one of the problems, hence we applied fuzzy logic technique to solve this problem. After using this method the total accuracy increased from 95.6 to 97.2.
Remote triage support algorithm based on fuzzy logic.
Achkoski, Jugoslav; Koceski, S; Bogatinov, D; Temelkovski, B; Stevanovski, G; Kocev, I
2017-06-01
This paper presents a remote triage support algorithm as a part of a complex military telemedicine system which provides continuous monitoring of soldiers' vital sign data gathered on-site using unobtrusive set of sensors. The proposed fuzzy logic-based algorithm takes physiological data and classifies the casualties according to their health risk level, calculated following the Modified Early Warning Score (MEWS) methodology. To verify the algorithm, eight different evaluation scenarios using random vital sign data have been created. In each scenario, the hypothetical condition of the victims was assessed in parallel both by the system as well as by 50 doctors with significant experience in the field. The results showed that there is high (0.928) average correlation of the classification results. This suggests that the proposed algorithm can be used for automated remote triage in real life-saving situations even before the medical team arrives at the spot, and shorten the response times. Moreover, an additional study has been conducted in order to increase the computational efficiency of the algorithm, without compromising the quality of the classification results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.
Mobile Health in Maternal and Newborn Care: Fuzzy Logic
Directory of Open Access Journals (Sweden)
Shahirose Premji
2014-06-01
Full Text Available Whether mHealth improves maternal and newborn health outcomes remains uncertain as the response is perhaps not true or false but lies somewhere in between when considering unintended harmful consequences. Fuzzy logic, a mathematical approach to computing, extends the traditional binary “true or false” (one or zero to exemplify this notion of partial truths that lies between completely true and false. The commentary explores health, socio-ecological and environmental consequences–positive, neutral or negative. Of particular significance is the negative influence of mHealth on maternal care-behaviors, which can increase stress reactivity and vulnerability to stress-induced illness across the lifespan of the child and establish pathways for intergenerational transmission of behaviors. A mHealth “fingerprinting” approach is essential to monitor psychosocial, economic, cultural, environmental and physical impact of mHealth intervention and make evidence-informed decision(s about use of mHealth in maternal and newborn care.
Model for Adjustment of Aggregate Forecasts using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Taracena–Sanz L. F.
2010-07-01
Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.
Design and fuzzy logic control of an active wrist orthosis.
Kilic, Ergin; Dogan, Erdi
2017-08-01
People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.
Energy Analysis for Air Conditioning System Using Fuzzy Logic Control
Directory of Open Access Journals (Sweden)
Henry Nasution
2011-04-01
Full Text Available Reducing energy consumption and to ensure thermal comfort are two important considerations for the designing an air conditioning system. An alternative approach to reduce energy consumption proposed in this study is to use a variable speed compressor. The control strategy will be proposed using the fuzzy logic controller (FLC. FLC was developed to imitate the performance of human expert operators by encoding their knowledge in the form of linguistic rules. The system is installed on a thermal environmental room with a data acquisition system to monitor the temperature of the room, coefficient of performance (COP, energy consumption and energy saving. The measurements taken during the two hour experimental periods at 5-minutes interval times for temperature setpoints of 20oC, 22oC and 24oC with internal heat loads 0, 500, 700 and 1000 W. The experimental results indicate that the proposed technique can save energy in comparison with On/Off and proportional-integral-derivative (PID control.
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
CONTROL SYSTEM DESIGN WITH FUZZY LOGIC PID-СONTROLLER TYPE 2
Directory of Open Access Journals (Sweden)
A. Tунік
2011-04-01
Full Text Available This paper presents a fuzzy logic PID-controller synthesis method for solid body guidance. Formany nonlinear systems with nonlinearities and uncertainties, the performance of fuzzy controllertype 1 may not be satisfactory. Therefore, in this work, fuzzy logic type 2 controller design isintroduced. These controllers capture the advantage of a linear controller in terms of simplicity andalso can handle nonlinearity because of their inference mechanism.The main feature of the proposedmethod constitutes in a membership functions type 2 applications. The membership function type 2is represented by upper and lower membership functions of type 1. The interval between these twofunctions represent the footprint of uncertainty, which give an opportunity to synthesize commonregulator for set of a models. The structure of fuzzy logic controller for solid body control isgrounded. Simulation results confirm the effectiveness of the proposed approach.
Adaptive Fuzzy Logic Controllers for DC Drives: A Survey of the State of the art
Directory of Open Access Journals (Sweden)
E. E. El-kholy
2006-09-01
Full Text Available Fuzzy Logic Control (FLC has gained a great demand in process control applications. Fuzzy Logic (FL technology enables the use of engineering experience and experimental results in designing an expert system capable of handling uncertain or fuzzy quantities. This paper presents a comprehensive review of FLC in the field of Direct Current (DC motor drive systems. Firstly, the principles of fuzzy logic theory will be briefly presented. Secondly, the employment of the FL techniques in a control system will be outlined. The concept of FLC can be extended for application to different DC motor drives such as: series, separately, shunt and permanent magnet DC motor. The limitations of FLC when applied to DC motor drives have been widely reported in the literature. This article also cites these limitations as well as the advancements in solving them through, for example, the genetic algorithms and the neural networks techniques.
Fuzzy logic type 1 and type 2 based on LabVIEW FPGA
Ponce-Cruz, Pedro; MacCleery, Brian
2016-01-01
This book is a comprehensive introduction to LabVIEW FPGA™, a package allowing the programming of intelligent digital controllers in field programmable gate arrays (FPGAs) using graphical code. It shows how both potential difficulties with understanding and programming in VHDL and the consequent difficulty and slowness of implementation can be sidestepped. The text includes a clear theoretical explanation of fuzzy logic (type 1 and type 2) with case studies that implement the theory and systematically demonstrate the implementation process. It goes on to describe basic and advanced levels of programming LabVIEW FPGA and show how implementation of fuzzy-logic control in FPGAs improves system responses. A complete toolkit for implementing fuzzy controllers in LabVIEW FPGA has been developed with the book so that readers can generate new fuzzy controllers and deploy them immediately. Problems and their solutions allow readers to practice the techniques and to absorb the theoretical ideas as they arise. Fuzzy L...
Fuzzy logic multiobjective optimization for stand-alone photovoltaic plants
Energy Technology Data Exchange (ETDEWEB)
Tina, G.; Adorno, G.; Ragusa, C.
1998-07-01
objects of optimisation compete, it is applied a multiobjective optimisation technique, based on the fuzzy-logic theory. This technique requires to represent every optimisation object by a fuzzy-set which expresses the connection between the objects' value and the corresponding degree of satisfaction. In conclusion, the definition of a global fuzzy-set, which expresses the confluence between these values, allows to fix a single quality index to every project configuration. The discretion of the planner's selection has been fixed by the belonging functions to fuzzy-sets. These functions try to weigh, for every object, the judgement's classes, by themselves inaccurate, such as the concepts of satisfaction (referring to the power quality object) and of acceptable (referring to the cost object). The quality index, obtained in this way, reaches its maximum value using a deterministic scalar optimisation procedure, which leads the evolution of the project variables towards the best configuration. The optimisation method has been tested considering different kinds of site configurations with different values of the electrical loads, of the yearly power demand, of the distance from the grid and of the variable solar cells cost.
Knowledge Representation and Reasoning in Norm-Parameterized Fuzzy Description Logics
Zhao, Jidi; Boley, Harold
The Semantic Web is an evolving extension of the World Wide Web in which the semantics of the available information are formally described, making it more machine-interpretable. The current W3C standard for SemanticWeb ontology languages, OWL, is based on the knowledge representation formalism of Description Logics (DLs). Although standard DLs provide considerable expressive power, they cannot express various kinds of imprecise or vague knowledge and thus cannot deal with uncertainty, an intrinsic feature of the real world and our knowledge. To overcome this deficiency, this chapter extends a standard Description Logic to a family of norm-parameterized Fuzzy Description Logics. The syntax to represent uncertain knowledge and the semantics to interpret fuzzy concept descriptions and knowledge bases are addressed in detail. The chapter then focuses on a procedure for reasoning with knowledge bases in the proposed Fuzzy Description Logics. Finally, we prove the soundness, completeness, and termination of the reasoning procedure
A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees
Directory of Open Access Journals (Sweden)
Pascual Julián-Iranzo
2015-01-01
Full Text Available FASILL (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language" is a fuzzy logic programming language with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. FASILL integrates and extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules and Bousi~Prolog (which uses a weak unification algorithm and is well suited for flexible query answering. Hence, it properly manages similarity and truth degrees in a single framework combining the expressive benefits of both languages. This paper presents the main features and implementations details of FASILL. Along the paper we describe its syntax and operational semantics and we give clues of the implementation of the lattice module and the similarity module, two of the main building blocks of the new programming environment which enriches the FLOPER system developed in our research group.
Online tuning of fuzzy logic controller using Kalman algorithm for conical tank system
Directory of Open Access Journals (Sweden)
G.M. Tamilselvan
2017-10-01
Full Text Available In a non-linear process like conical tank system, controlling the liquid level was carried out by proportional integral derivative (PID controller. But then it does not provide an accurate result. So in order to obtain accurate and effective response, intelligence is added into the system by using fuzzy logic controller (FLC. FLC which helps in maintaining the liquid level in a conical tank has been developed and applied to various fields. The result acquired using FLC will be more precise when compared to PID controller. But FLC cannot adapt a wide range of working environments and also there is no systematic method to design the membership functions (MFs for inputs and outputs of a fuzzy system. So an adaptive algorithm called Kalman algorithm which employs fuzzy logic rules is used to adapt the Kalman filter to accommodate changes in the system parameters. The Kalman algorithm which employs fuzzy logic rules adjust the controller parameters automatically during the operation process of a system and controller is used to reduce the error in noisy environments. This technique is applied in a conical tank system. Simulations and results show that this method is effective for using fuzzy controller. Keywords: Fuzzy logic controller, Proportional integral derivative controller, Kalman algorithm, Matlab
Fuzzy logic-based prognostic score for outcome prediction in esophageal cancer.
Wang, Chang-Yu; Lee, Tsair-Fwu; Fang, Chun-Hsiung; Chou, Jyh-Horng
2012-11-01
Given the poor prognosis of esophageal cancer and the invasiveness of combined modality treatment, improved prognostic scoring systems are needed. We developed a fuzzy logic-based system to improve the predictive performance of a risk score based on the serum concentrations of C-reactive protein (CRP) and albumin in a cohort of 271 patients with esophageal cancer before radiotherapy. Univariate and multivariate survival analyses were employed to validate the independent prognostic value of the fuzzy risk score. To further compare the predictive performance of the fuzzy risk score with other prognostic scoring systems, time-dependent receiver operating characteristic curve (ROC) analysis was used. Application of fuzzy logic to the serum values of CRP and albumin increased predictive performance for 1-year overall survival (AUC=0.773) compared with that of a single marker (AUC=0.743 and 0.700 for CRP and albumin, respectively), where the AUC denotes the area under curve. This fuzzy logic-based approach also performed consistently better than the Glasgow Prognostic Score (GPS) (AUC=0.745). Thus, application of fuzzy logic to the analysis of serum markers can more accurately predict the outcome for patients with esophageal cancer.
Directory of Open Access Journals (Sweden)
Jagdish Prasad Sharma
2016-01-01
Full Text Available In the restructured environment, distributed generation (DG is considered as a very promising option due to a high initial capital cost of conventional plants, environmental concerns, and power shortage. Apart from the above, distributed generation (DG has also abilities to improve performance of feeder. Most of the distribution feeders have radial structure, which compel to observe the impact of distributed generations on feeder performance, having different characteristics and composition of time varying static ZIP load models. Two fuzzy-based expert system is proposed for selecting and ranking the most appropriated periods to an integration of distributed generations with a feeder. Madami type fuzzy logic controller was developed for sizing of distributed generation, whereas Sugeno type fuzzy logic controller was developed for the DG location. Input parameters for Madami fuzzy logic controller are substation reserve capacity, feeder power loss to load ratio, voltage unbalance, and apparent power imbalances. DG output, survivability index, and node distance from substation are chosen as input to Sugeno type fuzzy logic controller. The stochastic performance of proposed fuzzy expert systems was evaluated on a modified IEEE 37 node test feeder with 15 minutes characteristics time interval varying static ZIP load models.
Uzoka, Faith-Michael Emeka; Obot, Okure; Barker, Ken; Osuji, J
2011-07-01
The task of medical diagnosis is a complex one, considering the level vagueness and uncertainty management, especially when the disease has multiple symptoms. A number of researchers have utilized the fuzzy-analytic hierarchy process (fuzzy-AHP) methodology in handling imprecise data in medical diagnosis and therapy. The fuzzy logic is able to handle vagueness and unstructuredness in decision making, while the AHP has the ability to carry out pairwise comparison of decision elements in order to determine their importance in the decision process. This study attempts to do a case comparison of the fuzzy and AHP methods in the development of medical diagnosis system, which involves basic symptoms elicitation and analysis. The results of the study indicate a non-statistically significant relative superiority of the fuzzy technology over the AHP technology. Data collected from 30 malaria patients were used to diagnose using AHP and fuzzy logic independent of one another. The results were compared and found to covary strongly. It was also discovered from the results of fuzzy logic diagnosis covary a little bit more strongly to the conventional diagnosis results than that of AHP. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Fuzzy-logic-based resource allocation for isolated and multiple platforms
Smith, James F., III; Rhyne, Robert D., II
2000-08-01
Modern naval battle forces generally include many different platforms each with its own sensors, radar, ESM, and communications. The sharing of information measured by local sensors via communication links across the battle group should allow for optimal or near optimal decision. The survival of the battle group or members of the group depends on the automatic real-time allocation of various resources. A fuzzy logic algorithm has been developed that automatically allocates electronic attack resources in real- time. The particular approach to fuzzy logic that is used is the fuzzy decision tree, a generalization of the standard artificial intelligence technique of decision trees. The controller must be able to make decisions based on rules provided by experts. The fuzzy logic approach allows the direct incorporation of expertise forming a fuzzy linguistic description, i.e. a formal representation of the system in terms of fuzzy if-then rules. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The isolated platform and multi platform resource manager models are discussed as well as the underlying multi-platform communication model. The resource manager is shown to exhibit excellent performance under many demanding scenarios.
Directory of Open Access Journals (Sweden)
A. Stanley Raj
2015-01-01
Full Text Available Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy C-means clustering, fuzzy K-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS training on synthetic data. Here in this approach, graphical user interface (GUI was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity, while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth. A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.
Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.
Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari
2017-03-01
Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.
Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam
2017-09-01
Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.
Construction of a fuzzy and all Boolean logic gates based on DNA
DEFF Research Database (Denmark)
M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse
2015-01-01
DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics.......Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA-based logic gates. These devices are important modules in molecular...... computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA-based logic gate complex that produces fluorescent outputs corresponding...
Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic
Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap
2018-01-01
Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
Using fuzzy logic to integrate neural networks and knowledge-based systems
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables
Directory of Open Access Journals (Sweden)
Jaw-Kuen Shiau
2015-04-01
Full Text Available Maximum power point tracking (MPPT is one of the key functions of the solar power management system in solar energy deployment. This paper investigates the design of fuzzy-logic-based solar power MPPT algorithms using different fuzzy input variables. Six fuzzy MPPT algorithms, based on different input variables, were considered in this study, namely (i slope (of solar power-versus-solar voltage and changes of the slope; (ii slope and variation of the power; (iii variation of power and variation of voltage; (iv variation of power and variation of current; (v sum of conductance and increment of the conductance; and (vi sum of angles of arctangent of the conductance and arctangent of increment of the conductance. Algorithms (i–(iv have two input variables each while algorithms (v and (vi use a single input variable. The fuzzy logic MPPT function is deployed using a buck-boost power converter. This paper presents the details of the determinations, considerations of the fuzzy rules, as well as advantages and disadvantages of each MPPT algorithm based upon photovoltaic (PV cell properties. The range of the input variable of Algorithm (vi is finite and the maximum power point condition is well defined in steady condition and, therefore, it can be used for multipurpose controller design. Computer simulations are conducted to verify the design.
Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations
DEFF Research Database (Denmark)
Trnka, Hjalte; Wu, Jian-Xiong; van de Weert, Marco
2013-01-01
are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting...... critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed...... fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible....
Fuzzy logic based power-efficient real-time multi-core system
Ahmed, Jameel; Najam, Shaheryar; Najam, Zohaib
2017-01-01
This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors. .
Fuzzy logic based anaesthesia monitoring systems for the detection of absolute hypovolaemia.
Mansoor Baig, Mirza; Gholamhosseini, Hamid; Harrison, Michael J
2013-07-01
Anaesthesia monitoring involves critical diagnostic tasks carried out amongst lots of distractions. Computers are capable of handling large amounts of data at high speed and therefore decision support systems and expert systems are now capable of processing many signals simultaneously in real time. We have developed two fuzzy logic based anaesthesia monitoring systems; a real time smart anaesthesia alarm system (RT-SAAM) and fuzzy logic monitoring system-2 (FLMS-2), an updated version of FLMS for the detection of absolute hypovolaemia. This paper presents the design aspects of these two systems which employ fuzzy logic techniques to detect absolute hypovolaemia, and compares their performances in terms of usability and acceptability. The interpretation of these two systems of absolute hypovolaemia was compared with clinicians' assessments using Kappa analysis, RT-SAAM K=0.62, FLMS-2 K=0.75; an improvement in performance by FLMS-2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Kevin F R
2007-05-01
While pursuing economic development, countries around the world have become aware of the importance of environmental sustainability; therefore, the evaluation of environmental sustainability has become a significant issue. Traditionally, multiple-criteria decision-making (MCDM) was widely used as a way of evaluating environmental sustainability, Recently, several researchers have attempted to implement this evaluation with fuzzy logic since they recognized the assessment of environmental sustainability as a subjective judgment Intuition. This paper outlines a new evaluation-framework of environmental sustainability, which integrates fuzzy logic into MCDM. This evaluation-framework consists of 36 structured and 5 unstructured decision-points, wherein MCDM is used to handle the former and fuzzy logic serves for the latter, With the integrated evaluation-framework, the evaluations of environmental sustainability in 146 countries are calculated, ranked and clustered, and the evaluation results are very helpful to these countries, as they identify their obstacles towards environmental sustainability.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
Directory of Open Access Journals (Sweden)
Ahmed M. Othman
2012-12-01
Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
Directory of Open Access Journals (Sweden)
Karuppanan.P
2010-07-01
Full Text Available This article explores a novel fuzzy logic controller (FLC based threephase shunt active power line conditioners (APLC for power quality improvements due to the non-linear loads. The fuzzy logic controller is Mamdani-type and linguistic description, so it does not necessitate a mathematical model of the system. The FLC controller is capable of controlling harmonic current and dc-side capacitor voltage of the inverter to improve the performance of the active power filter. Hysteresis current controller (HCC is used to generate the switching signals from the comparison of reference current and actual current for driving the current controlled voltage source inverter (VSI. Extensive simulation executed and tested under different non-linear load conditions. The simulation results reveal that the APLC with fuzzy logic controller is a perfect candidate for current harmonics and reactive power compensation.
Automated interpretation of LIBS spectra using a fuzzy logic inference engine.
Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R
2012-03-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment. © 2012 Optical Society of America
Fuzzy Logic: Toward Measuring Gottfredson's Concept of Occupational Social Space.
Hesketh, Beryl; And Others
1989-01-01
Investigated the application of fuzzy graphic rating scale to measurement of preferences for occupational sex type, prestige, and interests using Gottfredson's concept of occupational social space. Reported reliability and validity data with illustrative examples of respondents' interpretations of their own fuzzy ratings. Outlined counseling and…
CONTROL TEMPERATURE ON PLANT BABY INCUBATOR WITH FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Noor Yulita Dwi Setyaningsih
2016-04-01
Full Text Available Inkubator bayi merupakan salah satu media medis yang digunakan untuk menjaga kondisi suhu dari bayi prematur atau bayi yang baru lahir. Suhu merupakan salah satu faktor yang sangat penting untuk dijaga bagi bayi baru lahir, karena kondisi bayi baru lahir yang tidak stabil dan belum bisa melakukan produksi panas sendiri untuk menghangatkan tubuhnya dan memproduksi panas untuk menjaga kestabilan tubuhnya. Kendali logika fuzzy digunakan untuk mengendalikan suhu pada penelitian ini, karena kebutuhan bayi yang berbeda-beda sehingga pemanfaatan sistem kendali fuzzy ini sangat mempermudah dalam melakukan pengendalian. Parameter yang digunakan dalam pengendalian ini adalah nilai Error, d-eror, dan sinyal kontrol. Hasil penggunaan sistem kendali logika fuzzy untuk pengendalian suhu pada plant inkubator bayi adalah kesalahan yang terjadi dapat dikurangi dan kestabilan dapat dipertahankan. Meskipun adanya gangguan yang diberikan pada sistem, dengan pemanfaatan sistem kendali fuzzy ini, dapat menjaga sistem pada keadaan yang stabil. Kata kunci: sistem kendali, temperature, inkubator bayi, plant, logika fuzzy, new born.
A formalization of commonsense reasoning based on fuzzy logic
Zadeh, L. A.
1985-01-01
The basic idea underlying the approach outlined in this paper is that commonsense knowledge may be regarded as a collection of dispositions, that is, propositions which are preponderantly, but not necessarily always, true. Technically, a disposition may be interpreted as a proposition with implicit fuzzy quantifiers, e.g., most, almost all, usually, often, etc. For example, a disposition such as Swedes are blond may be interpreted as most Swedes are blond. For purposes of inference from commonsense knowledge, the conversion of a disposition into a proposition with explicit fuzzy quantifiers sets the stage for an application of syllogistic reasoning in which the premises are allowed to be of the form Q A's are B's, where A and B are fuzzy predicates and Q is a fuzzy quantifier. In general, the conclusion yielded by such reasoning is a proposition which may be converted into a disposition through the suppression of fuzzy quantifiers.
DEFF Research Database (Denmark)
Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin
2017-01-01
Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic....../D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized...
Postoperative vomiting in pediatric oncologic patients: prediction by a fuzzy logic model.
Bassanezi, Betina S B; de Oliveira-Filho, Antônio G; Jafelice, Rosana S M; Bustorff-Silva, Joaquim M; Udelsmann, Artur
2013-01-01
To report a fuzzy logic mathematical model to predict postoperative vomiting (POV) in pediatric oncologic patients and compare with preexisting scores. Although POV has a high incidence in children and may decrease parental satisfaction after surgeries, there is only one specific score that predicts POV in children: the Eberhart's score. In this study, we report a fuzzy model that intends to predict the probability of POV in pediatric oncologic patients. Fuzzy logic is a mathematical theory that recognizes more than simple true and false values and takes into account levels of continuous variables such as age or duration of the surgery. The fuzzy model tries to account for subjectiveness in the variables. Preoperative potential risk factors for POV in 198 children (0-19 year old) with malignancies were collected and analyzed. Data analysis was performed with the chi-square test and logistic regression to evaluate probable risk factors for POV. A system based on fuzzy logic was developed with the risk factors found in the logistic regression, and a computational interface was created to calculate the probability of POV. The model showed a good performance in predicting POV. After the analysis, the model was compared with Eberhart's score in the same population and showed a better performance. The fuzzy score can predict the chance of POV in children with cancer with good accuracy, allowing better planning for postoperative prophylaxis of vomiting. The computational interface is available for free download at the internet and is very easy to use. © 2012 Blackwell Publishing Ltd.
Detection of Stator Winding Fault in Induction Motor Using Fuzzy Logic with Optimal Rules
Directory of Open Access Journals (Sweden)
Hamid Fekri Azgomi
2013-04-01
Full Text Available Induction motors are critical components in many industrial processes. Therefore, swift, precise and reliable monitoring and fault detection systems are required to prevent any further damages. The online monitoring of induction motors has been becoming increasingly important. The main difficulty in this task is the lack of an accurate analytical model to describe a faulty motor. A fuzzy logic approach may help to diagnose traction motor faults. This paper presents a simple method for the detection of stator winding faults (which make up 38% of induction motor failures based on monitoring the line/terminal current amplitudes. In this method, fuzzy logic is used to make decisions about the stator motor condition. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The motor condition is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe stator current amplitudes. A knowledge base, comprising rule and data bases, is built to support the fuzzy inference. Simulation results are presented to verify the accuracy of motor’s fault detection and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis.
DEVELOPMENT OF THE CROSS-COUPLING PHENOMENA OF MIMO FLIGHT SYSTEM USING FUZZY LOGIC CONTROLLER
Directory of Open Access Journals (Sweden)
MUNA H. SALEH
2010-03-01
Full Text Available This paper describes the performance of a simplified dynamic controller with fuzzy logic controllers. The six degree-of-freedom simulation study focuses on the results with and without fuzzy logic controller. One area of interest is the performance of a simulated the cross coupling effect. The controller uses explicit models to produce the desired commands. In this paper the effect of the cross-coupling between channels on the overall performance of the flight system has been considered. Two fuzzy controllers have been added to the system to improve its performance. This paper presents the development and simulation of a modified system is presented using MatLab Simulink. Also it focuses on the use of fuzzy logic controller in model-based control of multiple-input, multiple-output systems. Here, we address the question of how the overall performance of the system is affected when both fuzzy logic controllers are applied at the same time. Simulation and experimental results of a flight system , as an illustrative example, are presented.
FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT
Directory of Open Access Journals (Sweden)
P.B. Osofisan
2012-01-01
Full Text Available
ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.
AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.
Fuzzy-logic-model-based technique with application to Urdu character recognition
Megherbi, Dalila B.; Lodhi, Saeed M.; Boulenouar, Azzoz J.
2000-04-01
This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters based on concepts from Fuzzy logic. In particular, we show that Fuzzy logic is used here to make a classification of 36 Urdu characters into seven sub-classes namely sub-classes characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fuzzy logic provides a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of `interest regions' and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed Fuzzy logic based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.
Fuzzy logic and information fusion to commemorate the 70th birthday of Professor Gaspar Mayor
Sastre, Joan
2016-01-01
This book offers a timely report on key theories and applications of soft-computing. Written in honour of Professor Gaspar Mayor on his 70th birthday, it primarily focuses on areas related to his research, including fuzzy binary operators, aggregation functions, multi-distances, and fuzzy consensus/decision models. It also discusses a number of interesting applications such as the implementation of fuzzy mathematical morphology based on Mayor-Torrens t-norms. Importantly, the different chapters, authored by leading experts, present novel results and offer new perspectives on different aspects of Mayor’s research. The book also includes an overview of evolutionary fuzzy systems, a topic that is not one of Mayor’s main areas of interest, and a final chapter written by the Spanish pioneer in fuzzy logic, Professor E. Trillas. Computer and decision scientists, knowledge engineers and mathematicians alike will find here an authoritative overview of key soft-computing concepts and techniques.
Computer vision for general purpose visual inspection: a fuzzy logic approach
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection.
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Manglem Singh, Kh; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.
Fuzzy logic based controller for five-phase induction motor drive system
Directory of Open Access Journals (Sweden)
Z.M.S. El-Barbary
2012-12-01
Full Text Available This paper presents fuzzy logic based controller for five-phase induction motor drives. The controller is based on indirect rotor field oriented control technique. The complete control scheme including the fuzzy logic is experimentally implemented using a digital signal processing board for a laboratory five-phase induction motor, Simulation is carried out by using the Matlab/Simulink package. The performance of the proposed system is investigated at different operating conditions. The proposed controller is a suitable to high performance five-phase induction motor drives. Simulation and experimental results validate the proposed approaches.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Directory of Open Access Journals (Sweden)
Kristina Marsic
2016-06-01
The purpose of this paper is to address this issue in three ways. First, we review existing estimates of the size of the underground economy. Second, we apply a novel calculation method for estimation: fuzzy logic. Third, we calculated and compared underground economy index for 25 European Union countries and compared it, with special focus on Croatian underground economy index. Results indicated that Croatia has the thirteenth largest underground economy among measured members of the European Union. This study is the first of its kind with recent data to measure the size of underground economy in European Union countries by employing fuzzy logic approach.
Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms
Siddique, Nazmul
2014-01-01
Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...
Fuzzy logic: A “simple” solution for complexities in neurosciences?
Godil, Saniya Siraj; Shamim, Muhammad Shahzad; Enam, Syed Ather; Qidwai, Uvais
2011-01-01
Background: Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum. Methods: This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology. Results: The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures. Conclusions: In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences. PMID:21541006
Directory of Open Access Journals (Sweden)
Y Abbaspour Gilandeh
2013-09-01
Full Text Available In this study, a knowledge-based fuzzy logic system was developed on experimental data and used to predict the draft force and energy requirement of tillage operation. In comparison with traditional methods, the fuzzy logic model acts more effectively in creating a relationship between multiple inputs to achieve an output signal in a nonlinear range. Field experiments were carried out in a sandy loam soil on coastal plain at the Edisto Research and Education Center of Clemson University near Blackville, South Carolina (Latitude 33˚ 21"N, Longitude 81˚ 18"W. In this paper, a fuzzy model based on Mamdani inference system has been used. This model was developed for predicting the changes of draft force and energy requirement for subsoiling operation. This fuzzy model contains 25 rules. In this investigation, the Mamdani Max-Min inference was used for deducing the mechanism (composition of fuzzy rules with input. The center of gravity defuzzification method was also used for conversion of the final output of the system into a classic number. The validity of the presented model was achieved by numerical error criterion, based on empirical data. The prediction results showed a close relationship between measured and predicted values such that the mean relative error of measured and predicted values were 3.1% and 2.94% for draft resistant force and energy required for subsoiling operation, respectively. The comparison between the fuzzy logic model and the regression models showed that the mean relative errors from the regression model are greater than that from the fuzzy logic model.
Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.
Ki, Seo Jin; Ray, Chittaranjan
2014-09-15
Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined
A Fuzzy Logic Study of Weighting Scheme for Satellite-Laser-Ranging Global Tracking Network
VIGO, I. M.; SOTO, J.; FLORES, A.; FERRANDIZ, J. M.
