WorldWideScience

Sample records for heavy-metal tungsten alloy

  1. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  2. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  3. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  4. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Cha, Seung I. [International Center for Young Scientists, National Institute for Materials Science 1-1, Namiki, Tsukuba 305-0044 (Japan); Ryu, Ho J. [DUPIC, Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yusong-gu, Taejon 305-353 (Korea, Republic of); Hong, Soon H. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of)], E-mail: shhong@kaist.ac.kr

    2007-06-15

    Oxide dispersion strengthened (ODS) tungsten heavy alloys have been considered as promising candidates for advanced kinetic energy penetrator due to their characteristic fracture mode compared to conventional tungsten heavy alloy. In order to obtain high relative density, the ODS tungsten heavy alloy needs to be sintered at higher temperature for longer time, however, induces growth of tungsten grains. Therefore, it is very difficult to obtain controlled microstructure of ODS tungsten heavy alloy having fine tungsten grains with full densification. In this study, two-stage sintering process, consisted of primary solid-state sintering and followed by secondary liquid phase sintering, was introduced for ODS tungsten heavy alloys. The mechanically alloyed 94W-4.56Ni-1.14Fe-0.3Y{sub 2}O{sub 3} powders are solid-state sintered at 1300-1450 deg. C for 1 h in hydrogen atmosphere, and followed by liquid phase sintering temperature at 1465-1485 deg. C for 0-60 min. The microstructure of ODS tungsten heavy alloys showed high relative density above 97%, with contiguous tungsten grains after primary solid-state sintering. The microstructure of solid-state sintered ODS tungsten heavy alloy was changed into spherical tungsten grains embedded in W-Ni-Fe matrix during secondary liquid phase sintering. The two-stage sintered ODS tungsten heavy alloy from mechanically alloyed powders showed finer microstructure and higher mechanical properties than conventional liquid phase sintered alloy. The mechanical properties of ODS tungsten heavy alloys are dependent on the microstructural parameters such as tungsten grain size, matrix volume fraction and tungsten/tungsten contiguity, which can be controlled through the two-stage sintering process.

  5. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  6. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  7. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  8. Effect of composition on the high rate dynamic behaviour of tungsten heavy alloys

    Directory of Open Access Journals (Sweden)

    Latif Kesemen

    2015-01-01

    Full Text Available Tungsten heavy alloys are currently used as kinetic energy penetrators in military applications due to their high density and superior mechanical properties. In the literature, quasi-static properties of different tungsten heavy alloys based on W-Ni-Cu and W-Ni-Fe ternary systems are well documented and presented. However, comparison of the dynamic behaviour of these alloys in terms of the correlation between quasi-static mechanical characterization and dynamical properties is lacking. In the present study, dynamic properties of tungsten heavy alloys having different binder phase compositions (90W-7Ni-3Cu and 90W-8Ni-2Fe at different projectile velocities were investigated. The examined and tested alloys were produced through the conventional powder metallurgy route of mixing, cold compaction and sintering. Mechanical characterization of these alloys was performed. In the ballistic tests, cylindrical tungsten heavy alloys with L/D ratio of 3 were impacted to hardened steel target at different projectile velocities. After the ballistic tests, deformation characteristics of test specimens during dynamic loading were evaluated by comparing the change of length and diameter of the specimens versus kinetic energy densities. The study concluded that 90W-8Ni-2Fe alloy has better perforation characteristics than 90W-7Ni-3Cu alloy.

  9. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    International Nuclear Information System (INIS)

    Roedel, Erik Q.; Cafasso, Danielle E.; Lee, Karen W.M.; Pierce, Lisa M.

    2012-01-01

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  10. Freeze-dried processing of tungsten heavy alloys

    International Nuclear Information System (INIS)

    White, G.D.; Gurwell, W.E.

