WorldWideScience

Sample records for heavy-walled cast stainless

  1. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  2. Radiographic Co-60 in component of heavy equipment casting

    International Nuclear Information System (INIS)

    Djoli Soembogo, Harun Al Rasyid R dan Namad Sianta

    2016-01-01

    The application of radiography using isotope Co-60 source has been used on component of heavy equipment such as component of heavy equipment casting. Components of heavy equipment casting made through metal casting of carbon steel. This study tried applying digital radiography are using isotope Co-60 sources and using scanning positive film media of Epson V700 for digitization results of conventional radiographic films. This radiography is using film AGFA D7 and Fuji 100 to obtain a contrast medium, medium sensitivity and image quality is good. The purpose radiographic Co-60 at a component of heavy equipment casting is detecting indications of the shape and type casting defects of component of heavy equipment casting thus fit for use. Radiographic test of Co-60 has been carried out on component of heavy equipment casting with single wall single image method and the results of radiographic films digitization using scanning positive film media of Epson V700 with observation parameters casting defects. Time exposure of Co-60 radiation was 10 and 15 minutes hours for metal castings of carbon steel for thickness 20.00-50.00 mm by using activity 30.05 Ci and the perpendicular distance to the source of the film is 820 mm. Scanner positive film results in the form of digital radiography which allow for the transfer of digital data or digital computerized data storage. Radiographic test results on component of heavy equipment casting with single wall single image method produce the parameter casting defect of component of heavy equipment casting in position of critical area is found shrinkage that should be repaired and in position of safety area is not found defect indication so casting defect of component of heavy equipment casting are not acceptable according to standards referenced. (author)

  3. Dome style heavy wall steel casting manufactured by metallic core mould system

    International Nuclear Information System (INIS)

    Yamamoto, Shiro; Saeki, Keiji; Hirose, Yutaka; Takebayashi, Kazunari; Kawasaki, Masatoshi

    1986-01-01

    Semi-spherical thick walled steel castings are one of the main products of Nippon Chutanko K.K., but there have been the problems of internal defects peculiar to large thick walled steel castings, and the various improvements have been carried out so far for the manufacturing method, but still some of those remains. Based on the anxiety about the reliability of large steel castings, the conversion to forging has been studied. For the purpose of thoroughly improving the internal quality of thick walled steel castings to compete with forgings, on the basis of the operating experience of chills, the development of the casting techniques changing cores completely to metallic cores has been advanced. After the preliminary experiment using models, a semi-spherical thick walled steel casting mentioned before was manufactured by this metallic core casting method for trial, and the detailed investigation was carried out. As the result, the excellent internal quality was confirmed, accordingly at present, the production is made by this method. The form, dimensions and specification of the semi-spherical thick walled steel castings, the conventional casting plan, the metallic core casting plan, the design of metallic cores, molding and casting, and the examination of the castings made for trial are reported. (Kako, I.)

  4. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  5. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  6. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    International Nuclear Information System (INIS)

    Tujikura, Y.; Urata, S.

    1999-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  7. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Tujikura, Y.; Urata, S. [Kansai Electr. Power Co., Inc., Osaka (Japan). General Office of Nucl. and Fossil Power Production

    1999-07-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  8. Microstructural characterization of second phase regions in cast stainless steels

    International Nuclear Information System (INIS)

    Hoelzer, D.; Kenik, E.A.; Rowcliffe, A.F.; Busby, J.; Vitek, J.M.

    2007-01-01

    Full text of publication follows: Cast austenitic stainless steels offer the possibility of directly producing large and/or relatively complex structures, such as the first wall shield modules or the divertor cassette for the International Tokamak Experimental Reactor (ITER). Unfortunately, one of the inherent problems associated with casting stainless steel, especially large castings, is the formation of coarse dendrites with possibly inhomogeneously distributed second phases separated by up to several hundred microns in the microstructure. These microstructural features result from temperature and composition gradients that develop during solidification and subsequent cooling. However, detailed characterization of the second phase regions in the cast microstructures can be quite challenging to techniques such as transmission electron microscopy (TEM), which is useful for phase identification. furthermore, the information about the phases that may be present in the cast microstructures, both equilibrium and nonequilibrium, is important as input as well as for confirming predictions made by computational thermodynamics and solidification modeling. In this study, the investigation of second phase regions that formed in a large cast of a 316 stainless steel (equivalent to CF3M) will be presented and compared to simulations of the phases predicted by computational thermodynamic modeling of the solidification process. The preliminary TEM investigation of the cast microstructure was performed with specimens that were prepared by jet-polishing of 3 mm diameter discs. Although this approach allowed for the identification of the sigma and chi phases, which was consistent with the simulations, it was not suitable for detailed analysis of the second phase regions since these specimens often contained only grains of the gamma austenite phase. A better approach for preparing TEM specimens consisted of strategically lifting small sections of material from second phase regions

  9. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  10. Fatigue strength of nodular cast iron with regard to heavy-wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, Christoph; Wagener, Rainer; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); Melz, Tobias [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); TU Darmstadt (Germany). Faculty of Mechanical Engineering

    2015-11-01

    For a proper estimation of the fatigue life of a heavy-walled cast component made of nodular cast iron, sufficient knowledge regarding the cyclic properties of the material is necessary. Based on the material parameters at hand for component design, different fatigue analysis procedures can be used. Elastic and elastic-plastic approaches can be adopted, with the latter being reserved only for local approaches. The present publication summarizes the cyclic material parameters gained during a research project by extensive material tests under stress and strain controlled cyclic loading at different load ratios for three nodular cast iron grades. In addition to an improved knowledge of the cyclic material behavior, the notch, the size effects and the mean stress sensitivity were of special concern during the investigations in order to provide an entire overview of the tested materials and thus input information for both stress and strain based design approaches. Tests were performed for specimens taken from large cast blocks of the nodular cast iron grades EN-GJS-400-18U-LT and EN-GJS-450-18, both with ferritic matrices, and EN-GJS-700-2 with a pearlitic matrix. For some of these materials, mean stress sensitivities above 0.5 were obtained during the investigations. These values are not covered by the common standards, which calculate lower values for the mean stress sensitivity. Cyclic material parameters for stress and strain controlled tests are given in this paper as well as values for the size effect, based on the concept of the highly stressed volume. The effect of different specimen sizes could be shown not only by stress but also by strain controlled tests.

  11. Fracture mechanics evaluation for the cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Shigeru [Kansai Electric Power Co., Inc., Osaka (Japan)

    1998-12-31

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years. (author)

  12. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400 0 C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300 0 C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  13. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450 0 C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  14. Estimation of fracture toughness of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1990-01-01

    A program is being conducted to investigate the low-temperature embrittlement of cast duplex stainless steels under light water reactor (LWR) operating conditions and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes the following goals: develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, validate the simulation of in-reactor degradation by accelerated aging, and establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. Microstructural and mechanical property data are being obtained on 25 experimental heats (static-cast keel blocks and slabs) and 6 commercial heats (centrifugally cast pipes and a static-cast pump impeller and pump casing ring), as well as on reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The ferrite content of the cast materials ranges from 3 to 30%. Charpy-impact, tensile, and J-R curve tests have been conducted on several experimental and commercial heats of cast stainless steel that were aged up to 30,000 h at temperatures of 290 to 400 degrees C. The results indicate that thermal aging at these temperatures increases the tensile strength and decreases the impact energy and fracture toughness of the steels. In general, the low-carbon CF-3 steels are the most resistant to embrittlement, and the molybdenum-containing high-carbon CF-8M steels are the least resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement, and the kinetics of embrittlement can vary significantly with small changes in the constituent elements of the cast material

  15. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, D J; Doctor, S R; Heasler, P G; Burck, E

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  16. Flaw evaluation of thermally aged cast stainless steel in light-water reactor applications

    International Nuclear Information System (INIS)

    Lee, S.; Kuo, P.T.; Wichman, K.; Chopra, O.

    1997-01-01

    Cast stainless steel may be used in the fabrication of the primary loop piping, fittings, valve bodies, and pump casings in light-water reactors. However, this material is subject to embrittlement due to thermal aging at the reactor temperature, that is 290 o C (550 o F). The Argonne National Laboratory (ANL) recently completed a research program and the results indicate that the lower-bound fracture toughness of thermally aged cast stainless steel is similar to that of submerged arc welds (SAWs). Thus, the US Nuclear Regulatory Commission (NRC) staff has accepted the use of SAW flaw evaluation procedures in IWB-3640 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to evaluate flaws in thermally aged cast stainless steel for a license renewal evaluation. Alternatively, utilities may estimate component-specific fracture toughness of thermally aged cast stainless steel using procedures developed at ANL for a case-by-case flaw evaluation. (Author)

  17. Development of thermophysical calculator for stainless steel casting alloys by using CALPHAD approach

    Directory of Open Access Journals (Sweden)

    In-Sung Cho

    2017-11-01

    Full Text Available The calculation of thermophysical properties of stainless steel castings and its application to casting simulation is discussed. It is considered that accurate thermophysical properties of the casting alloys are necessary for the valid simulation of the casting processes. Although previous thermophysical calculation software requires a specific knowledge of thermodynamics, the calculation method proposed in the present study does not require any special knowledge of thermodynamics, but only the information of compositions of the alloy. The proposed calculator is based on the CALPHAD approach for modeling of multi-component alloys, especially in stainless steels. The calculator proposed in the present study can calculate thermophysical properties of eight-component systems on an iron base alloy (Fe-C-Si-Cr-Mn-Ni-Cu-Mo, and several Korean standard stainless steel alloys were calculated and discussed. The calculator can evaluate the thermophysical properties of the alloys such as density, heat capacity, enthalpy, latent heat, etc, based on full Gibbs energy for each phase. It is expected the proposed method can help casting experts to devise the casting design and its process easily in the field of not only stainless steels but also other alloy systems such as aluminum, copper, zinc, etc.

  18. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  19. Degradation of stainless castings. A literature study

    International Nuclear Information System (INIS)

    Norring, K.

    1995-10-01

    Duplex cast stainless steels, containing mainly austenite and some ferrite, is used for different components in light water reactors. These alloys have good mechanical properties, good weldability, and they are resistant to intergranular stress corrosion cracking (IGSCC). Examples of components where cast duplex stainless steel is used are pump housings, valves and pipe elbows. A model for the aging/embrittlement of these materials when used in light water reactors has been developed. The model is based on regression of a large data matrix. It is mainly the impact energy (Charpy V) that has been regarded. The model only requires knowledge of the chemical composition of the material but the prediction can be improved if additional data like initial impact properties and measured ferrite content are available. The model is also capable of predicting fracture toughness. The susceptibility to IGSCC in BWR environment is primarily determined by the amount of ferrite and the carbon content of the material. When the amount of ferrite exceeds 12%, IGSCC has not been observed regardless of the carbon content. At carbon contents lower than 0.035% in weld-sensitized material IGSCC was not observed regardless of the ferrite content. Data for corrosion fatigue in primary PWR and BWR environment are available. Under BWR conditions the crack propagation rate is decreased with decreasing corrosion potential, consequently also with decreasing oxygen content of the water. Some areas have been identified where additional work is needed. In all cases the efforts should focus on characterizing cast duplex stainless steel components removed from Swedish reactors. The characterization should include: Microstructure and chemical analysis, susceptibility to IGSCC, and a comparison with existing models for embrittlement. 24 refs, 12 figs

  20. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  1. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhangbo; Lo, Wei-Yang [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States); Chen, Yiren [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Pakarinen, Janne [Belgian Nuclear Research Center (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, ID 83715 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Allen, Todd [Engineering Physics Department, University of Wisconsin, Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Yang, Yong, E-mail: yongyang@ufl.edu [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-15

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10{sup 19} n/cm{sup 2}, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10{sup −9} dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  2. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    International Nuclear Information System (INIS)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-01-01

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10"1"9 n/cm"2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10"−"9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  3. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito

    2015-01-01

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  4. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  5. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1990-08-01

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1988. Characteristics of the primary mechanism of aging embrittlement (i.e., spinodal decomposition of ferrite) and synergistic effects of alloying and impurity elements that influence the kinetics of the primary mechanism are discussed. Several secondary metallurgical processes of embrittlement, strongly dependent on the C, N, Ni, Mo, and Si content of various heats, are identified. Information on kinetics and data on impact properties are analyzed and correlated with microstructural characteristics to provide a unified method of extrapolating accelerated-aging data to reactor operating conditions. Fracture toughness data are presented for several heats of cast stainless steel aged at temperatures between 320 and 450 degrees C for times up to 10,000 h. Mechanical property data are analyzed to develop the procedure and correlations or predicting the kinetics and extent of embrittlement of reactor components from known material parameters. The method and examples of estimating the impact strength and fracture toughness of cast components during reactor service are described. The lower-bound values of impact strength and fracture toughness for cast stainless steels at LWR operating temperatures are defined. 42 refs., 14 figs., 6 tabs

  6. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems-revision 1

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1994-08-01

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330 degrees C (535-625 degrees F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to ∼58,000 h at 290-350 degrees C (554-633 degrees F). The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of J IC are determined from the estimated J-R curve and flow stress. A common open-quotes predicted lower-boundclose quotes J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of ferrite content, and temperature. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented

  7. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330 degrees C (535--625 degrees F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature ''normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at ''saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, Φ, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common ''lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs

  8. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K. (Argonne National Lab., IL (USA))

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330{degrees}C (535--625{degrees}F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, {Phi}, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs.

  9. Initial assessment of the mechanisms and significance of low-temperature embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Sather, A.

    1990-08-01

    This report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems. Metallurgical characterization and mechanical property data from Charpy-impact, tensile, and J-R curve tests are presented for several experimental and commercial heats, as well as for reactor-aged CF-3, CF-8, and CF-8M cast stainless steels. The effects of material variables on the embrittlement of cast stainless steels are evaluated. Chemical composition and ferrite morphology strongly affect the extent and kinetics of embrittlement. In general, the low-carbon CF-3 stainless steels are the most resistant and the molybdenum-containing high-carbon CF-8M stainless steels are most susceptible to embrittlement. The microstructural and mechanical-property data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature-aged cast stainless steel are defined. 39 refs., 56 figs., 8 tabs

  10. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  11. Long-term aging embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1991-01-01

    The primary objectives of this program are to investigate the significance of in-service embrittlement of cast duplex stainless steels in light water reactor (LWR) systems and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes three goals: (1) develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, (2) validate the simulation of in-reactor degradation by accelerated aging, and (3) establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. The emphasis during the current year was on developing a procedure and correlations for predicting fracture toughness J-R curves of aged cast stainless steels from known material information. The present analysis has focused on developing correlations for the fracture properties in terms of material information that can be determined from the certified material test record (CMTR) and on ensuring that the correlations are adequately conservative for structurally weak materials

  12. Interface Structure and Elements Diffusion of As-Cast and Annealed Ductile Iron/Stainless Steel Bimetal Castings

    Directory of Open Access Journals (Sweden)

    M. Ramadan

    2018-04-01

    Full Text Available Bimetal casting is considered to a promising technique for the production of high performance function materials. Heat treatment process for bimetal castings became an essential tool for improving interface structure and metallurgical diffusion bond. Molten iron alloy with carbon equivalent of 4.40 is poured into sand mold cavities containing solid 304 stainless steel strips insert. Specimens are heated to 7200C in an electrical heating furnace and holded at 720 0C for 60min and 180min. For as-cast specimens, a good coherent interface structure of ductile cast iron/304 stainless bimetal with four layers interfacial microstructure are obtained. Low temperature annealing at 720oC has a significat effect on the interface layers structure, where, three layers of interface structure are obtained after 180min annealing time because of the complete dissolving of thin layer of ferrite and multi carbides (Layer 2. Low temperature annealing shows a significant effect on the diffusion of C and otherwise shows slightly effect on the diffusion of Cr and Ni. Plearlite phase of Layer 3 is trsformed to spheroidal shape instead of lamallar shape in as-cast bimetals by low tempeature annealing at 720oC. The percent of the performed spheroidal cementit increases by increasing anneaaling time. Hardness of interface layers is changed by low temperauture annealing due to the significant carbon deffussion.

  13. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1988-01-01

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320 and 290 deg. C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J IC , and tearing modules of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The ferrite content and concentration of carbon in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and the molybdenum-containing high-carbon CF-8M steels are the most susceptible to low-temperature embrittlement. Microstructural data indicate that three processes contribute to embrittlement of cast stainless steels, viz., Cr-rich α' and G-phase precipitation in the ferrite, and carbide precipitation on the austenite/ferrite phase boundary. The influence of nitrogen content and ferrite distribution on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280-450 deg. C, i.e., extrapolation of high temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel. (author)

  14. Evaluation of the degradation characteristics of CF-8A cast stainless steel using EDS and nano-indentation

    International Nuclear Information System (INIS)

    Baek, Seung; Koo, Jae Mean; Seok, Chang Sung

    2004-01-01

    Cast austenitic stainless steel piping pump, valve casings, and elbows are susceptible to reductions in toughness and ductility because of long term exposure at the operating temperatures in LWR(Light Water Reactor). In this paper, we have measured the material properties of long term aged CF-8A cast stainless steel, accelerated aging at 400 .deg. C. These studies have been carried out using indentation tests(automated ball indentation and nano-indentation) and EDS(Energy Dispersive Spectroscopy). The fracture toughness of Cf-8A cast stainless steel was also determined by using standard fracture toughness and automated ball indentation

  15. Aging degradation of cast stainless steel: status and program

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400/sup 0/C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not ..cap alpha..'. An FCC phase, similar to the M/sub 23/C/sub 6/ precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables.

  16. Aging degradation of cast stainless steel: status and program

    International Nuclear Information System (INIS)

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400 0 C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not α'. An FCC phase, similar to the M 23 C 6 precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables

  17. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  18. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  19. Evaluation on thermal aging embrittlement of cast stainless steel components in domestic PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hwa, Hong Jun; Chi, Se Hwan; Ryu, Woo Seog; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of thermal aging embrittlement of cast stainless steel components in PWRs. Cast stainless steel is being widely used in PWRs including primary piping. This material shows the reduction of fracture toughness during operating life due to high temperature. Micromechanisms and kinetics are summarized to improve the materials properties. The reduction of toughness due to thermal embrittlement in domestic reactors are predicted based on each chemical composition until the end of plant life time. Substantial degradation was predicted in some components during plant life time. (Author) 26 refs., 19 figs., 11 tabs.

  20. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  1. Initial assessment of the processes and significance of thermal aging in cast stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1988-10-01

    Charpy-impact and J-R curve data for thermally aged cast stainless steel are presented. The effects of material variables on the embrittlement of cast materials are evaluated. The chemical composition and ferrite morphology have a strong effect on the kinetics and extent of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast component during reactor service are described. 19 refs., 17 figs., 4 tabs

  2. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  3. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  4. Shrinkages in heavy-sized cast components of nodular cast iron – NDT and fatigue

    Directory of Open Access Journals (Sweden)

    Bleicher Christoph

    2014-06-01

    Full Text Available Material defects like shrinkages, dross, pores and chunky graphite are likely to occur in thick-walled castings and are a challenge for the foundries and their customers. These defects are mostly detected with handheld ultrasonic testing (UT or X-ray analysis. Within a research project done at the Fraunhofer Institute for Structural Durability and System Reliability LBF, the fatigue of Dross, shrinkages and chunky graphite in thick-walled cast material GGG-40 was estimated based on X-ray and fatigue tests on bending specimens. High fatigue reductions were received for the different material imperfections. Based on these impressions a further research project was executed at the Fraunhofer LBF to get an estimation of the informational value of UT in relation to fatigue of shrinkages in thick-walled castings of the material EN-GJS-400-18U-LT, EN-GJS-450-18 and EN-GJS-700-2. With the help of X-ray analysis and the UT technique Sampling Phased Array (SPA information about geometry and density were derived for a numerical analysis of shrinkages in thick-walled castings concerning fatigue. The following text summarizes the fatigue results achieved in the two research projects with the help of the X-ray and UT analysis.

  5. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  6. Physical and mechanical properties of cast 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Rack, H.J.

    1981-02-01

    The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined. The tensile and compressive properties of cast 17-4 PH are only influenced to a slight degree by changing test temperature and strain rate. However, both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperature - this transition being related to a change in fracture mode from ductile, dimple to cleavage-like. Finally, although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 PH, its fracture toughness was at least comparable to that of wrought 17-4 PH. This observation suggests that prior correlations between Charpy impact energies and fracture toughness, as derived from wrought materials, must be approached with caution when applied to cast alloys

  7. Prediction of δ-ferrite distribution in continuously cast type 304 stainless steel slabs by diffusion transformation analysis

    International Nuclear Information System (INIS)

    Kim, J. Joon; Kim, Sun K.; Kim, Jong W.

    1998-01-01

    Retained δ-ferrite in 304 stainless steel is known to prevent hot cracking during continuous casting. Excess content of retained δ-ferrite lowers the hot workability. So it is necessary to control the amount of retained δ-ferrite in stainless steel. A numerical model based on coupled analysis of macro heat transfer and micro diffusion transformation has been developed in order to predict retained δ-ferrite in continuously cast 304 stainless steel slab. The finite difference technique for moving boundary problem has been formulated utilizing 'murray-landis variable-grid method'. The reliability of numerical model is compared with the other results. The prediction of δ-ferrite content in CC type 304 stainless steel slabs shows good agreement between measured and predicted results. Effect of secondary cooling condition on the δ-ferrite has been also investigated

  8. Review of production status of heavy steel castings and key technologies for their manufacture in China

    Directory of Open Access Journals (Sweden)

    Liu Baicheng

    2008-02-01

    Full Text Available This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulic turbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapid growth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Some heavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three Gorges Project have been successfully made. However, the domestic production capability is still far from meeting the gigantic requirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still depend on import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steel castings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc. In addition, several case studies on the application of numerical simulation in the production of heavy steel castings are presented.

  9. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...

  10. Ultrasonic detection and sizing of cracks in cast stainless steel samples

    International Nuclear Information System (INIS)

    Allidi, F.; Edelmann, X.; Phister, O.; Hoegberg, K.; Pers-Anderson, E.B.

    1986-01-01

    The test consisted of 15 samples of cast stainless steel, each with a weld. Some of the specimens were provided with artificially made thermal fatique cracks. The inspection was performed with the P-scan method. The investigations showed an improvement of recognizability relative to earlier investigations. One probe, the dual type, longitudinal wave 45 degrees, low frequence 0.5-1 MHz gives the best results. (G.B.)

  11. Tem study of thermal ageing of ferrite in cast duplex stainless steel

    International Nuclear Information System (INIS)

    Nenonen, P.; Massoud, J.P.; Timofeev, B.T.

    2002-01-01

    The changes in the microstructure and composition of ferrite in two types of cast duplex stainless steels and in an austenitic-ferritic weld metal after long term thermal ageing has been studied using analytical transmission electron microscope (FEGTEM). A cast test steel containing Mo was investigated first as a reference material in three different conditions: as solution annealed, aged at 300 C and aged at 400 C. This investigation was carried out to gain experience of how EDS (X-ray analyser) analyser and TEM (transmission electron microscope) can be used to study elemental inhomogeneity, which is usually investigated with an atom probe (APFIM). The two other materials, an austenitic-ferritic weld metal and a cast duplex Ti-stabilised stainless steel used for long time at NPP operation temperature were investigated using the experience obtained with the test steel. The results showed that analytical TEM can be used to investigate elemental inhomogeneity of ferrite, but there are several important things to be taken into account when the spectra for this purpose are collected. These things are, such as the thickness of the specimen, probe size, contamination rate, 'elemental background' of the spectrum and possible enrichment of certain alloying elements in the surface oxide layer of the TEM-specimens. If minor elements are also analysed, it may increase the scattering of the results. (authors)

  12. Fracture analysis procedure for cast austenitic stainless steel pipe with an axial crack

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Since the ductility of cast austenitic stainless steel pipes decreases due to thermal aging embrittlement after long term operation, not only plastic collapse failure but also unstable ductile crack propagation (elastic-plastic failure) should be taken into account for the structural integrity assessment of cracked pipes. In the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME), Z-factor is used to incorporate the reduction in failure load due to elastic-plastic failure. However, the JSME code does not provide the Z-factor for axial cracks. In this study, Z-factor for axial cracks in aged cast austenitic stainless steel pipes was derived. Then, a comparison was made for the elastic-plastic failure load obtained from different analysis procedures. It was shown that the obtained Z-factor could derive reasonable elastic-plastic failure loads, although the failure loads were more conservative than those obtained by the two-parameter method. (author)

  13. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  14. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  15. Kinetics of steel heavy ingot formation in dies of semicontinuous-casting machines

    International Nuclear Information System (INIS)

    Tsukerman, V.Ya.; Marchenko, I.K.

    1986-01-01

    Formation kinetics of round section ingot of up to 0.67 m in diameter was analyzed in dies of semicontinuous-casting machines on casting of the most usable assortment steels: medium-carbon low-alloyed and chromium-nickel stainless steels. It is established that solidification coefficient decreases in direct proportion to ingot diameter. Value of different-thickness ingot skin at die outlet is in direct proportion to a casted steel overheating temperature, ingot diameter and inversely proportional to the number and diameter of holes in a ladder nozzle and square root of ingot drawing rate

  16. Microstructures of cast-duplex stainless steel after long-term aging

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1985-10-01

    Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or during in-reactor service have been characterized and compared by TEM, SEM, and optical microscopy. The microstructural characteristics have been correlated with the impact failure behavior of the material. G-phase, α', and an unidentified Type X precipitate were responsible for the ferrite-phase embrittlement. Precipitation of M 23 C 6 carbides on austenite-ferrite boundaries further degraded the reactor-aged material

  17. Progress in EPRI-programs on the inspection of cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Dau, G; Behravesh, M; Amirato, P; Stone, R [Electric Power Research Inst., Charlotte, NC (United States). Nondestructive Evaluation Center

    1988-12-31

    This document presents the progress in EPRI programs on in-service inspection of Cast austenitic Stainless Steel (CSS). The CSS examination strategy is presented, together with results concerning thermal fatigue cracks and mechanical fatigue cracks. A statistical analysis method is provided, in order to estimate the crack detectability and the false call (a non-crack called crack). (TEC).

  18. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  19. Degradation of stainless castings. A literature study; Degradering av rostfritt gjutgods. En litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Norring, K. [Studsvik Material AB, Nykoeping (Sweden)

    1995-10-01

    Duplex cast stainless steels, containing mainly austenite and some ferrite, is used for different components in light water reactors. These alloys have good mechanical properties, good weldability, and they are resistant to intergranular stress corrosion cracking (IGSCC). Examples of components where cast duplex stainless steel is used are pump housings, valves and pipe elbows. A model for the aging/embrittlement of these materials when used in light water reactors has been developed. The model is based on regression of a large data matrix. It is mainly the impact energy (Charpy V) that has been regarded. The model only requires knowledge of the chemical composition of the material but the prediction can be improved if additional data like initial impact properties and measured ferrite content are available. The model is also capable of predicting fracture toughness. The susceptibility to IGSCC in BWR environment is primarily determined by the amount of ferrite and the carbon content of the material. When the amount of ferrite exceeds 12%, IGSCC has not been observed regardless of the carbon content. At carbon contents lower than 0.035% in weld-sensitized material IGSCC was not observed regardless of the ferrite content. Data for corrosion fatigue in primary PWR and BWR environment are available. Under BWR conditions the crack propagation rate is decreased with decreasing corrosion potential, consequently also with decreasing oxygen content of the water. Some areas have been identified where additional work is needed. In all cases the efforts should focus on characterizing cast duplex stainless steel components removed from Swedish reactors. The characterization should include: Microstructure and chemical analysis, susceptibility to IGSCC, and a comparison with existing models for embrittlement. 24 refs, 12 figs.