2001-12-01
In satellite-laser-ranging (SLR) data processing, oftentimes the weighting scheme of station observations is subjective or even quasi-arbitrary, and a somewhat arbitrary cutoff of say, 1m is applied prior to the data processing. This practice leaves something to be decided in terms of making optimal use of the available data. We intend to improve the situation by applying fuzzy-logic techniques in the editing and weighting of the data in an objective way. Many authors (e.g., Katja Heine (2001) and others in the Proceedings of the First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy an GIS ) have demonstrated the potential utility of the fuzzy logic methods in geodetic problems. The aim of this work is to test a fuzzy logic method as a tool to provide a reliable criteria for weighting scheme for satellite-laser-ranging (SLR) station observations, seeking to optimize their contribution to the precise orbit determination (POD) problem. The data regarding the stations were provided by the International Laser Ranging Service, NASA/CDDIS provided the satellite data for testing the method. The software for processing the data is GEODYN II provided by NASA/GSFC. Factors to be considered in the fuzzy-logic clustering are: the total number of LAGEOS passes during the past 12 months, the stability measure of short and long term biases, the percentage of LAGEOS normal points that were accepted in CSR weekly LAGEOS analysis, and the RMS uncertainty of the station coordinates. Fuzzy logic statistical method allows classifying the stations through a clear membership degree to each station group. This membership degree translates into a suitable weight to be assigned to observations from each station in the global solution. The first tests carried out show improvements in the RMS of the global POD solution as well as individual stations, to within a few millimeters. We expect further work would lead to further improvements.
Fuzzy, crisp, and human logic in e-commerce marketing data mining
Hearn, Kelda L.; Zhang, Yanqing
2001-03-01
In today's business world there is an abundance of available data and a great need to make good use of it. Many businesses would benefit from examining customer habits and trends and making marketing and product decisions based on that analysis. However, the process of manually examining data and making sound decisions based on that data is time consuming and often impractical. Intelligent systems that can make judgments similar to human judgments are sorely needed. Thus, systems based on fuzzy logic present themselves as an option to be seriously considered. The work described in this paper attempts to make an initial comparison between fuzzy logic and more traditional hard or crisp logic to see which would make a better substitute for human intervention. In this particular case study, customers are classified into categories that indicate how desirable the customer would be as a prospect for marketing. This classification is based on a small set of customer data. The results from these investigations make it clear that fuzzy logic is more able to think for itself and make decisions that more closely match human decision and is therefore significantly closer to human logic than crisp logic.
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
A VIRTUAL REALITY EXPOSURE THERAPY FOR PTSD PATIENTS CONTROLLED BY A FUZZY LOGIC SYSTEM
Directory of Open Access Journals (Sweden)
Rosa Maria Esteves Moreira da Costa
2014-06-01
Full Text Available This paper describes the main characteristics of two integrated systems that explore Virtual Reality technology and Fuzzy Logic to support and to control the assessment of people with Post-Traumatic Stress Disorder during the Virtual Reality Exposure Therapy. The integration of different technologies, the development methodology and the test procedures are described throughout the paper.
Energy conservation by means of fuzzy logic. Vage logica leidt tot concrete energiebesparing
Energy Technology Data Exchange (ETDEWEB)
Juijn, P. (Videm Communicatie, Utrecht (Netherlands))
1994-09-01
The cement factory Enci in the Netherlands applied an advanced control system, based on fuzzy logic, for the process control of a cement furnace. It raised the production by 4% and reduced the energy consumption per ton of product by 3%. 1 fig., 1 ill.
ARBO-VLV: beoordeling met fuzzy logic van arbeidsomstandigheden in een vleesvarkensstal
Drost, H.; Satter, I.H.G.
2000-01-01
Until now, assessment of working conditions occurs mainly in a qualitative way or quantitative but in different variables. Because of this, interpretation results of similar data differ between researchers. The aim of this study is to develop a fuzzy logic model for quantitative assessment of
Fuzzy-Logic Cognitive Mapping: Introduction and Overview of the Method
Malek, Ziga; Steven, Gray; Michael, Paliosso; Rebecca, Jordan; Stefan, Gray
2017-01-01
Lack of information and large uncertainties can constrain the effectiveness and acceptability of environmental models. Fuzzy-logic cognitive mapping (FCM) is an approach that deals with these limitations by incorporating existing knowledge and experience. It is a soft-knowledge approach for system
Fuzzy-logic based learning style prediction in e-learning using web ...
Indian Academy of Sciences (India)
humanoid robot. IJCSSE 26(3). Triantafillou E, Pomportsis A and Georgiadou E 2002 AES-CS: Adaptive educational system base on cognitive styles. In: Proceedings AH2002 Workshop, 10–20. Wilges B, Mateus G P, Nassar S M and Bastos R C 2012 Integration of BDI agent with fuzzy logic in a virtual learning environment.
APPLICATION OF THE FUZZY LOGIC AND GENETIC ALGORITHMS IN THE MODELS OF PASSENGER TRAFFIC
Directory of Open Access Journals (Sweden)
Y. Fornalchyk
2014-10-01
Full Text Available Analysis of the results of the theory of fuzzy logic and the genetic algorithms to determine the correspondence of passenger traffic in cities is presented. The advantageous aspects of using the “soft” methods of estimation are revealed. It was established that they require further study and im-provement to be further use in the practice of passenger movement.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic
Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández
2015-01-01
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412
Q-V droop control using fuzzy logic and reciprocal characteristic
DEFF Research Database (Denmark)
Wanga, Lu; Hu, Yanting; Chen, Zhe
2014-01-01
electric power at distributed voltage level, which not only is an autonomous system, but also can be connected to the main grid. To improve the stability and controllability of the power grid, this paper presents an improved Q-V droop control strategy using fuzzy logic controller and reciprocal...
Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications
DEFF Research Database (Denmark)
Park, Kiwoo; Chen, Zhe
2012-01-01
This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan
2015-01-01
Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.
Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente
2015-08-10
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.
Fuzzy Logic Based MPPT Controller for a Small Wind Turbine System
DEFF Research Database (Denmark)
Petrila, Diana; Blaabjerg, Frede; Muntean, Nicolae
2012-01-01
This paper describes the design of a maximum power point tracking (MPPT) strategy for a variable speed, small scale, wind turbine systems based on a fuzzy logic controller (FLC). The FLC has as input variables the change in mechanical power (ΔPm), the change in rotor speed (Δω), and the sign of ΔPm...
A "fuzzy"-logic language for encoding multiple physical traits in biomolecules.
Warszawski, Shira; Netzer, Ravit; Tawfik, Dan S; Fleishman, Sarel J
2014-12-12
To carry out their activities, biological macromolecules balance different physical traits, such as stability, interaction affinity, and selectivity. How such often opposing traits are encoded in a macromolecular system is critical to our understanding of evolutionary processes and ability to design new molecules with desired functions. We present a framework for constraining design simulations to balance different physical characteristics. Each trait is represented by the equilibrium fractional occupancy of the desired state relative to its alternatives, ranging from none to full occupancy, and the different traits are combined using Boolean operators to effect a "fuzzy"-logic language for encoding any combination of traits. In another paper, we presented a new combinatorial backbone design algorithm AbDesign where the fuzzy-logic framework was used to optimize protein backbones and sequences for both stability and binding affinity in antibody-design simulation. We now extend this framework and find that fuzzy-logic design simulations reproduce sequence and structure design principles seen in nature to underlie exquisite specificity on the one hand and multispecificity on the other hand. The fuzzy-logic language is broadly applicable and could help define the space of tolerated and beneficial mutations in natural biomolecular systems and design artificial molecules that encode complex characteristics. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
A novel fuzzy-logic control strategy minimizing N2O emissions
DEFF Research Database (Denmark)
Boiocchi, Riccardo; Gernaey, Krist; Sin, Gürkan
2017-01-01
was implemented using the fuzzy logic approach. It was comprehensively tested for different model structures and different sets of model parameters with regards to its ability of mitigating N2O emissions for future applications in real wastewater treatment plants. It is concluded that the control strategy...
Bayekolaei, Mehraneh Delaviz; Nor, Norjoharuddeen Bin Mohd; Sohaei, Reza; Berneti, Abdul Karim Maleki; Zerafat, Romina; Saravi, Hanieh Rasouli
2015-01-01
This research aimed to examine the application of two-valued and fuzzy logics teaching in better understanding the precise approximate concepts of chapter 4 of Sixth grade mathematics. Participants of this study were 30 Sixth grade mathematics students from an elementary school in Sari (a city in the north of Iran) in the academic year of…
Implementation of fuzzy logic for mitigating conflicts of frequency containment control
DEFF Research Database (Denmark)
Rikos, Evangelos; Syed, Mazheruddin; Caerts, Chris
2017-01-01
imposed by different system conditions. To this end, a design method based on fuzzy logic for avoiding conflicts caused from these conditions or multiple control loops implemented on the same resource is proposed. Simulation results for various selected scenarios and controllers show the effectiveness...
Fuzzy Logic Control of an Induction Motor Compared with PI Contro ...
African Journals Online (AJOL)
In this work, a model of fuzzy logic controller (FLC) was designed to regulate the speed of a 3-phase squirrel cage induction motor. The model was created in Simulink and simulated in MATLAB environment. The motor was tested at speeds of 120 rad/sec and 140 rad/sec under no-load condition and simulation results were ...
DEFF Research Database (Denmark)
Abootorabi Zarchi, Hossein; Jónsson, Ragnar Ingi; Blanke, Mogens
2009-01-01
detection and hypothesis testing applied on activity sensor data. This paper enhances earlier method by employing fuzzy logic technique to classify oestrus alerts from a model-based detection method utilising the cyclic nature of oestrus. Based on the distribution of the trait period since last detected...
Fuzzy logic congestion control in IEEE 802.11 wireless local area networks: A performance evaluation
CSIR Research Space (South Africa)
Nyirenda, CN
2007-09-01
Full Text Available to the wireless network. Therefore, the implementation of a congestion control mechanism in Access Points promises to be a suitable solution. Recently, a particle swarm optimized Fuzzy Logic Congestion Detection (FLCD) was proposed for IP networks. This algorithm...
DEFF Research Database (Denmark)
Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist
2013-01-01
This contribution explores the use of diagnosis and control modules based on fuzzy set theory and logic for bioreactor monitoring and control. With this aim, two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information...
Controlling the Power Output of a Nuclear Reactor with Fuzzy Logic
Ruan, D.; Wal, A.J. van der
1997-01-01
The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations
a fuzzy logic approach to non-linearity problem of load frequency
African Journals Online (AJOL)
user
2016-07-03
Jul 3, 2016 ... Keywords: fuzzy logic control, Area control error (ACE), power system control, load frequency control, Artificial intelligence. 1. INTRODUCTION. Power system is an interconnection of generating ... quality of the electric power system requires both the frequency and voltage to remain at standard values.
Controlling the power output of a nuclear reactor with fuzzy logic
Ruan, D.; Wal, A.J. van der
1998-01-01
The application of fuzzy logic control (FLC) in the domain of nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Uncovering transcriptional interactions via an adaptive fuzzy logic approach.
Chuang, Cheng-Long; Hung, Kenneth; Chen, Chung-Ming; Shieh, Grace S
2009-12-06
To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM) performed poorly in inferring transcriptional interactions (TIs), which represent physical interactions between transcription factors (TF) and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM) was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning) fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF), and using 19 transcription factors (TFs), we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. AdaFuzzy successfully integrates multiple types of data (sequence, ChIP, and microarray) to predict
Uncovering transcriptional interactions via an adaptive fuzzy logic approach
Directory of Open Access Journals (Sweden)
Chen Chung-Ming
2009-12-01
Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of
Fuzzy logic controllers for electrotechnical devices - On-site tuning approach
Hissel, D.; Maussion, P.; Faucher, J.
2001-12-01
Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.
Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization
Castillo, Oscar; Kacprzyk, Janusz
2015-01-01
This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...
Fuzzy logic augmentation of nature-inspired optimization metaheuristics theory and applications
Melin, Patricia
2015-01-01
This book describes recent advances on fuzzy logic augmentation of nature-inspired optimization metaheuristics and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in two main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic augmentation of nature-inspired optimization metaheuristics, which basically consists of papers that propose new optimization algorithms enhanced using fuzzy systems. The second part contains papers with the main theme of application of optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application.
Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater.
Yetilmezsoy, Kaan
2012-07-01
A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy
Girola Schneider, R.
2017-07-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
Fuzzy Logic Water Quality Index and Importance of Water Quality Parameters
Directory of Open Access Journals (Sweden)
Raman Bai. V
2009-01-01
Full Text Available Determination of status of water quality of a river or any other water sources is highly indeterminate. It is necessary to have a competent model to predict the status of water quality and to advice for type of water treatment for meeting different demands. One such model (UNIQ2007 is developed as an application software in water quality engineering. The unit operates in a fuzzy logic mode including a fuzzification engine receiving a plurality of input variables on its input and being adapted to compute membership function parameters. A processor engine connected downstream of the fuzzification unit will produce fuzzy set, based on fuzzy variable viz. DO, BOD, COD, AN, SS and pH. It has a defuzzification unit operative to translate the inference results into a discrete crisp value of WQI. The UNIQ2007 contains a first memory device connected to the fuzzification unit and containing the set of membership functions, a secondary memory device connected to the defuzzification unit and containing the set of crisp value which appear in the THEN part of the fuzzy rules and an additional memory device connected to the defuzzification unit. More advantageously, UINQ2007 is constructed with control elements having dynamic fuzzy logic properties wherein target non-linearity can be input to result in a perfect evaluation of water quality. The development of the fuzzy model with one river system is explained in this paper. Further the model has been evaluated with the data from few rivers in Malaysia, India and Thailand. This water quality assessor probe can provide better quality index or identify the status of river with 90% perfection. Presently, WQI in most of the countries is referring to physic-chemical parameters only due to great efforts needed to quantify the biological parameters. This study ensures a better method to include pathogens into WQI due to superior capabilities of fuzzy logic in dealing with non-linear, complex and uncertain systems.
Improving Object-Oriented Methods by using Fuzzy Logic
Marcelloni, Francesco; Aksit, Mehmet
2000-01-01
Object-oriented methods create software artifacts through the application of a large number or rules. Rules are typically formulated in two-valued logic. There are a number of problems on how rules are defined and applied in current methods. First, two-valued logic can capture completely neither
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.
Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.
Mzenda, Bongile; Gegov, Alexander; Brown, David J; Petrov, Nedyalko
2012-01-01
This study investigates the feasibility of using Artificial Neural Network (ANN) and fuzzy logic based techniques to select treatment margins for dynamically moving targets in the radiotherapy treatment of prostate cancer. The use of data from 15 patients relating error effects to the Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) radiobiological indices was contrasted against the use of data based on the prostate volume receiving 99% of the prescribed dose (V99%) and the rectum volume receiving more than 60Gy (V60). For the same input data, the results of the ANN were compared to results obtained using a fuzzy system, a fuzzy network and current clinically used statistical techniques. Compared to fuzzy and statistical methods, the ANN derived margins were found to be up to 2 mm larger at small and high input errors and up to 3.5 mm larger at medium input error magnitudes.
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
A Fuzzy Logic-Based Video Subtitle and Caption Coloring System
Directory of Open Access Journals (Sweden)
Mohsen Davoudi
2012-01-01
Full Text Available An approach has been proposed for automatic adaptive subtitle coloring using fuzzy logic-based algorithm. This system changes the color of the video subtitle/caption to “pleasant” color according to color harmony and the visual perception of the image background colors. In the fuzzy analyzer unit, using RGB histograms of background image, the R, G, and B values for the color of the subtitle/caption are computed using fixed fuzzy IF-THEN rules fully driven from the color harmony theories to satisfy complementary color and subtitle-background color harmony conditions. A real-time hardware structure has been proposed for implementation of the front-end processing unit as well as the fuzzy analyzer unit.