    1989-06-01

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogeneous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 μm in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 96% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to fully density at temperatures as low as 1200 degree C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. 9 refs., 22 figs., 3 tabs

  11. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  12. Development of a tungsten heavy alloy, W-Ni-Mn, used as kinetic energy penetrator

    International Nuclear Information System (INIS)

    Zahraee, S. M.; Salehi, M. T.; Arabi, H.; Tamizifar, M.

    2007-01-01

    The objective of this research was to develop a tungsten heavy alloy having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium materials, For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of tungsten heavy alloy were chosen for investigation in this research. The alloys namely 90 W-7 Ni-3 Fe, 90 W-9 Ni-Mn and 90 W-8 Ni-2 Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructure, were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in tungsten heavy alloy. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands during impact

  13. Flow behaviour of a heat treated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Das, Jiten; Sarkar, R.; Rao, G. Appa; Sankaranarayana, M.; Nandy, T.K.; Pabi, S.K.

    2012-01-01

    Highlights: ► An Arrhenius type of constitutive equation is proposed for the investigated alloy. ► Peierl's controlled dislocation motion is observed at low temperature. ► Transition from Peierl's to forest controlled mechanism is observed at 673 K. ► At room temperature predominantly tungsten grain, cleavage fracture is observed. ► At elevated temperature predominantly intergranular fracture is observed. - Abstract: Flow behaviour of a tungsten heavy alloy was studied in the strain rate-temperature range of 10 −5 –1/s and 298–973 K, respectively. It was observed in this study that the dislocation motion in tungsten heavy alloy was controlled by a Peierl's mechanism at low temperatures (up to 573 K). This was confirmed by the magnitude of apparent activation volume and apparent activation enthalpy as well as TEM observations. Apparent activation enthalpy in the Peierls regime, determined by several methods, was found to vary in between 22 and 37 kJ/mol. An Arrhenius type of constitutive equation was also proposed in the Peierls controlled regime for predicting flow stress as a function of temperature and strain rate. Transition temperature of rate controlling mechanism—from Peierl's mechanism to forest mechanism—was determined from the strain rate sensitivity and apparent activation volume estimation at several temperatures. The transition temperature was found to be about 673 K.

  14. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  15. Morphological characterisation and spectroscopic studies of the corrosion behaviour of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Ogundipe, A.; Greenberg, B.; Braida, W.; Christodoulatos, C.; Dermatas, D.

    2006-01-01

    Tungsten-based alloys have been used in a wide variety of industrial and military applications. These alloys are composed mainly of tungsten (88-95%) with various combinations of nickel, cobalt, iron and copper usually making up the remaining fraction. The corrosion behaviours of five munitions grade tungsten alloys of interest have been examined using immersion tests and wet-dry cycle tests to determine the mechanisms involved in the release of the metallic components. Analyses carried out using SEM, EDS and grazing incidence XRD techniques, show the release of tungsten as well as alloying elements due to galvanic corrosion resulting from the difference in electrode potential between the tungsten phase and the binder phase in all cases studied. The extent of corrosion was directly related with the dissolution of tungsten in the binder phase during the sintering stage of manufacture. In W-Ni-Co-Fe alloys binder phase corrosion was observed while the relatively noble tungsten phase was less affected. The reverse was observed for a W-Cu alloy

  16. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  17. Solid-state sintering of tungsten heavy alloys

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1994-10-01

    Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μM) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 μm W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 μm W powder blends; 10μm W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W

  18. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  19. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  20. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  1. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  2. Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering

    International Nuclear Information System (INIS)

    Wuwen Yi; German, R.M.; Lu, P.K.