  20. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    Taehtinen, S.; Kauppinen, P.; Jeskanen, H.; Lahdenperae, K.; Ehrnsten, U.

    1997-04-01

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  1. Contribution to the assessment of thermal ageing of stainless steel castings and welds

    International Nuclear Information System (INIS)

    Zdarek, J.; Novak, J.

    1992-01-01

    Indentation tests are considered for measuring and verifying of thermal ageing of stainless steel castings and welds in service. Therefore, relations between indentation- and tensile diagrams were analyzed. Conventional tensile characteristics, deduced from the indentation diagram, should be used for fracture toughness prediction. Form of correlation of yield stress and tensile strength on one side and of fracture toughness on the other side was proposed, which is specific for austenitic-ferritic two-phase materials. Properties of castings and welds were compared and analyzed within the framework of a mesomechanical homogenization model with micromechanical effect of geometric slip distance. (author)

  2. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  3. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  4. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  5. Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Tiedje, Niels Skat; Hald, John

    2017-01-01

    The kinetics model for multi-component diffusion DICTRA was applied to analyze the formation and retainment of δ-ferrite during solidification and cooling of GX4-CrNiMo-16-5-1 cast supermartensitic stainless steel. The obtained results were compared with results from the Schaeffler diagram......, equilibrium calculations and the Scheil model in Thermo-Calc, and validated by using microscopy and energy dispersive X-ray spectroscopy for chemical analysis on a cast ingot. The kinetics model showed that micro-segregation from solidification homogenizes within 2–3 s (70 °C) of cooling, and that retained δ...

  6. Geometrical size effect in high cycle fatigue strength of heavy-walled Ductile Cast Iron GJS400: Weakest link vs. defect-based approach

    Directory of Open Access Journals (Sweden)

    Cova Matteo

    2014-06-01

    Full Text Available Fatigue strength is known to decrease with increasing dimension of the component. This is due to a technological size effect, related to the production process, and to a geometrical size effect, due to a higher probability of finding a large defect. To investigate the latter, an heavy-walled component made of Ductile Cast Iron (DCI has been trepanned and a fatigue test plan has been carried out using 4 different specimen geometries. An attempt has been made to relate the resulting fatigue strength using a weakest-link approach based on the effective volumes and surfaces. This approach seems to work well only in cases of different specimen's lengths. Some of the fracture surfaces were analyzed by means of SEM and the initiating defects were identified and measured. An approach in which the defects population can be randomly distributed in the specimen has been tried. Virtual fatigue tests have been carried out by considering pure propagation of the worst defect. The resulting fatigue curves showed that this approach is promising but needs further description of the initiation phase.

  7. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...

  8. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  9. Cellular automaton modelling of ductile iron microstructure in the thin wall casting

    International Nuclear Information System (INIS)

    Burbelko, A A; Gurgul, D; Kapturkiewicz, W; Górny, M

    2012-01-01

    The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration.

  10. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  11. Evaluation of AISI 316L stainless steel welded plates in heavy petroleum environment

    International Nuclear Information System (INIS)

    Carvalho Silva, Cleiton; Pereira Farias, Jesualdo; Batista de Sant'Ana, Hosiberto

    2009-01-01

    This work presents the study done on the effect of welding heating cycle on AISI 316L austenitic stainless steel corrosion resistance in a medium containing Brazilian heavy petroleum. AISI 316L stainless steel plates were welded using three levels of welding heat input. Thermal treatments were carried out at two levels of temperatures (200 and 300 deg. C). The period of treatment in all the trials was 30 h. Scanning electronic microscopy (SEM) and analysis of X-rays dispersive energy (EDX) were used to characterize the samples. Weight loss was evaluated to determine the corrosion rate. The results show that welding heating cycle is sufficient to cause susceptibility to corrosion caused by heavy petroleum to the heat affected zone (HAZ) of the AISI 316L austenitic stainless steel

  12. Salvaging of service exposed cast alloy 625 cracker tubes of ammonia based Heavy Water Plants

    International Nuclear Information System (INIS)

    Kumar, Niraj; Misra, B.; Mahajan, M.P.; Mittra, J.; Sundararaman, M.; Chakravartty, J.K.

    2006-01-01

    In ammonia based heavy water plants, cracking of ammonia vapour, enriched in deuterium is carried out inside a cracker tube, packed with catalyst. These cracker tubes are made of alloy 625 (either wrought or cast) having dimensions of about 12.5 metres long, 88 mm outer diameter and 7.9 mm wall thickness. Seventy such tubes are housed in a typical ammonia cracker unit. The anticipated design life of such tube is 1,00,000 hrs. when operated at 720 degC based on creep as main degradation mechanism. Presently, these tubes are being operated at 680 degC skin temperature. Alloy 625 tubes are costly and normally not manufactured in India and are being imported. The cast alloy 625 cracker tubes have outlived their design life of 100,000 hrs. Therefore it has been decided to salvage the cast cracker tubes and extend the life further as it had already been done for wrought tubes. Similar to the earlier attempt of resolutionising of wrought alloy 625 tubes, efforts are in progress to salvage these cast tubes. In this study, cast tubes samples were subjected to solution-annealing treatment at two different temperatures, 1100degC and 1160degC respectively for two hrs. Mechanical properties along with the microstructure of the samples, which were resolutionized at 1160degC were comparable with that of virgin material. The 12.5 metres long cast alloy 625 cracker tubes will also be shortly solution-annealed in a specially designed resistance heating furnace after completing some more tests. (author)

  13. Ageing and life prediction of cast duplex stainless steel components

    International Nuclear Information System (INIS)

    Chung, H.M.

    1992-01-01

    Cast duplex stainless steels, used extensively in nuclear, chemical and petroleum industries because of higher strength, better weldability, higher resistance to stress corrosion cracking, and soundness of casting, are susceptible to thermal aging embrittlement during service at temperatures as low as ∼250 o C. Recent advances in understanding the aging mechanisms, kinetics, and mechanical properties are presented, with emphasis on application of the material in safety-significant components in a nuclear reactor. Aging embrittlement is primarily due to spinodal decomposition of ferrite involving segregation of Fe, Cr, and Ni, and precipitation of M 23 C 6 on ferrite-austenite boundaries or in ferrite. Aging kinetics are strongly influenced by synergistic effects of other metallurgical reactions that occur in parallel with the spinodal decomposition, i.e. clustering of Ni, Mo, and Si and G-phase precipitation in ferrite. A number of methods are outlined for estimating end-of-life aging, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. (Author)

  14. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ying [Argonne National Laboratory, Argonne, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Lian, Tiangan [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

    2015-09-15

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 10{sup 19} ions/m{sup 2} (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite–austenite phase boundary and presence of M{sub 23}C{sub 6} carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M{sub 23}C{sub 6} carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M{sub 23}C{sub 6} carbides at 350 °C and 400 °C.

  15. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysi...

  16. 77 K Fatigue Crack Growth Rate of Modified CF8M Stainless Steel Castings

    International Nuclear Information System (INIS)

    Walsh, R. P.; Toplosky, V. J.; Han, K.; Heitzenroeder, P. J.; Nelson, B. E.

    2006-01-01

    The National Compact Stellerator Experiment (NCSX) is the first of a new class of stellarators. The modular superconducting coils in the NCSX have complex geometry that are manufactured on cast stainless steel (modified CF8M) winding forms. Although CF8M castings have been used before at cryogenic temperature there is limited data available for their mechanical properties at low temperatures. The fatigue life behavior of the cast material is vital thus a test program to generate data on representative material has been conducted. Fatigue test specimens have been obtained from key locations within prototype winding forms to determine the 77 K fatigue crack growth rate. The testing has successfully developed a representative database that ensures confident design. The measured crack growth rates are analyzed in terms of the Paris law parameters and the crack growth properties are related to the materials microstructure

  17. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  18. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  19. Simulation of Stress Distribution in a Thick- Walled Bushing Produced by Die-Casting

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2017-12-01

    Full Text Available Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κII affecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σt and shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear. Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing' s construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

  20. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  1. Total contact cast wall load in patients with a plantar forefoot ulcer and diabetes.

    Science.gov (United States)

    Begg, Lindy; McLaughlin, Patrick; Vicaretti, Mauro; Fletcher, John; Burns, Joshua

    2016-01-01

    The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. The walls of the TCC have been indirectly shown to bear approximately 30 % of the plantar load. A new direct method to measure inside the TCC walls with capacitance sensors has shown that the anterodistal and posterolateral-distal regions of the lower leg bear the highest load. The objective of this study was to directly measure these two regions in patients with Diabetes and a plantar forefoot ulcer to further understand the mechanism of pressure reduction in the TCC. A TCC was applied to 17 patients with Diabetes and a plantar forefoot ulcer. TCC wall load (contact area, peak pressure and max force) at the anterodistal and posterolateral-distal regions of the lower leg were evaluated with two capacitance sensor strips measuring 90 cm(2) (pliance®, novel GmbH, Germany). Plantar load (contact area, peak pressure and max force) was measured with a capacitance sensor insole (pedar®, novel GmbH, Germany) placed inside the TCC. Both pedar® and pliance® collected data simultaneously at a sampling rate of 50Hz synchronised to heel strike. The magnitude of TCC wall load as a proportion of plantar load was calculated. The TCC walls were then removed to determine the differences in plantar loading between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of interest). TCC wall load was substantial. The anterodistal lower leg recorded 48 % and the posterolateral-distal lower leg recorded 34 % of plantar contact area. The anterodistal lower leg recorded 28 % and the posterolateral-distal lower leg recorded 12 % of plantar peak pressure. The anterodistal lower leg recorded 12 % and the posterolateral-distal lower leg recorded 4 % of plantar max force. There were significant differences in plantar load between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and

  2. Identification of G-phase in aged cast CF 8 type stainless steel

    International Nuclear Information System (INIS)

    Bentley, J.; Miller, M.K.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The microstructure of as-cast and aged CF 8 type stainless steel, used for the primary coolant pipes in pressurized light-water nuclear reactors, is being studied by analytical electron microscopy (AEM) and atom probe field-ion microscopy (APFIM). The phase transformations of the ferrite (approx. 19 vol % of the duplex structure) that occur after aging at 673 K for 7500 h are described by Miller et al. The present work deals with the identification of G-phase (prototype compound Ni 16 Ti 6 Si 7 ) observed in the ferrite of aged material. 2 references, 3 figures

  3. Effect of vacuum arc melting/casting parameters on shrinkage cavity/piping of austenitic stainless steel ingot

    International Nuclear Information System (INIS)

    Kamran, J.; Feroz, M.; Sarwar, M.

    2009-01-01

    Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)

  4. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  5. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed...

  6. An evaluation of detection ability of ultrasonic testing with a large aperture transducer for axial cracks in cast stainless steel pipe welds

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito; Ishida, Hitoshi; Kurozumi, Yasuo

    2013-01-01

    Ultrasonic testing is difficult to apply to cast stainless steel which is the material of the main coolant pipes in pressurized water reactors, because of the large attenuation and scattering of ultrasonic waves caused by its macro structure. In this study, ultrasonic testing for progression of axial fatigue cracks of a welded area in the test piece of cast stainless steel pipe was performed using double big-size ultrasonic probes which were formerly developed in INSS. It was found that detection of defects that were over 6% of the target depth for the specimen thickness of 69mm is possible, and detection of defects with over 10% of the target depth is possible for all test conditions. (author)

  7. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  8. Influence of Thermal Aging on Primary Water Stress Corrosion Cracking of Cast Duplex Stainless Steels

    International Nuclear Information System (INIS)

    Yamada, T.; Totsuka, N.; Nakajima, N.; Arioka, K.; Negishi, K.

    2002-01-01

    In order to evaluate the SCC (stress corrosion cracking) susceptibility of cast duplex stainless steels which are used for the main coolant piping material of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) were performed in simulated PWR primary water at 360 C. The main coolant piping materials contain ferrite phase with ranging from 8 to 23 % and its mechanical properties are affected by long time thermal aging. The 23% ferrite material was prepared for test as the maximum ferrite content of main coolant pipes in Japanese PWRs. The brittle fracture in the non-aged materials after SSRT is mainly caused by quasi-cleavage fracture in austenitic phase. On the other hand, a mixture of quasi-cleavage fracture in austenite and ferrite phases was observed on long time aged material. Also on CLT, (2 times σ y ), after 3,000 hours exposure, microcracks were observed on the surface of non-aged and aged for 10,000 hours at 400 C materials. The crack initiation site of CLT is similar to that of SSRT. The SCC susceptibility of the materials increases with aging time. It is suggested that the ferrite hardening with aging affect SCC susceptibility of cast duplex stainless steels. (authors)

  9. Thermal aging evaluation of cast austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Kori Unit 2 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by utility company. In this paper, the methodologies and results of cast austenitic stainless steel pipe thermal aging evaluations of both units have been presented in association with aging time of 10, 20, and 30 years and operating temperature, respectively. Life extension cases respectively. As a result of this, at the operating temperature of 280 .deg. C, thermal aging was not a problem as long as Charpy V-notch room temperature minimum impact energy is concerned. However, more than 300 .deg. C and 30 years of operating condition, we should perform detailed fracture mechanics analysis with CMTR of NPP pipe

  10. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  11. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2016-12-01

    Full Text Available For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr. After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking, a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

  12. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  13. Evaluation of aging of cast stainless steel components

    International Nuclear Information System (INIS)

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs

  14. Properties of cast Ti-stabilised stainless steel after long-term ageing

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Karjalainen-Roikonen, P.; Nenonen, P.; Ahlstrand, R.; Hietanen, O.; Timofeev, B.T.; Bloomin, A.A.

    2000-01-01

    Mechanical properties and microstructure are studied and compared for two kinds of specimens of cast Ti-stabilized stainless steel 08Kh18N10T used for manufacturing of valves and pumps in nuclear power plants. One set of specimens represents the main gate valve material after 106000 h (∼ 12 years) operation at 270 deg C. The comparison is made with reference specimens in as-fabricated state. The results of impact tests, hardness measurements and microscopic examination show that 12 year operation gives rise to the shift of ductile-brittle transition temperature to higher values (from - 68 deg C - 103 deg C). The microstructure of both materials is similar. The microhardness of δ-ferrite in the steel after long-term operation is slightly higher [ru

  15. Properties of cast CF-8 stainless-steel weldments at cryogenic temperatures

    International Nuclear Information System (INIS)

    Chow, J.G.Y.; Klamut, C.J.

    1981-01-01

    ISABELLE is a 400 x 400 GeV proton-proton colliding beam accelerator now under construction at Brookhaven National Laboratory. The beams will be guided and focused by superconducting magnets. A total of 722 dipole beam bending magnets and 280 quadrupole beam focusing magnets are required. Centrifugally cast CF-8 stainless steel tubes were selected to provide a rigid support and to house the superconducting magnet assembly. The selection of this material for the support tubes is discussed by Dew-Hughes and Lee. Their study indicates that the presence of delta ferrite strengthens the material but causes a decrease in ductility if the ferrite content is greater than 10%. Brown and Tobler found that the fracture toughness is also decreased as the delta ferrite content is increased

  16. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  17. Development of the ultrasonic technique for examination of centrifugally-cast stainless steel in pressure piping

    International Nuclear Information System (INIS)

    Jurenka, H.J.

    1983-01-01

    Centrifugally - cast stainless steel (CCSS) are used to manufacture a large variety of components in the nuclear industry. Weldments are also made to join these parts to carbon steel items. These welds are usually made of stainless steel or inconel alloys. CCSS is sophisticated material and justification for its use in critical components is safety and reliability. These steels, as any other materials, need to be inspected to assess their structural integrity. Ultrasonic testing is one of the possible techniques. In some cases it is the only one of the feasible methods for this examination. This mainly concerns components in the primary and auxiliary circuits of nuclear plants. For a long time it has been recognized that CCSS items can be extremely difficult to inspect using ultrasonics. Many attempts in various research laboratories were conducted to improve the testing technique

  18. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    International Nuclear Information System (INIS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI

  19. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  20. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    Science.gov (United States)

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  1. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  2. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    cooing curves in thin wall ductile iron castings. The experiments show how TC’s of different design interact with the melt and how TC design and surface quality affect the results of the data acquisition. It is discussed which precautions should be taken to ensure reliable acquisition of cooling curves....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification...

  3. Detection of surface breaking cracks in centrifugally cast stainless steel with ultrasonic - Inspection from the cracked side

    International Nuclear Information System (INIS)

    Hoegberg, K.; Zetterwall, T.

    1986-01-01

    The ability of detecting surface breaking or near-surface cracks with ultrasonic techniques from the inside of centrifugally cast stainless steel pipes have been investigated by the Swedish Plant Inspectorate (SA) and AaF-Tekniska Roentgencentralen AB (AaF-TRC) on behalf of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish State Power Board (SV). Fifteen specimens from the international Stainless Steel Round Robin Test (SSRRT) were used in this study. All specimens were examined from the cracked side with different ultrasonic probes. The data reported here indicate that a probe with dual elements, low frequency, longitudinal waves and short focus distance can detect almost all of the intended defects with a rather good signal-to-noise ratio. (author)

  4. Environmental fatigue behaviors of wrought and cast stainless steels in 310degC deoxygenated water

    International Nuclear Information System (INIS)

    Cho, Pyung-Yeon; Jang, Hun; Jang, Changheui; Jeong, Ill-Seok; Lee, Jae-Gon

    2009-01-01

    Environmental fatigue behaviors of wrought type 316LN stainless steel and cast CF8M stainless steel were investigated. Low cycle fatigue tests were performed in a 310degC deoxygenated water environment at a strain rate of 0.04%/s with various strain amplitudes. It was shown that the low cycle fatigue life of CF8M was slightly longer than that of 316LN. To understand the causes of the difference, fracture surface was observed and material factors like microstructure, mechanical properties, and chemical compositions of both materials were analyzed. In a duplex microstructure of CF8M, the fatigue crack growth was affected by barrier role of ferrite phase and acceleration role of microvoids in ferrite phase. Test results indicate that the former is greater than the latter, resulting in slower fatigue crack growth rate, or longer LCF lives in CF8M than in 316LN. (author)

  5. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  6. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  7. Material development for grade X80 heavy-wall hot induction bends

    International Nuclear Information System (INIS)

    Wang Xu; Xiao Furen; Fu Yanhong; Chen Xiaowei; Liao Bo

    2011-01-01

    Highlights: ► The new material for X80 heavy wall thickness hot induction bend was designed. ► The continuous cooling transformation (CCT) diagrams were determined. ► The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. ► The optimum manufactural processes were obtained. ► The bending temperature is about 990 °C, and tempering is about 600 °C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  8. Material development for grade X80 heavy-wall hot induction bends

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xu [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Xiao Furen, E-mail: frxiao@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu Yanhong [CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Chen Xiaowei [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Liao Bo, E-mail: cyddjyjs@263.net [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The new material for X80 heavy wall thickness hot induction bend was designed. Black-Right-Pointing-Pointer The continuous cooling transformation (CCT) diagrams were determined. Black-Right-Pointing-Pointer The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. Black-Right-Pointing-Pointer The optimum manufactural processes were obtained. Black-Right-Pointing-Pointer The bending temperature is about 990 Degree-Sign C, and tempering is about 600 Degree-Sign C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  9. Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel

    Directory of Open Access Journals (Sweden)

    Li Ling

    2008-08-01

    Full Text Available The burn-on sand is common surface defect encountered in CO2-cured silicate-bonded sand casting of hydroturbine blade of ultra-low-carbon martensitic stainless steel, its feature, causes and prevention measures are presented in this paper. Experiments showed that the burn-on defect is caused by oxidization of chromium in the molten steel at high temperature and can be effectively eliminated by using chromium-corundum coating.

  10. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    Science.gov (United States)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  11. The strength evaluation and σ-phase aging behavior of cast stainless steel

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul; Lee, Woo Ho; Jang, Sun Sik

    1999-01-01

    σ-phase of cast stainless steel(CF8M) was artificially precipitated by means of thermal aging at 700 deg C with various holding time (0.33, 5, 15, 50 and 150 hrs) to evaluate the behavior of thermal aging status of strength change. The structure observation, hardness test, tensile test, impact test and fatigue crack growth rates test for as-received and degraded material were also performed to evaluate static strength, toughness and fatigue crack growth behavior corresponding to the aging condition of CF8M. The results showed that the area fraction of σ-phase and hardness value increased with thermal aging time. But, for the impact values, upper shelf energy decreased and fatigue crack growth rates increased with σ-phase aging progressed than that of virgin material

  12. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  13. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    International Nuclear Information System (INIS)

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems

  14. On some perculiarities of microstructure formation and the mechanical properties in thick-walled pieces of cast iron and their application as reactor structural materials

    International Nuclear Information System (INIS)

    Janakiev, N.

    1975-01-01

    The following problems are dealt with in the present work: Microstructure formation and mechanical properties of thick-walled cast pieces, influence of neutron irradiation on the mechanical properties, manufacture of thick-walled castings for reactor construction, application of cast iron as reactor structural material. It is shown that graphite formation plays an extremely important role regarding the mechanical properties. A new construction for vertically stressed pressure vessels is given. These vessels can be fabricated mainly of cast iron with graphite spheres, cast steel, or a combination of both depending on the operational pressure. (GSCH) [de

  15. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jon T. [General Motors LLC, Warren, MI (United States); Wang, Gerry [Meridian Lightweight Technologies, Plymouth MI (United States); Luo, Alan [General Motors LLC, Warren, MI (United States)

    2017-11-29

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improve the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some

  16. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...

  17. Stainless steel fibre reinforced aluminium matrix composites processed by squeeze casting: relationship between processing conditions and interfacial microstructure

    International Nuclear Information System (INIS)

    Colin, C.; Marchal, Y.; Boland, F.; Delannay, F.

    1993-01-01

    This work investigates the influence of some processing parameters on the extent of interfacial reaction in squeeze cast aluminium matrix composites reinforced with 12 μm diameter, continuous stainless steel fibres. The average thickness of the reaction layer at fibre/matrix interfaces was measured by image analysis. When casting was made in a die at room temperature, the thickness of the reaction layer was affected on a distance of several mm from the lateral surface or from the bottom of the preform. The results indicate that the major part of the reaction occurs before solidification of the liquid metal. The control of the extent of interfacial reaction can be achieved through optimization of both infiltration parameters and features of the preform such as the volume fraction of the fibres. (orig.)

  18. An assessment of the linear damage summation method for creep-fatigue failure with reference to a cast of type 316 stainless steel tested at 570 deg. C

    International Nuclear Information System (INIS)

    Wareing, J.; Bretherton, I.

    This paper presents preliminary results from the programme for hold period tests on a cast BQ of type 316 stainless steel at 570 deg. C. The results of tensile hold period tests on a relatively low ductility cast of type 316 stainless steel have indicated that the failure mechanism changes from a creep-fatigue interaction failure to a creep dominated failure at low strain levels. An assessment of the linear damage summation approach for failure prediction indicates that it is inappropriate for creep-fatigue interaction failures. For creep dominated fracture, failure occurs when the accumulation relaxation strain exhausts the material ductility i.e. Nsub(f epsilon R)=D. The failure criterion based on a creep summation in terms of time to fracture underestimates life

  19. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1994-01-01

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft 3 ) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  20. Behavior of the elements in the mechanically alloyed and cast ferritic steels and a type 316 stainless steel in a flowing sodium environment

    International Nuclear Information System (INIS)

    Suzuki, T.; Mutoh, I.

    1988-01-01

    Sodium corrosion behavior of a mechanically alloyed ferritic steel, dispersion-strengthened with addition of Y 2 0 3 and Ti, two kinds of melted/cast ferritic steels and a Type 316 stainless steel was examined by using a non-isothermal sodium loop system, constructed of another Type 316 stainless steel, with a direct resistance electrical heater. The sodium conditions were 675 0 C, 4.0 m/s in velocity and 1-2 ppm oxygen concentration and a cumulative exposure time of the specimens was about 3000 h. The absorption of Ni and selective dissolution of Cr played an important role in the corrosion of the mechanically alloyed ferritic steel as in the case of the cast ferritic steels. However, the region of Ni absorption and Cr diminution was deeper than that of the cast ferritic steels. Peculiar finding for the mechanically alloyed ferritic steel was the corroded surface with irregularly shaped protuberance, that might be related with formation of sodium titanate, and the absorption of carbon and nitrogen to form carbide and nitride of titanium. It seems that these facts resulted in the irregular weight loss of the specimens, which depended on the downstream position and the cumulative exposure time. However, the tensile properties of the mechanically alloyed ferritic steel did not noticeably change by the sodium exposure

  1. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  2. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  3. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  4. Manufacturing routes for stainless steel first wall panels

    International Nuclear Information System (INIS)

    Bucci, Ph.; Federzoni, L.; Le Marois, G.; Lorenzetto, P.

    2001-01-01

    Hot isostatic pressing (HIP) techniques are being considered in the European Home Team as one of the fabrication routes to produce ITER-FEAT primary first wall panels (PFWP). To demonstrate the potential and the availability of such techniques, material development, innovative mock-up fabrications and numerical modeling for the production of near-net shape components are currently been studied by CEA/CEREM in collaboration with the EFDA-CSU Garching. The aim of this work is to investigate the manufacturing feasibility of advanced PFWP concepts, with reduced pitch between FW cooling channels and reduced material thickness between the FW cooling channels and the front surface, in order to improve the thermal fatigue performance of these concepts. In order to select the best fabrication route, two different manufacturing methods based on the HIP process are being considered. The first one consists in manufacturing of the first wall panel by a HIP forming technique. Mock-ups are made of a serpentine tube expanded into a proper matrix. 2-D computer modeling has been performed to estimate the serpentine deformation. The second manufacturing route is based on the powder HIP technique. Mock-ups have been made of a serpentine embedded into SS powder. In both cases, the objective was to obtain the minimum pitch between the stainless steel (SS) tubes and between the SS tubes and the front face

  5. Characterization and Evaluation of Aged Chromium Nickel Niobium Stainless Steels

    Science.gov (United States)

    Dewar, Matthew

    20Cr-32Ni-1Nb stainless steel alloys are commonly used in hydrogen reformer manifolds for transporting hot hydrogen by-products at 750-950°C. After long periods of exposure, embrittling secondary carbides and intermetallic phases can precipitate at the grain boundaries which can drastically reduce the ductility, and the repair weldability of the alloy. The intermetallic silicide, G-phase, is commonly observed in 20Cr-32Ni-1Nb stainless steels, and is prone to liquation cracking during welding operations. G-phase is deleterious to the material, where a high degree of G-phase coarsening will render the material unweldable. The present work will investigate various methods in mitigating G-phase precipitation. Variations in casting methods, wall thickness, homogenization treatments, and alloy chemistry will be examined by evaluating their microstructure after periodically aging the samples. Thermodynamic equilibrium modeling using computational thermodynamic tools will be used to optimize the 20Cr-32Ni-1Nb chemistry following ASTM specifications.