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prediction total specific pore volume of geopolymers produced from waste ashes by fuzzy logic
Directory of Open Access Journals (Sweden)
Ali Nazari
2012-04-01
Full Text Available In the present work, total specific pore volume of inorganic polymers (geopolymers made from seeded fly ash and rice husk bark ash has been predicted by fuzzy logic. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activator made of water glass and NaOH solution, were subjected to porosimetry tests at 7 and 28 days of curing. The curing regime was different: one set of the specimens were cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 hours at the range of 40-90 °C and then cured at room temperature until 7 and 28 days. A model based on fuzzy logic for predicting the total specific pore volume of the specimens has been presented. To build the model, training and testing using experimental results from 120 specimens were conducted. The used data as the inputs of fuzzy logic models are arranged in a format of six parameters that cover the percentage of fine fly ash in the ashes mixture, the percentage of coarse fly ash in the ashes mixture, the percentage of fine rice husk bark ash in the ashes mixture, the percentage of coarse rice husk bark ash in the ashes mixture, the temperature of curing and the time of water curing. According to the input parameters, in the fuzzy logic model, the pore volume of each specimen was predicted. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the total specific pore volume of the geopolymer specimens in the considered range.
Energy Technology Data Exchange (ETDEWEB)
Costa, Herbert R. do N.
1998-02-01
This work shows a study on the using of fuzzy control algorithms for the energy optimization of a standard building. The simulation of this type of control was performed using a central conditioned air model and the fuzzy control architecture already used in various control projects. This situation allowed a comparative study among the the control algorithms normally used in conditioned air installations, and the control performed through the building automation system, using an algorithm based on fuzzy logic.
Energy Technology Data Exchange (ETDEWEB)
Santos, Francisco Carlos B. dos; Carneiro, Alvaro Luiz Guimaraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo - SP (Brazil)], E-mails: fcarlos@usp.br, carneiro@ipen.br
2010-11-15
Aggregation tools database and subsequent interpretation are the most challenge in the area of sustainability This task becomes very complex due to correlation of topics that comprise the dimensions that form the basis of the concept of sustainable development. The technique known as Fuzzy Logic or Fuzzy Logic is a powerful tool to capture information on vacancies, which is often the only information available in the area of sustainability. (author)
Construction of a fuzzy and Boolean logic gates based on DNA.
Zadegan, Reza M; Jepsen, Mette D E; Hildebrandt, Lasse L; Birkedal, Victoria; Kjems, Jørgen
2015-04-17
Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA-based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA-based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Algebraic Hyperstructures and Fuzzy Logic in the Treatment of Uncertainty
Directory of Open Access Journals (Sweden)
Antonio Maturo
2016-09-01
Full Text Available This study presents some fundamental aspects of recent theories on algebraic Hyperstructures, an important tool for an interdisciplinary vision of Geometry and Algebra. We examine some hypergroupoids of events, useful for a new algebraic-geometry perspective in the study and issues of probability applications. This paper considers some fundamental aspects of fuzzy classifications and their applications to problems of evaluation and decision in Architecture and Economics. Finally, we present hypergroups and join space associated with these classifications. Iperstrutture algebriche e logica fuzzy nel trattamento dell’incertezza Si presentano alcuni aspetti fondamentali della relativamente recente teoria delle iperstrutture algebriche, importante strumento per una visione interdisciplinare di Geometria e Algebra. Si esaminano alcuni ipergruppoidi di eventi, utili per un nuovo punto di vista algebrico - geometrico nello studio e nelle applicazioni di alcune questioni di probabilità. Si considerano alcuni aspetti fondamentali delle classificazioni fuzzy e le loro applicazioni a problemi di valutazione e decisione in Architettura e in Economia. Si presentano infine ipergruppi e join space associati a tali classificazioni. Parole Chiave: Iperstrutture algebriche. Logica fuzzy. Applicazioni a Architettura e Economia.
use of fuzzy logic to investigate weather parameter impact
African Journals Online (AJOL)
user
2016-07-03
Jul 3, 2016 ... Neural Network”, M. Eng Thesis, Department of. Electrical Engineering, University of Nigeria. Nsukka, July 2012, pp. 1-119. [2]. Swaroop, R. and. Hussein, A. A. “Load forecasting for power system planning using fuzzy-neural network”, Proceeding of the World Congress on. Engineering and Computer ...
Implementation of Fuzzy Logic Based Temperature-Controlled Heat ...
African Journals Online (AJOL)
This paper discusses the performance analysis of a heat exchanger using simulations for an Adaptive Network based Fuzzy Inference System toolbox developed with MATLAB. The plant transfer function is derived based on process reaction curve obtained from a heat exchanger pilot plant and then the model is used to ...
Application of fuzzy logic in the control of polymerization reactors
Roffel, B.; Chin, P.A.
1993-01-01
Polymer reactors are ideal candidates for the application of fuzzy control. Many polymerization reactions are difficult to model, process measurements are often only available from laboratory analysis at infrequent time intervals and trace impurities can have a marked effect on the reaction. All
Building Better Discipline Strategies for Schools by Fuzzy Logics
Chang, Dian-Fu; Juan, Ya-Yun; Chou, Wen-Ching
2014-01-01
This study aims to realize better discipline strategies for applying in high schools. We invited 400 teachers to participate the survey and collected their perceptions on the discipline strategies in terms of the acceptance of strategies and their effectiveness in schools. Based on the idea of fuzzy statistics, this study transformed the fuzzy…
Fuzzy Logic Based MPPT Controller for a PV System
Directory of Open Access Journals (Sweden)
Carlos Robles Algarín
2017-12-01
Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.
Integrated fuzzy logic based intelligent control of three tank system
Directory of Open Access Journals (Sweden)
Suresh Maruthai
2009-01-01
Full Text Available An attempt has been made in this paper to analyze the efficiency of an intelligent fuzzy controller (IFLC on three tank level system. Analysis of the effects studied through computer simulation using Matlab/Simulink toolbox show that the application of IFLC appears to be encouraging in the sense that it is robust in disturbance rejection under various conditions.
A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.
Sun, Zhan-Li; Au, Kin-Fan; Choi, Tsan-Ming
2007-10-01
This paper investigates the feasibility of applying a relatively novel neural network technique, i.e., extreme learning machine (ELM), to realize a neuro-fuzzy Takagi-Sugeno-Kang (TSK) fuzzy inference system. The proposed method is an improved version of the regular neuro-fuzzy TSK fuzzy inference system. For the proposed method, first, the data that are processed are grouped by the k-means clustering method. The membership of arbitrary input for each fuzzy rule is then derived through an ELM, followed by a normalization method. At the same time, the consequent part of the fuzzy rules is obtained by multiple ELMs. At last, the approximate prediction value is determined by a weight computation scheme. For the ELM-based TSK fuzzy inference system, two extensions are also proposed to improve its accuracy. The proposed methods can avoid the curse of dimensionality that is encountered in backpropagation and hybrid adaptive neuro-fuzzy inference system (ANFIS) methods. Moreover, the proposed methods have a competitive performance in training time and accuracy compared to three ANFIS methods.
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles
Directory of Open Access Journals (Sweden)
Ahcene Farah
2002-06-01
Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles with more autonomy and intelligence is discussed. Second, the system for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.
Fuzzy logic control of self excited doubly-fed induction generator
Energy Technology Data Exchange (ETDEWEB)
Radaideh, S.M.; Alwash, S.R.; Albatran, S.A. [Jordan Univ. of Science and Technology, Irbid (Jordan)
2010-03-09
A doubly-fed induction generator (DFIG) is the preferred solution for limited variable speed systems, particularly in wind energy systems. This paper considered DFIG for use with flywheel energy systems, stand alone diesel systems, pumped storage power plants, small hydro energy systems, and for wind turbines. Three fuzzy logic controllers which were used to enhance the performance of the self excited doubly-fed induction generator (SEDFIG) were presented along with a mathematical model of SEDFIG. The study considered the terminal voltage; the generated power; and the DC voltage. The study considered 3 fuzzy logic controllers, notably a fuzzy PI controller of the terminal voltage, a fuzzy PD controller of the generated power and a fuzzy PD controller of the DC voltage with integral controller as feedback. A static var compensator was used as a reactive power source which regulated the terminal voltage. According to simulation results, the SEDFIG system was stable and could restore to its normal operation following an electrical fault. 17 refs., 3 tabs., 13 figs., 1 appendix.
Energy Technology Data Exchange (ETDEWEB)
Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M. [Universidad Nacional Autonoma de Mexico - Facultad de Ingenieria (Mexico); Palomera, M.A. [Universidad Nacional Autonoma de Mexico - Instituto de Investigaciones en Matematicas Aplicadas y Sistema, Mexico, D. F. (Mexico)
2005-07-01
In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)
Prediction of Secondary Dendrite Arm Spacing in Squeeze Casting Using Fuzzy Logic Based Approaches
Directory of Open Access Journals (Sweden)
Patel M.G.C.
2015-03-01
Full Text Available The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy system and the second approach deals with automatic evolution of the Takagi and Sugeno’s fuzzy system. It is important to note that the performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations. The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource consuming.
Machining analysis of natural fibre reinforced composites using fuzzy logic
Balasubramanian, K.; Sultan, M. T. H.; Cardona, F.; Rajeswari, N.
2016-10-01
In this work, a new composite plate with natural jute fibre as the reinforcement fibres and isophthalic polyester as the resin was manufactured and subjected to a series of end milling operation by changing three input factors namely speed, feed rate and depth of cut. During each operation, the output responses namely thrust force and torque were measured. The responses were analyzed using Taguchi method to examine the relation between the input factors and output responses, and also to know the most influencing factors on the responses. The data was also analyzed using fuzzy rule model for prediction of responses for a range of input factors. The results showed that all three factors chosen have significant effect on the responses. The fuzzy model data in comparison with the experimental values shows only a marginal error and hence the prediction was highly satisfactory.
An adaptive fuzzy logic controller for robot-manipulator
Directory of Open Access Journals (Sweden)
Tran Thu Ha
2008-11-01
Full Text Available In this paper, an adaptive fuzzy controller is designed for the robot-manipulator. The synthesized controller ensures that 1 the close-loop system is globally stable and 2 the tracking error converges to zero asymptotically and a cost function is minimized. The fuzzy controller is synthesized from a collection of IF-THEN rules. The parameters of the membership functions characterizing the linguistic terms change according to some adaptive law for the purpose of controlling a plant to track a reference trajectory. The proposed control scheme is demonstrated in a typical nonlinear plant two link manipulator. The computer simulation of control is done by the language MATLAB. The results of simulation show that the adaptipresented results are analyzed.
Improved Gravitational Search Algorithm (GSA Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Omid Mokhlesi
2013-04-01
Full Text Available Researchers tendency to use different collective intelligence as the search methods to optimize complex engineering problems has increased because of the high performance of this algorithms. Gravitational search algorithm (GSA is among these algorithms. This algorithm is inspired by Newton's laws of physics and gravitational attraction. Random masses are agents who have searched for the space. This paper presents a new Fuzzy Population GSA model called FPGSA. The proposed method is a combination of parametric fuzzy controller and gravitational search algorithm. The space being searched using this combined reasonable and accurate method. In the collective intelligence algorithms, population size influences the final answer so that for a large population, a better response is obtained but the algorithm execution time is longer. To overcome this problem, a new parameter called the dispersion coefficient is added to the algorithm. Implementation results show that by controlling this factor, system performance can be improved.
CONTROL TEMPERATURE ON PLANT BABY INCUBATOR WITH FUZZY LOGIC
Noor Yulita Dwi Setyaningsih; Alif Catur Murti
2016-01-01
Inkubator bayi merupakan salah satu media medis yang digunakan untuk menjaga kondisi suhu dari bayi prematur atau bayi yang baru lahir. Suhu merupakan salah satu faktor yang sangat penting untuk dijaga bagi bayi baru lahir, karena kondisi bayi baru lahir yang tidak stabil dan belum bisa melakukan produksi panas sendiri untuk menghangatkan tubuhnya dan memproduksi panas untuk menjaga kestabilan tubuhnya. Kendali logika fuzzy digunakan untuk mengendalikan suhu pada penelitian ini, karena kebutu...
Penggunaan Metode Fuzzy Logic untuk Pemantauan Sentimen Brand pada Media Sosial
Beki Subaeki, Fatkhan Gunawan, Aldy Rialdy Atmadja
2017-01-01
The purpose of this research is to monitor the sentiments of a brand and classify it into positive, negative or neutral sentiments. The steps of research have started from collecting data, indexing, searching and weighting process. Data are collected by crawling data from social media, such as Facebook and Twitter. After collecting data, then weighting process is done with a fuzzy logic method, where the fuzzy set is determined based on the highest number of positive and negative words in a ...
FUZZY LOGIC CONTROLLED SWITCHED RELUCTANCE MOTOR DRIVER DESIGNING FOR A LIFT SYSTEM
Directory of Open Access Journals (Sweden)
Mahir DURSUN
2006-02-01
Full Text Available In this study, a 8/6 poles, four phases, 3.44 kW switched reluctance motor driver was used for a elavator load. For this aim, it has been designed a swithed reluctance motor driver for a lift system. At the driver system was used a buck konverter. The speed was controlled by motor phase voltage control. The voltage value has been controlled with fuzzy logic controller by using TMS320LF2407 controller. Fuzzy controlled switched reluctance motor was used for a elavator load by using designed driver system.