    2001-01-01

    Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)

  3. Tissue distribution patterns of solubilized metals from internalized tungsten alloy in the F344 rat

    Directory of Open Access Journals (Sweden)

    Vernieda B. Vergara

    2016-06-01

    Full Text Available Because of its unique physical and chemical properties, tungsten has been increasingly utilized in a variety of civilian and military applications. This expanded use also raises the risk of human exposure through internalization by various routes. In most cases the toxicological and carcinogenic properties of these tungsten-based compounds are not known nor are the dissolution biokinetics and ultimate fate of the associated metals. Using a laboratory rodent model system designed to assess the health effects of embedded metals, and a tungsten alloy comprised of tungsten (91.1%, nickel (6.0%, and cobalt (2.9%, we investigated the tissue distribution patterns of the metals over a six month period. Despite its perceived insolubility, tungsten rapidly solubilized from the implanted metal fragments, as did nickel and cobalt. All three metals distributed systemically over time with extremely elevated levels of all three metals found in kidney, liver, and spleen. Unexpectedly, tungsten was found to cross the blood-brain and blood-testis barriers and localize in those tissues. These results, along with recent reports suggesting that tungsten is a tumor promoter, raises serious concerns as to the long-term health effects of exposure to tungsten and tungsten-based compounds.

  4. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy

    Czech Academy of Sciences Publication Activity Database

    Kunčická, L.; Kocich, R.; Hervoches, Charles; Macháčková, A.

    2017-01-01

    Roč. 705, č. 9 (2017), s. 25-31 ISSN 0921-5093 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : Tungsten heavy alloy * residual stresses * neutron scattering * electron microscopy * work hardening Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.094, year: 2016

  5. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  6. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    Science.gov (United States)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  7. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-07

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed.

  8. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    International Nuclear Information System (INIS)

    1978-01-01

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed

  9. Microstructural study of tungsten influence on Co-Cr alloys

    International Nuclear Information System (INIS)

    Karaali, A.; Mirouh, K.; Hamamda, S.; Guiraldenq, P.

    2005-01-01

    Alloying elements, such as W, Mo, Mn,..., are of a great importance in the preoxidation of dental alloys and, consequently, on the ceramic/metal bond quality. This study deals with the effect of tungsten addition on the microstructural state of Co-Cr dental alloys, before the ceramisation process. These materials were prepared by unidirectional solidification. Their characterization has been carried out, using transmission electron microscopy (TEM) and X-ray diffraction. It shows that the addition of tungsten up to 8 wt.% induces structural transformations, which are believed to be linked to the added amount of tungsten

  10. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  11. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  12. Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rongmei, E-mail: luorm_1999@126.com [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China); Huang, Dewu; Yang, Mingchuan; Tang, Enling; Wang, Meng; He, Liping [College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning (China)

    2016-10-15

    Rod penetrators with 95W–3.75Ni–1.25Fe fine-grained tungsten heavy alloy (fine-grained 95W) and conventional tungsten heavy alloy rod penetrators with the same chemical composition (conventional 95W) were subjected to ballistic impact to compare their penetration performance. “Self-sharpening” behavior and an average 10.5% increase in penetration depth compared to conventional 95W penetrators. An acute head remained on the fine-grained 95W rod with SEM results revealing many micro-cracks and small debris on surface layer of the rod head. The stress-strain curves collected in the Split Hopkinson Pressure Bar (SHPB) experiment showed that critical failure strain values of the fine-grained 95W were 0.12 and 0.39 at strain rate of 2×10{sup 3} s{sup −1} and 3.9×10{sup 3} s{sup −1}, respectively, approximately 40% and 10% lower than those of the conventional 95W. The dynamic strength values of fine-grained 95W were 2100 MPa and 2520 MPa, respectively, which were 500 MPa and 520 MPa higher than those of the conventional 95W. The relationship among microstructure, mechanical property and “self-sharpening” behavior of fine-grained 95W is discussed in this work.