  6. Casting made simple using modified sprue design: an in vitro study.

    Science.gov (United States)

    Baskaran, B Eswaran; Geetha Prabhu, K R; Prabhu, R; Krishna, G Phani; Eswaran, M A; Gajapathi, B

    2014-01-01

    Success in dental casting restorations for fixed partial dentures (FPDs) depends on the castability. Castability is described as the ability of an alloy to faithfully reproduce sharp detail and fine margins of a wax pattern. The goal of a prosthodontist is to provide the patient with restorations that fit precisely. Regardless of the alloy used for casting, the casting technique should yield a casted alloy, which should possess sufficient mass, surface hardness and minimal porosity after casting. Twenty patterns for casting were made from three-dimensional printed resin pattern simulating a 3 unit FPD and casted using modified sprue technique. Later test samples were cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in eight predetermined reference areas. Marginal gap were measured in microns using Video Measuring System (VMS2010F-CIP Corporation, Korea). A portion of the axial wall of the cast abutments depicting premolar and molar were sectioned and embedded in acrylic resin and tested for micro hardness using Reichert Polyvar 2 Met Microhardness tester (Reichert, Austria) and porosity using Quantimet Image Analyzer (Quantimet Corporation London, England). The results obtained for marginal gap, micro hardness, and porosity of all test samples were tabulated, descriptive statistics were calculated and the values were found to be within the clinically acceptable range. The new sprue technique can be an alternative and convenient method for casting which would minimize metal wasting and less time consuming. However, further studies with same technique on various parameters are to be conducted for its broad acceptance.

  7. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  8. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Negishi, Kazuo; Totsuka, Nobuo; Nakajima, Nobuo

    2001-01-01

    In order to evaluate the SCC susceptibility of cast duplex stainless steels which are often used for the main coolant piping of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The stainless steel contains ferritic phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The reduction in area observed by the SSRT in simulated primary water at 360degC was smaller than that obtained by the tensile test in air at the same temperature. Microcracks were observed on the unaged specimen surfaces and aged ones at 400degC for 10,000 hours after 3,000 hours of the CLT with the load condition of two times of yield strength. The SCC susceptibility was evaluated by reduction ratio defined by the ratio of the reduction in area by the SSRT to that by the tensile test. The reduction ratio was not clear for low ferrite specimens, but apparently decreased with increasing aging time for the specimen with 23% ferrite. This change by aging time can be explained as follows: (1) the brittle fracture in the unaged specimens is mainly caused by quasi-cleavage fracture in austenitic phase. (2) After aging, it becomes a mixture of quasi-cleavage fracture in both austenitic and ferritic phases and phase boundary fracture of both phases. (author)

  9. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takuyo; Negishi, Kazuo; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to evaluate the SCC susceptibility of cast duplex stainless steels which are often used for the main coolant piping of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The stainless steel contains ferritic phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The reduction in area observed by the SSRT in simulated primary water at 360degC was smaller than that obtained by the tensile test in air at the same temperature. Microcracks were observed on the unaged specimen surfaces and aged ones at 400degC for 10,000 hours after 3,000 hours of the CLT with the load condition of two times of yield strength. The SCC susceptibility was evaluated by reduction ratio defined by the ratio of the reduction in area by the SSRT to that by the tensile test. The reduction ratio was not clear for low ferrite specimens, but apparently decreased with increasing aging time for the specimen with 23% ferrite. This change by aging time can be explained as follows: (1) the brittle fracture in the unaged specimens is mainly caused by quasi-cleavage fracture in austenitic phase. (2) After aging, it becomes a mixture of quasi-cleavage fracture in both austenitic and ferritic phases and phase boundary fracture of both phases. (author)

  10. Positioning a thin-wall round wrapper within a heavy wall out-of-round shell of a heat exchanger

    International Nuclear Information System (INIS)

    Hargrove, H.G.; Thompson, E.G.; Bayless, J.R.

    1983-01-01

    A thin-wall, generally round wrapper is installed within a heavy wall, rolled heat exchanger shell which has greater out-of-round tolerances than the wrapper and the wrapper is maintained in its round state by utilizing a plurality of jacks disposed adjacent spaced tube support plates within the wrapper. (author)

  11. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  12. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-01-01

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C

  13. Dissolution of grain boundary carbides by the effect of solution annealing heat treatment and aging treatment on heat-resistant cast steel HK30

    OpenAIRE

    Silva, Francisco J. G.; Santos, Jorge; Gouveia, Ronny

    2017-01-01

    Decreasing the weight of heavy-duty vehicles is an ongoing concern. However, the need to deal with high temperatures in components such as manifolds imposes, by itself, some restrictions regarding material selection, being further limited when other required properties (e.g., functional, manufacturing or cost requirements) are taken into account. Cast austenitic stainless steels may represent a good choice in this context but the existence of concentrated chromium carbides can generate undesi...

  14. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  15. Development of nuclear grade stainless steels at KCSSL

    International Nuclear Information System (INIS)

    Balachandran, G.; Dhere, M.; Mahadik, A.; Hinge, N.M.; Balasubramanian, V.

    2011-01-01

    Kalyani Carpenter Special Steels Ltd is an alloy steel plant, where a variety of alloy steel grades are produced for automotive, defence, nuclear and aerospace applications. The plant has developed expertise in processing of several alloy steel grades of superior quality that meets stringent specifications. Primary steel is processed through a combination of electric arc furnace, ladle furnace and vacuum degassing where stringent control over dephosphorisation, desulphurization, deoxidation is effected to get a refined high quality steel. The molten steel is cast through continuous casting of slabs or ingot casting. In grades specific to nuclear application, the primary cast products are further subjected to electroslag remelting to achieve further freedom from inclusions and to achieve a favourable solidification grain structure, which ultimately improve the hot workability of the alloy steel. Appropriate choice of slag and operating parameters are needed for realising the required ingot quality. The present study would examine the processing and quality aspects of some important grades of steels used in nuclear industry namely ferritic 9Cr-1Mo steel, martensitic stainless steels 403, 410, precipitation hardenable 17-4 PH stainless steel and austenitic 321, 316LN stainless steel, which were made and supplied for applications to Indian nuclear industry. The expertise developed in processing the steels in terms of melting, heat treatment and their relationship to structural features and mechanical properties would be highlighted. (author)

  16. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  17. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  18. High-temperature strength of TiC-coated SUS316 stainless steel

    International Nuclear Information System (INIS)

    Kaneko, K.; Furuya, Y.; Kikuchi, M.

    1992-01-01

    Some ceramics-coated metals are nominated as first-wall material. TiC-coated type 316 stainless steel is expected to be superior to other materials in high-temperature strength and in its endurance properties at heavy irradiation. Delamination between ceramics layer and base-metal is considered to be one of the most important problems when such ceramics-coated metals are used in a temperature field with a gradient such as that of the first wall. In this report, the high-temperature strength of TiC-coated type 316 stainless steel, which should be that of the first wall of the fusion reactor, is investigated experimentally and computationally. A simple and precise thermal-stress testing system is developed. The effects of surface roughness as well as of the thermal stress and the residual stress on the bonding strength are investigated. The experimental and numerical results on the residual-stress distribution are compared with each other to confirm the reliability of the inelastic analysis using the finite-element method (FEM). It is expected that a suitable surface roughness makes the residual stress in the coated film small. The optimum range for the TiC-coating temperature is found using inelastic FEM analysis at the heating conditions used in the experiments. (orig.)

  19. A comparative study on microgap of premade abutments and abutments cast in base metal alloys.

    Science.gov (United States)

    Lalithamma, Jaini Jaini; Mallan, Sreekanth Anantha; Murukan, Pazhani Appan; Zarina, Rita

    2014-06-01

    The study compared the marginal accuracy of premade and cast abutments. Premade titanium, stainless steel, and gold abutments formed the control groups. Plastic abutments were cast in nickel-chromium, cobalt-chromium and grade IV titanium. The abutment/implant interface was analyzed. Analysis of variance and Duncan's multiple range test revealed no significant difference in mean marginal microgap between premade gold and titanium abutments and between premade stainless steel and cast titanium abutments. Statistically significant differences (P < .001) were found among all other groups.

  20. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    Science.gov (United States)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  1. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  2. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  3. Liquid wall boiler and moderator (BAM) for heavy ion-pellet fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Lazareth, O.; Fillo, J.

    1977-11-01

    Thick liquid wall blankets appear to be of great promise for heavy ion pellet fusion reactors. They avoid the severe problems of intense radiation and blast damage that would be encountered with solid blanket structures. The liquid wall material can be chosen so that its vapor pressure at the working temperature of the power cycle is well below the value at which it might interfere with the propagation of the heavy ion beam. The liquid wall can be arranged so that it does not contact any surrounding solid structure when the pellet explosion occurs, including the ends. The ends can be magnetically closed just before the pellet explosion, or a time phased flow can be used, which will leave a clear central zone into which the pellet is injected. Parametric analysis comparing three candidate liquid wall materials were carried out. The three materials were lithium, flibe, and lead (with a low concentration of disolved lithium). Lead appeared to be the best choice for the liquid wall, although any of the three should allow a practical reactor system. The parametric analyses examined the effects of pellet yield (0 to 10 GJ), pellet mass (3 g to 3 kg), liquid wall thickness (10 cm to 80 cm), vapor condensation time (0 to 10 milliseconds), degree of neutron moderation in the pellet (none to 100%), liquid wall chamber size (radius of 1.5 meters to 4 meters), Pb/Li 6 ratio (100 to 5,000), and thickness of graphite moderating zone behind the liquid wall

  4. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steel (second report). Consideration on fractography after slow strain rate technique

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Chiba, Goro; Totsuka, Nobuo; Arioka, Koji

    2003-01-01

    In order to evaluate the stress corrosion cracking (SCC) susceptibility of cast duplex stainless steel which is used for the main coolant pipe of pressurized water reactors (PWRs), the slow strain rate technique (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The cast duplex stainless steel contains ferrite phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this unaged and aged stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The brittle fracture of the unaged specimens after SSRT mainly consists of quasi-cleavage fracture in austenitic phase. After aging, it changes to a mixture of quasi-cleavage fracture in both austenitic and ferritic phases. Microcracks were observed on the unaged specimen surfaces and aged ones for 10,000 hours at 400degC after about 10,000 hours of the CLT under the load condition of 1.2∼2.0 times of yield strength. The crack initiation sites of CLT specimens are similar to SSRT fracture surfaces. The SCC susceptibility of this 23% ferrite material increases with aging time at 400degC. The SCC susceptibility of 15% and 23% ferrite materials are higher than that of 8% ferrite material with aging condition for 30,000h at 400degC. (author)

  5. Improving composition of protective coatings for steel casting

    International Nuclear Information System (INIS)

    Kuz'kina, N.N.; Pegov, V.G.; Bogatenkov, V.F.; Shub, L.G.; Raspopova, N.A.

    1983-01-01

    A radically new fuel-free slag-forming mixture used as protective coating for steel casting is introduced. The lack of combustible powders precludes explosion and fire Lazard in mixture preparation. Usage of the new mixture in stainless steel casting of Kh18N10T type permitted to improve the ingot surface quality and reduce spoilage from 1.16 to 0.66%

  6. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  7. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  8. Application of instrumented microhardness method to follow the thermal ageing of cast duplex stainless steel

    International Nuclear Information System (INIS)

    Rezakhanlou, R.; Massoud, J.P.

    1993-03-01

    During the thermal ageing of cast duplex stainless steel the ferrite hardness largely increases. The measurement of the ferrite phase hardness can give us an indication of the level of the ageing process. But in order to have a representative value of the ferrite hardness, the applied load must be low enough. For this reason, we have used the instrumented microhardness (IMH) test which consists to measure continuously the applied load and the indentation depth during the operation. The mechanical analysis of the so called indentation curve allows us to calculate the hardness and the young modulus of the indented material for loads as low as 2 g. The results confirm the Vickers microhardness measurement under 50 g loads i.e. a sharp increase of the ferrite hardness (x 2.3 as compared to the as received state) for the highly aged sample. It should be noted that the results obtained with the IMH are completely independent of the operator. (authors). 18 refs., 7 figs., 6 tabs

  9. Radiography of Co-60 in the lead cube castings

    International Nuclear Information System (INIS)

    Djoli Soembogo; Harun Al Rasyid R; Namad Sianta

    2016-01-01

    Radiography Co-60 on Carbon steel or Stainless steel has been widely applied, but for metal Lead has not yet been applied and has not yet widely known. Lead has a greater density than Carbon steel or Stainless steel and could muffle gamma radiation so it takes a longer exposure time. The result of its film radiography are also not as good as compared to radiography applications on carbon steel or Stainless steel. The study also applied digital radiography using isotope Co-60 sources and used Epson V700 scanner positive film for digitization results of conventional radiographic films. These radiographs using film AGFA D7 to get the contrast medium, medium sensitivity and good image quality. The purpose of radiography Co-60 on the cube castings Lead is to find indications of defective castings cube Lead and digitizing the results using conventional radiographic film with a positive film media scanner to process the data transfer and storage of digital data. Radiographic testing has been carried out using the isotope Co-60 on metal castings Lead with a single thickness of a single shadow method using positive film scanner media and isotope Co-60 with disabilities observation parameter Lead metal castings on radiographic film. Co-60 radiation time exposure is 3,500 hours for the thickness of the metal cube castings Lead 100 mm with the activity of 29 Ci and perpendicular SFD of 840 mm. Radiographic testing on metal cube castings Lead by the method of a single thickness of single image defects produce a parameter indicative for a cube of metal castings Lead of porosity level 2. The density mean of radiographic film was 2.051 and 2.046 for 5 minutes in a developer solution. The result of scanning positive film is in the form of digital radiography which allows for the transfer of digital data or computerized storage of digital data. This status is still within limits acceptable under the standards referred. (author)

  10. Heavy Metal Bioaccumulation in an Atypical Primitive Neuroectodermal Tumor of the Abdominal Wall.

    Science.gov (United States)

    Roncati, Luca; Gatti, Antonietta Morena; Capitani, Federico; Barbolini, Giuseppe; Maiorana, Antonio; Palmieri, Beniamino

    2015-01-01

    Heavy metals are able to interfere with the function of vital cellular components. Besides in trace heavy metals, which are essential at low concentration for humans, there are heavy metals with a well-known toxic and oncogenic potential. In this study, for the first time in literature, we report the unique adulthood case of an atypical primitive neuroectodermal tumor of the abdominal wall, diagnosed by histology and immunohistochemistry, with the molecular hybridization support. The neoplasia occurred in a patient chronically exposed to a transdermal delivery of heavy metal salts (aluminum and bismuth), whose intracellular bioaccumulation has been revealed by elemental microanalysis.

  11. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-01-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  12. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  14. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature

    International Nuclear Information System (INIS)

    Calonne, V.

    2001-07-01

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  15. Perturbative determination of mass-dependent renormalization and improvement coefficients for the heavy-light vector and axial-vector currents with relativistic heavy and domain-wall light quarks

    International Nuclear Information System (INIS)

    Yamada, Norikazu; Aoki, Sinya; Kuramashi, Yoshinobu

    2005-01-01

    We determine the mass-dependent renormalization as well as improvement coefficients for the heavy-light vector and axial-vector currents consisting of the relativistic heavy and the domain-wall light quarks through the standard matching procedure. The calculation is carried out perturbatively at the one-loop level to remove the systematic error of O(α s (am Q ) n ap) as well as O(α s (am Q ) n ) (n>=0), where p is a typical momentum scale in the heavy-light system. We point out that renormalization and improvement coefficients of the heavy-light vector current agree with those of the axial-vector current, thanks to the exact chiral symmetry for the light quark. The results obtained with three different gauge actions, plaquette, Iwasaki and DBW2, are presented as a function of heavy quark mass and domain-wall height

  16. Detection and sizing of large-scale cracks in centrifugally cast stainless steel pipes using Lamb waves

    International Nuclear Information System (INIS)

    Ngoc, T.D.K.; Avioli, M.J. Jr.

    1988-01-01

    Application of conventional ultrasonic nondestructive evaluation (NDE) techniques to centrifugally cast stainless steel (CCSS) pipes in pressurized water reactors (PWRs) has been limited, mainly due to the anisotropy of the CCSS materials. Phenomena such as beam skewing and distortion are directly attributable to this anisotropy and cause severe difficulties in crack detection and sizing. To improve CCSS inspectability, the feasibility of using Lamb waves as the probing mechanism for detecting and characterizing a surface-breaking crack originating from the pipe interior surface is discussed. A similar research effort has been reported by Rokhlin who investigated the interaction of Lamb waves with delaminations in thin sheets. Rokhlin and Adler also reported recently on the use of Lamb waves for evaluating spot welds. The motivation for using this probing mechanism derives from the recognition that the difficulties introduced by beam skewing, beam distortion, and high attenuation are circumvented, since Lamb waves are not bulk waves, but are resonant vibrational modes of a solid plate

  17. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  18. An exploratory study of heavy domain wall fermions on the lattice

    CERN Document Server

    Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias

    2016-01-01

    We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.

  19. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic casting...

  20. The temperature dependence and environmental enhancement mechanism of fatigue crack growth rates of A 351-CF8A cast stainless steel in LWR environment

    International Nuclear Information System (INIS)

    Cullen, W.H.; Haenninen, H.; Toerroenen, K.; Kemppainen, M.

    1984-01-01

    The fatigue crack growth rates for A 351-CF8A cast stainless steel were determined over a range of temperatures from 93 degC to 338 degC (200 degF to 640 degF). The waveform was 17 mHz sinusoidal and the load ratio was 0.2. The environment was borated and lithiated water with a dissolved oxygen content of approximately 1 ppb. The results show an easily measurable (factors of 2 to 8) increase in crack growth rates due to the environment. However, these rates are well within the known band of results for low-alloy pressure vessel and low-carbon piping steels in LWR environments. An extensive fractographic investigation shows fatigue fracture surfaces consisting of brittle morphology. This fracture morphology is similar to that of stress corrosion cracking of stainless steels, suggesting that there is a distinctive environmental assistance mechanism resulting in the increased crack growth rates. (author)

  1. Research and Development of Heavy Wall DNV485FDU Pipeline Plate for 3500M Deep Water Pipe Applications at Shougang

    Science.gov (United States)

    Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai

    In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.

  2. Direct Cast U-6Nb – 2017 Progress on Cylindrical Castings

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    This report describes work to further develop a sound technical basis and best practices for mold design and process parameters for the Direct Casting of U-6wt%Nb components. One major challenge to the production of U-6Nb components is the propensity for niobium segregation during casting and solidification. This is especially true for cylindrical castings where the vertical side walls allow flotation of Nb resulting in severe inverse macrosegregation. In this work, a small (120 mm diameter by 180 mm tall) and large cylinder (250 mm diameter by 310 mm tall) are examined with a focus on reducing, or eliminating, niobium segregation. It is demonstrated that counter gravity casting (top-to-bottom solidification) can be used to minimize segregation in the small cylinder. Attempts to counter gravity cast the large cylinder were unsuccessful, in large part due to size limitations of the current furnace. A path forward for casting of the large cylinders is discussed.

  3. Manufacture of tube billets for fuel cans by vacuum centrifugal casting

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Neklyudov, I.M.; Chernyj, B.P.

    1989-01-01

    Vacuum device for induction melting with centrifugal casting in the ingot mold with rotation vertical or horisontal axis is presented. Removing and grinding of nonmetallic inclusions are realized by selection of casting conditions and of chemically active reducer, sound metal with high ductility is obtained. Data on micro- and macrostructure of casted tube billets made of 08Kh18N10T and 06Kh16H15M3B stainless steels, designed for manufacture of fuel cans are presented

  4. Analysis of copper alloy to stainless steel bonded panels for ITER first wall applications

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Kurath, P.; Drockelman, D.; Li, G.; Thomas, B.G.; Morgan, G.D.; McAfee, J.

    1995-01-01

    The mechanical performance of bi-layer copper alloy (Gildcop CuA115) to 316L stainless steel panels was examined. This work was to analyze potential bonding methodologies for the fabrication of ITER first wall structures, to verify the bond integrity of the fabricated panels, and to establish some mechanical performance parameters for panel structural performance. Two bonding routes were examined: explosively bonding and hot isostatically pressed (HIP) bonding. Following fabrication, the panels were mechanically loaded in tensile and fatigue tests. The mechanical performance test verified that the bond integrity was excellent, and that the primary mode of failure of the bonded panels was related to failure in the base materials rather than lack of adequate bond strength

  5. Optimizing the Gating System for Steel Castings

    Directory of Open Access Journals (Sweden)

    Jan Jezierski

    2018-04-01

    Full Text Available The article presents the attempt to optimize a gating system to produce cast steel castings. It is based on John Campbell’s theory and presents the original results of computer modelling of typical and optimized gating systems for cast steel castings. The current state-of-the-art in cast steel casting foundry was compared with several proposals of optimization. The aim was to find a compromise between the best, theoretically proven gating system version, and a version that would be affordable in industrial conditions. The results show that it is possible to achieve a uniform and slow pouring process even for heavy castings to preserve their internal quality.

  6. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1985-01-01

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  7. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  8. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity

    International Nuclear Information System (INIS)

    Cicero, S.; Setien, J.; Gorrochategui, I.

    2009-01-01

    This paper analyzes the thermal aging embrittlement occurred in a cast stainless steel valve, which is part of the reactor water clean-up (RWCU) system of a Spanish boiling water reactor (BWR) nuclear power plant. The aim is to estimate the current and future state of the material and the corresponding structural integrity of the valve. Given that there is no data available for the experimental characterization of the material, the evolution of the mechanical properties (fracture toughness, yield stress, flow stress and Ramberg-Osgood parameters) has been estimated using the ANL procedure. With the obtained estimations, the critical crack size has been calculated using the European procedure FITNET FFS and the ASME Code. This analysis considers not only the evolution of the mechanical properties up to now but also its future evolution in case there is a life extension of the plant until year 2029

  9. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  10. Thermogalvanic corrosion and galvanic effects of copper and AISI 316L stainless steel pairs in heavy LiBr brines under hydrodynamic conditions

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2012-01-01

    Highlights: ► Thermogalvanic corrosion results in an increase of the current densities. ► Thermogalvanic effect increases as temperature difference between tubes is higher. ► Potentials fit linearly with increase in temperature. ► ZRA shows hot cathodes for AISI 316L while cold ones for copper and galvanic pairs. ► Weight loss tests show a combined effect between thermogalvanic and galvanic effects. - Abstract: Thermogalvanic corrosion of the copper/copper and AISI 316L/AISI 316L stainless steel pairs was studied in heavy lithium bromide brines under hydrodynamic conditions. The galvanic coupling effect between copper and stainless steel was also analysed. The cold electrode (25 °C) was the stainless steel for the galvanic pair, whereas copper temperature varied (25, 50 and 75 °C). A hydrodynamic circuit was designed to study thermogalvanic corrosion by means of the zero resistance ammeter technique. Hot cathodes take place in stainless steel pairs while cold cathodes are present in copper/copper and stainless steel/copper pairs; this agrees with the thermal temperature coefficient of the potential sign. Thermogalvanic corrosion increases corrosion rates, especially working with copper. Weight loss measurements show that there is a combined effect due to the thermogalvanic and the galvanic effects.

  11. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alexandreanu, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  12. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity

    International Nuclear Information System (INIS)

    Andrade, Leonardo R.; Leal, Raquel N.; Noseda, Miguel; Duarte, Maria Eugenia R.; Pereira, Mariana S.; Mourao, Paulo A.S.; Farina, Marcos; Amado Filho, Gilberto M.

    2010-01-01

    Brown algae are often used as heavy metal biomonitors and biosorbents because they can accumulate high concentrations of metals. Cation-exchange performed by cell wall polysaccharides is pointed out as the main chemical mechanism for the metal sequestration. Here, we biochemically investigated if the brown alga Padina gymnospora living in a heavy metal contaminated area would modify their polysaccharidic content. We exposed non-living biomass to Cd and Pb and studied the metals adsorption and localization. We found that raw dried polysaccharides, sulfate groups, uronic acids, fucose, mannose, and galactose were significantly higher in contaminated algae compared with the control ones. Metal concentrations adsorbed by non-living biomass were rising comparatively to the tested concentrations. Electron microscopy showed numerous granules in the cell walls and X-ray microanalysis revealed Cd as the main element. We concluded that P. gymnospora overproduces cell wall polysaccharides when exposed to high metal concentrations as a defense mechanism.

  13. Simplified Estimation of Tritium Inventory in Stainless Steel

    International Nuclear Information System (INIS)

    Willms, R. Scott

    2005-01-01

    An important part of tritium facility waste management is estimating the residual tritium inventory in stainless steel. This was needed as part of the decontamination and decommissioning associated with the Tritium Systems Test Assembly at Los Alamos National Laboratory. In particular, the disposal path for three, large tanks would vary substantially depending on the tritium inventory in the stainless steel walls. For this purpose the time-dependant diffusion equation was solved using previously measured parameters. These results were compared to previous work that measured the tritium inventory in the stainless steel wall of a 50-L tritium container. Good agreement was observed. These results are reduced to a simple algebraic equation that can readily be used to estimate tritium inventories in room temperature stainless steel based on tritium partial pressure and exposure time. Results are available for both constant partial pressure exposures and for varying partial pressures. Movies of the time dependant results were prepared which are particularly helpful for interpreting results and drawing conclusions

  14. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Tian, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Dunji, E-mail: djyu@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Chen, Xu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-10-14

    Nuclear grade Z3CN20.09M cast duplex stainless steel exhibits enhanced cyclic stress response and prolonged low cycle fatigue life at room temperature after thermal aging at 400 °C for up to 6000 h. The threshold strain amplitude for the onset of secondary hardening is shifted to a lower value after thermal aging. Microstructural observations reveal that fatigue cracks tend to initiate from phase boundaries in virgin specimens, but to initiate in the ferrite phase in aged ones. Denser fatigue striations are found on the fracture surface of fatigued specimen subjected to longer thermal aging duration. These observations are explained in the context of thermal aging induced embrittlement of the ferrite phase and deformation induced martensitic phase transformation in the austenite phase.

  15. Experiments to study the erosive effect of oxide casting streams on structures

    International Nuclear Information System (INIS)

    Stuka, B.; Knauss, H.; Kammerer, B.; Perinic, D.