A hybrid algorithm and its applications to fuzzy logic modeling of nonlinear systems
Wang, Zhongjun
System models allow us to simulate and analyze system dynamics efficiently. Most importantly, system models allow us to make prediction about system behaviors and to perform system parametric variation analysis without having to build the actual systems. The fuzzy logic modeling technique has been successfully applied in complex nonlinear system modeling such as unsteady aerodynamics modeling etc. recently. However, the current forward search algorithm to identify fuzzy logic model structures is very time-consuming. It is not unusual to spend several days or even a few weeks in computer CPU time to obtain better nonlinear system model structures by this forward search. Moreover, how to speed up the fuzzy logic model parameter identification process is also challenging when the number of influencing variables of nonlinear systems is large. To solve these problems, a hybrid algorithm for the nonlinear system modeling is proposed, formalized, implemented, and evaluated in this dissertation. By combining the fuzzy logic modeling technique with genetic algorithms, the developed hybrid algorithm is applied to both fuzzy logic model structure identification and model parameter identification. In the model structure identification process, the hybrid algorithm has the ability to find feasible structures more efficiently and effectively than the forward search. In the model parameter identification process (by using Newton gradient descent algorithm), the proposed hybrid algorithm incorporates genetic search algorithm to dynamically select convergence factors. It has the advantages of quick search yet maintains the monotonically convergent properties of the Newton gradient descent algorithm. To evaluate the properties of the developed hybrid algorithm, a nonlinear, unsteady aerodynamic normal force model with a complex system involving fourteen influencing variables is established from flight data. The results show that this hybrid algorithm can identify the aerodynamic
Santos, Sandra A; de Lima, Helano Póvoas; Massruhá, Silvia M F S; de Abreu, Urbano G P; Tomás, Walfrido M; Salis, Suzana M; Cardoso, Evaldo L; de Oliveira, Márcia Divina; Soares, Márcia Toffani S; Dos Santos, Antônio; de Oliveira, Luiz Orcírio F; Calheiros, Débora F; Crispim, Sandra M A; Soriano, Balbina M A; Amâncio, Christiane O G; Nunes, Alessandro Pacheco; Pellegrin, Luiz Alberto
2017-08-01
One of the most relevant issues in discussion worldwide nowadays is the concept of sustainability. However, sustainability assessment is a difficult task due to the complexity of factors involved in the natural world added to the human interference. In order to assess the sustainability of beef ranching in complex and uncertain tropical environment systems this paper describes a decision support system based on fuzzy rule-approach, the Sustainable Pantanal Ranch (SPR). This tool was built by a set of measurements and indicators integrated by fuzzy logic to evaluate the attributes of the three dimensions of sustainability. Indicators and decision rules, as well as scenario evaluations, were obtained from workshops involving multi-disciplinary team of experts. A Fuzzy Rule-Based System (FRBS) was developed to each attribute, dimension and general index. The essential parts of the FRBS are the knowledge database, rules and the inference engine. The FuzzyGen and WebFuzzy tools were developed to support the FRBS and both showed efficiency and low cost for digital applications. The results of each attribute, dimension and index were presented as radar graphs, showing the individual value (0-10) of each indicator. In the validation process using the WebFuzzy, different combinations of indicators were made for each attribute index to show the corresponding output, and which confirm the feasibility and usability of the tool. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olivero, Jesús; Márquez, Ana L; Real, Raimundo
2013-01-01
This study uses the amphibian species of the Mediterranean basin to develop a consistent procedure based on fuzzy sets with which biogeographic regions and biotic transition zones can be objectively detected and reliably mapped. Biogeographical regionalizations are abstractions of the geographical organization of life on Earth that provide frameworks for cataloguing species and ecosystems, for answering basic questions in biogeography, evolutionary biology, and systematics, and for assessing priorities for conservation. On the other hand, limits between regions may form sharply defined boundaries along some parts of their borders, whereas elsewhere they may consist of broad transition zones. The fuzzy set approach provides a heuristic way to analyse the complexity of the biota within an area; significantly different regions are detected whose mutual limits are sometimes fuzzy, sometimes clearly crisp. Most of the regionalizations described in the literature for the Mediterranean biogeographical area present a certain degree of convergence when they are compared within the context of fuzzy interpretation, as many of the differences found between regionalizations are located in transition zones, according to our case study. Compared with other classification procedures based on fuzzy sets, the novelty of our method is that both fuzzy logic and statistics are used together in a synergy in order to avoid arbitrary decisions in the definition of biogeographic regions and transition zones.
Fuzzy logic resource manager: real-time adaptation and self-organization
Smith, James F., III
2004-08-01
A fuzzy logic expert system has been developed that automatically allocates electronic attack (EA) resources distributed over different platforms in real-time. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The resource manager (RM) is made up of five parts, the isolated platform model, the multi-platform decision tree, the fuzzy EA model, the fuzzy parameter selection tree and the fuzzy strategy tree. The platforms are each controlled by their own copy of the RM allowing them to automatically work together, i.e., they self-organize through communication without the need of a central commander. A group of platforms working together will automatically show desirable forms of emergent behavior, i.e., they will exhibit desirable behavior that was never explicitly programmed into them. This is important since it is impossible to have a rule covering every possible situation that might be encountered. An example of desirable emergent behavior is discussed as well as a method using a co-evolutionary war game for eliminating undesirable forms of behavior. The RM"s ability to adapt to changing situations is enhanced by the fuzzy parameter selection tree. Tree structure is discussed as well as various related examples.
Energy Technology Data Exchange (ETDEWEB)
Scheltinga, L. [ed.
1996-12-01
A brief overview of the application of fuzzy logic in electric power technology is given, based on a symposium , organized by the `Noordelijke Hogeschool` (polytechnic school) in Leeuwarden, Netherlands
Directory of Open Access Journals (Sweden)
Era Purwanto
2010-10-01
Full Text Available In response to concerns about energy cost, energy dependence, and environmental damage, a rekindling of interest in electric vehicles (EV’s has been obvious. Thus, the development of power electronics technology for EV’s will take an accelerated pace to fulfill the market needs, regarding with the problem in this paper is presented development of fuzzy logic inverter in induction motor control for electric vehicle propulsion. The Fuzzy logic inverter is developed in this system to directed toward developing an improved propulsion system for electric vehicles applications, the fuzzy logic controller is used for switching process. This paper is describes the design concepts, configuration, controller for inverter fuzzy logic and drive system is developed for this high-performance electric vehicle.
Energy Technology Data Exchange (ETDEWEB)
Amaral, Jose Franco Machado do [Universidade do Estado, Rio de Janeiro, RJ (Brazil); Amaral, Jorge Luis Machado do [Amsys Eletronica e Sistemas Ltda, Rio de Janeiro, RJ (Brazil)
1998-07-01
This work presents an example of an application that uses fuzzy logic and general purpose programmable logic controllers (PLCs) to implement the control of temperature. A high level (linguistic) model for the system is shown and the control strategy is expressed in a set of IF-THEN rules. A program for a micro-PLC implements the control logic based on the rules. Experimental data are shown and demonstrates that is possible to implement fuzzy logic control techniques in low cost micro-PLCs with good results. (author)
A first course in fuzzy logic, fuzzy dynamical systems, and biomathematics theory and applications
de Barros, Laécio Carvalho; Lodwick, Weldon Alexander
2017-01-01
This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical...
Bsma, R.; Kaymak, U.; Van den Berg, J.; Udo, H.
2010-01-01
To reveal farmers’ motives for on-farm diversification and integration of farming components in the Mekong Delta, Vietnam, we developed a fuzzy logic model (FLM) using a 10-step approach. Farmers’ decision-making was mimicked in a three-layer hierarchical architecture of fuzzy inference systems,
R. Bosma (Roel); U. Kaymak (Uzay); J.H. van den Berg (Jan); H. Udo (Henk); J. Verreth (Johan)
2011-01-01
textabstractTo reveal farmers' motives for on-farm diversification and integration of farming components in the Mekong Delta, Vietnam, we developed a fuzzy logic model (FLM) using a 10-step approach. Farmers' decision-making was mimicked in a three-layer hierarchical architecture of fuzzy inference
Applying Fuzzy Logic Techniques in Object-Oriented Software Development
Marcelloni, Francesco; Aksit, Mehmet
1997-01-01
In the last several years, a considerable number of object-oriented methods have been introduced to create robust, reusable and adaptable software systems [1], [2], [3], [4]. Object-oriented methods define a considerable number of rules which are generally expressed by using two-valued logic. For
Directory of Open Access Journals (Sweden)
G. Sakthivel
2010-10-01
Full Text Available Fuzzy logic control has met with growing interest in many motor control applications due to its non-linearity, handling features and independence of plant modelling. The hardware implementation of fuzzy logic controller (FLC on FPGA is very important because of the increasing number of fuzzy applications requiring highly parallel and high speed fuzzy processing. Implementation of a fuzzy logic controller and conventional PI controller on an FPGA using VHDL for DC motor speed control is presented in this paper. The proposed scheme is to improve tracking performance of D.C. motor as compared to the conventional (PI control strategy .This paper describes the hardware implementation of two inputs (error and change in error, one output fuzzy logic controller based on PI controller and conventional PI controller using VHDL. Real time implementation FLC and conventional PI controller is made on Spartan-3A DSP FPGA (XC3SD1800A FPGA for the speed control of DC motor. It is observed that fuzzy logic based controllers give better responses than the conventional PI controller for the speed control of dc motor.
Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.
2017-02-01
In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.
Methodology of analysis sustainable development of Ukraine by using the theory fuzzy logic
Directory of Open Access Journals (Sweden)
Methodology of analysis sustainable development of Ukraine by using the theory fuzzy logic
2016-02-01
Full Text Available Article objective is analysis of the theoretical and methodological aspects for the assessment of sustainable development in times of crisis. The methodical approach to the analysis of sustainable development territory taking into account the assessment of the level of economic security has been proposed. A necessity of development of the complex methodical approach to the accounting of the indeterminacy properties and multicriterial in the tasks to provide economic safety on the basis of using the fuzzy logic theory (or the fuzzy sets theory was proved. The results of using the method of fuzzy sets of during the 2002-2012 years the dynamics of changes dynamics of sustainable development in Ukraine were presented.
Sleep apnea detection using an adaptive fuzzy logic based screening system.
Morsy, Ahmed A; Al-Ashmouny, Khaled M
2005-01-01
We report an adaptive diagnostic system for the classification of breathing events for the purpose of detecting sleep apnea syndromes. The system employs two classification engines used in series. The first engine is fuzzy logic-based and generates one of three outcomes for each breathing event: normal, abnormal, and not-sure. The second classification engine is based on a center of gravity engine which is trained using the normal and abnormal events, generated by the first engine, and is specifically designed for sorting out the not-sure events. The fuzzy logic engine can be tuned very conservatively to reduce or eliminate the chance of error at the first stage. Since the second engine is trained adaptively using normal and abnormal data of the same patient, its accuracy is generally better than relying on multi-patient training approaches. The two-step, adaptive nature of the system allows for high accuracy and lends itself well for practical implementation.
Hansen, M; Haugland, M K
2001-01-01
Adaptive restriction rules based on fuzzy logic have been developed to eliminate errors and to increase stimulation safety in the foot-drop correction application, specifically when using adaptive logic networks to provide a stimulation control signal based on neural activity recorded from peripheral sensory nerve branches. The fuzzy rules were designed to increase flexibility and offer easier customization, compared to earlier versions of restriction rules. The rules developed quantified the duration of swing and stance phases into states of accepting or rejecting new transitions, based on the cyclic nature of gait and statistics on the current gait patterns. The rules were easy to custom design for a specific application, using linguistic terms to model the actions of the rules. The rules were tested using pre-recorded gait data processed through a gait event detector and proved to reduce detection delay and the number of errors, compared to conventional rules.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1994-01-01
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.
Fuzzy logic merger of spectral and ecological information for improved montane forest mapping.
White, Joseph D.; Running, Steven W.; Ryan, Kevin C.; Key, Carl H.
2002-01-01
Environmental data are often utilized to guide interpretation of spectral information based on context, however, these are also important in deriving vegetation maps themselves, especially where ecological information can be mapped spatially. A vegetation classification procedure is presented which combines a classification of spectral data from Landsat‐5 Thematic Mapper (TM) and environmental data based on topography and fire history. These data were combined utilizing fuzzy logic where assignment of each pixel to a single vegetation category was derived comparing the partial membership of each vegetation category within spectral and environmental classes. Partial membership was assigned from canopy cover for forest types measured from field sampling. Initial classification of spectral and ecological data produced map accuracies of less than 50% due to overlap between spectrally similar vegetation and limited spatial precision for predicting local vegetation types solely from the ecological information. Combination of environmental data through fuzzy logic increased overall mapping accuracy (70%) in coniferous forest communities of northwestern Montana, USA.
Development of Fuzzy Logic Tool to predict Wear Rate in Aluminum Composite
Prabha, Rajesh; Raja, Dhas. J. Edwin
2017-10-01
Industrial automation is the need of the hour. Success and failure of automation depends on the selection and efficient utilization of soft computing tools such as artificial neural network, expert systems, and fuzzy logic. This article explores the idea of constructing a fuzzy logic model to predict wear rate of fabricated composites under predetermined conditions of input variables such as applied load, sliding velocity and distance travelled. Taguchi design of experiments is employed for experimentation. 27 sets of experiments are performed by varying the parameters of applied load, sliding velocity and distance travelled. Experiment is repeated for average values of wear rate are measured to reduce experimental error. Matlab toolbox functions are used to build the model. Confirmatory experiments are done and the results are measured in terms of accuracy and time. It is found that the developed model predicts wear rate with acceptable limit. Hence the constructed model can be forwarded to predict wear rate of the developed composite under different conditions.
A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management
Wu, G. Gordon
1995-01-01
Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.
Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining
2015-01-01
In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%.
Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic
Directory of Open Access Journals (Sweden)
C. Ben Regaya
2014-01-01
Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.
FAULT DIAGNOSIS IN ROTATING MACHINE USING FULL SPECTRUM OF VIBRATION AND FUZZY LOGIC
Directory of Open Access Journals (Sweden)
ROGER R. DA SILVA
2017-11-01
Full Text Available Industries are always looking for more efficient maintenance systems to minimize machine downtime and productivity liabilities. Among several approaches, artificial intelligence techniques have been increasingly applied to machine diagnosis. Current paper forwards the development of a system for the diagnosis of mechanical faults in the rotating structures of machines, based on fuzzy logic, using rules foregrounded on the full spectrum of the machine´s complex vibration signal. The diagnostic system was developed in Matlab and it was applied to a rotor test rig where different faults were introduced. Results showed that the diagnostic system based on full spectra and fuzzy logic is capable of identifying with precision different types of faults, which have similar half spectrum. The methodology has a great potential to be implemented in predictive maintenance programs in industries and may be expanded to include the identification of other types of faults not covered in the case study under analysis.
A scene-based nonuniformity correction algorithm based on fuzzy logic
Huang, Jun; Ma, Yong; Fan, Fan; Mei, Xiaoguang; Liu, Zhe
2015-08-01
Scene-based nonuniformity correction algorithms based on the LMS adaptive filter are quite efficient to reduce the fixed pattern noise in infrared images. They are famous for their low cost of computation and storage recourses. Unfortunately, ghosting artifacts can be easily introduced in edge areas when the inter-frame motion slows. In this paper, a gated scene-based nonuniformity correction algorithm is proposed. A novel low-pass filter based on the fuzzy logic is proposed to estimate the true scene radiation as the desired signal in the LMS adaptive filter. The fuzzy logic can also evaluate the probability that a pixel and its locals belong to edge areas. Then the update of the correction parameters for the pixels in edge areas can be gated. The experiment results show that our method is reliable and the ghosting artifacts are reduced.
Brandão, Euzeli da Silva; dos Santos, Iraci; Lanzillotti, Regina Serrão; Moreira, Augusto Júnior
2013-08-01
The objective was to propose the use of Fuzzy Logic for recognition of comfort patterns in people undergoing a technology of nursing care because of pemphigus vulgaris, a rare mucocutaneous disease that affects mainly adults. The proposal applied experimental methods, with subjects undergoing a qualitative-quantitative comparison (taxonomy/relevance) of the comfort patterns before and after the intervention. A record of a chromatic scale corresponding to the intensity of each attribute was required: pain, mobility and impaired self-image. The Fuzzy rules established by an inference engine set the standard for comfort in maximum, median and minimum discomfort, reflecting the effectiveness of nursing care. Although rarely used in the area of nursing, this logic enabled viable research without a priori scaling of the number of subjects depending on the estimation of population parameters. It is expected to evaluate the pattern of comfort in the client with pemphigus, before the applied technology, in a personalized way, leading to a comprehensive evaluation.
Control allocation of ASV based on linear programming and fuzzy logic
Chi, Pei; Chen, Zongji; Zhou, Rui
2006-11-01
Future Aero Space Vehicle flies through both the atmospheric and extra atmospheric fields, which implies the autonomy and adaptability to the uncertainties from the system faults and changing environments. Algorithms based on fuzzy logic and linear programming are presented, which can implement the autonomous control reconfigurations under uncertainties via the redundant actuators. The compensation branch minimizes the difference between the desired control objectives and the actual achievable control if the control power is deficient. Otherwise the optimization branch optimizes some sub-objectives by utilizing the excess control power. The fuzzy logic-based regulator tunes the weight vector of the objective functions by the expert rules to obtain the optimized allocation results under various environments with considerations of the control effectiveness. It is illustrated that the algorithms can satisfy the control performance, save the fuel and smooth the allocation output.