  13. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  14. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  15. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing

    International Nuclear Information System (INIS)

    Hsu, Shih-Chieh; Hsieh, Hwey-Lian; Chen, Chang-Po; Tseng, Chun-Mao; Huang, Shou-Chung; Huang, Chou-Hao; Huang, Yi-Tang; Radashevsky, Vasily; Lin, Shuen-Hsin

    2011-01-01

    Through analyses of water and sediments, we investigate tungsten and 14 other heavy metals in a stream receiving treated effluents from a semiconductor manufacturer-clustered science park in Taiwan. Treated effluents account for ∼50% of total annual river discharge and <1% of total sediment discharge. Dissolved tungsten concentrations in the effluents abnormally reach 400 μg/L, as compared to the world river average concentration of <0.1 μg/L. Particulate tungsten concentrations are up to 300 μg/g in suspended and deposited sediments, and the corresponding enrichment factors are three orders of magnitude higher than average crust composition. Surprisingly, the estimated amount of tungsten exported to the adjacent ocean is 23.5 t/yr, which can approximate the amount from the Yangtze River should it be unpolluted. This study highlights the urgency of investigating the biological effect of such contamination.

  16. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates

    International Nuclear Information System (INIS)

    Lee, Woong; Lee, Heon-Joo; Shin, Hyunho

    2002-01-01

    Ricochet of a tungsten heavy alloy long-rod projectile from oblique steel plates with a finite thickness was investigated numerically using a full three-dimensional explicit finite element method. Three distinctive regimes resulting from oblique impact depending on the obliquity, namely simple ricochet, critical ricochet and target perforation, were investigated in detail. Critical ricochet angles were calculated for various impact velocities and strengths of the target plates. It was predicted that critical ricochet angle increases with decreasing impact velocities and that higher ricochet angles were expected if higher strength target materials are employed. Numerical predictions were compared with existing two-dimensional analytical models. Experiments were also carried out and the results supported the predictions of the numerical analysis

  17. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

    Science.gov (United States)

    Panchal, Ashutosh; Ravi Kiran, U.; Nandy, T. K.; Singh, A. K.

    2018-06-01

    Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength ( σ YS) continuously increases with increase in W content in both the alloys. The σ YS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength ( σ UTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress-true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

  18. Ductile tungsten-nickel-alloy and method for manufacturing same

    Science.gov (United States)

    Ludwig, Robert L.

    1978-01-01

    The tensile elongation of a tungsten-nickel-iron alloy containing essentially 95 weight percent reprocessed tungsten, 3.5 weight percent nickel, and 1.5 weight percent iron is increased from a value of less than about 1 percent up to about 23 percent by the addition of less than 0.5 weight percent of a reactive metal consisting of niobium and zirconium.

  19. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  20. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, B.E. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Roszell, L.E. [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States); Murr, L.E.; Ramirez, D.A. [Department of Metallurgical and Materials Engineering, University of Texas, El Paso, TX 79968 (United States); Demaree, J.D. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Klotz, B.R. [Dynamic Science Inc., Aberdeen Proving Ground, MD 21005‐5609 (United States); Rosencrance, A.B.; Dennis, W.E. [U.S. Army Center for Environmental Health Research, Department of Chemistry, Ft. Detrick, MD 21702‐5010 (United States); Bao, W. [SAS Institute, Inc. SAS Campus Drive, Cary, NC 27513 (United States); Perkins, E.J. [U.S. Army Engineer Research and Development Center, 3909 Hall Ferry Road, Vicksburg MS 39180 (United States); Dillman, J.F. [U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010‐5400 (United States); Bannon, D.I., E-mail: desmond.bannon@us.army.mil [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States)

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  1. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    International Nuclear Information System (INIS)

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-01-01

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  2. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  3. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  4. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  5. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  6. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    International Nuclear Information System (INIS)

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-01-01

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80–100 μm between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn 2 , Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg–Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: ► Mg alloy AZ31B and Al alloy 6061 are welded successfully. ► Zinc wire is employed as a filler metal to form the alloyed welding seam. ► An alloyed welding seam is benefit for improving of the joint tensile strength.