    1992-04-01

    The experiments performed under an activity of the Nuclear Safety Project (PSF) make a contribution to the study of the erosive effect of oxide casting streams on structures. As aluminothermically generated oxide casting stream, 20 mm in diameter, was applied from 1.0 m dropping height to 40 mm thick horizontal stainless steel plates in free air atmosphere. The test parameters were different temperatures of preheating of the plates (900 and 1200deg C). By means of thermocouples offset in depth in the plates it was possible to record and represent the temperature distribution in the plate correlated with time. Regarding the direct erosive effect of an oxide casting stream as a function of the temperature of plate preheating it appeared that a high initial temperature of the stainless steel plate (1200deg C) causes an increased erosion area at the surface only, but does not exert a macroscopically visible influence on erosion depth. (orig.) [de

  16. Using Low-Frequency Phased Arrays to Detect Cracks in Cast Austenitic Piping Components

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-01-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address NDE reliability of inservice inspection (ISI) programs, recent studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effectiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the ISI of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and early results from an assessment of a portion of this work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner's Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, are being used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays are employed in laboratory trials. Results from laboratory studies for assessing detection of thermal and mechanical fatigue cracks in cast stainless steel piping welds are discussed

  17. Ductile fracture behavior of cast structure containing voids

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    2001-07-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  18. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    Gilles, Ph.; Migne, C.; Chapuliot, S.

    2001-01-01

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  19. Corrosion produced failures in valves made of micro-melted stainless steel. Valve disk

    International Nuclear Information System (INIS)

    Abuin, G.; Alanis, I.; Berardo, L.

    1991-01-01

    Cast stainless steels show different metallographic structure than equivalent laminated steels where the former presents good resistance in media containing chlorides. In the present work, an analysis is made of the causes for the fracture of an AISI 316 micro-melted stainless steel disk for a valve in a cleaning agents feeding circuit in a food processing plant. (Author) [es

  20. Sigma phase morphologies in cast and aged super duplex stainless steel

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-01-01

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  1. Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l`Energie Atomique, Saclay, Gif-sur-Yvette (France)

    1998-09-01

    The design of the ITER primary first wall incorporates a multi-layered structure consisting of a layer of beryllium bonded to a layer of copper alloy with embedded stainless steel tubes which in turn is bonded to a stainless steel structure. In this configuration, the stainless steel provides structural support, the copper alloy improved resistance to high heat loads, and the beryllium layer a low Z metal interface with plasma. Fabrication, testing and control of this multi-layered structure, and indeed the entire blanket shield module, calls for advanced methods. Several associations in the four home teams and their industrial partners have been involved in various fabrication and joining tasks now grouped under L4 blanket project. In this paper, an overview of the work done so far for joining stainless steel to stainless steel, stainless steel to copper alloy, copper alloy to copper alloy, and copper alloy to beryllium is presented. Specialised papers dealing with most of the topics treated here are scheduled in this symposium. The fabrication and joining methods presented here, other than the conventional welding and brazing, follow four main routes. Two of them make extensive use of hot-isostatic pressing (HIP); (a) solid to solid; (b) solid or powder to powder, with or without a prior cold or hot isostatic pressing of one of the products. The third combines advantages of casting and HIPping for fabricating large and complex parts. The fourth investigates the possibility of using explosive welding for joining copper alloys to stainless steel. Other methods, including friction welding, are investigated for specific parts. (orig.) 34 refs.

  2. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  3. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  4. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    Science.gov (United States)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  5. Heavy vehicle simulator testing on pre-cast concrete panels

    CSIR Research Space (South Africa)

    Du Plessis, L

    2007-07-01

    Full Text Available commonly found in California, pre-cast concrete slabs are considered to be a very suitable repair material for extending the service life of intermittently distressed concrete pavements. This is because of the long life expectancy of concrete slabs cast...

  6. An appraisal of procedures used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system

    International Nuclear Information System (INIS)

    Smith, E.

    1989-01-01

    Against the background of the problem of intergranular stress corrosion cracking of 304 stainless steel in Boiling Water Reactor piping systems, this paper presents a critical appraisal of procedures that are currently used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system. Particular attention is focussed on a simple procedure developed by Cotter, Chang and Zahoor, which has been applied to specific piping systems, the objective being to underpin its viability. The considerations are applicable to not only Boiling Water Reactor piping systems, but to other piping systems where pipe failure due to circumferential cracking is a potential problem. (author)

  7. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  8. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  9. Tritiated Water Interaction with Stainless Steel

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water

  10. Neutron radiography inspection of investment castings

    International Nuclear Information System (INIS)

    Richards, W.J.; Barrett, J.R.; Springgate, M.E.; Shields, K.C.

    2004-01-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3x improvement of detecting a 0.050x0.007 in 2 (1.270x0.178 mm 2 ) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large parts

  11. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: Yiren_Chen@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Alexandreanu, B.; Chen, W.-Y.; Natesan, K. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Li, Z.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Rao, A.S. [US Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2015-11-15

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  12. Evaluation of the strain rate effects on environmental fatigue life of CF8M cast stainless steel

    International Nuclear Information System (INIS)

    Jeong, Ill Seok; Ha, Gak Hyun; Jeon, Hyun Ik

    2009-01-01

    The environmental fatigue life of CF8M cast stainless steel is influenced by mechanical, environmental and metallurgical parameters, such as strain rate, strain amplitude, temperature, dissolved oxygen concentration, water flow rate and so on. In an actual plant, the mechanical and environmental parameters are changing during the plant operation. Therefore, the effect of such mechanical and environmental parameter changes on fatigue life evaluation have to be studied. Low cycle fatigue life of structural materials diminishes remarkably as functions of various parameters in high temperature and high pressure environments. Such reduction can be estimated by the fatigue life reduction factor(F en ). In this study, fatigue tests were performed under changing conditions of strain amplitude, strain rate. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitudes at 0.004 %/s strain rate, and the fatigue life correction factor was evaluated according to the equation modified by U. S. Nuclear Regulatory Commission(U.S.NRC) and Japanese Environmental Fatigue Tests committee (JEFT).

  13. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  14. Conceptual design of the INTOR first-wall system

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described

  15. Review of the continuous casting of steel by strip casting technology. Twin roll method system

    International Nuclear Information System (INIS)

    Ibarrondo, I.

    2008-01-01

    In order to compete in the future steel market and to maintain market share, the steel makers will need to use new efficient technologies capable of supplying steel strip products of high quality at low cost. In this way, the strip casting technology by twin rol method is one of the most important research are in the iron and steel industry today. This review makes a general description of the strip casting technology as well as its different steps, such us; metal delivery and casting, solidification process, hot rolling reduction step, etc. Through mathematical and physical models, the influence on microstructure texture surface quality and mechanical properties of the materials obtained by this method are described as a function of processing parameters, specially the roughness of the rolls. the manufacturing of carbon, stainless and electrical steels involves smaller capital and operating cost, lower gas emissions, and an opportunity to create new grades due to a faster solidification rate that leads to a different solidification structures. In sight of all this it is likely that Strip Casting technology will make a profound impact on the manufacturing landscape of the 21 s t century. (Author) 177 refs

  16. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    Science.gov (United States)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-12-01

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.

  17. Radiography of steel castings by radioisotopes

    International Nuclear Information System (INIS)

    Agrawal, D.K.

    1977-01-01

    The salient features of isotope radiography techniques in the inspections of alloy castings are described. Some of the typical radiographic tests conducted in the Bharat Heavy Electricals Ltd., Bhopal and the problems encountered are described in detail. Specific examples are cited to enlighten the benefits of isotope radiography in heavy industries. (author)

  18. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  19. Heavy steel casting components for power plants 'mega-components' made of high Cr-steels

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, Reinhold [voestalpine Giesserei Linz GmbH, Linz (Austria)

    2010-07-01

    Steel castings of creep resistant steels play a key role in fossil fuel fired power plants for highly loaded components in the high and intermediate pressure section of the turbines. Inner and outer casings, valve casings, inlet connections and elbows are examples of such critical components. The most important characteristic in a power plant is the efficiency, which mainly drives the CO2-emission. As a consequence of steadily improving power plant efficiencies and ever stricter emission standards, steam parameters become more critical and the creep resistance of the cast materials must also be constantly improved. The foundries voestalpine Giesserei Linz and voestalpine Giesserei Traisen participated in the development of the new 9-10% Cr-steels for application up to 625 C/650 C and in the THERMIE project where Ni-base alloys for 700 C-power plants were developed. Beside the material development in the European research projects the commercial production had to be established for industrial processes and the newly developed materials have to be transferred from research into the commercial production of heavy cast components. After selecting the most promising alloy from the laboratory melts, welding tests were performed - mostly with matching electrodes also produced within COST/THERMIE. Base material and welds were investigated in respect of microstructure, creep resistance, mechanical properties and weldability. Heat treatment investigations were also necessary for optimization of the mechanical properties. Based on the results of these studies, pilot components and plates for testing welding processes were cast in order to verify the castability and weldability of larger parts and to make any necessary adjustments to chemical composition, heat treatment or welding parameters. Parallel to the ongoing creep tests within COST/THERMIE-program, the newly developed steel grades were introduced into the commercial production of large components. This involved finding

  20. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  1. Thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    Massoud, J.P.; Van Duysen, J.C.; Zacharie, G.; Auger, P.; Danoix, F.

    1992-03-01

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  2. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  3. First wall costs of an ion-beam fusion reactor

    International Nuclear Information System (INIS)

    Hovingh, J.

    1977-08-01

    This paper parametrically investigates the effects of microexplosion energy on the first wall costs of a 4000 MW/sub t/ ion-beam initiated, inertially confined fusion reactor for several first wall materials. The thermodynamic models and the results for microexplosion energies between 400 and 4000 MJ are presented. A solid stainless steel or a composite isotropic graphite over stainless steel first wall can operate for a year at a cost of 0.6 mills per kWh gross electric power output

  4. D walls and junctions in supersymmetric gluodynamics in the large N limit suggest the existence of heavy hadrons

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Shifman, Mikhail

    2000-01-01

    A number of arguments exists that the ''minimal'' Bogomol'nyi-Prasad-Sommerfeld (BPS) wall width in large-N supersymmetric gluodynamics vanishes as 1/N. There is a certain tension between this assertion and the fact that the mesons coupled to λλ have masses O(N 0 ). To reconcile these facts we argue that there should exist additional solitonlike states with masses scaling as N. The BPS walls must be ''made'' predominantly of these heavy states which are coupled to λλ stronger than the conventional mesons. The tension of the BPS wall junction scales as N 2 , which serves as an additional argument in favor of the 1/N scaling of the wall width. The heavy states can be thought of as solitons of the corresponding closed string theory. They are related to certain fivebranes in the M-theory construction. We study the issue of the wall width in toy models which capture some features of supersymmetric gluodynamics. We speculate that the special hadrons with mass scaling as N should also exist in the large-N limit of nonsupersymmetric gluodynamics. (c) 2000 The American Physical Society

  5. Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, M.V. [DICI, University of Pisa, I-56122 Pisa (Italy)

    2015-03-10

    Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined.

  6. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  7. Heat-affected-zone toughness in heavy wall pipe: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, K.; Glover, A.G.; Varo, D.B.

    1988-02-01

    The objective of this program has been to determine the significance of low toughness regions on the service performance of heat-affected zones in heavy wall pipe materials. The low temperature HAZ toughness of welds in microalloyed and quenched and tempered materials at two heat inputs was established, a test technique to produce fatigue cracks in the HAZ was developed, and four full scale fracture tests were completed at /minus/49/degree/F. Publication available from the American Gas Association Order Processing Department, 1515 Wilson Boulevard, Arlington, Virginia 22209-2470 (703/841-8558). 17 refs. (JL)

  8. Standard test method for electrochemical critical pitting temperature testing of stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT). 1.2 This test methods applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1). Note 1—Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1). See the research reports (Section 14). 1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel). 1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT...

  9. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material – An Interim Study

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

    2009-10-27

    Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar

  10. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    ] with a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions...

  11. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ya, Bin; Zhou, Bingwen; Yang, Hongshuo; Huang, Bingkun; Jia, Fei; Zhang, Xingguo, E-mail: zxgwj@dlut.edu.cn

    2015-07-15

    Highlights: • Adding MWCNTs in situ casting fabricating TiC/Ti6Al4V composites is first reported. • The solidification process of in situ casting TiC/Ti6Al4V composites is discussed. • Microstructure shows remarkable correlations with adding MWCNTS. • Strength and plasticity show remarkable correlations with adding MWCNTs. - Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were added as carbon sources to fabricate in situ casting TiC/Ti6Al4V (TC4) composites. The effects of MWCNTs on the microstructure and mechanical properties are studied. The composites are analyzed by X-ray diffraction, field-emission scanning electron microscope and electron probe microanalysis. The fracture behavior of TiC/TC4 composites are also studied. Smaller size of TiC particles and grain compared with TC4-graphite composites can be observed. The tensile strength of TC4-MWCNTs composites is about 1110.1 MPa, which is higher than that of TC4-graphite composites, about 1003.6 MPa. Fracture behavior also was changed by adding MWCNTs in situ casting TiC/TC4 composites.

  12. Fine scale microstructure in cast and aged duplex stainless steels investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Lin, J.S.; Spooner, S.

    1986-02-01

    Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  14. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    Kuwano, Hisashi

    1996-01-01

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  15. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  16. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  17. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    Science.gov (United States)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  18. Finite element analysis of slot wall deformation in stainless steel and titanium orthodontic brackets during simulated palatal root torque.

    Science.gov (United States)

    Magesh, Varadaraju; Harikrishnan, Pandurangan; Kingsly Jeba Singh, Devadhas

    2018-04-01

    Torque applied on anterior teeth is vital for root positioning and stability. The aim of this study was to evaluate the detailed slot wall deformation in stainless steel (SS) and titanium (Ti) edgewise brackets during palatal root torque using finite element analysis. A finite element model was developed from a maxillary central incisor SS bracket (0.022 in). The generated torque values from an SS rectangular archwire (0.019 × 0.025 in) while twisting from 5° to 40° were obtained experimentally by a spine tester, and the calculated torque force was applied in the bracket slot. The deformations of the slot walls in both SS and Ti brackets were measured at various locations. There were gradual increases in the deformations of both bracket slot walls from the bottom to top locations. In the SS bracket slot for the 40° twist, the deformations were 9.28, 36.8, and 44.8 μm in the bottom, middle, and top slot wall locations, respectively. Similarly, in the Ti bracket slot for the 40° twist, the deformations were 39.2, 62.4, and 76.2 μm in the bottom, middle, and top slot wall locations, respectively. The elastic limits were reached at 28° for SS and at 37° for Ti. Both SS and Ti bracket slots underwent deformation during torque application. There are variations in the deformations at different locations in the slot walls and between the materials. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  20. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  1. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was

  2. Study of waterline corrosion on the carbon steel liner cast in concrete at the condensation pool. I. Literature review II. Study of the risk for waterline corrosion on the steel liner cast in concrete at the cylinder wall at Barsebaeck 1

    International Nuclear Information System (INIS)

    Sederholm, Bror; Kalinowski, Mariusz; Eistrat, Kaija

    2009-02-01

    The reactor containment in Swedish BWR-type nuclear power plants consists of an inner cylinder-shaped container of stainless steel, with an outer liner of carbon steel about 300 mm from the stainless steel container, both cast in concrete. If water leaks from the inner stainless steel container into the concrete, the risk of corrosion on the carbon steel liner may be increased by the presence of a waterline, and voids in the concrete at the metal surface. The first part of the report is a survey of published information regarding waterline corrosion and the effect of wholly or partly liquid-filled voids at a steel surface cast in concrete. The second part is a report on the investigations of the corrosion status of the steel liner on the inside of the reactor containment at the Barsebaeckverket 1 plant and of the laboratory investigations of the concrete samples that were taken from the reactor containment wall. The waterline corrosion effect is caused by local differences in environmental factors at the water/air border, primarily the supply of oxygen (air), which allows corrosion cells similar to galvanic cells to be set up. On a vertical, partly immersed steel structure the corrosion rate largely varies with the supply of oxygen, with the highest corrosion rate at or immediately above the waterline, where the supply of both oxygen (air) and electrolyte is good. The relative corrosion rates around the waterline may be modified by the action of various concentration cells. Waterline effects due to aeration cells or other concentration cells have been shown to increase the risk for corrosion damage locally, even when the overall corrosion rate does not increase, since corrosion is concentrated to a smaller area and may have a more localised character. Waterline conditions can also develop at a cast-in metal surface inside partly water-filled voids in the concrete. Voids as such at a concrete/metal interface, leaving metal without adhering concrete, have also been

  3. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    Science.gov (United States)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  4. HIP bonding for the different material between Niobium and Stainless steel

    International Nuclear Information System (INIS)

    Inoue, H.; Saito, K.; Abe, K.; Fujino, T.; Hitomi, N.; Kobayashi, Y.

    2000-01-01

    In the future advanced cryomodule for superconducting RF cavities, a helium vessel made from titanium or stainless steel has to be welded directly to the niobium cavity wall in order to be simple structure. For that, we need a transformer from niobium to titanium or stainless steel. Stainless steel will have many benefits if the reliable bonding to the niobium is developed. We have tested the niobium/stainless steel bonding by HIP (Hot Isostatic Pressing) with the heat shock between 1023K and 2K. The bonding interface was also observed by SEM. These test results will be presented. (author)

  5. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    Science.gov (United States)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  6. Influence of Nb content on grain size and mechanical properties of 18 wt% Cr ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Mao, W.M., E-mail: weiminmao@263.net [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Y.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jing, J.; Cheng, M. [Taizhou Xinyu Precision Manufacture Company Limited, Jiangyan 225500, Jiangsu (China)

    2016-11-20

    The influence of Nb contents between 0.20 and 1.20 wt% on the grain size and mechanical properties of 18 wt% Cr ferritic stainless steel produced by investment casting was investigated. The average grain sizes of the three steels decreased apparently with increasing Nb content mainly due to the increasing number of pre-existing oxides formed at higher temperature, which were more likely to be the nuclei of heterogeneous nucleation. The thermodynamic analysis of Nb(C,N) formation was in conformity to the experimental result that the Nb(C,N) precipitates became larger with increasing Nb content. The as-cast specimen with the smallest grain size of steel C had the worse tensile strength and elongation in comparison with the as-cast specimens of steels A and B, mostly owing to the catenarian and dendritic Nb(C,N) particles distributed densely at the grain boundaries. The mechanical properties of specimens were not improved remarkably through high temperature solid-solution, whereas the mechanical properties of normalized specimens in the three steels were improved to different degrees. The coalescence and sparse distribution of smaller precipitates at grain boundaries after normalizing effectively weakened the local stress concentration arising from the reticular distribution of particles. The normalized specimen of steel A with 0.24 wt% Nb still showed good mechanical properties. Normalizing at 850 °C for 2 h is the appropriate heat treatment for the 18 wt% Cr ferritic stainless steel. The comparatively rational Nb content of the ferritic stainless steel is between 0.20 and 0.40 wt% for investment casting production.

  7. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  8. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  9. Fabrication and Microstructure of Metal-Metal Syntactic Foams

    National Research Council Canada - National Science Library

    Nadler, J

    1998-01-01

    .... The composite microstructure consists of thin-wall, hollow Fe-Cr stainless steel spheres cast in various metal matrices including aluminum alloys 6061, 7075, 413, magnesium alloy AZ31B, and unalloyed...

  10. Standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Barat, P; Raj, B; Bhattacharya, D K [Reactor Research Centre, Kalpakkam (India)

    1982-10-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed.

  11. Changes in electromagnetic properties during thermal aging of duplex stainless steel

    International Nuclear Information System (INIS)

    Goto, T.; Kamimura, T.; Yamaoka, T.

    1995-01-01

    Cast duplex stainless steels used in primary pressure-boundary components of pressurized water reactors have been found to be susceptible to thermal aging embrittlement at reactor operating temperature. Extensive studies and investigations on the aging mechanism itself have been conducted in order to evaluate end-of-life aging. Three types of testing employing electromagnetic techniques, i.e., electric resistivity testing, coercivity measurement testing and Barkhausen noise testing have been investigated in order to search for an effective nondestructive method to evaluate the thermal aging of cast duplex stainless steels. Changes in impact strength, micro-Vickers hardness of ferrite phase and electromagnetic properties were studied in two CF8M materials with differing ferrite content that were subjected to long-term heating. The values measured using the electromagnetic techniques were correlated with Charpy-impact energy values and the observed microstructural changes were used to assess the potential that these techniques have for use as NDE methods. Each of these techniques was found to be sensitive to different processes that occur during thermal aging. Therefore, an integrated method using these techniques is now under development

  12. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  14. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  15. Status for cast stainless steel in older Swedish nuclear power plants, March 1996; Status foer gjutet rostfritt staal i aeldre svenska kaernkraftverk, mars 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trolle, M.

    1996-04-01

    The purpose of this study is to compile what is known about larger cast components primarly in older BWR nuclear power plants with external circulation pumps. The work includes metallurgical data and a compilation on the material that the owner of Oskarshamn 1, OKG AB, has delivered to The Swedish Nuclear Power Inspectorate as a result of the investigation of these components. An overview of the investigations performed on the other Swedish plants of similar design during the annual outage 1995 is also described in this report. International experinece is also reported. The results from OKG AB show that there has been extensive cracking in both valves and pump casings and that they are probably resulting defects from the manufacturing process, but an environmental factor cannot be excluded. In order to get a complete picture of the situation in Swedish nuclear power plants a more extensive survey needs to be performed. Internationally the phenomenon of hot cracking in cast stainless steel is well known, but not as severe as in Oskarshamn 1. One question however that is discussed is the recommended amount of ferrite in these steels in order to avoid hot cracking without risking embrittlement of the ferrite phase. The Swedish utilities specify 3%, some European countries recommend 8%. Japan suggests ferrite contents up to 30%. 25 refs.

  16. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  17. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  18. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1978-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer code has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  19. Thermal responses of tokamak reactor first walls during cyclic plasma burns

    International Nuclear Information System (INIS)

    Smith, D.L.; Charak, I.

    1977-01-01

    The CINDA-3G computer code has been adapted to analyze the thermal responses and operating limitations of two fusion reactor first-wall concepts under normal cyclic operation. A component of an LMFBR computer has been modified and adapted to analyze the ablative behavior of first-walls after a plasma disruption. The first-wall design concepts considered are a forced-circulation water-cooled stainless steel panel with and without a monolithic graphite liner. The thermal gradients in the metal wall and liner have been determined for several burn-cycle scenarios and the extent of surface ablation that results from a plasma disruption has been determined for stainless steel and graphite first surfaces

  20. Application of thermoelectricity to NDE of thermally aged cast duplex stainless steels and neutron irradiated ferritic steels

    International Nuclear Information System (INIS)

    Coste, J.F.; Leborgne, J.M.; Massoud, J.P.; Grisot, O.; Miloudi, S.

    1997-10-01

    The thermoelectric power (TEP) of an alloy depends mainly on its temperature, its chemical composition and its atomic arrangement. The TEP measurement technique is used in order to study and follow two degradation phenomena affecting some components of the primary loop of Pressurized Water Reactors (PWR). The first degradation phenomenon is the thermal aging of cast duplex stainless steel components. The de-mixing of the ferritic Fe-Cr-Ni slid solution is responsible for the decreasing of the mechanical characteristics. Laboratory studies have shown the sensitivity of TEP to the de-mixing phenomenon. TEP increases linearly with the ferrite content and with and Arrhenius-type aging parameter depending on time, temperature and activation energy. TEP is also correlated to mechanic characteristics. The second degradation phenomenon is the aging of ferritic steels due to neutron irradiation at about 290 deg C. In this case, the degradation mechanism is the formation of clusters of solute atoms and/or copper rich precipitates that causes the hardening of the material. As a first approach, a study of binary Fe-Cu alloys irradiated by electrons at 288 deg C has revealed the possibility of following the copper depletion of the ferritic matrix. Moreover, the recovery of the mechanical properties of the alloy by annealing can be monitored. Finally, a correlation between Vickers hardness and TEP has been established. (author)

  1. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  2. Fracture resistance of cracked duplex stainless steel elbows under bending with or without internal pressure

    International Nuclear Information System (INIS)

    Semete, P.; Le Delliou, P.; Ignaccolo, S.

    1997-12-01

    EDF, in co-operation with Framatome, has conducted a research program on the fracture behaviour of aged cast duplex stainless steel elbows. One important task of this program consisted of testing three large diameter (580 mm O.D.) aged cast elbows, which are 2/3-scale models of PWR primary loop elbows. Furthermore, detailed finite element analyses of those three tests were conducted in order to be compared with experimental results. The results of this research program are presented. (K.A.)

  3. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation

  4. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  5. Low Frequency Phased Array Application for Crack Detection in Cast Austenitic Piping

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-01-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effectiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner's Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed.

  6. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Von L. Richards

    2011-09-30

    the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.

  7. A standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    International Nuclear Information System (INIS)

    Barat, P.; Raj, B.; Bhattacharya, D.K.

    1982-01-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed. (author)

  8. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  9. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  10. Plasma discharge in ferritic first wall vacuum vessel of the Hitachi Tokamak HT-2

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Nakayama, Takeshi; Asano, Katsuhiko; Otsuka, Michio

    1997-01-01

    A tokamak discharge with ferritic material first wall was tried successfully. The Hitachi Tokamak HT-2 had a stainless steel SUS304 vacuum vessel and modified to have a ferritic plate first wall for experiments to investigate the possibility of ferritic material usage in magnetic fusion devices. The achieved vacuum pressure and times used for discharge cleaning was roughly identical with the stainless steel first wall or the original HT-2. We concluded that ferritic material vacuum vessel is possible for tokamaks. (author)

  11. Stainless steel-zirconium alloy waste forms

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-01-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ''noble'' nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation

  12. Anti-carburizing Coating for Resin Sand Casting of Low Carbon Steel Based on Composite Silicate Powder Containing Zirconium

    Directory of Open Access Journals (Sweden)

    Zhan Chunyi

    2018-01-01

    Full Text Available This paper studied the structure and properties of anticarburizing coating based on composite silicate powder containing zirconium by X-ray diffraction analyzer, thermal expansion tester, digital microscope and other equipment. It is introduced that the application example of the coating in the resin-sand casting of ZG1Cr18Ni9Ti stainless steel impeller. The anti-carburizing effect of the coating on the surface layer of the cast is studied by using direct reading spectrometer and spectrum analyzer. The change of the micro-structure of the coating after casting and cooling is observed by scanning electron microscope. The analysis of anti-carburizing mechanism of the coating is presented. The results indicate that the coating possesses excellent suspension property, brush ability, permeability, levelling property and crackresistance. The coating exhibits high strength and low gas evolution. Most of the coating could be automatically stripped off flakily when the casting was shaken out. The casting possesses excellent surface finish and antimetal penetration effect. The carburizing layer thickness of the stainless steel impeller casting with respect to allowable upper limit of carbon content is about 1mm and maximum carburizing rate is 23.6%. The anticarburizing effect of casting surface is greatly improved than that of zircon powder coating whose maximum carburizing rate is 67.9% and the carburizing layer thickness with respect to allowable upper limit of carbon content is greater than 2mm. The composite silicate powder containing zirconium coating substantially reduces the zircon powder which is expensive and radioactive and mainly dependent on imports. The coating can be used instead of pure zircon powder coating to effectively prevent metal-penetration and carburizing of resin-sand-casting surface of low carbon steel, significantly improve the foundry production environment and reduce the production costs.