A fuzzy logic model to forecast stock market momentum in Indonesia's property and real estate sector
Penawar, H. K.; Rustam, Z.
2017-07-01
The Capital market has the important role in Indonesia's economy. The capital market does not only support the economy of Indonesia but also being an indicator Indonesia's economy improvement. Something that has been traded in the capital market is stock (stock market). Nowadays, the stock market is full of uncertainty. That uncertainty values make predicting stock market is all that we have to do before we make a decision in the stock market. One that can be predicted in the stock market is momentum. To forecast stock market momentum, it can use fuzzy logic model. In the process of modeling, it will be used 14 days historical data that consisting the value of open, high, low, and close, to predict the next 5 days momentum categories. There are three momentum categories namely Bullish, Neutral, and Bearish. To illustrate the fuzzy logic model, we will use stocks data from several companies that listed on Indonesia Stock Exchange (IDX) in property and real estate sector.
Fuzzy Logic Based Speed Control System for ThreePhase Induction Motor
Directory of Open Access Journals (Sweden)
Marwan A. Badran
2013-05-01
Full Text Available Three-phase induction motors have been used in a wide range of industry applications. Using modern technology, the speed of induction motor can be easily controlled by variable frequency drives (VFDs. These drives use high speed power transistors with various switching techniques, mainly PWM schemes. For several decades, conventional control systems were applied to electric drives to control the speed of induction motor. Although conventional controllers showed good results, but they still need tuning to obtain optimum results. The recent proposed control systems use fuzzy logic controller (FLC to enhance the performance of induction motor drives. In this paper, a fuzzy logic based speed control system is presented. The proposed controller has been designed with MATLAB/SIMULINK software, and it was tested for various operating conditions including load disturbance and sudden change of reference speed. The results showed better performance of the proposed controller compared with the conventional PI controller.
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-02-10
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.
Hasanien, Hany M.; Al-Ammar, Essam A.
2012-11-01
Doubly fed induction generator (DFIG) based wind farm is today the most widely used concept. This paper presents dynamic response enhancement of DFIG based wind farm under remote fault conditions using the fuzzy logic controller. The goal of the work is to improve the dynamic response of DFIG based wind farm during and after the clearance of fault using the proposed controller. The stability of wind farm during and after the clearance of fault is investigated. The effectiveness of the fuzzy logic controller is then compared with that of a PI controller. The validity of the controllers in restoring the wind farms normal operation after the clearance of fault is illustrated by the simulation results which are carried out using MATLAB/SIMULINK. Simulation results are analyzed under different fault conditions.
Train velocity estimation method based on an adaptive filter with fuzzy logic
Pichlík, Petr; Zděnek, Jiří
2017-03-01
The train velocity is difficult to determine when the velocity is measured only on the driven or braked locomotive wheelsets. In this case, the calculated train velocity is different from the actual train velocity due to slip velocity or skid velocity respectively. The train velocity is needed for a locomotive controller proper work. For this purpose, an adaptive filter that is tuned by a fuzzy logic is designed and described in the paper. The filter calculates the train longitudinal velocity based on locomotive wheelset velocity. The fuzzy logic is used for the tuning of the filter according to actual wheelset acceleration and wheelset jerk. The simulation results are based on real measured data on a freight train. The results show that the calculated velocity corresponds to the actual train velocity.
Adaptively managing wildlife for climate change: a fuzzy logic approach.
Prato, Tony
2011-07-01
Wildlife managers have little or no control over climate change. However, they may be able to alleviate potential adverse impacts of future climate change by adaptively managing wildlife for climate change. In particular, wildlife managers can evaluate the efficacy of compensatory management actions (CMAs) in alleviating potential adverse impacts of future climate change on wildlife species using probability-based or fuzzy decision rules. Application of probability-based decision rules requires managers to specify certain probabilities, which is not possible when they are uncertain about the relationships between observed and true ecological conditions for a species. Under such uncertainty, the efficacy of CMAs can be evaluated and the best CMA selected using fuzzy decision rules. The latter are described and demonstrated using three constructed cases that assume: (1) a single ecological indicator (e.g., population size for a species) in a single time period; (2) multiple ecological indicators for a species in a single time period; and (3) multiple ecological conditions for a species in multiple time periods.
Location-aware News Recommendation System with Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Mehdi Nejati
2016-10-01
Full Text Available with release of a huge amount of news on the Internet and the trend of users to Web-based news services.it is necessary to have a recommendation system. To grab attentions to news, news services use a number of criteria that called news values and user location is an important factor for it. In this paper, LONEF is proposed as a tow stage recommendation system. In first stage news are ranked by user’s locations and in second stage news are recommended by location Preferences, recency, Trustworthiness, groups priorities and popularity. To reduce ambiguity these properties is used tow Mamdani fuzzy interference and case-based decision systems. In Mamdani fuzzy interference system, it is tried to increase the system speed by optimizing selection of rules and membership functions and because of ambiguous feedback implementation, a decision making system is used to enable better simulation of user’s activities. Performance of our proposed approach is demonstrated in the experiments on different news groups.
Fuzzy logic based risk assessment of effluents from waste-water treatment plants.
Cabanillas, Julián; Ginebreda, Antoni; Guillén, Daniel; Martínez, Elena; Barceló, Damià; Moragas, Lucas; Robusté, Jordi; Darbra, Rosa Ma
2012-11-15
This paper presents a new methodology to assess the risk of water effluents from waste-water treatment plants (WWTPs) based on fuzzy logic, a well-known theory to deal with uncertainty, especially in the environmental field where data are often lacking. The method has been tested using the effluent's pollution data coming from 22 waste-water treatment plants (WWTPs) located in Catalonia (NE Spain). Thirty-eight pollutants were analyzed along three campaigns performed yearly from 2008 to 2010. Whereas 9 compounds have been detected in more than 70% of the samples analyzed, 7 compounds have been found at levels equal or higher than the river Environmental Quality Standards set by the Water Framework Directive. Upon combination of both criteria (presence and concentration), compounds of greatest environmental concern in the WWTP studied are nickel, the herbicide diuron, and the endocrine disruptors nonyl and octylphenol. It is remarkable the low variability of the pollutant concentration just differing for the case of nickel and zinc. These low values of exposure together with other pollutants' characteristics provide a medium or low risk assessment for all the WWTPs. The results of this new method have been compared with COMMPS procedure, a solid method developed in the context of the Water Framework Directive, and they show that the fuzzy model is more conservative than COMMPS. This is due to different reasons: the fuzzy model takes into account the persistence of chemical compounds whereas COMMPS does not; the fuzzy model includes the weights provided by an expert group inquired in previous works and also considers the uncertainty of the environmental data, avoiding the crisp values and offering a range of overlapping between the different fuzzy sets. However, the results even if being more conservative with fuzzy logic, are in good agreement with a solid methodology such as the COMMPS procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
MAMMAR, Khaled; Chaker, Abdelkader
2010-01-01
This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...
speed control of dc motor on load using fuzzy logic controller
African Journals Online (AJOL)
HP
This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25. Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However ...
A fuzzy logic controller for hormone administration using an implantable pump
Coles, L. Stephen; Wells, George H., Jr.
1994-01-01
This paper describes the requirements for a Fuzzy Logic Controller for the physiologic administration of hormones by means of a FDA-approved surgically implantable infusion pump. Results of a LabVIEW computer simulation for the administration of insulin for diabetic adult patients as well as human growth hormone for pediatric patients are presented. A VHS video tape of the simulation in action has been prepared and is available for viewing.
Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.
2014-11-01
A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.
Directory of Open Access Journals (Sweden)
Rastović Danilo
2009-01-01
Full Text Available In earlier Rastovic's papers [1] and [2], the effort was given to analyze the stochastic control of tokamaks. In this paper, the deterministic control of tokamak turbulence is investigated via fractional variational calculus, particle in cell simulations, and fuzzy logic methods. Fractional integrals can be considered as approximations of integrals on fractals. The turbulent media could be of the fractal structure and the corresponding equations should be changed to include the fractal features of the media.
speed control of dc motor on load using fuzzy logic controller
African Journals Online (AJOL)
This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil system of the H25 Hitachi gas turbine generator. The turbine generator is required to run at an operating pressure of 1.5bar with the low and the high pressure trip points being 0.78 bar and 1.9 bar respectively. However, the ...
Increase efficiency CNC lathe with the help of fuzzy logic controller (FLC
Directory of Open Access Journals (Sweden)
Mošorinski Predrag R.
2016-01-01
Full Text Available This paper discusses the process of increasing the effectiveness of CNC lathe for carrying out the appropriate experiments. Experiments are related to the plastics processing machine and programming fuzzy logic controller (FLC for the requirements of machining. Input parameters of the FLCare obtained as a result of previous experimental parameters set by experience and with a great subjective impact of technologists. Expected results of FLC's settings are based on the complete autonomy of the process and eliminating subjective errors.
DSP Based Vector Control of Five-Phase Induction Using Fuzzy Logic Control
Zakaria Mohamed Salem
2012-01-01
Abstract - This paper proposes an indirect field oriented controller for five-phase induction motor drives. The controller is based on fuzzy logic control technique. Simulation is carried out by using the Matlab/Simulink package. A complete control system experimentally implemented using digital signal processing (DSP) board. The performance of the proposed system is investigated at different operating conditions. The proposed controller is robust and suitable to high performance five-phase i...
Voltage Source Inverter/Converter for the Improvement of Power Quality Using Fuzzy Logic Controller
T Jagan Mohan Rao; P Anil Kumar
2014-01-01
In recent years, the applications of power electronics have grown tremendously. These power electronic systems offer highly nonlinear characteristics. To overcome those non linearities active power filters are preferred. This paper presents and compares the performance of two controllers namely Fuzzy Logic and Proportional Integral (PI) applied to a voltage source inverter / converter which operates as an active power filter. The active power filter is operated to compensate h...
Secured Wireless Communication using Fuzzy Logic based High Speed Public-Key Cryptography (FLHSPKC)
Arindam Sarkar; J. K. Mandal
2012-01-01
In this paper secured wireless communication using fuzzy logic based high speed public-key cryptography (FLHSPKC) has been proposed by satisfying the major issues likes computational safety, power management and restricted usage of memory in wireless communication. Wireless Sensor Network (WSN) has several major constraints likes’ inadequate source of energy, restricted computational potentiality and limited memory. Though conventional Elliptic Curve Cryptography (ECC) which is a sort of publ...
Elimination & Mitigation of Sag & Swell Using a New UPQC-S Methodology & Fuzzy Logic Controller
Kanaka Raju Kalla,; Suneelgoutham Karudumpa
2014-01-01
This paper presents the enhancement of voltage sags, harmonic distortion and low power factor using Unified Power Quality Conditioner (UPQC) with Fuzzy Logic Controller in distribution system, The series inverter of UPQC is controlled to perform simultaneous 1) voltage sag/swell compensation and 2) load reactive power sharing with the shunt inverter. Since the series inverter simultaneously delivers active and reactive powers, this concept is named as UPQC-S (S for complex pow...
Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals.
Das, A; Reddy, N P; Narayanan, J
2001-02-01
Biological signals are complex and often require intelligent systems for recognition of characteristic signals. In order to improve the reliability of the recognition or automated diagnostic systems, hybrid fuzzy logic committee neural networks were developed and the system was used for recognition of swallow acceleration signals from artifacts. Two sets of fuzzy logic-committee networks (FCN) each consisting of seven member networks were developed, trained and evaluated. The FCN-I was used to recognize dysphagic swallow from artifacts, and the second committee FCN-II was used to recognize normal swallow from artifacts. Several networks were trained and the best seven were recruited into each committee. Acceleration signals from the throat were bandpass filtered, and several parameters were extracted and fed to the fuzzy logic block of either FCN-I or FCN-II. The fuzzified membership values were fed to the committee of neural networks which provided the signal classification. A majority opinion of the member networks was used to arrive at the final decision. Evaluation results revealed that FCN correctly identified 16 out of 16 artifacts and 31 out of 33 dysphagic swallows. In two cases, the decision was ambiguous due to the lack of a majority opinion. FCN-II correctly identified 24 out of 24 normal swallows, and 28 out of 29 artifacts. In one case, the decision was ambiguous due to the lack of a majority opinion. The present hybrid intelligent system consisting of fuzzy logic and committee networks provides a reliable tool for recognition and classification of acceleration signals due to swallowing.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Pancawati, Dian; Yulianto, Andik
2016-01-01
One solution to solve limited agricultural land is applying hydroponics Nutrient Film Technique (NFT). The advantage of NFT is using water circulated as a growing medium in order to obtain water, nutrients and oxygen to accelerate the growth of plants with good results. The most important parameter is the pH of nutrients. This article discusses how to design an automatic nutritional pH control system by implementing the method of Fuzzy Logic Controller. The control system use Arduino Mega2560...
Dian Pancawati; Andik Yulianto
2016-01-01
One solution to solve limited agricultural land is applying hydroponics Nutrient Film Technique (NFT). The advantage of NFT is using water circulated as a growing medium in order to obtain water, nutrients and oxygen to accelerate the growth of plants with good results. The most important parameter is the pH of nutrients. This article discusses how to design an automatic nutritional pH control system by implementing the method of Fuzzy Logic Controller. The control system use Arduino Mega2560...
Penggunaan Metode Fuzzy Logic untuk Pemantauan Sentimen Brand pada Media Sosial
Directory of Open Access Journals (Sweden)
Beki Subaeki, Fatkhan Gunawan, Aldy Rialdy Atmadja
2017-10-01
Full Text Available The purpose of this research is to monitor the sentiments of a brand and classify it into positive, negative or neutral sentiments. The steps of research have started from collecting data, indexing, searching and weighting process. Data are collected by crawling data from social media, such as Facebook and Twitter. After collecting data, then weighting process is done with a fuzzy logic method, where the fuzzy set is determined based on the highest number of positive and negative words in a sentence. Weighting process is calculated from TF (Term Frequency which is the number of words that sought in the document. From the results, TF can be used to find the fuzzy set value and the number of positive or negative sentiments in a document. Mamdani method used to calculate the value of the final sentiment. From the calculation results, it can be shown that the average of sentiment analysis is 63.15%. Keywords: Information, Sentiment analysis, brand, fuzzy logic, social media.
Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.
Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy
2010-02-01
This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.
Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
Energy Technology Data Exchange (ETDEWEB)
Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)
2014-03-15
Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.
Mauseth, Richard; Wang, Youqing; Dassau, Eyal; Kircher, Robert; Matheson, Donald; Zisser, Howard; Jovanoviĉ, Lois; Doyle, Francis J.
2010-01-01
Background Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating habits, daily schedule, and fear of and ability to detect hypoglycemia. Method We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for a particular patient. It utilizes the physician’s judgment and weighing of various factors. The personalization factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has discrete values of 1 through 5. The proposed method was developed using a database of results from 30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 children). Various meal sizes and timing were used to provide the physician information on which to base an initial dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient’s data at follow-up. Results Three examples of a wide variation in diabetes situations are given to illustrate the physician’s thought process when initially configuring the AP system for a specific patient. Conclusions Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC methodology allows for the real-time scaling of doses without compromising the integrity of the dosing rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development methodology. PMID:20663457
Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.
2013-12-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M
2016-01-01
To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost.
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.
Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H
2013-01-01
The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Upgrading fuzzy logic by GA-PS to determine asphaltene stability in crude oil
Directory of Open Access Journals (Sweden)
Saeid Ahmadi
2017-06-01
Full Text Available Precipitation and deposition of asphaltene are undesirable phenomena that arise during petroleum production which give rise to a pronounced rate of increase in operational cost and adversely affect production rates as well. Hence, it is imperative to develop a mathematical model for the assessment of asphaltene stability in crude oil. In the present study, delta RI which constitutes the difference between refractive index of crude oil (RI and refractive index of crude oil at the onset of asphaltene precipitation (PRI is employed as the principal factor for determining the asphaltene stability of the region. Fuzzy logic is a potent tool capable of extracting the underlying dependency between SARA fractions (saturate, aromatic, resin, and asphaltene data and delta RI for the inexpensive and rapid diagnosis of asphaltene stability. In this study a novel strategy known as hybrid genetic algorithm-pattern search (GA-PS is suggested for the development of an optimal fuzzy logic model as a reliable alternative for the widely-applied subtractive clustering (SC method. While SC solely optimizes mean of input Gaussian membership functions (GMFs, GA-PS tool optimizes both mean and variance of input GMFs. Comparison between GA-PS and SC methods confirmed the capability of GA-PS for developing an optimal fuzzy logic model.
Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations.
Trnka, Hjalte; Wu, Jian X; Van De Weert, Marco; Grohganz, Holger; Rantanen, Jukka
2013-12-01
Freeze-drying of peptide and protein-based pharmaceuticals is an increasingly important field of research. The diverse nature of these compounds, limited understanding of excipient functionality, and difficult-to-analyze quality attributes together with the increasing importance of the biosimilarity concept complicate the development phase of safe and cost-effective drug products. To streamline the development phase and to make high-throughput formulation screening possible, efficient solutions for analyzing critical quality attributes such as cake quality with minimal material consumption are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Fuzzy Logic Controlled DC-DC Converter Based Dynamic Voltage Restorer
Directory of Open Access Journals (Sweden)
Mustafa İnci
2015-12-01
Full Text Available This paper presents fuzzy logic controlled dc-dc boost converter based Dynamic Voltage Restorer (DVR to compensate severe voltage sag problems in an electrical system. DVR absorbs real power from battery to compensate voltage sags in the system. This condition causes reduction in voltage magnitude of dc-link capacitor. Additionally, DVR requires large dc capacitors to compensate long and severe voltage sags in the system. In this study, dc-dc boost converter is connected to DVR for keeping dc link voltage constant. For this propose, a control algorithm based on Fuzzy Logic (FL control is developed for dc-dc boost converter. The main contribution of this study is that Fuzzy Logic (FL is firstly used to generate reference signal for PWM signals of dc-dc converter applied in DVR. FL is a very flexible controller which keeps the dc link voltage constant during voltage sag. The performance results of proposed study are verified with PSCAD/EMDTC.
Directory of Open Access Journals (Sweden)
Abroon Jamal Qazi
2014-01-01
Full Text Available This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.
Hardware simulation of automatic braking system based on fuzzy logic control
Directory of Open Access Journals (Sweden)
Noor Cholis Basjaruddin
2016-07-01
Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.
Energy Technology Data Exchange (ETDEWEB)
Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic
2011-08-01
Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.
A Position Controller Model on Color-Based Object Tracking using Fuzzy Logic
Cahyo Wibowo, Budi; Much Ibnu Subroto, Imam; Arifin, Bustanul
2017-04-01
Robotics vision is applying technology on the camera to view the environmental conditions as well as the function of the human eye. Colour object tracking system is one application of robotics vision technology with the ability to follow the object being detected. Several methods have been used to generate a good response position control, but most are still using conventional control approach. Fuzzy logic which includes several step of which is to determine the value of crisp input must be fuzzification. The output of fuzzification is forwarded to the process of inference in which there are some fuzzy logic rules. The inference output forwarded to the process of defuzzification to be transformed into outputs (crisp output) to drive the servo motors on the X-axis and Y-axis. Fuzzy logic control is applied to the color-based object tracking system, the system is successful to follow a moving object with average speed of 7.35 cm/s in environments with 117 lux light intensity.
Directory of Open Access Journals (Sweden)
Benjamin W. Y. Lo
2013-01-01
Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Directory of Open Access Journals (Sweden)
Harun Akif Kabuk
2015-01-01
Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.
Digital Fuzzy logic and PI control of phase-shifted full-bridge current-doubler converter
DEFF Research Database (Denmark)
Török, Lajos; Munk-Nielsen, Stig
2011-01-01
Simple digital fuzzy logic voltage control of a phaseshifted full-bridge (PSFB) converter is proposed in this article. A comparison of the fuzzy controller and the classical PI voltage controller is presented and their effects on the converter dynamics are analyzed. Simulation model...... of the converter was built in Matlab/Simulink using PLECS. A 600W PSFB convert was designed and built and the control strategies were implemented in a 16 bit fixed point dsPIC microcontroller. The advantages and disadvantages of using Fuzzy logic control are highlighted....
A study on the effect of particle size on coal flotation kinetics using fuzzy logic
Energy Technology Data Exchange (ETDEWEB)
Abkhoshk, E.; Kor, M.; Rezai, B. [Shahrood University of Technology, Shahrood (Iran)
2010-07-15
This paper investigates the effect of particle size on the flotation kinetics of coal in a batch flotation cell. The relationship between flotation kinetics constant and theoretical flotation recovery with particle size was estimated with nonlinear equations. Analysis of variance shows that varying of particle size is statistically significant on kinetics constant with approximately 96.5% confidence level; however it is not significant on maximum theoretical flotation recovery (RI) in 95% confidence level. Using fuzzy logic method, a multi-input/single-output (MISO) fuzzy model with two input variables: particle size and time and one output variable: cumulative recovery was established to predict the effect of particle size on the flotation kinetics of coal in a batch flotation cell. Application of fuzzy model shows that the results of model fits well to the result of batch flotation and the fuzzy model can be applied to predict cumulative recovery of different coal particle size. The correlation coefficient (R{sup 2}) values of the proposed fuzzy model were 0.986. 0.993, 0.983, 0.977 and 0.972 for 37.5 {mu}m, 112.5 {mu}m, 225 {mu}m, 400 {mu}m and 625 {mu}m average particle sizes, respectively.
Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure
Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan
2017-01-01
This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.
Energy Technology Data Exchange (ETDEWEB)
Lohse, M.; Boening, T.; Hegemann, G. [Fachhochschule Muenster (Germany). Inst. fuer Abfall- und Abwasserwirtschaft e.V.
1999-07-01
Within the framework of a project sponsored by EUREGIO, test series with the biological activation stages of a German and a Dutch sewage treatment plant each are carried out using different process concepts for the control of oxygen supply by fuzzy logic. As the currently available results demonstrate, the developed fuzzy-logic fields of characteristic curves permit establishing a stable and, thus, little energy-consuming process with optimum oxygen supply in comparison with conventional control. (orig.) [German] Im Rahmen eines von der EUREGIO gefoerderten Forschungsprojektes werden Versuchsreihen im Bereich der biologischen Belebungsstufen einer deutschen und einer niederlaendischen Abwasserreinigungsanlage (ARA) mit unterschiedlichen Verfahrenskonzepten hinsichtlich der Regelung der Sauerstoffzufuhr mit Hilfe der Fuzzy-Logik Technik durchgefuehrt. Die bisherigen Versuchsergebnisse zeigen, dass - im Vergleich zur konventionellen Regelung - durch die entwickelten Fuzzy-Logik Kennfelder ein stabiler und damit energiearmer Prozess mit optimaler Sauerstoffzufuhr erzeugt wird. (orig.)
Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer
2013-06-01
Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.
Fuzzy logic for characterizing the moderate intensity of physical activity in children.
Zitouni, Djamel; Guinhouya, Benjamin C
2016-02-01
The aim of this study was to better characterize the moderate intensity of PA among children by applying fuzzy logic as the most appropriate analytical approach. In this perspective, the 6-MWT was selected as a pertinent exercise modality, which covers as a whole, this intensity level. Methodological study. Fuzzy logic was applied to accelerometer output obtained on 46 children aged 9-11 years. A fuzzy subset A was defined from the reference set E using a membership function (degree of truth). To adequately tap the moderate PA, a core of X¯±σ and a support of X¯±2σ (with X¯ the mean, and σ the standard deviation of the distribution) were selected. The walking speed during the exercise averaged 6.1±0.6kmh(-1) and the mean HR was 135±14bpm. The movement count (419±127 to 433±148 counts) exhibited no significant changes during the test. A value of 260 counts per 5-s (i.e., 3120cpm) had equally 50% of degree of truth to encompass both "light" and "moderate" intensities of PA. Results suggest that the cut-point of >2296cpm covers a low PA at 100% and a moderate PA at 0%. Fuzzy logic provides a robust basis to processing accelerometer data, and brings a reliable solution to the concern about the in-between of PA intensities. Its application to calibration studies should not support the use of a cut-point of about 2000cpm in children, and linguistic variables should now be preferred to numbered data in defining PA intensities. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Plasma position control in the STOR-M tokamak: A fuzzy logic approach
Morelli, Jordan Edwin
Adequate control of the position of the plasma column within the STOR-M tokamak is a chief requirement in order for experimental quality discharges to be obtained. Optimal control over tokamak discharge parameters, including the plasma position, is very difficult to achieve. This is due in large part to the difficulty in modelling the tokamak discharge parameters, as they are highly nonlinear and time varying in nature. The difficulty of modelling the tokamak discharge parameters suggests that a control system, such as a fuzzy logic based controller, which does not require a system model may be well suited to the control of fusion plasma. In order to improve the quality of control over the plasma position within the STOR-M tokamak, the existing analog PID controller was modified. These modifications facilitate the application of a digital controller by a personal computer via the Advantech PCL-711B data acquisition card. The performance of the modified plasma position controller and an Arbitrary Signal Generator developed by the author was evaluated. This modified plasma position controller was applied successfully to the STOR-M tokamak during both normal mode and A.C. mode operation. In both cases, the modified controller provided adequate control over the position of the plasma column within the discharge chamber. Furthermore, the modified controller was more convenient to optimize than the original, existing analog PID controller. By taking advantage of the modifications that were made to the plasma position controller, a fuzzy logic controller was developed by the author. The fuzzy logic based plasma position controller was also successfully applied to the STOR-M tokamak during both normal mode and A.C. operation. The fuzzy controller was demonstrated to reliably provide a higher degree of control over the position of the plasma column within the STOR-M tokamak than the modified PID controller.
Directory of Open Access Journals (Sweden)
Pimonov Alexander
2017-01-01
Full Text Available This paper presents the multipurpose approach to evaluation of research and innovation projects based on the method of analysis of hierarchies and fuzzy logics for the mining industry. The approach, implemented as part of a decision support system, can reduce the degree of subjectivity during examinations by taking into account both quantitative and qualitative characteristics of the compared innovative alternatives; it does not depend on specific conditions of examination and allows engagement of experts of various fields of knowledge. The system includes the mechanism of coordination of several experts’ views. Using of fuzzy logics allows evaluating the qualitative characteristics of innovations in the form of formalized logical conclusions.
Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization.
Miranda, Gisele Helena Barboni; Felipe, Joaquim Cezar
2015-09-01
Fuzzy logic can help reduce the difficulties faced by computational systems to represent and simulate the reasoning and the style adopted by radiologists in the process of medical image analysis. The study described in this paper consists of a new method that applies fuzzy logic concepts to improve the representation of features related to image description in order to make it semantically more consistent. Specifically, we have developed a computer-aided diagnosis tool for automatic BI-RADS categorization of breast lesions. The user provides parameters such as contour, shape and density and the system gives a suggestion about the BI-RADS classification. Initially, values of malignancy were defined for each image descriptor, according to the BI-RADS standard. When analyzing contour, for example, our method considers the matching of features and linguistic variables. Next, we created the fuzzy inference system. The generation of membership functions was carried out by the Fuzzy Omega algorithm, which is based on the statistical analysis of the dataset. This algorithm maps the distribution of different classes in a set. Images were analyzed by a group of physicians and the resulting evaluations were submitted to the Fuzzy Omega algorithm. The results were compared, achieving an accuracy of 76.67% for nodules and 83.34% for calcifications. The fit of definitions and linguistic rules to numerical models provided by our method can lead to a tighter connection between the specialist and the computer system, yielding more effective and reliable results. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Nan Jia
2016-01-01
Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.
National Research Council Canada - National Science Library
Wuerges, Artur Filipe Ewald; Borba, Jose Alonso
2010-01-01
.... This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to...
Water level forecasting through fuzzy logic and artificial neural network approaches
Directory of Open Access Journals (Sweden)
S. Alvisi
2006-01-01
Full Text Available In this study three data-driven water level forecasting models are presented and discussed. One is based on the artificial neural networks approach, while the other two are based on the Mamdani and the Takagi-Sugeno fuzzy logic approaches, respectively. All of them are parameterised with reference to flood events alone, where water levels are higher than a selected threshold. The analysis of the three models is performed by using the same input and output variables. However, in order to evaluate their capability to deal with different levels of information, two different input sets are considered. The former is characterized by significant spatial and time aggregated rainfall information, while the latter considers rainfall information more distributed in space and time. The analysis is made with great attention to the reliability and accuracy of each model, with reference to the Reno river at Casalecchio di Reno (Bologna, Italy. It is shown that the two models based on the fuzzy logic approaches perform better when the physical phenomena considered are synthesised by both a limited number of variables and IF-THEN logic statements, while the ANN approach increases its performance when more detailed information is used. As regards the reliability aspect, it is shown that the models based on the fuzzy logic approaches may fail unexpectedly to forecast the water levels, in the sense that in the testing phase, some input combinations are not recognised by the rule system and thus no forecasting is performed. This problem does not occur in the ANN approach.
The Medical Microrobot Control System Design via Fuzzy Logic Application
Directory of Open Access Journals (Sweden)
A. S. Yuschenko
2014-01-01
movement is in its cyclic type. The segments of the robot contracts successively and during the cycle they may possess only one of two states – active (contracted or passive (stretched. The conditions of the transition from one state to another determined only approximately and depend of the current situation. So the mathematical model based on the fuzzy finite state automata concept has been proposed. The transition conditions in the model are determined by fuzzy production rules.Such microrobots possess more wide possibilities to penetrate to distant parts of human body to perform diagnostic or surgical operation in the less traumatically way for the patient and make such operations safer.
Assessment of safety and health in the tea industry of Barak valley, Assam: a fuzzy logic approach.
Gupta, Rajat; Dey, Sanjoy Kumar
2013-01-01
Traditional safety and health system measurement procedures, practiced in various industries produce qualitative results with a degree of uncertainty. This paper presents a fuzzy-logic-based approach to developing a fuzzy model for assessing the safety and health status in the tea industry. For this, the overall safety and health status at a tea estate has been considered as a function of 4 inputs: occupational safety, occupational health, behavioral safety and competency. A set of fuzzy rules based on expert human judgment has been used to correlate different fuzzy inputs and output. Fuzzy set operations are used to calculate the safety and health status of the tea industry. Application of the developed model at a tea estate showed that the safety and health status belongs to the fuzzy class of good with a crisp value of 7.2.