  7. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  8. Possibility of clinical usefulness of heavy metal filter combinations in digital chest radiography

    International Nuclear Information System (INIS)

    Kawaji, Yasuyuki; Ideguchi, Tadamitsu; Ikeda, Hirotaka; Sakamoto, Hiromi; Higashida, Yoshiharu; Toyofuku, Fukai

    2003-01-01

    We have investigated the potential usefulness of the heavy metal filters with higher atomic numbers by comparing their patient exposures, tube loadings, radiographic contrasts, and the visual detection of simulated nodules in computed radiography (CR) with those of a combination of copper and aluminum. Seven heavy metal filters were used for this study. As for a tungsten filter, two filters different in thickness were used. One is 0.05 mm thick, and the other 0.10 mm. The other metal filters were respectively combined with a tungsten filter with a thickness of 0.05 mm. Among the all filters, tungsten with 0.1 mm thick and tungsten with 0.05 mm+barium which showed larger advantages in patient exposure and tube loading than those of the other filters were used for detection task of simulated nodules in chest radiography. The results indicated that the use of heavy metal filters can improve detectability of simulated nodules over that obtainable with conventional copper and aluminum filter. (author)

  9. Ductile tungsten-nickel alloy and method for making same

    Science.gov (United States)

    Snyder, Jr., William B.

    1976-01-01

    The present invention is directed to a ductile, high-density tungsten-nickel alloy which possesses a tensile strength in the range of 100,000 to 140,000 psi and a tensile elongation of 3.1 to 16.5 percent in 1 inch at 25.degree.C. This alloy is prepared by the steps of liquid phase sintering a mixture of tungsten-0.5 to 10.0 weight percent nickel, heat treating the alloy at a temperature above the ordering temperature of approximately 970.degree.C. to stabilize the matrix phase, and thereafter rapidly quenching the alloy in a suitable liquid to maintain the matrix phase in a metastable, face-centered cubic, solid- solution of tungsten in nickel.

  10. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anjali, E-mail: anjalikumari1261@gmail.com; Prabhu, G.; Sankaranarayana, M.; Nandy, T.K.

    2017-03-14

    The present study investigates the effect of solution treatment temperature and cooling rate on mechanical properties of a tungsten heavy alloy (89.6W-6.2Ni-1.8Fe-2.4Co). In addition to water quenching, rapid argon quenching has been attempted in this study since it is a relatively cleaner process and it can be used in conjunction with vacuum treatment. Since in these alloys, there is a possibility of incomplete dissolution of intermetallics or segregation of impurities during heat treatment, which results in scatter in the mechanical properties, it was decided that the solution treatment temperature for both water and argon quenching would be varied from 1100 to 1250 °C in order to see its effect on the microstructure and mechanical properties. Solution treatment at varying temperatures followed by water quenching resulted in tensile strength ranging from 908 to 921 MPa and % elongation varied from 19% to 26%. On the other hand, the argon quenching heat treatment resulted in tensile strength in the range of 871–955 MPa and % elongation from 9% to 25%. No significant trend with respect to solution treatment temperature on tensile properties was seen in both argon and water quenched samples. % elongation to failure and impact values of water quenched specimens were better than those of argon quenched specimens for a given solution treatment temperature. The impact values appeared to improve with increasing solution treatment temperature in water quenched condition. The properties were correlated with underlying microstructure and fractographs of the failed specimens. The study showed the argon quenching may not be appropriate for the heat treatment of heavy alloys since it results in inferior mechanical properties as compared to water quenching.

  11. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  12. Physical metallurgy of tungsten. Metallovedenie vol'frama

    Energy Technology Data Exchange (ETDEWEB)

    Savitskii, E M; Povarova, K B; Makarov, P V

    1978-01-01

    The physico-chemical principles of the interaction between tungsten and the elements of the periodic chart are systematized and summarized, and a description is given of the physical and mechanical properties of tungsten and its alloys. An examination is made of the nature of cold brittleness and methods of increasing the plasticity of alloys, means of producing tungsten, methods of purification, alloying, thermal and mechanical processing, and a survey is made of the contemporary use of tungsten and its alloys in advanced sectors of modern technology. The book is designed for personnel at scientific-research institutes, design bureaus and plants, engaged in the development, technology, and use of alloys of refractory metals as well as for instructors, graduate students and senior students taking metal studies and machine building courses, and aeronautical institutions of higher learning. 431 references, 11 tables.