  13. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed

  14. Spinodal decomposition of austenite in long-term-aged duplex stainless steel

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-02-01

    Spinodal decomposition of austenite phase in the cast duplex stainless steels CF-8 and -8M grades has been observed after long- term thermal aging at 400 and 350/degree/C for 30,000 h (3.4 yr). At 320/degree/C, the reaction was observed only at the limited region near the austenite grain boundaries. Ni segregation and ''worm-holes'' corresponding to the spatial microchemical fluctuations have been confirmed. The decomposition was observed only for heats containing relatively high overall Ni content (9.6--12.0 wt %) but not in low-Ni (8.0--9.4 wt %) heats. In some specimens showing a relatively advanced stage of decomposition, localized regions of austenite with a Vickers hardness of 340--430 were observed. However, the effect of austenite decomposition on the overall material toughness appears secondary for aging up to 3--5 yr in comparison with the effect of the faster spinodal decomposition in ferrite phase. The observation of the thermally driven spinodal decomposition of the austenite phase in cast duplex stainless steels validates the proposition that a miscibility gap occurs in Fe-Ni and ancillary systems. 16 refs., 7 figs., 1 tab

  15. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses

    International Nuclear Information System (INIS)

    Yin, X.; Hou, X.

    2017-01-01

    Members of the Arabidopsis cell wall-associated kinase (WAK) family play important roles in both development and stress responses. There are about one hundred and twenty five OsWAKs annotated in the rice genome but their functions in rice growth and development are largely unknown. In this paper, we reported a functional role of the OsWAK124 (Os12g0266200) in rice heavy metal responses. Confocal GFP experiments located OsWAK124 in the cell wall and analyses of OsWAK124 promoter GUS transgenic lines suggested that OsWAK124 promoter is primarily active at the meristematic tissues under normal growth condition. Under stress conditions, however, OsWAK124 promoter activity is induced in non-meristematic tissues, such as leaf, stem and root, and the activity in the meristematic tissues is further enhanced. Various transgenic rice lines carrying either RNA interference (RNAi) or overexpression constructs were generated. Transgenic lines were tested for their responses to various stress conditions including salicylic acid, NaCl, AlCl/sub 3/, CuSO/sub 4/ and CdSO/sub 4/. Our analyses showed that rice seedlings overexpressing OsWAK124 are more resistant to the three tested heavy metals (Al, Cu, and Cd), which suggested that OsWAK124, like some Arabidopsis WAK members, plays a role in environmental heavy metal stress responses. (author)

  16. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds

    Directory of Open Access Journals (Sweden)

    Katsina Christopher BALA

    2014-02-01

    Full Text Available The quality of final casting mainly depends on the rate of solidification as rapid solidification produces fine grains structures with better mechanical properties. The analysis of heat transfer during the casting and solidification of aluminium alloy as well as the experimental investigation of the rate of solidification in varying thicknesses of cylindrical metallic mould was carried out. The temperature variation with time of the casting was recorded from which cooling curves were obtained for the determination of solidification time of the cast. The results showed that as the cylindrical mould thickness increases the solidification time decreases due to the chilling effect of the mould.

  17. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  18. The effect of thermal conductance of vertical walls on natural convection in a rectangular enclosure

    International Nuclear Information System (INIS)

    Kikuchi, Y.; Yoshino, A.; Taii, K.

    2004-01-01

    This paper deals with the experimental results of natural convective heat transfer in a rectangular water layer bounded by vertical walls of different thermal conductance. The vertical walls were made of copper or stainless steel. A minimum was observed in the horizontal distribution of temperature near the heating wall since a secondary reverse flow occurred outside the boundary layer. For copper case the experimental results of Nusselt number agreed well with calculations under an isothermal wall condition. For stainless steel case, however, the measured values were lower than the calculations since a three-dimensional effect appeared in convection due to non-uniformity in wall temperature. (author)

  19. Process for the manufacture of a shielding or container wall assembled from components in plants with radioactive radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The shielding or container wall is assembled from cast iron components. Liquid lead at a temperature of 500 0 C is introduced into the gaps between the cast iron components by means of a lead pump and a heated lance. The casting can be done at several positions of the container wall. To increase the flow paths of the lead, the walls with gaps are provided with a ground cork layer. (DG) [de

  20. Calculation of the residual stress field created by quenching and grinding in a cast duplex stainless steel pipe

    International Nuclear Information System (INIS)

    Dupas, P.; Le Delliou, P.

    1997-01-01

    We calculate with a finite element program the residual stresses generated by quenching and grinding a cast duplex stainless steel pipe. These calculations are performed with Code Aster (developed by EDF/R and D D). They are preliminary to a 3D study concerning an elbow made of the same material. Quenching is simulated by an axisymmetric thermomechanical calculation. Grinding are simulated either by lowering mechanical properties in ground parts of the pipe, either by the releasing the nodes. Stresses due to quenching are in high compression in the skin and tensile in the middle. After grinding (the first concerning both internal and external skins, the second concerning only the internal skin), stresses become tensile on the skin. These results are compared to those obtained in a similar study by CEA and also to the measurement. Some important differences appear in the thermal results between the two FE programs, due to a too coarse time step in the CASTEM 2000 calculation. However, the effect on the residual stress field is not very important. Two complementary studies have shown a negligible influence of mesh size, as well as an equivalence of the two numerical methods used for simulating grinding (lowering the Young modulus and releasing the nodes), according the values given at the notes of the skin by the first method are corrected. (authors)

  1. Numerical Simulation of Cast Distortion in Gas Turbine Engine Components

    International Nuclear Information System (INIS)

    Inozemtsev, A A; Dubrovskaya, A S; Dongauser, K A; Trufanov, N A

    2015-01-01

    In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation. (paper)

  2. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  3. Applications of nitrogen-alloyed stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Sundvall, J.; Olsson, J. [Avesta Sheffield AB (Sweden); Holmberg, B. [Avesta Welding AB (Sweden)

    1999-07-01

    A selected number of applications for different types of nitrogen-alloyed stainless steels are described. The applications and grades are based on how nitrogen improves different properties. Conventional austenitic grades of type 304 and 316 can be alloyed with nitrogen to increase the strength and to maintain the austenite stability after cold deformation when exposed to cryogenic temperatures. Such examples are presented. The addition of nitrogen to duplex grades of stainless steel such as 2205 improves the pitting resistance, among other things, and also enables faster reformation of the austenite in the heat affected zone. This means that heavy plate can be welded without pre-heating or post-weld heating. Such applications are covered. Modern highly alloyed austenitic stainless steels almost always contain nitrogen and all reasons for this are covered, i.e. to stabilise the austenite, to increase the strength, and to improve the pitting resistance. The increased strength is the characteristic exemplified the least, since the higher strength of duplex grades is well known, but examples on austenite stability and improved pitting resistance are presented. (orig.)

  4. Microstructural and mechanical properties investigation of Mg-Al-Zn alloy counter gravity investment cast

    CSIR Research Space (South Africa)

    Mutombo, K

    2009-10-01

    Full Text Available . The most common manufacturing method for the production of Mg components is via High Pressure Die Casting (HPDC), however, this process is suitable for high volume thin walled components. Investment casting offers the capability of producing complex near...

  5. Microstructure of reaction zone in WCp/duplex stainless steels matrix composites processing by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80gm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter

  6. The mechanical features of isothermally annealed duplex stainless steel

    International Nuclear Information System (INIS)

    Sustarsic, B.; Godec, M.; Jenko, M.; Tuma, J.V.; Marini, B.; Toffolon Masclet, C.; Forget, P.

    2011-01-01

    Cast duplex stainless steels are frequently used for structural parts of nuclear power plants and other thermo-energetic objects. The ageing behaviour of the cast 258 type stainless steel has been studied in the frame of IMT Slovenia and CEA bilateral cooperation. The results of testing of French and Sloven partners are compared and analysed. The steel samples have been isothermally annealed for 10.000 and 30.000 hours at 300 and 350 C. ICP-AES bulk chemical analysis of samples, microstructure investigations with light (LM) and scanning electron microscope (SEM), micro-chemical analysis with SEM/EDS, as well as SEM/EBSD phase analyses have been performed. Tensile test specimens have been made from the aged samples and standard tensile test at room temperature was performed. The SEM fractography of fractured surfaces was also performed. Microhardness measurements of ferrite and austenite phase were determined on polished metallographic samples. The results of mechanical testing and fractographic examinations are reported and discussed in this paper. Microhardness of ferrite is drastically increased with time and temperature of ageing due to spinodal decomposition. But, hardness of austenite remains practically unchanged. Tensile properties changed, similarly. Yield point and tensile strength increased but ductility significantly decreased. In accordance with ductility decrease the nature of fractured surface changed from typical ductile to brittle and dimpled to cleavage, respectively. (authors)

  7. Development of liner cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Takahata, Masato; Wignarajah, Sivakmaran; Kamata, Hirofumi

    2005-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in cells and fuel storage pools of nuclear facilities. The effects of basic laser cutting parameters such as cutting speed, assist gas flow etc. were first studied applying a 1 kW Nd:YAG laser to mock up concrete specimens lined with 3 mm thick stainless steel sheets. These initial studies were followed by studies on the effect of unevenness of the liner surface and on methods of confining contamination during the cutting process. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. In addition to the above results, this paper describes the design outline of a laser cutting system for cutting stainless liners at site and evaluates its merit and cost performance. (author)

  8. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Standard digital reference images for investment steel castings for aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in thin-wall steel investment castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of thin-wall steel casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 Two illustration categories are covered as follows: 1.2.1 Graded—Six common discontinuity types each illustrated in eight degrees of progressively increasing severity. 1.2.2 Ungraded—Twelve single illustrations of additional discontinuity types and of patterns and imper...

  10. Analysis of a multi pass weld of a thick walled tube made of austenitic stainless steel X6 CrNiNb 18 10

    International Nuclear Information System (INIS)

    Scholtes, B.; Zinn, W.; Ilg, U.; Backfisch, W.; Gibmeier, J.; Kirch, D.

    2006-01-01

    In this paper, microstructure and residual stresses of a multi pass welding of a thick-walled tube made of austenitic stainless steel X6 CrNiNb 18 10 (1.4550) are systematically characterized and assessed. Results of microstructural and phase analyses, residual stress and hardness measurements as well as of a tensile test using micro specimen and SEM analyses are presented. Using these data, plastic deformations occurring during the welding process in the vicinity of the weld seam are evaluated. Finally, consequences of an additional heat treatment at 400 C/24 h are studied. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [de

  11. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    Science.gov (United States)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates

  12. Effect of moulding sand on statistically controlled hybrid rapid casting solution for zinc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rupinder [Guru Nanak Dev Engineering College, Ludhiana (India)

    2010-08-15

    The purpose of the present investigations is to study the effect of moulding sand on decreasing shell wall thickness of mould cavities for economical and statistically controlled hybrid rapid casting solutions (combination of three dimensional printing and conventional sand casting) for zinc alloys. Starting from the identification of component/ benchmark, technological prototypes were produced at different shell wall thicknesses supported by three different types of sands (namely: dry, green and molasses). Prototypes prepared by the proposed process are for assembly check purpose and not for functional validation of the parts. The study suggested that a shell wall with a less than recommended thickness (12mm) is more suitable for dimensional accuracy. The best dimensional accuracy was obtained at 3mm shell wall thickness with green sand. The process was found to be under statistical control

  13. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  14. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  15. Best possible heat treatment of steel SA 336 F22 for the production of forged shells with heavy walls

    International Nuclear Information System (INIS)

    Badeau, J.P.; Poitrault, I.S.; De Badereau, A.; Blondeau, R.P.

    1986-01-01

    The manufacturing of thick-wall components, such as shells, for petrochemical reactors normally requires the 2.25Cr-1Mo(SA 336 F22) steel. This paper deals with: 1. Experienced difficulties in producing thick-wall forgings up to a thickness of 500 mm with standard 2.25Cr-1Mo steel. 2. The solutions offered by Le Creusot Heavy Forge. The studies discussed are: (1) the effect of the structure; (2) the effect of the chemical composition on hardenability and temper embrittlement in steel making; and (3) the effect of austenitization conditions. Some examples concerning industrial forgings are presented, among them: 1. The manufacturing of shells for the petrochemical industry. 2. A thick-wall shell from a 146-metric ton hollow ingot

  16. Connection of thin-walled casings

    Energy Technology Data Exchange (ETDEWEB)

    Druyan, V.M.; Grinev, A.F.; Gruzdev, V.D.; Perchanik, V.V.; Syplenko, V.T.

    1981-08-28

    A connection is suggested for castings which contains a nipple and coupling part with conical triangular threading. in order to improve the strength of the connection of thin-walled casings with ratio D/S>22, where D is the outer diameter of the casing, S is the thickness of the wall of the casing, the end of the pipe on the length from the end to the main plane of the thread is conical with constant thickness of the wall and conicity eqal to the conicity of the thread.

  17. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Mao, W.M., E-mail: weiminmao@263.net [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen, Y.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jing, J.; Cheng, M. [Taizhou Xinyu Precision Manufacture Company Limited, Jiangyan 225500, Jiangsu (China)

    2016-11-20

    The effect of Ti contents between 0.10 and 0.50 wt% on the grain size and mechanical properties of UNS S44100 ferritic stainless steel produced by investment casting was investigated. The mechanical properties were related to tensile strength and elongation. The average grain sizes of the as-cast specimens decreased obviously with increasing Ti content due to the increasing number of (Ti,Nb)(C,N) precipitates, with sizes of 2.0–4.0 µm, acting as the nuclei for heterogeneous nucleation. The average sizes of TiN clusters in steels 2 and 3 were 3.6 and 7.0 µm, respectively, whereas no TiN clusters were discovered in steel 1 with 0.13 wt% Ti. The experimental results were in good agreement with the thermodynamic analysis of TiN formation. The precipitation temperature of TiN showed a rising trend with increasing Ti content, which implies that larger TiN clusters are more likely to be induced with Ti contents greater than 0.30 wt%. Some as-cast specimens were normalized at 850 °C for 2 h in order to improve the mechanical properties. In addition, the morphology of the TiN clusters, which caused a sharply decline in the mechanical properties of the as-cast specimens with increasing Ti content, showed no change after normalizing. The tensile strengths of the normalized specimens in the three steels increased to different degrees and the improvement of elongation in steel 1 was remarkable. The comparatively rational Ti content of UNS S44100 ferritic stainless steel for meeting the requirements of investment casting production is between 0.10 and 0.20 wt%.

  18. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu......A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500......-7) and a fully ferritic ductile iron (EN-GJS-450-10). The experiment showed that both the alloy composition and choice of feeder influenced the degreeof deformation measured in the finished casting. It was found that the deformation of the pearlitic alloy was influenced controllably by changing the feeder...

  19. A Contribution to the Understanding of the Combined Effect of Nitrogen and Boron in Grey Cast Iron

    DEFF Research Database (Denmark)

    Strande, Knud; Tiedje, Niels Skat; Chen, Ming

    2017-01-01

    and in practice—to be effective in most cases. But it has the disadvantage that the nucleation effect fades away over time. In particular, in heavy castings (slow cooling) this effect may cause non-uniform and unacceptable material properties in some parts of the casting. Nitrogen is also known to influence grey...... iron microstructure. Both graphite flake formation and matrix formation are influenced. However, the obtained effects differ considerably between different reported investigations. This investigation deals with the combined effect of nitrogen and boron and how it is possible to utilize this effect...... to enhance material properties in heavy grey iron castings. It is shown that the controlled additions of nitrogen and boron can be used to control the microstructure of thick section grey iron castings. A plausible theory for the formation of boron nitride nuclei effective for graphite growth is presented....

  20. Characterisation of the wall-slip during extrusion of heavy-clay products

    Science.gov (United States)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (dviscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  1. Development of laser cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Ishihara, Satoshi; Takahata, Masato; Wignarajah, Sivakumaran; Kamata, Hirofumi

    2007-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in nuclear facilities. The effect of basic laser cutting parameters such as energy, cutting speed, assist gas flow etc. were first studied through cutting experiments on mock-up concrete specimens lined with 3mm thick stainless steel sheets using a 1kW Nd:YAG laser. These initial studies were followed by further studies on the effect of unevenness of the liner surface and on a new method of confining contamination during the cutting process using a sliding evacuation hood attached to the laser cutting head. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. (author)

  2. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  3. Radiation blistering of stainless steel

    International Nuclear Information System (INIS)

    Yoshii, Naritsugu; Tanabe, Tetsuo; Imoto, Shosuke

    1980-01-01

    Surface blistering of stainless steels due to 20 keV He + ion bombardment has been investigated by examination of surface topography with a scanning electron microscope (SEM) and an optical microscope. Blisters of 0.1 to 2 μm in diameter are observed in all samples irradiated with fluence of about 1 x 10 18 He + /cm 2 at any temperature between -80 0 C and 500 0 C. With increasing the fluence blister covers are ruptured and exfoliated and finally the surface becomes rough surface without traces of blister formation. The surface effect is severer at 500 0 C than at 100 0 C irradiation. Also in double-phase stainless steel DP-3, similar surface topography to 316 SS is observed. But by the difference of the erosion rate by sputtering of the surface between α-phase and γ-phase, a striped pattern appears in DP-3 with heavy irradiation of about 2 x 10 19 He + /cm 2 . (author)

  4. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  5. Improvements to the corrosion resistance of stainless steels for fuel cell applications : supplementary report for phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Li, J.; Liu, P.; Shehata, M.; Kruszewski, J.; Lo, J.; Guertsman, V.Y.; Gu, G.P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2007-07-15

    This paper reported on a newly developed method of making bipolar electrodes from type 304 stainless steel. Two stainless steels were cast, hot-rolled and heat treated. The microstructures were then examined to determine the chromium carbide formation. Plain and mechanically polished samples were sent to General Motors for conductivity measurements to investigate the thermo-mechanical treatment as a means of improving the contact resistance of stainless steel bipolar plates subject to the operating conditions in a proton-exchange membrane (PEM) fuel cell. The treatment induces precipitation of conducive particles. The surface of the stainless steel is etched so that particles protrude from the surface. When the bipolar plates are stacked with sufficient load, the protruding surface precipitates indent into adjacent graphite electrodes, making direct electrical contact. The most common precipitate is M{sub 23}C{sub 6} carbide. This paper described the carbide precipitation required for electrical conductivity and presented a model for electrical conductance across a bipolar plate. It included a description of inter-particle distance and carbide size; carbide formation in type 304 stainless steels; heat-treatment processing of 304 steel for electrical conductance and desensitization; and the effect of steel composition on carbide growth. The experimental work was outlined in terms of casting, hot rolling, cold rolling, heat treatment, aging treatment for carbide growth, and desensitization treatment. Both alloys that were subjected to the thermo-mechanical treatment in this study showed a uniform distribution of carbide precipitates. Their size varied from very small to about 0.8{mu}m. Scanning electron microscopy (SEM) analysis did not detect a change in particle size and population density of these particles with prolonged annealing at 800 degrees C. 4 refs., 6 tabs., 14 figs.

  6. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  7. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  8. A Method of Assembling Wall or Floor Elements

    DEFF Research Database (Denmark)

    2002-01-01

    The invention relates to a method of constructing, at the site of use, a building wall (1) or a building floor (1) using a plurality of prefabricated concrete or lightweight concrete plate-shaped wall of floor elements (10), in particular cast elements, which have a front side and a rear side...

  9. Impact analysis and testing of tritiated heavy water transportation packages including hydrodynamic effects

    International Nuclear Information System (INIS)

    Sauve, R.G.; Tulk, J.D.; Gavin, M.E.

    1989-01-01

    Ontario Hydro has recently designed a new Type B(M) Tritiated Heavy Water Transportation Package (THWTP) for the road transportation of tritiated heavy water from its operating nuclear stations to the Tritium Removal Facility in Ontario. These packages must demonstrate the ability to withstand severe shock and impact scenarios such as those prescribed by IAEA standards. The package, shown in figure 1, comprises an inner container filled with tritiated heavy water, and a 19 lb/ft 3 polyurethane foam-filled overpack. The overpack is of sandwich construction with 304L stainless steel liners and 10.5 inch thick nominal foam walls. The outer shell is 0.75 inch thick and the inner shell is 0.25 inch thick. The primary containment boundary consists of the overpack inner liner, the containment lid and outer containment seals in the lid region. The total weight of the container including the 12,000 lb. payload is 36,700 lb. The objective of the present study is to evaluate the hydrodynamic effect of the tritiated heavy water payload on the structural integrity of the THWTP during a flat end drop from a height of 9 m. The study consisted of three phases: (i) developing an analytical model to simulate the hydrodynamic effects of the heavy water payload during impact; (ii) performing an impact analysis for a 9 m flat end drop of the THWTP including fluid structure interaction; (iii) verification of the analytical models by experiment

  10. 75 FR 14572 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Science.gov (United States)

    2010-03-26

    ... Filter equipment for edible oils. Sheet 9, Dover, NH 03820. metal parts of stainless steel are formed and...-Standards), and perimeter hardware. Jay Industries, Inc 150 E. Longview, 3/9/2010 Seating frames and other.../2010 Custom aluminum casting for heavy Worth, TX 76110. industry. Consumer Interstate Corporation 2...

  11. Aspects of plasma cutting in AISI 321 stainless steel

    International Nuclear Information System (INIS)

    Souza Barros, I. de; Cardoso, P.E.

    1985-10-01

    The utilization of plasma cutting process in AISI 321 stainless steel heavy plates for fabricating nozzles for nuclear reactors was evaluated. The effect of current, electric potential and cutting speed are studied. The superficial irregularity and the microstructure of the zone affected by the cut were analyzed by measurements of roughness, optical metallography and microhardness. (E.G.) [pt

  12. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    Henriksson, S.

    1981-06-01

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  13. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  14. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    Science.gov (United States)

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  15. Influence of the counter-pressure casting on the macrostructure of high nitrogen steel industrial blocks

    International Nuclear Information System (INIS)

    Andreev, N.; Rashev, Ts.

    1999-01-01

    The problem of high nitrogen steel (HNS) sheets production has not yet been solved. Sheets represent 90% of the world output of stainless and other steels, but there are no published data about HNS technologies and production of sheets on an industrial scale. The big steel bath (BSB) method and the counter-pressure casting (CPC) have proved the possibility of producing highly homogeneous ingots (1.3 and 10 tons) with all alloying elements, including nitrogen. In this way, the BSB and CPC methods have proved themselves to be universal ones for the production of shaped castings, HNS electrodes for remelting and sort, as well as, of sheets. (orig.)

  16. The application of fracture mechanics on nodular cast iron

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Kockelmann, H.; Roos, E.; Eisele, U.

    1987-01-01

    A series of studies on predominantly thick-walled castings was the first attempt at a characterization of the material of ferritization-annealed ductile cast iron under aspects of fracture mechanics according to today's state of fracture-mechanics research and testing. As in static and dynamic tensile testing, ferritic cast iron meeting specifications was found to be tough down -40 0 C and below in fracture mechanical testing without substantial reduction of the corresponding characteristics at room temperature; this is true for a temperature range where the lowest point of impact notch work has been reached already. Impact-type stresses with and without notching resulted in enhanced deformation resistance and deformability in the longitudinal samples taken from tubes. (orig./DG) [de

  17. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  18. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    International Nuclear Information System (INIS)

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550 0 C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass

  19. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    Science.gov (United States)

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-11-01

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  1. Elevated temperature tensile properties of borated 304 stainless steel: Effect of boride dispersion on strength and ductility

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1992-01-01

    Conventional cast and wrought (open-quotes Ingot Metallurgyclose quotes) borated 304 stainless steel has been used for a number of years in spent fuel storage applications where a combination of structural integrity and neutron criticality control are required. Similar requirements apply for materials used in transport cask baskets. However, in the high boron contents (>1.0 wt. %) which are most useful for criticality control, the conventional cast and wrought material suffers from low ductility as well as low impact toughness. The microstructural reason for these poor properties is the relatively coarse size of the boride particles in these alloys, which act as sites for crack initiation. Recently, a open-quotes premiumclose quotes grade of borated 304 stainless steel has been introduced (Strober and Smith, 1988) which is made by a Powder Metallurgy (PM) process. This material has greatly improved ductility and impact properties relative to the conventional cast and wrought product. In addition, an ASTM specification (ATSM A887) has been developed for borated stainless steel, containing 8 different material Types with respect to boron content - with the highest level (Type B7) having permissible range from 1.75 to 2.25 wt. % boron - and each Type contains two different Grades of material based on tensile and impact properties. While the ASTM specification is properties-based and does not require a specific production process for a particular grade of material, the PM material qualifies as open-quotes Grade Aclose quotes material while the conventional Ingot Metallurgy (IM) material generally qualifies as open-quotes Grade Bclose quotes material. This paper presents a comparison of the tensile properties of PM open-quotes Grade Aclose quotes material with that of the conventional IM open-quotes Grade Bclose quotes material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7

  2. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  3. Ceramic port shields cast in an iron engine head

    Science.gov (United States)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  4. Austenitic stainless steels and high strength copper alloys for fusion components

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Zinkle, S.J.; Alexander, D.J.; Stubbins, J.F.

    1998-01-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop A125), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop A125 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface. (orig.)

  5. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  6. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  7. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  8. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs.

  9. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    International Nuclear Information System (INIS)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs

  10. Rolling force prediction for strip casting using theoretical model and artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    CAO Guang-ming; LI Cheng-gang; ZHOU Guo-ping; LIU Zhen-yu; WU Di; WANG Guo-dong; LIU Xiang-hua

    2010-01-01

    Rolling force for strip casting of 1Cr17 ferritic stainless steel was predicted using theoretical model and artificial intelligence.Solution zone was classified into two parts by kiss point position during casting strip.Navier-Stokes equation in fluid mechanics and stream function were introduced to analyze the rheological property of liquid zone and mushy zone,and deduce the analytic equation of unit compression stress distribution.The traditional hot rolling model was still used in the solid zone.Neural networks based on feedforward training algorithm in Bayesian regularization were introduced to build model for kiss point position.The results show that calculation accuracy for verification data of 94.67% is in the range of+7.0%,which indicates that the predicting accuracy of this model is very high.

  11. Fabrication of a first wall panel by diffusion bonding

    International Nuclear Information System (INIS)

    Moreschi, L.F.; Pizzuto, A.; Alessandrini, I.