Class-Based Constraint-Based Routing with Implemented Fuzzy Logic in MPLS-TE Networks
Directory of Open Access Journals (Sweden)
Michal Pištek
2014-01-01
Full Text Available The paper deals with constraint-based routing (CBR in MPLS-TE networks and proposes a new CBR algorithm based on fuzzy logic called Fuzzy Class-Based Algorithm (FCBA. Multiprotocol label switching with traffic engineering (MPLS-TE networks represent a popular mechanism to effectively use resources of service providers’ core networks. The paths can be either built by administrators (explicit routing or built by using existing routing algorithms which mostly decide based on the shortest paths towards the destination which might not be sufficient in nowadays’ multimedia networks. To address this problem various CBR algorithms have emerged which take into consideration various aspects important to existing traffic like QoS parameters or administrative policies. FCBA makes routing decisions based on traffic classes and by using fuzzy logic we can assign normalized values to various constraints based on the traffic class’ preferences (e.g., low delay paths for voice traffic and network administrator’s preferences (e.g., avoiding congested links. The paper provides comparison of FCBA with existing CBR approaches based on their ability to provide QoS parameters loss. The simulations show that FCBA provides the best results for the highest priority traffic where it uses lower priority traffic to efficiently utilize the network.
Directory of Open Access Journals (Sweden)
H. Sudheer
2016-06-01
Full Text Available This paper presents improvements in Direct Torque control of induction motor using Fuzzy logic switching controller (FDTC. The conventional DTC (CDTC and FDTC drive performance is compared using Conventional PI, Fuzzy controller and Neural Network controllers. The major disadvantages of CDTC are high torque and flux ripples in steady state operation of the drive, inferior performance at low speed operation and variable switching frequency. The presence of hysteresis bands is the major reason for high torque and flux ripples in CDTC. In FDTC the hysteresis band and switching table are replaced by Fuzzy logic switching controller. Using fuzzy logic torque, stator flux space are divided into smaller subsections which results in precise and optimal selection of switching state to meet load torque. In high performance drives accurate tuning of PI speed controller is required. The conventional PI controller cannot adapt to the variation in model parameters. Artificial intelligence based fuzzy controller and neural network controller are compared with PI controller for both CDTC and FDTC of Induction machine. The proposed schemes are developed in Matlab/Simulink environment. Simulation results shows reduction in torque and flux ripples in FDTC and dynamic performance of the drive at low speeds and sudden change in load torque can be improved using Fuzzy logic controller compared to PI and neural network controller.
Directory of Open Access Journals (Sweden)
Yuanjiang Huang
2014-01-01
Full Text Available The sensor nodes in the Wireless Sensor Networks (WSNs are prone to failures due to many reasons, for example, running out of battery or harsh environment deployment; therefore, the WSNs are expected to be able to maintain network connectivity and tolerate certain amount of node failures. By applying fuzzy-logic approach to control the network topology, this paper aims at improving the network connectivity and fault-tolerant capability in response to node failures, while taking into account that the control approach has to be localized and energy efficient. Two fuzzy controllers are proposed in this paper: one is Learning-based Fuzzy-logic Topology Control (LFTC, of which the fuzzy controller is learnt from a training data set; another one is Rules-based Fuzzy-logic Topology Control (RFTC, of which the fuzzy controller is obtained through designing if-then rules and membership functions. Both LFTC and RFTC do not rely on location information, and they are localized. Comparing them with other three representative algorithms (LTRT, List-based, and NONE through extensive simulations, our two proposed fuzzy controllers have been proved to be very energy efficient to achieve desired node degree and improve the network connectivity when sensor nodes run out of battery or are subject to random attacks.
Directory of Open Access Journals (Sweden)
Mohsen Omidvar
2015-12-01
Full Text Available Background & objective: Due to the features such as intuitive graphical appearance, ease of perception and straightforward applicability, risk matrix has become as one of the most used risk assessment tools. On the other hand, features such as the lack of precision in the classification of risk index, as well as subjective computational process, has limited its use. In order to solve this problem, in the current study we used fuzzy logic inference systems and mathematical operators (interval numbers and mapping operator. Methods: In this study, first 10 risk scenarios in the excavation and piping process were selected, then the outcome of the risk assessment were studied using four types of matrix including traditional (ORM, displaced cells (RCM , extended (ERM and fuzzy (FRM risk matrixes. Results: The results showed that the use of FRM and ERM matrix have prority, due to the high level of " Risk Tie Density" (RTD and "Risk Level Density" (RLD in the ORM and RCM matrix, as well as more accurate results presented in FRM and ERM, in risk assessment. While, FRM matrix provides more reliable results due to the application of fuzzy membership functions. Conclusion: Using new mathematical issues such as fuzzy sets and arithmetic and mapping operators for risk assessment could improve the accuracy of risk matrix and increase the reliability of the risk assessment results, when the accurate data are not available, or its data are avaliable in a limit range.
Directory of Open Access Journals (Sweden)
Çiğdem ÖZARİ
2018-01-01
Full Text Available In this study, we have worked on developing a brand-new index called Fuzzy-bankruptcy index. The aim of this index is to find out the default probability of any company X, independent from the sector it belongs. Fuzzy logic is used to state the financial ratiointerruption change related with time and inside different sectors, the new index is created to eliminate the number of the relativity of financial ratios. The four input variables inside the five main input variables used for the fuzzy process, are chosen from both factor analysis and clustering and the last input variable calculated from Merton Model. As we analyze in the past cases of the default history of companies, one could explore different reasons such as managerial arrogance, fraud and managerial mistakes, that are responsible for the very poor endings of prestigious companies like Enron, K-Mart. Because of these kind of situations, we try to design a model which one could be able to get a better view of a company’s financial position, and it couldbe prevent credit loan companies from investing in the wrong company and possibly from losing all investments using our Fuzzy-bankruptcy index.
Control of Yaw Disturbance Using Fuzzy Logic Based Yaw Stability Controller
Directory of Open Access Journals (Sweden)
S. Krishna
2014-01-01
Full Text Available Yaw stability is an important consideration for the vehicle directional stability and handling behavior during emergency maneuvers. In order to maintain the desired path of the vehicle, in presence of disturbances due to cross wind, different road conditions, and tire deflections, a fuzzy logic based yaw stability controller is proposed in this paper. Proposed control system receives yaw rate error, steering angle given by the driver, and side slip angle as inputs, for calculating the additional steering angle as output, for maintaining the yaw stability of the vehicle. As the side slip angle cannot be measured directly in a vehicle, it was estimated using a model based Kalman observer. A two-degrees-of-freedom vehicle model is considered in the present work. The effect of disturbance on yaw rate and yaw rate error of the vehicle is simulated for sinusoidal, step maneuver and compared with the existing fuzzy control system which uses two inputs such as steering angle and yaw rate. The simulation results show better performance of the proposed fuzzy based yaw controller as compared with existing control system. Proposed fuzzy based yaw stability controller can be implemented in steer-by-wire system for an active front steering of a road vehicle.
Directory of Open Access Journals (Sweden)
Nun Pitalúa-Díaz
2015-05-01
Full Text Available Exposure to hazardous concentrations of volatile organic compounds indoors in small workshops could affect the health of workers, resulting in respirative diseases, severe intoxication or even cancer. Controlling the concentration of volatile organic compounds is required to prevent harmful conditions for workers in indoor environments. In this document, PI and fuzzy PI controllers were used to reduce hazardous indoor air benzene concentrations in small workplaces. The workshop is represented by means of a well-mixed room model. From the knowledge obtained from the model, PI and fuzzy PI controllers were designed and their performances were compared. Both controllers were able to maintain the benzene concentration within secure levels for the workers. The fuzzy PI controller performed more efficiently than the PI controller. Both approaches could be expanded to control multiple extractor fans in order to reduce the air pollution in a shorter time. The results from the comparative analysis showed that implementing a fuzzy logic PI controller is promising for assuring indoor air quality in this kind of hazardous work environment.
Rezaei, Farshad; Safavi, Hamid R; Ahmadi, Azadeh
2013-01-01
Groundwater is an important source of water, especially in arid and semi-arid regions where surface water is scarce. Groundwater pollution in these regions is consequently a major concern, especially as pollution control and removal in these resources are not only expensive but at times impossible. It is, therefore, essential to prevent their contamination in the first place by properly identifying vulnerable zones. One method most commonly used for evaluating groundwater pollution is the DRASTIC method, in which the Boolean logic is used to rank and classify the parameters involved. Problems arise, however, in the application of the Boolean logic. In this paper, the fuzzy logic has been used to avoid the problems. For this purpose, three critical cases of minimum, maximum, and mean values have been considered for the net recharge parameter. The process has been performed on the Zayandehrood river basin aquifers. The fuzzy-DRASTIC vulnerability map thus obtained indicates that the western areas of the basin generally have the maximum pollution potential followed by the areas located in the east. The central parts of the study area are found to have a low pollution potential. Finally, two sensitivity analyses are performed to show the significance of each value of the net recharge parameter in the calculation of vulnerability index.
Directory of Open Access Journals (Sweden)
K.V. Santhosh
2015-04-01
Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.
A modular diagnosis system based on fuzzy logic for UASB reactors treating sewage.
Borges, R M; Mattedi, A; Munaro, C J; Franci Gonçalves, R
A modular diagnosis system (MDS), based on the framework of fuzzy logic, is proposed for upflow anaerobic sludge blanket (UASB) reactors treating sewage. In module 1, turbidity and rainfall information are used to estimate the influent organic content. In module 2, a dynamic fuzzy model is used to estimate the current biogas production from on-line measured variables, such as daily average temperature and the previous biogas flow rate, as well as the organic load. Finally, in module 3, all the information above and the residual value between the measured and estimated biogas production are used to provide diagnostic information about the operation status of the plant. The MDS was validated through its application to two pilot UASB reactors and the results showed that the tool can provide useful diagnoses to avoid plant failures.
A PSO-based approach to optimize the triangular membership functions in a fuzzy logic controller
Maniscalco, Vincenzo; Lombardo, Francesco
2017-11-01
In this paper a Particle Swarm Optimization (PSO) algorithm is considered in order to optimize the triangular Membership Functions (MF) in a Fuzzy Logic Controller (FLC). PSO algorithm belongs to the class of Swarm Intelligence (SI) techniques and is considered an efficient heuristic technique for optimization problem in a continuous and multidimen-sional search spaces. Performance of a FLC depends on the fuzzy partition of each input/output space considered and the PSO algorithm can be used to obtain the optimal or near optimal parameters of the triangular membership functions in order to achieve the best results in the defuzzification process. Simulation results obtained by this approach to tune the triangular membership functions of a FLC for an application concerning the optimization of the energy consumption in Industrial Wireless Sensor Networks (IWSN) are reported.
Applying fuzzy logic to estimate the parameters of the length-weight relationship.
Bitar, S D; Campos, C P; Freitas, C E C
2016-05-03
We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.
Directory of Open Access Journals (Sweden)
Y. K. Bhateshvar
2016-01-01
Full Text Available This paper attempts to develop a linearized model of automatic generation control (AGC for an interconnected two-area reheat type thermal power system in deregulated environment. A comparison between genetic algorithm optimized PID controller (GA-PID, particle swarm optimized PID controller (PSO-PID, and proposed two-stage based PSO optimized fuzzy logic controller (TSO-FLC is presented. The proposed fuzzy based controller is optimized at two stages: one is rule base optimization and other is scaling factor and gain factor optimization. This shows the best dynamic response following a step load change with different cases of bilateral contracts in deregulated environment. In addition, performance of proposed TSO-FLC is also examined for ±30% changes in system parameters with different type of contractual demands between control areas and compared with GA-PID and PSO-PID. MATLAB/Simulink® is used for all simulations.
Speed Control Design of Permanent Magnet Synchronous Motor using TakagiSugeno Fuzzy Logic Control
Directory of Open Access Journals (Sweden)
Ahmad Asri Abd Samat
2017-12-01
Full Text Available This paper proposes a speed control design of Permanent Magnet Synchronous Motor (PMSM using Field Oriented Control (FOC. The focus is to design a speed control using Takagi — Sugeno Fuzzy Logic Control (T-S FLS. These systems will replace the conventional method which is proportional-integral (PI. The objective of this paper is to study the T—S Fuzzy Inference System (FIS speed regulator and acceleration observer for PMSM. The scope of study basically is to design and analyse the Takagi Sugeno FLC and the PMSM. This paper also will describe the methodology and process of modelling the PMSM including data analysis. The simulation work is implemented in Matlab-Simulink to verify the control method. The effectiveness of this proposed control method was confirmed through various range of speed and torque variation.
Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
Energy Technology Data Exchange (ETDEWEB)
Ondrej Linda; Todd Vollmer; Jason Wright; Milos Manic
2011-04-01
Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.
Directory of Open Access Journals (Sweden)
Mirjana Maksimović
2014-09-01
Full Text Available The main goal of soft computing technologies (fuzzy logic, neural networks, fuzzy rule-based systems, data mining techniques… is to find and describe the structural patterns in the data in order to try to explain connections between data and on their basis create predictive or descriptive models. Integration of these technologies in sensor nodes seems to be a good idea because it can significantly lead to network performances improvements, above all to reduce the energy consumption and enhance the lifetime of the network. The purpose of this paper is to analyze different algorithms in the case of fire confidence determination in order to see which of the methods and parameter values work best for the given problem. Hence, an analysis between different classification algorithms in a case of nominal and numerical d
Indirect Vector Control of an Induction Motor with Fuzzy-Logic based Speed Controller
Directory of Open Access Journals (Sweden)
BIROU, I.
2010-02-01
Full Text Available The aim of this paper is to present a new speed control structure for induction motors (IM by using fuzzy-logic based speed controllers. A fuzzy controller is designed to achieve fast dynamic response and robustness for low and high speeds. Different types of membership functions of the linguistic variables and output/input characteristics are analyzed. A simple but robust structure enables a wide range speed control of the driving system. The rotor flux field oriented control (FOC is realized by using a flux observer based on the IM model with nonlinear parameters. The control is extended to operate also in the field weakening region with an optimal rotor flux regulation. The control structure was implemented on a computer system, based on a fixed point digital signal processor (DSP. To verify the performances of the proposed driving system, simulated and experimental results are presented.
A practical fast acting control scheme for fuzzy logic-based voltage stabilization control
Directory of Open Access Journals (Sweden)
El-Kholy E.E.
2005-01-01
Full Text Available This paper presents a simplified control model for stabilizing a load voltage using a switched reactor in parallel with a fixed capacitor of static VAR compensator. Two IGBT’s are used to control the reactance of the switched reactor. A uniform pulse width modulation is used for controlling the two switches. The compensator has a simple control circuit and structure. A complete modeling and numerical simulation for the proposed systems are presented. A high speed Digital Signal Processor is used for implementing proportional integral (PI and fuzzy load voltage controllers. Experimental results indicate the superiority of fuzzy logic control over the conventional proportional-integral control method. Simulation results are reported and proved to be in good agreement with the relevant experimental results.
A Practical Fast Acting Control Scheme For Fuzzy Logic-Based Voltage Stabilization Control
Directory of Open Access Journals (Sweden)
E. E. EL-Kholy
2005-03-01
Full Text Available This paper presents a simplified control model for stabilizing a load voltage using a switched reactor in parallel with a fixed capacitor of static VAR compensator. Two IGBT’s are used to control the reactance of the switched reactor. A uniform pulse width modulation is used for controlling the two switches. The compensator has a simple control circuit and structure. A complete modeling and numerical simulation for the proposed systems is presented. A high speed Digital Signal Processor is used for implementing proportional-integral (PI and fuzzy load voltage controllers. Experimental results indicate the superiority of fuzzy logic control over the conventional proportional-integral control method. Simulation results are reported and proved to be in good agreement with the relevant experimental results.