  13. Molecular basis of carcinogenicity of tungsten alloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Robert M.; Williams, Tim D.; Waring, Rosemary H.; Hodges, Nikolas J., E-mail: n.hodges@bham.ac.uk

    2015-03-15

    The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91–6–3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91–6–3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91–6–3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91–6–3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91–6–3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97–2–1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97–2–1 elicited similar responses to WNC 91–6–3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes. - Highlights: • Use of transcriptomics to identify likely carcinogenic tungsten alloys in vitro • Cobalt containing alloys cause oxidative stress, DNA-damage and perturb apoptosis. • Presence of cobalt causes changes in gene expression

  14. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  15. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    International Nuclear Information System (INIS)

    Nilsson, J.O.; Wilson, A.; Huhtala, T.; Karlsson, L.; Jonsson, P.

    1996-01-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 C to 1,110 C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ 2 ) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ 2 compared with primary austenite. The volume fraction of γ 2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ 2 in these

  16. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    Science.gov (United States)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  17. Volatility from copper and tungsten alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smolik, G.R.; Neilson, R.M. Jr.; Piet, S.J.

    1989-01-01

    Accident scenarios for fusion power plants present the potential for release and transport of activated constituents volatilized from first wall and structural materials. The extent of possible mobilization and transport of these activated species, many of which are ''oxidation driven'', is being addressed by the Fusion Safety Program at the Idaho National Engineering Laboratory (INEL). This report presents experimental measurements of volatilization from a copper alloy in air and steam and from a tungsten alloy in air. The major elements released included zinc from the copper alloy and rhenium and tungsten from the tungsten alloy. Volatilization rates of several constituents of these alloys over temperatures ranging from 400 to 1200 degree C are presented. These values represent release rates recommended for use in accident assessment calculations. 8 refs., 3 figs., 5 tabs

  18. Determination of tungsten in high-alloy steels and heat resisting alloys by isotope dilution-spark source mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa; Yamada, Kei; Okochi, Haruno; Hirose, Fumio

    1983-01-01

    Tungsten in high-alloy steels and heat-resisting alloys was determined by isotope dilution method combined with spark source mass spectrometry by using 183 W enriched tungsten. The spike solution was prepared by fusing tungsten trioxide in sodium carbonate. A high-alloy steel sample was dissolved in the mixture of sulfuric acid and phosphoric acid together with the spike solution; a sample of heat resisting alloy was similarly dissolved in the mixture of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The solution was evaporated to give dense white fumes. Tungsten was separated from the residue by a conventional cinchonine salt-precipitation method. The salt was ignited, and the residue was mixed with graphite powder and pressed into electrodes. The isotope 183 W and 184 W were measured. The method was applied to the determination of tungsten in JSS and NBS standard high-alloy steels and JAERI standard nickel- and NBS standard cobalt-base heat resisting alloys containing more than 0.05% tungsten. The results were obtained with satisfactory precision and accuracy. However, the results obtained for JSS standard high- speed steels containing molybdenum tended to be significantly lower than the certified values. (author)

  19. The chemical composition and parameters of production processes influence on structure and properties of W-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Majewski, T.; Przetakiewicz, W.