    2002-01-01

    Separated First Wall Panels mechanically attached to a shield block is now the reference concept for the Primary Wall Modules of RTO/RC ITER. The objective of the present work is to demonstrate the practical feasibility of a First Wall Panel utilizing a duplex round (steel) in square (copper) heat sink wound around a steel core and covered by Beryllium armour tiles. These three different materials (Be, Cu, steel) are joined together by diffusion bonding. The Copper alloy/stainless steel and Copper alloy/Beryllium joints were studied and developed selecting the optimal parameters for the related diffusion process. Several specimens were manufactured to be mechanically and thermally tested. The joints were mechanically tested using dedicated press equipment and investigated by micro-structural analysis with optical and SEM microscopy. Some thermal tests were finally carried out using an Electron Beam Facility. A dedicated R and D programme has led to the development of a co-drawing process, suitable for manufacturing the duplex Copper alloy-stainless steel heat sink. Two mock-ups were manufactured, the first in reduced-scale to test the thermal performance of the system, the second of larger scale and geometry better to represent the First Wall Panel

  12. Vibration improved the fluidity of aluminum alloys in thin wall ...

    African Journals Online (AJOL)

    Misrun is a term used to describe the incomplete filling of the mould cavity. It is a major defect in the investment casting process when used to produce turbine blades, impellers and impulse blades for turbo pumps which have complex profiles, thin walls and sharp edges. From the casting engineering point of view, poor ...

  13. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  14. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Hua; Bai, Yu; Cao, Yue; Xu, Zhen-Liang [East China University of Science and Technology, Shanghai (China)

    2014-08-15

    Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3x10{sup 5} L·m{sup -2}·h{sup -1}·Pa{sup -1}). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

  15. Investigation of friction and wear characteristics of cast iron material under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hoon; Kim, Chang Lae; Oh, Jeong Taek; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of); Nemati, Narguess [School of Materials and Metallurgy, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3D profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

  16. Synergistic structures from magnetic freeze casting with surface magnetized alumina particles and platelets.

    Science.gov (United States)

    Frank, Michael B; Hei Siu, Sze; Karandikar, Keyur; Liu, Chin-Hung; Naleway, Steven E; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-12-01

    Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT. Slurries with varying ratios of magnetized particles to platelets (0:1, 1:3, 1:1, 3:1, 7:1, 1:0) produced porous scaffolds with different structural features and degrees of lamellar wall alignment. The greatest mechanical enhancement in the magnetic field direction was identified in the synergistic condition with the highest particle to platelet ratio (7:1). Magnetic freeze casting with varying ratios of magnetized anisotropic and isotropic alumina provided insights about how heterogeneous morphologies aggregate within lamellar walls that impact mechanical properties. Fabrication of strengthened scaffolds with multi-axis aligned porosity was achieved without introducing different solid materials, freezing agents or additives. Resemblance of 7:1 particle to platelet scaffold microstructure to wood light-frame house construction is framed in the context of assembly inspiration being derived from both natural and synthetic sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  18. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  19. Raman spectroscopic investigations of swift heavy ion irradiation effects in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Olejniczak, A.; Skuratov, V.A.; Lukaszewicz, J.P.

    2013-01-01

    In this study, we report the results on swift heavy ion irradiation effects in single-walled carbon nanotubes (SWNTs). Buckypapers, prepared of CVD grown, SWNTs were irradiated at room temperature with 167 MeV Xe ions to fluences in the range of 6×10 11 - 6.5×10 13 cm -2 and investigated using Raman spectroscopy. We observed a rich set of features in the intermediate frequency mode region. Some of them, being defect-induced, resembled fairly well the phonon density of states (DOS) of nanocrystalline glassy carbon. Analysis of the RBM modes has shown that the broader metallic tubes are characterized by higher radiation stability than thinner semiconducting ones. (authors)

  20. Influence of the addition of gadolinium on the microstructure and mechanical properties of duplex stainless steel

    International Nuclear Information System (INIS)

    Ahn, Ji-Ho; Jung, Hyun-Do; Im, Jae-Han; Jung, Ki Ho; Moon, Byung-Moon

    2016-01-01

    The aim of this study is to investigate the effects of gadolinium addition on the microstructure and mechanical properties of duplex stainless steel (DSS) fabricated using a normal casting method. The oxygen content in the cast DSS alloy with gadolinium decreased because of the high reactivity of gadolinium with oxygen. The area fraction and size of non-intermetallic inclusions in the alloy decreased from 0.80±0.12% to 0.58±0.04% and from 6.9±0.7 to 5.8±0.4 μm upon gadolinium addition, respectively. Notably, the ultimate tensile strength and strain at break of the cast alloy significantly increased with the addition of gadolinium from 919±25 to 969±8 MPa and from 24.8±1.9% to 28.4±1.1%, respectively. The hardness of the cast alloy with gadolinium increased from 23.6±1.3 to 25.0±1.2 HRC. A significant increase in the impact energy of the cast alloy was observed and the brittle-to-ductile transition temperature slightly decreased by approximately 10 °C with the addition of gadolinium.

  1. Interfacial Phenomena in Fe/Stainless Steel-TiC Systems and the Effect of Mo

    Science.gov (United States)

    Kiviö, Miia; Holappa, Lauri; Yoshikawa, Takeshi; Tanaka, Toshihiro

    2014-12-01

    Titanium carbide is used as reinforcement particles in composites due to its hardness, wear resistance and stability. This work is a part of the study in which titanium carbides are formed in stainless steel castings in the mold to improve the wear resistance of a certain surface of the casting. Such local reinforcement is a very potential method but it is a quite demanding task requiring profound knowledge of interfacial phenomena in the system, wettability, stability, dissolution and precipitation of new phases in production of these materials. Good wetting between different constituents in the material is a key factor to attain maximal positive effects. Mo is used with TiC or Ti(C,N) reinforcement in composites to improve wettability. In this work the effect of Mo on the phenomena in Fe/stainless steel-TiC systems was examined by wetting experiments between the substrate and the alloy. Wetting was not significantly improved by adding Mo to the systems. Core-rim type carbides as well as more homogenous carbide particles were observed. Overall the carbide particles are very complex regarding to their chemistry, size and shape which aspects have to be taken into account in the development of these materials and manufacturing processes.

  2. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  3. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  4. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  5. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  6. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  7. Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling

    Science.gov (United States)

    Stehr, Sebastian; Stranghöner, Natalie

    2017-06-01

    The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.

  8. Nodular cast iron and casting monitoring

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  9. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  10. Growth of MWCNTs on Flexible Stainless Steels without Additional Catalysts

    Directory of Open Access Journals (Sweden)

    Udomdej Pakdee

    2017-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized on austenitic stainless steel foils (Type 304 using a home-built thermal chemical vapor deposition (CVD under atmospheric pressure of hydrogen (H2 and acetylene (C2H2. During the growth, the stainless steel substrates were heated at different temperatures of 600, 700, 800, and 900°C. It was found that MWCNTs were grown on the stainless steel substrates heated at 600, 700, and 800°C while amorphous carbon film was grown at 900°C. The diameters of MWCNTs, as identified by scanning electron microscope (SEM images together with ImageJ software program, were found to be 67.7, 43.0, and 33.1 nm, respectively. The crystallinity of MWCNTs was investigated by an X-ray diffractometer. The number of graphitic walled layers and the inner diameter of MWCNTs were investigated using a transmission electron microscope (TEM. The occurrence of Fe3O4 nanoparticles associated with carbon element can be used to reveal the behavior of Fe in stainless steel as catalyst. Raman spectroscopy was used to confirm the growth and quality of MWCNTs. The results obtained in this work showed that the optimum heated stainless steel substrate temperature for the growth of effective MWCNTs is 700°C. Chemical states of MWCNTs were investigated by X-ray photoelectron spectroscopy (XPS using synchrotron light.

  11. The random phase transducer in ultrasonic NDT of coarse grain stainless steel

    International Nuclear Information System (INIS)

    Bordier, J.M.; Fink, M.; Le Brun, A.; Cohen-Tenoudji, F.

    1993-11-01

    Ultrasonic NDT of cast stainless steel is known to be difficult due to a huge loss of focussing of the ultrasonic beam, and to a high level speckle noise generated by the coarse grain structure. In this paper, we describe the principle of the ultrasonic random phase transducer. Experimental results are compared with those obtained with a standard spatial compound technique. We show that the random phase transducer is a good tool to characterize the multiple scattering process generated by these materials. (authors). 7 figs., 11 refs

  12. Resistivity, hysteresis, and magnetization of 9% Cr stainless steel as a function of temperature and its electromagnetic shielding effects in cylindrical structures

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1979-01-01

    Ferromagnetic stainless steels may offer significantly greater wall life-times for first wall/blanket and vacuum vessel structures than commonly used non-magnetic stainless steels. One steel under consideration has the following composition, in wt %, Fe(86.24), Cr(9), Mo(2), Mn(1), Si(0.75), Nb(0.50), V(0.30), C(0.15), P(0.3), S(0.30). There appears to be no literature on the electromagnetic properties of this material. Therefore, the resistivity, the hysteresis loops, and magnetization were measured as a function of temperature up to the Curie point

  13. Examination of applicability of thermoelectric power measurement for thermal aging evaluation of cast duplex stainless steel to real components in nuclear power plants

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2006-01-01

    It is known the mechanical properties of cast duplex stainless steel, which is used for main coolant pipes of pressurized water reactor type nuclear power plants, change due to thermal aging. Non-destructive evaluation method for thermal aging using thermoelectric power measurement has been studied in INSS. And it has been found that there was some relation between mechanical properties and thermoelectric power in the case of accelerated aging sample and change in thermoelectric power was caused by change in microstructure due to thermal aging. In this study, n-site measurement of thermoelectric power of a main coolant pipe with the measurement device which has been used in a laboratory was carried out. As a result, thermoelectric power of the main coolant pipe was almost measured within the range from -2.2 to -2μ V/degC, and that was corresponding to the relation of accelerated aging samples between thermoelectric power and the product of ferrite content and aging parameter considering the standard error. Moreover, applying the measured thermoelectric power to the relation of accelerated aging samples between thermoelectric power and impact value, change in the impact value of the pipe seemed to be corresponding to about 40% of the maximum change assumed by thermal aging. (author)

  14. Influence of ageing time on hardness, microstructure and wear behaviour of AISI2507 super duplex stainless steel

    Science.gov (United States)

    Davanageri, Mahesh; Narendranath, S.; Kadoli, Ravikiran

    2017-08-01

    The effect of ageing time on hardness, microstructure and wear behaviour of super duplex stainless AISI 2507 is examined. The material was solution treated at 1050 °C and water quenched, further the ageing has been carried out at 850 °C for 30 min, 60 min and 90 min. The chromium (Cr) and molybdenum (Mo) enriched intermetallic sigma phase (σ) were found to precipitate at the ferrite/austenite interface and within the ferrite region. The concentration of intermetallic sigma phase (σ), which was quantified by a combination of scanning electron microscopy and image analysis, increases with increasing ageing time, leading to significant increase in the hardness. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) was employed to investigate the element distribution and phase identification. Wear characterstics of the aged super duplex stainless steel were measured by varying normal loads, sliding speeds, sliding distance and compared with solution treated (as-cast) specimens. Scanning electron microscopy was used to assist in analysis of worn out surfaces. The outcomes suggested that the increase in percentage of sigma phase increases hardness and wear resistance in heat-treated specimens compared to solution treated specimens (as-cast).

  15. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  16. Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Eufrásio Machado

    2006-06-01

    Full Text Available This work presents a study on the influence of national heavy petroleum in the corrosion of the AISI 444 and AISI 304 stainless steels in simulated refining operation conditions. The petroleum was first characterized through physicochemical analysis (density, fluidity point, viscosity, sulfur concentration. In an attempt to understand the corrosion effect of temperature and of the type of heating the referred types of steel thermal treatments were carried out at three levels of temperature (200, 300 and 400 °C. The procedure was done in conditions close to those in the distillation column. Heat was gradually increased from room temperature, and directly heated to working temperature. Each treatment took 4 hours to be completed. Scanning electronic microscopy (SEM and the analysis of X rays dispersive energy (EDX were used after the trials to characterize the samples. The results show that treatment temperature, as well as the type of heating, has distinct influences on each type of steel.

  17. Optimization of HIP bonding conditions for ITER shielding blanket/first wall made from austenitic stainless steel and dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Sato, S.; Hatano, T.; Kuroda, T.; Furuya, K.; Hara, S.; Enoeda, M.; Takatsu, H.

    1998-01-01

    Optimum bonding conditions were studied on the hot isostatic pressing (HIP) bonded joints of type 316L austenitic stainless steel and dispersion strengthened copper alloy (DSCu) for application to the ITER shielding blanket / first wall. HIP bonded joints were fabricated at temperatures in a 980-1050 C range, and a series of mechanical tests and metallurgical observations were conducted on the joints. Also, bondability of two grades of DSCu (Glidcop Al-25 trademark and Al-15 trademark ) with SS316L was examined in terms of mechanical properties of the HIP bonded joints. From those studies it was concluded that the HIP temperature of 1050 C was an optimal condition for obtaining higher ductility, impact values and fatigue strength. Also, SS316L/Al-15 joints showed better results in terms of ductility and impact values compared with SS316L/Al-25 joints. (orig.)

  18. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings.

    Science.gov (United States)

    Haralur, Satheesh B; Hamdi, Osama A; Al-Shahrani, Abdulaziz A; Alhasaniah, Sultan

    2017-01-01

    To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups ( n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring

  19. Strength and deformation behaviour of magnesium die casting alloys

    International Nuclear Information System (INIS)

    Regener, D.; Schick, E.; Wagner, I.; Heyse, H.

    1999-01-01

    Modern magnesium die casting alloys are used for the manufacturing of automotive parts due to their low density, fortunate mechanical and physical properties as well as good castability and machinability. However, in comparison to other materials the automotive application of these alloys is still low. The reasons for this are among other things the shortage of relevant materials values, insufficient knowledge concerning the correlation between the microstructure and the mechanical properties as well as deficits in relation to the die cast technology. This paper investigates the influence of the microstructure and manufacture-induced defects like micro-shrinkage and gas pores on the strength and deformability of the alloys AZ91, AM50 and AE42 under tensile and bend loading. To characterise the microstructure in the dependence on the wall thickness, the investigations are mainly carried out using in situ specimens obtained from die castings. (orig.)

  20. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques.

    Science.gov (United States)

    Rai, Rathika; Kumar, S Arun; Prabhu, R; Govindan, Ranjani Thillai; Tanveer, Faiz Mohamed

    2017-01-01

    Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM) technique using direct and indirect optical scanning. This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS) crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4); post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  1. Characterization of microstructures in austenitic stainless steels by ultrasonics

    International Nuclear Information System (INIS)

    Raj, Baldev; Palanichamy, P.; Jayakumar, T.; Kumar, Anish; Vasudevan, M.; Shankar, P.

    2000-01-01

    Recently, many nondestructive techniques have been considered for microstructural characterization of materials to enable in-situ component assessment for pre-service quality and in-service performance. Ultrasonic parameters have been used for estimation of average grain size, evaluation of recrystallization after cold working, and characterization of Cr2N precipitation during thermal aging in different grades of austenitic stainless steels. Ultrasonic first back wall echo signals were obtained from several specimens of AISI type 316 stainless steel with different grain sizes. Shift in the spectral peak frequency and the change in the full width at half maximum of the autopower spectrum of the first back wall echo are correlated with the grain size in the range 30-150 microns. The advantages of this method are: (i) independence of variation in couplant conditions (ii), applicable even to highly attenuating materials, (iii) direct correlation of the ultrasonic parameters with yield strength and (iv) suitability for shop-floor applications. Recrystallization behavior (temperature range 973-1173 K and time durations 0.5-1000 h) of cold worked titanium modified 316 stainless steel (D9) has been characterized using ultrasonic velocity measurements. A velocity parameter derived using a combination of shear and longitudinal wave velocities is correlated with the degree of recrystallization. These velocity measurement could also identify onset, progress and completion of recrystallization more accurately as compared to hardness and strength measurements. Ultrasonic velocity measurements were performed in thermally aged (at 1123 K for 10 to 2000 h) nuclear grade 316 LN stainless steel. Change in velocity due to thermal aging treatment could be used to reveal the formation of (i) Cr-N clusters associated with high lattice strains, (ii) coherent Cr2N precipitation, (iii) loss of coherency and (iv) growth of incoherent Cr2N precipitates. Microstructural characterization by

  2. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    Mills, W.J.

    1986-01-01

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 427 0 C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m 2 ; the weld exhibited a saturation level of 11 kJ/m 2 . Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  3. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  4. Geometrical modulus of a casting and its influence on solidification process

    Directory of Open Access Journals (Sweden)

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  5. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  6. The Effect of Shell Thickness, Insulation and Casting Temperature on Defects Formation During Investment Casting of Ni-base Turbine Blades

    Directory of Open Access Journals (Sweden)

    Raza M.

    2015-12-01

    Full Text Available Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.

  7. Plasma-wall impurity experiments in ISX-A

    International Nuclear Information System (INIS)

    Colchin, R.J.; Bush, C.E.; Edmonds, P.H.; England, A.; Hill, K.W.; Isler, R.C.; Jernigan, T.C.; King, P.W.; Langley, R.A.; McNeill, D.H.; Murakami, M.; Neidigh, R.V.; Neilson, C.H.; Simpkins, J.E.; Wilgen, J.; DeBoo, J.C.; Burrell, K.H.; Ensberg, E.S.

    1978-01-01

    The ISX-A was a tokamak designed for studying plasma-wall interactions and plasma impurities. It fulfilled this role quite well, producing reliable and reproducible plasmas which had currents up to 175 kA and energy containment times up to 30 ms. With discharge precleaning, Zsub(eff) was as low as 1.6; with titanium evaporation. Zsub(eff) approached 1.0. Values of Zsub(eff) > approximately 2.0 were found to be proportional to residual impurity gases in the vacuum system immidiately following a discharge. However, there was no clear dependence of Zsub(eff) on base pressure. Stainless steel limiters were used in most of the ISX-A experiments. Upon introducing carbon limiters into the vacuum system, Zsub(eff) increased to 5.6. After twelve days of clean-up with tokamak discharges, during which time Zsub(eff) steadily decreased, the carbon limiters tended to give slightly higher values of Zsub(eff) than stainless steel limiters. Injection of 16 atoms of tungsten into discharges caused the power incident on the wall to double and the electron temperature profile to become hollow. (Auth.)

  8. Countermeasures to corrosion on water walls; Aatgaerder mot eldstadskorrosion paa panntuber

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Sund, Goeran; Pettersson, Rachel; Nordling, Magnus; Hoegberg, Jan

    2007-12-15

    gauge before service exposure and at inspection intervals. Disc samples of each test material were also removed from the test panels for metallographic analysis. The results showed significant corrosion of all six weld overlay materials in the boiler with relatively high steam data and highly corrosive fuel. Metal losses were in the range 0.3 - 1.2 mm after one operating season. The 310 stainless steel suffered fairly uniform corrosion, while the nickel-base alloys exhibited localised pitting. Corrosion in the other boilers was much less pronounced, and in many cases no significant reduction in cladding thickness was observed. Chemical analyses of corrosion products and deposits showed large variations in composition, even within small areas, and indicated that the local environment fluctuates widely. Appreciable levels of chloride, alkali and heavy metals were present, and it was concluded that molten salt fluxing is a primary damage mechanism. The large variations in composition mean that more extensive sampling should be carried out to obtain a complete picture of the corrosion processes on water walls. Nevertheless, the results so far indicate that stainless steels of type 310 or Sanicro 28 can compete with the more expensive Ni-base alloys. Service exposure should be continued for another one or two operating seasons in order rank all the materials in relation to the different types of boilers and to draw more general conclusions

  9. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  10. Qualification Test for Korean Mockups of ITER Blanket First Wall

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, D. W.; Bae, Y. D.; Hong, B. G.; Jung, H. K.; Jung, Y. I.; Park, J. Y.; Jeong, Y. H.; Choi, B. K.; Kim, B. Y.

    2009-01-01

    ITER First Wall (FW) includes the beryllium armor tiles joined to CuCrZr heat sink with stainless steel cooling tubes. This first wall panels are one of the critical components in the ITER machine with the surface heat flux of 0.5 MW/m 2 or above. So qualification program needs to be performed with the goal to qualify the joining technologies required for the ITER First Wall. Based on the results of tests, the acceptance of the developed joining technologies will be established. The results of this qualification test will affect the final selection of the manufacturers for the ITER First Wall

  11. The ageing kinetics of CF3 cast stainless steel in the temperature range 3000C to 400OC

    International Nuclear Information System (INIS)

    Akhurst, K.N.; Pumphrey, P.H.

    1988-11-01

    The primary coolant pump casings for Sizewell 'B' are made from castings of ASME SA351 CF3 steel which, although predominantly austenitic, is required to contain a small proportion of ferrite. Previous studies have shown that such steels are susceptible to hardening of the ferrite, and associated losses in toughness, as a result of thermal ageing for long times at the service temperature (∼ 300 0 C). For this reason, toughness tests are to be carried out on representative castings made by the Sizewell 'B' pump casing manufacturer. The purpose of these tests is to demonstrate adequate end-of-life fracture resistance, using material which has been given an accelerated ageing treatment. The identification and validation of a suitable ageing treatment is the subject of this Report. Ageing kinetics have been measured for ageing temperatures in the range 300 to 400 0 C, from the results of Charpy impact tests on material from the castings procured for the main fracture programme. Castings with ferrite levels of 15, 25 and 35% have been studied. The losses in impact toughness have been related to the kinetics of ferrite strengthening using microhardness measurements, and to microstructural changes using Field Ion Atom Probe analysis. (author)

  12. Does 6 Hours of Contact With Alginate Impression Material Affect Dental Cast Properties?

    Science.gov (United States)

    Ibrahim, Amna Adam; Alhajj, Mohammed Nasser; Khalifa, Nadia; Gilada, Magdi Wadie

    2017-06-01

    Alginate impression (irreversible hydrocolloid) material is commonly used in dental practice because it is easy to mix, low in cost, and well tolerated by patients. The material is not dimensionally stable, however; thus, it is necessary to pour the impression immediately after the molding is accomplished, or within 60 minutes if the impression is kept in 100% humidity. Excessive contact of the alginate impression with the cast model over time may affect the model's properties. In this study, the authors tested the effect of contact time between an alginate impression and type III dental stone on cast model properties. Sixty-seven cast models were obtained from a stainless steel cylinder by using irreversible hydrocolloid impression material and type III dental stone. Thirty-seven cast models were separated from the impression after 1 hour (control group) and 30 cast models were separated after 6 hours (study group). The samples were evaluated under light microscope for surface details and measured by digital caliper for dimensional stability. An indentation on the cast was made and the depth of the indentation was then measured with a digital caliper to measure hardness. The dimensional stability of the cast models was not affected when contact time was increased from 1 hour to 6 hours (P = .507). Surface details did not deteriorate when contact time was increased, as all of the samples could reproduce all details after the 1-hour and 6-hour interval periods. However, hardness was greater after 1 hour of contact time (P = .001) than after 6 hours of contact time. In conclusion, contact between alginate impression material and type III dental stone up to 6 hours did not affect the dimensional stability and richness of the surface; hardness, though, was significantly affected.

  13. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  14. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2016-12-01

    Full Text Available This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC, polyethylene oxide (PEO, and polyvinylpyrrolidone (PVP. Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC testing.

  15. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, Sergio; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  16. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded...... sizes of the dynamic and braking forces in the gating system.......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...

  17. Cellular automaton modeling of ductile iron microstructure in the thin wall

    Directory of Open Access Journals (Sweden)

    A.A. Burbelko

    2011-10-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the solidification of the ductile iron with different carbon equivalent in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Solidification of the DI with different carbon equivalents was analyzed. Obtained results were compared with the solidification path calculated by CALPHAD method.

  18. ASSESSMENT OF RANGES OF POSSIBLE CHANGE OF TEMPORARY RESISTANCE OF CAST IRON WITH LAMELLAR AND FLAKED GRAPHITE ON THEIR HARDNESS

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskii

    2017-01-01

    Full Text Available The analysis of ranges of possible change of temporary resistance of sB of castings from ductile and gray cast iron is carried out. The analytical description of ranges of change of sВ depending on casting BH hardness is developed. It is shown that the range of change of sВ of pig-iron castings, wider in comparison with steel, with the measured hardness of BH is caused variations of forms and the amount of graphite inclusions at the considered classes of cast iron and influence of thickness of a wall of casting from gray cast iron on dependence of sВ (HB. The result is intended for determination of the guaranteed casting size sВ without her destruction, when there is no information on sВ of check test pieces.

  19. Study of strength of Dsub(y)150 gate valve case, manufactured by centrifugal casting

    International Nuclear Information System (INIS)

    Umanskaya, L.G.; Semenov, P.V.; Tinyakov, V.G.; Babkina, R.I.; Khatuntsev, Eh.V.

    1982-01-01

    A process for manufacturing centrifugal-cast gate valve body is developed. Structural strength of such items, homogeneity, ductile and strength properties over the cross section as well as the metal susceptibility to embrittlement have been investigated. Three cast gate valve bodies have been taken: one - of 20GSL steel - for hydraulic testing, and two - of 15Kh1MFL steel - for investigation into the metal properties across the valve thickness. The strength properties of the centrifugal-cast gate valve body of 15Kh1M1FL steel are stated to meet the specifications. The gate valve metal ductility (delta and PSI) is twice as high as that of a sand-cast valve. The microstructure, strength and ductility are uniform both over wall thickness and over different body cross sections

  20. Casting for infantile scoliosis: the pitfall of increased peak inspiratory pressure.

    Science.gov (United States)

    Dhawale, Arjun A; Shah, Suken A; Reichard, Samantha; Holmes, Laurens; Brislin, Robert; Rogers, Kenneth; Mackenzie, William G

    2013-01-01

    Serial cast correction is a popular treatment option for progressive infantile scoliosis. Body casting can lead to chest and abdominal expansion restriction and result in decreased chest wall compliance. There are no studies evaluating the effects of casting on ventilation in infantile scoliosis. This study examines changes in peak inspiratory pressure (PIP) during serial casting for infantile scoliosis. We retrospectively reviewed data obtained from 37 serial Cotrel elongation, derotation, and flexion cast corrections in patients with infantile scoliosis. Patient demographics, radiographic measurements, and anesthesia data were recorded. Anesthesia technique was standardized: children were intubated with rigid endotracheal tubes (ETTs); tidal volume was held constant at 8 to 10 cm(3)/kg using volume control ventilation; and PIP was recorded at baseline, after cast application before window cutout, and after window cutout before extubation. Any complications were documented. We assessed the PIP changes with a repeated measures analysis of variance (ANOVA). The mean age at first casting was 21.8 months (range, 12 to 42 mo) and mean follow-up since first casting was 22.4 months (range, 13 to 40 mo) with mean major Cobb angle of 53±15 degrees. The mean PIP was 15.5±4.9 cm H(2)O before casting, 31.9±7.9 cm H(2)O after cast application, and 20.4±5.6 cm H2O after making windows. There was a 106% increase after casting and 32% increase after window cutout from the baseline PIP levels. There was a significant difference in PIP on repeated measures ANOVA (Pcasting and another had delayed difficulty in breathing. Casting resulted in an increased PIP due to transient restrictive pulmonary process; after windows were cut out, the PIP reduced but not to baseline. In patients with underlying pulmonary disease, the casting process may induce respiratory complications, and a proper period of observation after casting is necessary. Case series, level 4.

  1. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  2. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  3. First wall fusion blanket temperature variation - slab geometry

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  4. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  5. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    Science.gov (United States)

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  6. Cast iron for reactor technology - special structural and mechanical properties

    International Nuclear Information System (INIS)

    Janakiev, N.

    The graphitic phase, its formation and the effect on the mechanical properties of cast iron used for reactor shielding are described. Tensile strength, bending strength and Brinell hardness were studied. With the specimen wall thickness of 400 mm the average measured tensile strength was 180 N/mm 2 , which satisfies the given requirements as do the values of bending strength and material hardness. As against materials 200 mm in thickness, graphite was found by metallographic tests to be of a significantly coarser structure, which may be explained by slower cooling. Tensile strength was also tested for nodular cast irons and lamellar graphite cast irons. It was shown that compression increased with decreasing specimen diameter at constant pressure, at a constant diameter compression increased nearly in proportion to compressive stress. No significant differences were found if compressive stress was 80% of fracture stress. The modulus of elasticity was found to decrease with increasing graphite content while it was found to increase with fine graphite lamellae at the same carbon concentration. It also decreased with increasing straining. A Mo-alloyed cast iron was found to show slower creep rates at a compressive stress of up to 90 N/mm 2 (calculated to the same initial strengths) than Cu-alloyed cast iron. Upon increasing compressive stress to 140 N/mm 2 and creep time to more than 2000 hours, the creep behaviour of Cu-alloyed cast iron was better. Coarser perlite is likely to be more creep resistant than fine perlite. In neutron irradiation of cast iron a clear trend towards hardening was found due to the effect of neutrons on the cast iron structure. (J.B.)

  7. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  8. Use of SEM and EDS analysis in the investigation of Al-Si-Cu piston alloy cast porosity

    Directory of Open Access Journals (Sweden)

    D. Kakaš

    2009-07-01

    Full Text Available Porosity formation was detected in the casting thinnest section in the proximity of the as cast surface and near the wall centerline. In order to investigate the cause of the porosity formation light microscopy was used to define as cast structure. After initial findings SEM and EDS analyses were performed. Based on the results it is possible to define cause of the observed porosity. A number of pores originates from the mould filling stage and entrainment of the oxide films, while others appear due to insufficient feeding during solidification.

  9. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques

    Directory of Open Access Journals (Sweden)

    Rathika Rai

    2017-01-01

    Full Text Available Background: Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. Aim: The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM technique using direct and indirect optical scanning. Materials and Methods: This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4; post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Results and Conclusion: Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  10. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques.

    Science.gov (United States)

    Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra

    2013-01-01

    Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  11. Evaluation of hyper-tempering and machining residual stresses in a pipe and a cast elbow

    International Nuclear Information System (INIS)

    Dupas, P.; Le Delliou, P.; Sussen, L.

    1995-01-01

    Cast elbows in austeno-ferritic stainless steel from the primary circuit of nuclear power plants suffer from important residual stresses initiated during their manufacturing (hyper-tempering followed by machining). Measurements and calculations were performed to determine these stresses. Measurements show a difference between circumferential stresses in the depth of a pipe and of an elbow. On the contrary, calculations indicate similar profiles. Thus, the experimental differences cannot be explained by a geometrical effect of the elbow. (J.S.). 4 refs., 5 figs

  12. Estimates of time-dependent fatigue behavior of type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irraidated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63 x 10 26 neutrons (n)/m 2 E > 0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20% cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadins ranging from 2 to 5 MW/m 2 were used. Results, although conjectural because of the many assumptions, tended to show that 20% cold-worked Type 316 stainless steel could be used as a first-wall material meeting a 7.5 go 8.5 MW-year/m 2 lifetime goal provided the neutron wall loading does not exceed more than about 2 MW/m 2 . These results were obtained for an air environment, ant it is expected that the actual vacuum environment will extend lifetime beyond 10 MW-year/m 2

  13. Numerical simulation of casting process to assist in defects reduction in complex steel tidal power component

    International Nuclear Information System (INIS)

    Guo, E J; Zhao, S C; Wang, L P; Wu, T; Xin, B P; Tan, J J; Jia, H L

    2016-01-01

    In order to reduce defects and improve casting quality, ProCAST software is performed to study the solidification process of discharge bowl. Simulated results of original casting process show that the hot tearing is serious at the intersection of blades and outer or inner rings. The shrinkage porosity appears at the bottom of discharge bowl and the transition area of wall thickness. Based on the formation mechanisms of the defects, the structure of chills attached on the outer surface of discharge bowl casting is optimized. The thickness of chills ranges from 25mm to 35mm. The positions of chills corresponded to the outer surface of the T-shaped parts. Compared to the original casting design (without chills), the hot tearing and shrinkage porosity of the discharge bowl are greatly improved with addition of chills. (paper)

  14. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  15. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  16. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    Science.gov (United States)

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  17. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    Directory of Open Access Journals (Sweden)

    Liu Guanglei

    2013-11-01

    Full Text Available In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS increases significantly and the mechanical properties decrease steadily. The elongation is more sensitive to the cooling rate than the tensile strength. No obvious trend of the effect of wall thickness on hardness of the alloy was found. When the cooling rate is at its greatest, the microstructures and mechanical properties are the best when using chromite sand. The improvement of the properties is mainly attributed to the decrease of the DAS, the grain refinement and the metamorphic effect. Each of the three has a strong impact on the microstructures. Furthermore, a series of fitting models was established based on the data of the DAS to predict the mechanical properties of the multivariate sand-cast Al-7.5Si-4Cu alloy.

  18. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  19. Plasma-wall impurity experiments in ISX-A

    International Nuclear Information System (INIS)

    Colchin, R.J.; Bush, C.E.; Edmonds, P.H.

    1978-08-01

    The ISX-A was a tokamak designed for studying plasma-wall interactions and plasma impurities. It fulfilled this role quite well, producing reliable and reproducible plasmas which had currents up to 175 kA and energy containment times up to 30 msec. With discharge precleaning, Z/sub eff/ was as low as 1.6; with titanium evaporation, Z/sub eff/ approached 1.0. Values of Z/sub eff/ greater than or equal to 2.0 were found to be proportional to residual impurity gases in the vacuum system immediately following a discharge. However, there was no clear dependence of Z/sub eff/ on base pressure. Stainless steel limiters were used in most of the ISX-A experiments. When carbon limiters were introduced into the vacuum system, Z/sub eff/ increased to 5.6. After twelve days of cleanup with tokamak discharges, during which time Z/sub eff/ steadily decreased, the carbon limiters tended to give slightly higher values of Z/sub eff/ than stainless steel limiters. Injection of less than 10 16 atoms of tungsten into discharges caused the power incident on the wall to double and the electron temperature profile to become hollow

  20. Effect of both sulphur content and deoxidation degree on the hot ductility of resulphurized austenitic stainless steels in the solidified state

    International Nuclear Information System (INIS)

    Botella, J.; Sanchez, R.

    1998-01-01

    The manufacture of free machining austenitic stainless steels features a specific drawback derived from their high sulphur content, which is needed for generating, into the austenitic matrix inclusions to optimize the different machining operations. However, sulphur has ahamfull effect on hot workability. This paper deals with assessing the effect of sulphur content and deoxidation level on the hot ductility of resulphurized austenitic stainless steels in as cast condition. Hot tensile tests were conducted on a Gleeble machine, at temperatures between 1,150 and 1,250 degree celsius, studying a suctility factor as a function of sulphur content, deoxidation degree, as well as type, size and distribution of sulfides. Results point out the harmful effect of increasing sulphur and oxygen contents on the hot workability of resulphurized austenitic stainless steels, and the need to control carefully the level of oxides of these steels. (Author) 5 refs

  1. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  2. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties.

    Science.gov (United States)

    Ignatova, Milena; Voccia, Samule; Gabriel, Sabine; Gilbert, Bernard; Cossement, Damien; Jerome, Robert; Jerome, Christine

    2009-01-20

    Two strategies were used for the preparation of hyperbranched polymer brushes with a high density of functional groups: (a) the cathodic electrografting of stainless steel by poly[2-(2-chloropropionate)ethyl acrylate] [poly(cPEA)], which was used as a macroinitiator for the atom transfer radical polymerization of an inimer, 2-(2-bromopropionate)ethyl acrylate in the presence or absence of heptadecafluorodecyl acrylate, (b) the grafting of preformed hyperbranched poly(ethyleneimine) onto poly(N-succinimidyl acrylate) previously electrografted onto stainless steel. The hyperbranched polymer, which contained either bromides or amines, was quaternized because the accordingly formed quaternary ammonium or pyridinium groups are known for antibacterial properties. The structure, chemical composition, and morphology of the quaternized and nonquaternized hyperbranched polymer brushes were characterized by ATR-FTIR reflectance, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The peeling test confirmed that the grafted hyperbranched polymer films adhered much more strongly to stainless steel than the nongrafted solvent-cast films. The quaternized hyperbranched polymer brushes were more effective in preventing both protein adsorption and bacterial adhesion than quaternary ammonium containing poly(cPEA) primary films, more likely because of the higher hydrophilicity and density of cationic groups.

  3. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  4. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.

    Science.gov (United States)

    Tripathi, Pranav K; Durbach, Shane; Coville, Neil J

    2017-09-22

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.

  5. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst

    Directory of Open Access Journals (Sweden)

    Pranav K. Tripathi

    2017-09-01

    Full Text Available The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316 metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys, which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48. The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD furnace did not require the use of an added catalyst.

  6. First wall lifetime of the near term fusion reactors

    International Nuclear Information System (INIS)

    Matera, R.; Botti, S.; Cerrai, G.

    1985-01-01

    A sensitivity analysis of the influence of the operating conditions and of the design parameters over the first wall lifetime was performed by means of the computer program smile. In the range of operating conditions typical of an experimental fusion reactor like NET/INTOR and for a type AISI 316 stainless steel structural material, fatigue damage and fatigue crack growth are the limiting failure mechanisms of the first wall. The analysis shows in graphical form the limits of the allowable range of operating conditions or of design parameters

  7. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  8. Surface modification of investment cast-316L implants: microstructure effects.

    Science.gov (United States)

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  10. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature; Propagation de fissure par fatigue dans les aciers austeno-ferritiques moules: influence de la microstructure, du vieillissement et de la temperature d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, V

    2001-07-15

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  11. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  12. Electromagnetic forces distribution and mechanical analysis in the first wall structure for INTOR/NET

    International Nuclear Information System (INIS)

    Coccorese, E.; Martone, R.; Rubinacci, G.; Biggio, M.; Inzaghi, A.; Turri, M.

    1984-01-01

    In the context of the studies performed at JRC-Ispra for NET/INTOR, a modular stainless steel first wall, and separated from the blanket which it envelops has been proposed. During plasma disruption the metallic structure of the first wall is inevitably subject to appreciable electromagnetic forces caused by induced eddy current-magnetic field interactions. The deformation and stress distributions in the first wall were quantified at various instants of time by three-dimensional calculations using the ICES-STRUDL code. (author)

  13. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    Science.gov (United States)

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable

  14. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  15. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  16. The supply of small scale mock-ups of the primary wall module concepts for ITER

    International Nuclear Information System (INIS)

    Walsh, G.; Cheyne, K.; Lorenzetto, P.

    1998-01-01

    The present design of Blanket Shield and Primary Wall for ITER envisages construction of the wall with a water cooled, stainless steel outer layer and a water cooled, copper liner on the inside plasma facing surface. Protection of the inner copper surface with an armour layer is necessary to cope with plasma to wall interaction. There are a number of armour materials under consideration, for this project beryllium was used. The scope of work was to produce a series of mock-ups, each consisting of a different combination of materials, which included Dispersion Strengthened Copper, Copper-Chrome-Zirconium alloy, Beryllium and Stainless Steel. Hot Isostatic Pressing (HIP) was the method used to ensure that a fully diffused bonded joint was achieved giving the necessary strength and thermal conductivity. The first five of the mock ups have been successfully completed and are being tested at the various laboratories in Europe. The remaining mock ups are awaiting the results of this test work prior to being completed. (authors)

  17. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  18. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  19. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  20. Technical status study of heavy water enrichment

    International Nuclear Information System (INIS)

    Sukarsono; Imam Dahroni; Didik Herhady

    2007-01-01

    Technical status study of heavy water enrichment in Indonesia and also in the world has been done. Heavy water enrichment processes have been investigated were water distillation, hydrogen distillation, laser enrichment, electrolysis and isotop exchange. For the isotop exchange, the chemical pair can be used were water-hydrogen sulphite, ammonium-hydrogen, aminomethane-hydrogen, and water-hydrogen. For the isotope exchange, there was carried out by mono thermal or bi thermal. The highest producer of heavy water is Canada, and the other producer is USA, Norwegian and India. The processes be used in the world are isotope exchange Girdler Sulphide (GS), distillation and electrolysis. Research of heavy water carried out in Batan Yogyakarta, has a purpose to know the characteristic of heavy water purification. Several apparatus which has erected were 3 distillation column: Pyrex glass of 2 m tall, stainless steel column of 3 m tall and steel of 6 m tall. Electrolysis apparatus is 50 cell electrolysis and an isotope exchange unit which has catalyst: Ni- Cr 2 O 3 and Pt-Carbon. These apparatus were not ready to operate. (author)

  1. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Choi, J.O.; Kim, J.Y.; Choi, C.O.; Kim, J.K.; Rohatgi, P.K.

    2004-01-01

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  2. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  3. Premolar Axial Wall Height Effect on CAD/CAM Crown Retention

    Science.gov (United States)

    2016-05-24

    OC axial wall height was required in a study that involved zirconia copings cemented on stainless steel dies. The results of this study reinforced...surface area was determined using a digital measuring microscope (Hirox). Scanned preparations (CEREC) were fitted with e.max CAD crowns and cemented ...Figure 14. RelyX Unicem Cementation

  4. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  5. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the

  6. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Iftikhar, A.; Mir, N.

    2010-01-01

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  7. Implantation measurements to determine tritium permeation in first wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  8. Implantation measurements to determine tritium permeation in first-wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.; Sattler, M.L.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first-wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first-wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  9. Comparison of ICEPEL predictions with single elbow flexible piping system experiment

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.

    1978-01-01

    The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90 0 thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by Stanford Research Institute

  10. Low-cost fabrication of thin-walled solid electrolyte tubes from doctor-bladed ceramic tape

    Energy Technology Data Exchange (ETDEWEB)

    Dirstine, R T

    1979-01-01

    Sodium ..beta..-Al/sub 2/O/sub 3/ tubes having wall thicknesses of typically 0.4 mm were fabricated from doctor-bladed (cast) ceramic tape by use of proprietary organic slip compositions and zeta-processed, lithia-stabilized alumina power. The ceramic tubes fabricated from cast tape had low porosity, low resistivity (approx. 4 ohm-cm at 300/sup 0/C), and good mechanical strength. Alternative fabrication techniques for manufacture of tubes from tape were evaluated, and the primary processing requirements/obstacls were identified. Closed-end tubes, nominally 10 mm outer diameter, 60 mm in length, and with a wall thickness of 0.3 mm, were supplied to the Department of Energy. 26 figures, 10 tables.

  11. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.

    Science.gov (United States)

    Yan, Leiming; Wu, Jisi; Zhang, Lei; Liu, Xinli; Zhou, Kechao; Su, Bo

    2017-06-01

    Porous titanium scaffolds with long-range lamellar structure were fabricated using a novel bidirectional freeze casting method. Compared with the ordinarily porous titanium materials made by traditional freeze casting, the titanium walls can offer the structure of ordered arrays with parallel to each other in the transverse cross-sections. And titanium scaffolds with different pore width, wall size and porosity can be synthesized in terms of adjusting the fabrication parameters. As the titanium content was increased from 15vol.% to 25vol.%, the porosity and pore width decreased from 67±3% to 50±2% and 80±10μm to 67±7μm, respectively. On the contrary, as the wall size was increased from 18±2μm to 30±3μm, the compressive strength and stiffness were increased from 58±8MPa to 162±10MPa and from 2.5±0.7GPa to 6.5±0.9GPa, respectively. The porous titanium scaffolds with long-range lamellar structure and controllable pore structure produced in present work will be capable of having potential application as bone tissue scaffold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A numerical model for adiabatic shear bands with application to a thick-walled cylinder in 304 stainless steel

    International Nuclear Information System (INIS)

    Liu, Mingtao; Li, Yongchi; Hu, Xiuzhang; Hu, Haibo

    2014-01-01

    The formation of an adiabatic shear band (ASB) experiences three stages: stable plastic flow, nucleation and a fluid-like stage. For different stages, the microstructures of the material undergo great changes. The mechanical behavior of the material in each stage has its own unique characteristics. To describe these characteristics, a multi-stage model for the shear band is proposed. For the stable plastic flow stage, a modified adiabatic J–C constitutive relationship is used. For the nucleation stage, the effects of work hardening and temperature softening are described by a power function of plastic strain. A Newtonian fluid model is used for the fluid-like stage. The formation of a shear band is an instability process. Various defects in the material are perturbation sources, which change the local yield stress. To describe the disturbances, a probability factor is introduced into the macroscopic constitutive relationship. The yield stress in the material is assumed to obey a Gaussian distribution. The multi-stage model combined with a probability factor is applied to simulate the rupture of thick-walled cylinder in 304 Stainless Steel (304SS). A close agreement is found between the simulation and experimental results, such as the failure mechanism, shear band spacing and propagating velocity of the shear band. By combining the experimental results with the simulation results, the importance of the nucleation stage is emphasized. (paper)

  13. Deformation and fracture of Cu alloy-stainless steel layered structures under dynamic loading

    International Nuclear Information System (INIS)

    McCoy, J.H.; Kumar, A.S.

    1998-01-01

    Fracture resistance of the current ITER first wall configuration, a copper alloy-stainless steel layered structure, is a major design issue. The question of dynamic crack propagation into and through the first wall structure is examined using dynamic finite element modeling (FEM). Several layered configurations that incorporate both strain and frictional energy dissipation during the fracture process are considered. With fixed overall specimen geometry, the energy required to extend a precrack is examined as a function of material properties, and the layer structure. It is found that the crack extension energies vary dramatically with the fracture strain of materials, and to a much lesser extent with the number of layers. In addition, it is found that crack propagation through the lower ductility copper alloy layer may be deflected at the stainless steel-copper interface and not result in total fracture of the structure. Although the total energy required is affected only to a small degree by the interface properties, the time to extend the precrack is strongly affected. By making proper selections of the interface and the layered material, crack propagation rates and the possibility of full fracture can be substantially reduced. (orig.)

  14. Cast-in-place concrete walls: thermal comfort evaluation of one-storey housing in São Paulo State

    Directory of Open Access Journals (Sweden)

    H. M. Sacht

    Full Text Available This paper presents a proposal of thermal performance evaluation of a one-storey housing typology (TI24A executed by CDHU - Companhia de Desenvolvimento Habitacional e Urbano do Estado de São Paulo, considering the use of cast-in-place monolithic panels of concrete, with different thicknesses panels (8, 10 and 12 cm and density between 1600 and 2400 kg/m³. In this study, the specific purpose was discussing the influence of the characteristic of concrete walls on the housing thermal performance without slab. Was defined of first parameters of study (definition of the one-storey housing typology, survey about housing users behavior and cities choose and executed computational simulation (winter and summer, for four São Paulo State cities (São Paulo, São Carlos, Santos e Presidente Prudente, with the software Arquitrop 3.0 in a one-storey housing. Was observed that in winter and summer the typologies analyzed, the panels thickness variation had more influence about results than different concrete densities. The minimum level of thermal performance (M in winter has been granted for some cities, with exception of Santos. In summer one of São Paulo city’s typology was attended the minimum level of thermal performance in agreement with standard “NBR 15575 Residential buildings up to five storied - Performance, Part 1: General requirements”.

  15. Development of austenitic stainless steel tubes for nuclear reactor cladding

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ferreira, P.I.; Andrade, P.I.; Andrade, A.H.P. de; Meyerhof, S.; Mauricio, J.

    1984-01-01

    In the development of thin wall tubes for nuclear reactor fuel cladding applications, a great number of activities, related to the fabrication process as the qualification are involved. A test program was envisaged to verify the quality of seam welded stainless steel tubes (AISI 304), obtained as a result of an effort by the IPEN-CNEN/SP and the brazilian industry. The relevant aspects involved in the preparation of the tubes and some preliminary test results are presented. (Author) [pt

  16. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    Science.gov (United States)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  17. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  18. Vaporized wall material/plasma interaction during plasma disruption

    International Nuclear Information System (INIS)

    Merrill, B.J.; Carroll, M.C.; Jardin, S.C.

    1983-01-01

    The purpose of this paper is to discuss a new plasma disruption model that has been developed for analyzing the consequences to the limiter/first wall structures. This model accounts for: nonequilibrium surface vaporization for the ablating structure, nonequilibrium ionization of and radiation emitted from the ablated material in the plasma, plasma particle and energy transport, and plasma electromagnetic field evolution during the disruption event. Calculations were performed for a 5 ms disruption on a stainless steel flat limiter as part of a D-shaped first wall. These results indicated that the effectiveness of the ablated wall material to shield the exposed structure is greater than predicted by earlier models, and that the rate of redeposition of the ablated wall material ions is very dramatic. Impurity transport along magnetic field lines, global plasma motion, and radiation transport in an optically thick plasma are important factors that require additional modeling. Experimental measurements are needed to verify these models

  19. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1979-01-01

    The swelling behavior of neutron irradiated stainless steels is strongly influenced by solute segregation and precipitation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the iniatiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates. (Auth.)

  20. Effects of Si and Ti on the phase stability and swelling behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Kenik, E.A.

    1978-01-01

    Swelling behavior of neutron irradiated stainless steels is influenced by solute segregation and preciptation phenomena. The extent to which in-reactor swelling behavior may be simulated by heavy ion irradiation depends upon the extent to which in-reactor phase changes are reproduced; this question is addressed by comparing the precipitation behavior under neutron irradiation with behavior during 4 MeV Ni ion irradiation for AISI 316 stainless steel and a related stainless steel containing additions of titanium and silicon. The results are discussed qualitatively in terms of the effects of damage rate on solute segregation and the effects of displacement cascades on the dissolution of particles. It is shown that the partitioning of elements into various phases during irradiation is not a sufficient condition for the initiation of swelling in stainless steels modified with silicon and titanium. It is also necessary for helium to be generated simultaneously with the breakdown of the matrix into various phases; it is believed that helium trapping at the growing particle-matrix interface is responsible for the observed physical association between voids and precipitates

  1. Effect of wall material on H- production in a multicusp source

    International Nuclear Information System (INIS)

    Leung, K.N.; Ehlers, K.W.; Pyle, R.V.

    1985-01-01

    H - or D - ions are required to generate efficient neutral beams with energies in excess of 150 keV. A magnetically-filtered multicusp source is capable of producing high-quality volume-generated H - beams with sufficient current density (approx. = 40 mA/cm 2 ) to be useful for both neutral beam heating of fusion plasmas and accelerator applications. Attempts have been made to further improve the arc efficiency of this source in order to provide the capability of long pulse or dc operation. The effect of wall material and wall temperature on the H - ion density has been studied by Graham in a high pressure, diffusion-type plasma. No significant difference in negative ion densities has been observed for Pyrex, stainless steel, copper or molybdenum. In this paper, the authors investigate the extracted H - beam with different metallic liners installed in a magnetically-filtered multicusp source (15 cm diam by 24 cm long). These metal liners were cleaned in an ultrasonic alcohol bath before installation. To insure good thermal and electrical contact with the source chamber, two stainless-steel rings were used to force the liner to lay flush against the vessel wall. A steady-state hydrogen plasma was produced by primary electrons emitted from two 0.05-cm-diam tungsten filaments

  2. Quantification of Feeding Effects of Spot Feeding Ductile Iron Castings made in Vertically Parted Moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat; Sällström, J.

    In vertically parted molds it is traditionally difficult to feed heavy sections that cannot be reached by traditional side/top feeders or other conventional methods. This project aims at quantifying the effects of using molded-in ram-up spot feeders as a means of feeding isolated sections in cast...

  3. Peculiarities of the coolant of large ingots in crystallizators of semicontinuous casting machines

    International Nuclear Information System (INIS)

    Tsukerman, V.Ya.; Marchenko, I.K.; Rimen, V.Kh.

    1983-01-01

    Peculiarities of heat transfer in crystallizator of semicontinuous blank casting machine were investigated, taking carbon and chromium-nickel steels as an example. The effect of crystallizator cross-section and decrease of the rate of metal casting on ingot cooling was considered at that. It was established that nonuniformity of deformation of ingot skin as well as the state of crystallizator operating walls affect on heat transfer in crystallizator. Crystallizator structure with ribs in upper part and without ribs in lower cone part is optimal. It provides more uniform skin growth in initial period of solidification and compensation of gap, which appears due to shrinkage

  4. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    Science.gov (United States)

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  5. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  6. [Characteristics of heavy metals enrichment in algae ano its application prospects].

    Science.gov (United States)

    Lu, Kaixing; Tang, Jian-jun; Jiang, De'an

    2006-01-01

    Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.

  7. Dismountable wall for radiation shielding and screen realized from this wall

    International Nuclear Information System (INIS)

    Blomart, P.

    1988-01-01

    The wall for protection against neutrons and gamma radiations is made of bricks with a shoulder on the upper and side faces and the complementary shape on the lower face to provide a barrier to radiations. Bricks are made of a heavy material for gamma absorption and of epoxy resin, boric acid and hydrated alumina [fr

  8. Dynamic fracture toughness and evaluation of fracture in a ferritic nodular cast iron for casks

    International Nuclear Information System (INIS)

    Yasunaka, T.; Nakano, K.

    1993-01-01

    The effect of loading rate and temperature on fracture toughness of a ferritic nodular cast iron obtained from a thick-walled cylindrical casting has been investigated. Based upon this result, the cast iron is evaluated as a material for casks. (1) In the ductile fracture region, fracture toughness increases with increases in loading rate. (2) Ductile-brittle transition temperature is linearly related to the logarithm of stress intensity rate. (3) In the ductile fracture region, converted plain strain fracture toughness divided by yield stress can be adopted as a material constant which is independent of loading rate and temperature. From the result of a static fracture toughness test, the evaluation of fracture in high loading rate can be made. (4) In the ductile fracture region of the material investigated, the maximum allowable flaw depth exceeded the minimum detectable flaw size by a nondestructive inspection. Ferritic nodular cast iron can be used as a material for casks in the ductile fracture region at least. (J.P.N.)

  9. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  10. Travelling Through Caste

    OpenAIRE

    Kumar, Raj

    2016-01-01

    With its peculiar caste system, India is considered the most stratified of all known societies in human history. This system is ‘peculiar’ as it divides human beings into higher and lower castes and this division is backed by certain religious sanctions based on the sociological concepts of ‘purity’ and ‘pollution’. While the higher caste is associated with ‘purity’, the lower caste is associated with ‘pollution’. The people of the lower castes are not allowed to undertake religious journeys ...

  11. Estimates of time-dependent fatigue behavior of Type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1978-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irradiated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63*10 26 neutrons (n)/m 2 (E>0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20 percent cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradiations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadings ranging from 2 to 5 MW/m 2 were used. 27 refs

  12. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  13. Nonmetallic inclusions in JBK-75 stainless steel

    International Nuclear Information System (INIS)

    Brewer, A.W.; Krenzer, R.W.; Doyle, J.H.; Riefenberg, D.H.

    1977-01-01

    Stainless steel alloys that are chemically complex, such as A-286 or JBK-75, are designed to improve such high-temperature properties as strength. This is accomplished by precipitating secondary phases during aging. Such multicomponent systems, however, can also produce undesirable phases that are detrimental to forgeability and final mechanical properties. Cast segregation and numerous nonmetallic inclusions can have a degrading influence on the toughness and ductility of the alloy. Several different heats of A-286 and JBK-75 were studied, and titanium carbide and/or molybdenum carbide [(Ti, Mo)C] plus titanium carbide and/or titanium carbonitride Ti(C,N)-type phases were qualitatively identified as the major nonmetallic constituent in these alloys. The common procedure for rating the microcleanliness of steels does not classify such carbide or carbonitride phases and thus does not provide an appropriate means of controlling in-process inspection. The results of this study are discussed in terms of alternative methods for evaluating the microcleanliness of superalloys

  14. Failures of austenitic stainless steel components during storage: Case studies

    International Nuclear Information System (INIS)

    Shah, B.K.; Rastogi, P.K.; Sinha, A.K.; Kulkarni, P.G.

    1993-01-01

    Three studies of failures of austenitic stainless steel components during storage are described. In all cases, stress corrosion cracking was the failure mode by the action of residual stress alone. However, the source of residual stress was different for each case. Case 1 was the failure of a sample tube header for a pressurized heavy water reactor (PHWR). In Case 2, a heat exchanger shell failed during a hydrotest in a fertilizer plant. Cases concerned the cracking of type 304L plates used for spent fuel pool lining of a nuclear power station

  15. Caste and power

    DEFF Research Database (Denmark)

    Roy, Dayabati

    2011-01-01

    This paper explores the institution of caste and its operation in a micro-level village setting of West Bengal, an Indian state, where state politics at grass roots level is vibrant with functioning local self-government and entrenched political parties. This ethnographic study reveals that caste...... relations and caste identities have overarching dimensions in the day-to-day politics of the study villages. Though caste almost ceases to operate in relation to strict religious strictures, under economic compulsion the division of labour largely coincides with caste division. In the cultural......–ideological field, the concept of caste-hierarchy seems to continue as an influencing factor, even in the operation of leftist politics....

  16. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  17. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  18. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  19. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  20. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  1. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  2. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  3. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites

    International Nuclear Information System (INIS)

    Farid, Akhtar; Guo Shiju

    2007-01-01

    This study deals with layer composites of carbide reinforcements and stainless steel prepared successfully by powder technology. The layer material consisted of two layers. The top layer consisted of reinforcements (TiC and NbC) and 465 stainless steel as the binder material for the carbides. The bottom layer was entirely of binder material (465 stainless steel). The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the top layer (TiC-NbC/465 stainless steel) showed the typical core-rim microstructure of conventional steel bonded cermets and the bottom layer showed the structure of sintered steel. An intermediate layer was found with a gradient microstructure, having a higher carbide content towards the cermet layer and lower carbide content towards the stainless steel layer. The bending strength of the layered material measured in the direction perpendicular to the layer alignment was remarkably high. The variation of strength as a function of the thickness of the bottom layer revealed that the character of the material changed from the cermet, to a layer composite and then towards metallic materials. The wear resistance of the top layer was studied against high speed steel. The wear mechanisms were discussed by means of microscopical observations on the worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microploughing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microploughing and rapid removal of material from the wear surface was observed at high wear load. The fracture morphologies of the top, bottom and intermediate layers are reported

  4. Reducing the Incidence of Cast-related Skin Complications in Children Treated With Cast Immobilization.

    Science.gov (United States)

    Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T

    2017-12-01

    Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.

  5. Final case for a stainless steel diagnostic first wall on ITER

    Science.gov (United States)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  6. Final case for a stainless steel diagnostic first wall on ITER

    International Nuclear Information System (INIS)

    Pitts, R.A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V.S.

    2015-01-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline

  7. Final case for a stainless steel diagnostic first wall on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, R.A., E-mail: richard.pitts@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 04, 613067 St. Paul Lez Durance Cedex (France); Bazylev, B. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Linke, J. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Juelich (Germany); Landman, I. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Lehnen, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 04, 613067 St. Paul Lez Durance Cedex (France); Loesser, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Loewenhoff, Th. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Juelich (Germany); Merola, M.; Roccella, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 04, 613067 St. Paul Lez Durance Cedex (France); Saibene, G. [Fusion for Energy Joint Undertaking, Josep Pla no. 2 – T B3 7/01, Barcelona 08019 (Spain); Smith, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Udintsev, V.S. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 04, 613067 St. Paul Lez Durance Cedex (France)

    2015-08-15

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  8. SIMS investigations of wall coatings for application in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Friedbacher, G.; Virag, A.; Grasserbauer, M.; Esser, H.G.; Wienhold, P.

    1989-01-01

    Carbon coated metals have proven to be useful materials for limiters and the first wall in fusion reactors. In this paper SIMS investigations of a-C:B single coated and a-C:D/a-C:B double coated stainless steel samples, which have been exposed to TOKAMAK discharges in deuterium and helium, are described. (orig.)

  9. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  10. DOE applied to study the effect of process parameters on silicon spacing in lost foam Al-Si-Cu alloy casting

    International Nuclear Information System (INIS)

    Shayganpour, A; Izman, S; Idris, M H; Jafari, H

    2012-01-01

    Lost foam casting as a relatively new manufacturing process is extensively employed to produce sound complicated castings. In this study, an experimental investigation on lost foam casting of an Al-Si-Cu aluminium cast alloy was conducted. The research was aimed in evaluating the effect of different pouring temperatures, slurry viscosities, vibration durations and sand grain sizes on eutectic silicon spacing of thin-wall castings. A stepped-pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full two-level factorial design experimental technique was used to plan the experiments and afterwards identify the significant factors affecting casting silicon spacing. The results showed that pouring temperature and its interaction with vibration time have pronounced effect on eutectic silicon phase size. Increasing pouring temperature coarsened the eutectic silicon spacing while the higher vibration time diminished coarsening effect. Moreover, no significant effects on silicon spacing were found with variation of sand size and slurry viscosity.

  11. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  12. Neutron-transparent first wall for module testing

    International Nuclear Information System (INIS)

    Fuller, G.M.; Cramer, B.A.; Haines, J.R.; Kirchner, J.; Engholm, B.A.; Seki, M.

    1983-01-01

    Major design goals for FED-R are the achievement of: (1) a high level of neutron exposure of the test modules and (2) a capability for rapid changeout of test modules. A major factor in rapid changeout is perceived to be the location of the vacuum boundary. In FED-R this boundary was set at the first wall so that module changeout did not require the plasma chamber to be brought up to atmosphere. Efforts to realize these goals in the design resulted in a neutronically thin outboard wall for the vacuum vessel constructed of 316 stainless steel (SS) with helium as a coolant. A normalized 14-MeV neutron transmission of 0.82 is expected, with an inlet pressure of 2 MPa and a pumping power requirement of 8.7 MW. Other options considered in the study were aluminum as a wall material and water and sodium potassium (NaK) as coolants

  13. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  14. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    2012-06-01

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  15. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  16. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  17. Target or barrier? The cell wall of early- and later- diverging plants vs cadmium toxicity: differences in the response mechanisms

    Directory of Open Access Journals (Sweden)

    Luigi eParrotta

    2015-03-01

    Full Text Available Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e. barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering.

  18. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  19. Operational Windows for Dry-Wall and Wetted-Wall IFE Chambers

    International Nuclear Information System (INIS)

    Najmabadi, F.; Raffray, A.R.; Bromberg, L.

    2004-01-01

    The ARIES-IFE study was an integrated study of inertial fusion energy (IFE) chambers and chamber interfaces with the driver and target systems. Detailed analysis of various subsystems was performed parametrically to uncover key physics/technology uncertainties and to identify constraints imposed by each subsystem. In this paper, these constraints (e.g., target injection and tracking, thermal response of the first wall, and driver propagation and focusing) were combined to understand the trade-offs, to develop operational windows for chamber concepts, and to identify high-leverage research and development directions for IFE research. Some conclusions drawn in this paper are (a) the detailed characterization of the target yield and spectrum has a major impact on the chamber; (b) it is prudent to use a thin armor instead of a monolithic first wall for dry-wall concepts; (c) for dry-wall concepts with direct-drive targets, the most stringent constraint is imposed by target survival during the injection process; (d) for relatively low yield targets (<250 MJ), an operational window with no buffer gas may exist; (e) for dry-wall concepts with indirect-drive targets, a high buffer gas pressure would be necessary that may preclude propagation of the laser driver and require assisted pinch transport for the heavy-ion driver; and (f) generation and transport of aerosols in the chamber is the key feasibility issue for wetted-wall concepts

  20. The design of lifting attachments for the erection of large diameter and heavy wall pressure vessels

    International Nuclear Information System (INIS)

    Antalffy, Leslie P.; Miller, George A.; Kirkpatrick, Kenneth D.; Rajguru, Anil; Zhu, Yong

    2016-01-01

    Lifting attachments for the erection of large diameter and heavy wall pressure vessels require special consideration to ensure that their attachment to their vessel shells or heads do not overstress the vessel during the erection process when lifting these from grade onto their respective foundations. Today, in refinery and petrochemical services, large diameter vessels with diameters ranging up to 15 m and reactors with lifting weights in the range of 700–1400 tons are not uncommon. In today's fabrication market, these vessels may be purchased and fabricated in shops dispersed globally and will require unique equipment for their safe handling, transportation and subsequent erection. The challenge is to design the lifting attachments in such a manner that the attachments provide a safe, cost effective and effective solution based upon the limitations of the job site lift equipment available for erection. Such equipment for the transportation and subsequent lifting of large diameter and heavy wall pressure equipment is usually scarce and quite expensive. Planning ahead, well in advance of the lift date is almost a mandatory requirement. Usually, the specific parameters of the vessel to be lifted and the lifting equipment available at the site will dictate the type of lifting attachments to be designed for the vessel. Once the type of vessel attachment has been chosen, careful consideration must be given to the design of attachments to the pressure vessel in consideration to ensure that the vessel and lifting components are not overstressed during the lifting process. The paper also discusses different types of lifting attachments that may be attached to each end of the vessel either by bolting or welding and discusses the pros and cons of each. The paper also provides an example of a finite element analysis (FEA) of a top nozzle, a FEA of a pair of lifting trunnions and a FEA of welded on lifting lugs for buried pipe. The purpose of the paper is to outline the

  1. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  2. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  3. Analysis of ductile cast iron for spent fuel cask

    International Nuclear Information System (INIS)

    Sakurai, D.; Minami, M.

    1993-01-01

    143 data from 12 Heavy Section D.C.I. Cast Bodies of 6 manufacturer in Japan were investigated and statistically analyzed about Mechanical Properties, Metallurgical Conditions and Manufacturing Processes. The following results were concluded. (1) The Mechanical Properties of J.I.S. are reasonable, reliable and reasonably achievable. (2) The Mechanical Properties of D.C.I. are reasonably achievable. (3) The Mechanical Properties of D.C.I. are easily controllable through metallurgical method. (4) D.C.I. (JIS G5504-92) is applicable to the material for spent fuel cask. (J.P.N.)

  4. Methodology for first wall design

    International Nuclear Information System (INIS)

    Galambos, J.D.; Conner, D.L.; Goranson, P.L.; Lousteau, D.C.; Williamson, D.E.; Nelson, B.E.; Davis, F.C.

    1993-01-01

    An analytic parametric scoping tool has been developed for application to first wall (FW) design problems. Both thermal and disruption force effects are considered. For the high heat flux and high disruption load conditions expected in the International Thermonuclear Experimental Reactor (ITER) device, Vanadium alloy and dispersion-strengthened copper offer the best stress margins using a somewhat flattened plasma-facing configuration. Ferritic steels also appear to have an acceptable stress margin, whereas the conventional stainless steel 316 does not appear feasible. If a full semicircle shape FW is required, only the Vanadium and ferritic steel alloy have acceptable solutions

  5. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  6. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  7. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  8. An Experimental Investigation to Facilitate an Improvement in the Design of an Electromagnetic Continuous Casting Mould

    Directory of Open Access Journals (Sweden)

    Lintao Zhang

    2016-04-01

    Full Text Available An electromagnetic continuous casting mould designed is proposed with a non-uniform slit distribution structure. This design has aimed to reduce the number of slits so that the mould’s strength is enhanced, whilst maintaining a similar metallurgy effect. In this paper, the metallurgy effect for the designed mould is investigated through the magnetic field distribution along the casting direction, the uniformity feature in the vicinity of the meniscus region, the temperature variation of the molten alloy pool and the mould wall. The results show that the designed mould achieved a similar effect as compared to the original mould; however, the configuration is simplified. This research highlights the topic of mould structure optimization, which would enable the Electromagnetic continuous casting (EMCC technique to be utilized with greater ease by industry.

  9. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  10. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  11. Thermo-mechanical behaviour during encapsulation of glass in a steel vessel

    International Nuclear Information System (INIS)

    Nakhodchi, S.; Smith, D.J.; Thomas, B.G.

    2016-01-01

    Quantitative numerical simulations and qualitative evaluations are conducted to elucidate thermo-mechanical behaviour during pouring and solidification of molten glass into a stainless-steel cylindrical container. Residual stress and structural integrity in this casting/vitrification process is important because it can be used for long-term storage of high-level nuclear wastes. The predicted temperature and stress distributions in the glass and container agree well with previous measurements of the temperature histories and residual stresses. Three different thermal-stress models are developed using the finite-element method and compared. Two simple slice models were developed based on the generalized plane strain assumption as well as a detailed two-dimensional axi-symmetric model that adds elements according to the stages of pouring glass into the stainless steel container. The results reveal that mechanical interaction between the glass and the wall of the stainless steel container generates residual tensile stresses that approach the yield strength of the steel. Together, these results reveal important insights into the mechanism of stress generation in the process, the structural integrity of the product, and accuracy of the modelling-tool predictions. - Highlights: • Source of residual stresses in glass and stainless steel containers (canisters) is discussed. • Final residual stresses in both glass and container is quantified. • Simple models presented for simulation of complicated casting process. • Comparison between detailed and simple FE modeling.

  12. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  13. TECHNOLOGICAL PARAMETERS OF SLUGS CASTING OF GREY CAST IRON BY FROSTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2009-01-01

    Full Text Available The relation of geometrical parametres of casting with technological ones is shown. The monogram for definition of basic technological parametres of obtaining of castings by the method of continuously-cyclic iterative casting by freezing-up is presented.

  14. Studies on first wall and plasma wall interaction in JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo

    1988-12-01

    This paper describes studies on first wall and plasma wall interaction in JT-60. Main results are as follows; (1) To select JT-60 first wall material, various RandD were done in FY1975 ∼ 1976. Mo was selected as first wall materials of limiters and divertor plates because of its reliability under a high heat flux condition. (2) Development of low-Z material has been done to reduce impurity problem of Mo first wall. As a result, titanium carbide (TiC) was selected as a coating material on the Mo. High heat load testing has been done for TiC coated Mo limiter same as JT-60. This material can survive under the condition of 1 kW/cm 2 x 10 s, expected in JT-60 limiter design. (3) To reduce high heat load on the divertor plate, separatrix swing is proposed. Optimum frequency of the sweeping is evaluated to be 2 Hz in JT-60. For a discharge with heating power of 30 MW and duration time of 10 s, in addition to the separatrix swing, remote radiative cooling in the divertor region is necessary. Moreover, calculations of erosion thickness have been done for stainless steel, Mo, graphite, TiC and silicon caibide under high heat flux during plasma disruption. (4) In divertor experiments in JT-60, divertor functions on particle, heat load and impurity controls have been demonstrated. In elctron density of 6 x 10 19 m -3 , particle fueling rate of 20 MW NB heating (3 Pa m 3 /s) can be exhausted by divertor pumping system. Effectiveness of remote radiative cooling is demonstrated under the condition of 20 MW NB heating power. Also, separatrix swing is demonstrated to reduce heat load on the divertor plate. Total radiation in main plasma is 5 ∼ 10% of total absorbed power. (author) 120 refs

  15. Lean duplex stainless steels-The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, T.J. [LEPMI, UMR5279CNRS, Grenoble INP, Universite de Savoie, Universite Joseph Fourier, BP 75, 38402 St Martin d' Heres (France); CRU Ugitech, Av Paul Girod 73400 Ugine (France); Chauveau, E.; Mantel, M. [CRU Ugitech, Av Paul Girod 73400 Ugine (France); Kinsman, N. [International Molybdenum Association, IMOA W4 4JE London (United Kingdom); Roche, V. [LEPMI, UMR5279CNRS, Grenoble INP, Universite de Savoie, Universite Joseph Fourier, BP 75, 38402 St Martin d' Heres (France); Nogueira, R.P., E-mail: ricardo.nogueira@grenoble-inp.fr [LEPMI, UMR5279CNRS, Grenoble INP, Universite de Savoie, Universite Joseph Fourier, BP 75, 38402 St Martin d' Heres (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Mo influence on corrosion of DSS was studied with industrial and laboratory heats. Black-Right-Pointing-Pointer Beneficial effect of Mo was associated with ferrite corrosion resistance. Black-Right-Pointing-Pointer Mo-species in the alkaline solution did not improve pit resistance. Black-Right-Pointing-Pointer Mo role in DSS under alkaline conditions was ascribed to its presence in oxide film. - Abstract: The influence of Mo addition on pitting corrosion resistance of lean duplex stainless steels is not clearly understood in alkaline chloride conditions even if this element is widely recognized to increase corrosion resistance in acidic and neutral environments. This work aims to study the effect of Mo on pitting corrosion of lean duplex stainless steels in synthetic concrete pore solutions simulating degraded concrete. Results are discussed with respect to the influence of Mo on pitting potential for two industrial alloys in chloride rich and carbonated solution simulating concrete pore environments. To establish the real effect of Mo addition on lean duplex corrosion and passivation properties, two specific laboratory lean duplex alloys, for which the only difference is strictly the Mo content, are also studied. Mo presented a strong positive influence on the pitting corrosion resistance of industrial and laboratory lean duplex stainless steels in all studied chloride-rich solutions, but its effect is as less pronounced as the pH increases. In presence of Mo, pitting initiates and propagates preferentially in the austenitic phase at high temperature.

  16. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  17. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  18. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  19. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  20. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  1. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Science.gov (United States)

    2011-01-03

    ... at the stainless and carbon steel products manufacturing facility of ThyssenKrupp Steel and Stainless... to the manufacturing of stainless and carbon steel products at the facility of ThyssenKrupp Steel and... Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and Carbon Steel Products) Calvert, AL...

  2. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    Science.gov (United States)

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  3. The structure of abrasion-resisting castings made of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-01-01

    Full Text Available In this study presents the analyse of chrome iron cast structure (as-cast condition which are used in rugged conditions abrasion-percussive and high temperature. While producing the casts of chrome iron major influence has been preserve the structure of technologi cal process parameters. The addition to Fe-C-Cr alloy Ni, Mo or Cu and then proper heat treatment leads to the improvement of functional and mechanical cast qualities. Then it is possible to develop high mechanical properties which are recommended by PN-EN12513. As can it be seen from the above research silicon is an adverse chemical element in this kind of alloy cast iron. However, the reason of cracksappearing in chrome iron casts are phosphorus eutectic microareas. When the compound of Si and P reach the critical point, described inPN-88/H-83144 outdated standard, the microareas might appear.

  4. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  5. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Science.gov (United States)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  6. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Science.gov (United States)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  7. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  8. Evaluation of the Effect of Axial Wall Modification and Coping Design on the Retention of Cement-retained Implant-supported Crowns

    Science.gov (United States)

    Derafshi, Reza; Ahangari, Ahmad Hasan; Torabi, Kianoosh; Farzin, Mitra

    2015-01-01

    Background and aims. Because of compromised angulations of implants, the abutments are sometimes prepared. The purpose of this study was to investigate the effect of removing one wall of the implant abutment on the retention of cement-retained crowns. Materials and methods. Four prefabricated abutments were attached to analogues and embedded in acrylic resin blocks. The first abutment was left intact. Axial walls were partially removed from the remaining abutments to produce abutments with three walls. The screw access channel for the first and second abutments were completely filled with composite resin. For the third and fourth abutments, only partial filling was done. Wax-up models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The copings of fourth abutment had an extension into the screw access channel. Copings were cemented with Temp Bond. The castings were removed from the abutment using an Instron machine, and the peak removal force was recorded. A one-way ANOVA was used to test for a significant difference followed by the pairwise comparisons. Results. The abutments with opened screw access channel had a significantly higher retention than the two other abutments. The abutment with removed wall and no engagement into the hole by the castings exhibited the highest retention. Conclusion. Preserving the opening of screw access channel significantly increases the retention where one of the axial walls of implant abutments for cement-retained restorations is removed during preparation. PMID:25973152

  9. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  10. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  11. PDS 1-5. Divertor heat sink materials pre- and post-neutron irradiation. Tensile and fatigue tests of brazed joints of molybdenum alloys and 316L stainless steel

    International Nuclear Information System (INIS)

    Lind, Anders.

    1994-01-01

    Tensile specimens from brazed joints of molybdenum alloys (TZM or Mo-5%Re) and Type 316L austenitic stainless steel tubes have been tested at ambient temperature and 127 degrees C before and after neutron irradiation at about 40 degrees C to approximately 0.2 dpa. The unirradiated specimens showed generally ductile behaviour, but the irradiated specimens were notch sensitive and failed in a brittle manner with zero elongation; in all cases the fracture occurred in the molybdenum alloy. The brittle behaviour is consistent with previously published data and results from the increase in strength (radiation hardening) and the associated increase in the ductile-brittle transition temperature (radiation embrittlement) induced in the body-centered-cubic (BCC) molybdenum alloys by irradiation to relatively low displacement doses. The same type of irradiated specimens were also used in fatigue tests. However, the results from the fatigue tests are too limited and complementary studies are needed. During exposure to water locally up to 25% of the wall thickness of the Mo-alloys has corroded away. These observations cast serious doubts on the viability of the molybdenum alloys for divertor applications in fusion systems. 8 refs, 29 figs

  12. Method and apparatus for improved melt flow during continuous strip casting

    Science.gov (United States)

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  13. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  14. Best practices of using shotcrete for wall fascia and slope stabilization (phase 1 study)

    Science.gov (United States)

    2017-06-01

    Shotcrete has become attractive and holds potential to replace cast-in-place (CIP) concrete for elements like retaining walls and slope stabilization. However, this practice is still limited due to concerns of drying shrinkage cracking, long-term dur...

  15. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  16. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  17. The thermal response of the first wall of a fusion reactor blanket to plasma disruptions

    International Nuclear Information System (INIS)

    Klippel, H.Th.

    1983-09-01

    Major plasma disruptions in Tokamak power reactors are potentially dangerous because high thermal overloading of the first wall may occur, resulting in melting and evaporation. The present uncertainties of the disruption characteristics, in particular the space and time dependence of the energy deposition, lead to a wide variation in the prospective surface energy loads. The thermal response of a first wall of aluminium, stainless steel and of graphite subjected to disruption energy loads up to 1000 J cm -2 has been analysed including the effects of melting and surface evaporation, vapour recondensation, vapour shielding, and the moving of the surface boundary caused by the evaporation. A special calculation model has been developed for this purpose. The main results are the following: by values of local transient energy depositions over 1500 J cm -2 bare stainless steel walls are damaged severely. Further calculations are needed to estimate the endurance limit of several candidate first wall materials. Applications of coatings on surfaces need special attention. For the reference INTOR disruption (approx. 100 J cm -2 ) evaporation is not significant. The effect of vapour shielding on evaporation has been found to be significant. The effect on melting is less pronounced. In a complete analysis the stability and dynamic behaviour of the melted layer under electromagnetic forces should be included. Also a reliable set of plasma disruption characteristics should be gathered

  18. Dimensional control of die castings

    Science.gov (United States)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  19. The influence of wall thickness on the microstructure of bronze BA1055 with the additions of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B.P. Pisarek

    2008-12-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, about good sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. Additions Mo and/or W were not applied so far in the larger concentration, these elements were introduced to the melts of the copper as the components of modifiers. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the influence of the wall thickness of the cast on size of crystallites were conducted: the primary phase β and intermetallic phase κ and the width separates of the secondary phase α precipitate at phase boundary. It results from conducted investigations, that in the aluminium bronze BA1055 after simultaneous makes additions Si, Cr, Mo and in the primary phase β it undergoes considerable reducing size. The addition W reduce size of the grain phase β in the thin walls of the cast 3-6 mm, and addition Cr in the range of the thickness of the wall of the cast 3-6 mm it favors to reducing size the phase β, in walls 12-25 mm the growth causes it. The addition Mo does not influence the change of the size of the grain of the β phase significantly. The make addition singly or simultaneously of the Cr, Mo and W to the bronze CuAl10Fe5Ni5Si it influences the decrease of the quantity separates of the phase α on the interface boundary and of width it separates independently from the thickness of the wall of the cast. The simultaneous make addition of the Si, Cr, Mo and W it enlarges the surface of the phase κFe, κMo. The make addition to the bronze CuAl10Fe5Ni5Si of the Cr, Mo or W the quantity of crystallizing hard phase κ enlarges and the

  20. Copper alloy conducting first wall for the FED-A tokamak

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1984-01-01

    The first wall of the tokamak FED-A device was designed to satisfy two conflicting requirements. They are a low electrical resistance to give a long eddy-current decay time and a high neutron transparency to give a favorable tritium breeding ratio. The tradeoff between these conflicting requirements resulted in a copper alloy first wall that satisfied the specific goals for FED-A, i.e., a minimum eddy-current decay time of 0.5 sec and a tritium breeding ratio of at least 1.2. Aluminum alloys come close to meeting the requirements and would also probably work. Stainless steel will not work in this application because shells thin enough to satisfy temperature and stress limits are not thick enough to give a long eddy-current decay time and to avoid disruption induced melting. The baseline first wall design is a rib-stiffened, double-wall construction. The total wall thickness is 1.5 cm, including a water coolant thickness of 0.5 cm. The first wall is divided into twelve 30-degree sectors. Flange rings at the ends of each sector are bolted together to form the torus. Structural support is provided at the top center of each sector