    2000-01-01

    Tungsten heavy alloys, i.e. tungsten based metal-matrix composites are characterized by unique properties, because except their high hardness, strength and density, they also possess excellent ductility, impact strength, machinability and corrosion resistance. This combination of properties makes these alloys suitable for wide range of engineering applications, e.g. in the mechanical engineering, in the mining, sport and medicine and also in the armament and aviation. Production process of these materials consists of many phases and it is very difficult to accomplish, because properties of heavy alloys are extremely sensitive to processing history. In this article dependence of chemical composition of mixture of powders on structure and mechanical properties of W-Ni-Fe alloys was determined. It was found that increase of tungsten contents and Ni/Fe ratio causes reduction of ductility and increase of growth rate of tungsten particle. There is the maximum ultimate tensile strength of W-Ni-Fe alloys with content of tungsten 93%. The study also presents relationship between these properties and succeeding parameters of production process: composition of sintering atmosphere, time and temperature following heat treatment and plastic working. Using a wet hydrogen atmosphere (with high dew point) causes reduction of porosity and improvement of mechanical properties. With sintering temperature above 1500 o C these parameters decrease. If the sintering time is elongated above 1 h also density and mechanical properties of heavy alloys decrease. Tungsten heavy alloys are also used for production of kinetic energy penetrators and so properties for different range of strain rates were compared. It was found that yield and failure strengths increase with increasing strain rate, failure strain decreases with increasing strain rate. This information can help in optimization the production process of such composites. (author)

  20. Surface studies of Os Re W alloy-coated impregnated tungsten cathodes

    International Nuclear Information System (INIS)

    Ares Fang, C.S.; Maloney, C.E.

    1990-01-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os Re W alloy at right angles were studied to compare the effects of Os Re W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os Re W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os Re W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os Re W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces

  1. Codeposition of either molybdenum or tungsten with the metals of iron group 8. The citric acid influence on codeposition of nickel and tungsten from sulphamic electrolytes

    International Nuclear Information System (INIS)

    Bernotas, A.; Kadziauskiene, V.; Jasulaitiene, V.

    1995-01-01

    The influence of citric acid on codeposition of Ni and W from sulphamic electrolytes was investigated by measuring the hydrogen content in electro deposits and determining the current efficiency and the alloy composition by chemical analysis and X-ray spectroscopy. The reduction of W(VI) to W(0) in the electrolyte with and without citric acid was found to proceed through the formation of tungsten compounds of intermediate oxidation state. It is supposed that an increased amount of tungsten in the alloys with the increase of citric acid concentration in the electrolyte (to 0.042 mol/l) is caused by a large amount of W(IV) at the cathodic surface. The further increase of the concentration of citric acid in the electrolyte causes a decrease of tungsten amount in the alloy, because the blocking of the metallic surface of Ni and W by W compounds of intermediate oxidation state makes the reduction of W(VI) to W(0) more difficult. (author). 8 refs., 3 figs., 1 tab

  2. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  3. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  4. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  5. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    Science.gov (United States)

    Koch, F.; Brinkmann, J.; Lindig, S.; Mishra, T. P.; Linsmeier, Ch

    2011-12-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  6. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material

    International Nuclear Information System (INIS)

    Koch, F; Brinkmann, J; Lindig, S; Mishra, T P; Linsmeier, Ch

    2011-01-01

    The use of self-passivating tungsten alloys as armour material of the first wall of a fusion power reactor may be advantageous concerning safety issues. In earlier studies good performance of the system W-Cr-Si was demonstrated. Thin films of such alloys showed a strongly reduced oxidation rate compared to pure tungsten. However, the formation of brittle tungsten silicides may be disadvantageous for the powder metallurgical production of bulk W-Cr-Si alloys if a good workability is needed. This paper shows the results of screening tests to identify suitable silicon-free alloys with distinguished self-passivation and a potentially good workability. Of all the tested systems W-Cr-Ti alloys showed the most promising results. The oxidation rate was even lower than the one of W-Cr-Si alloys, the reduction factor was about four orders of magnitude compared to pure tungsten. This performance could be conserved even if the content of alloying elements was reduced.

  7. Dynamic material properties of refractory metals: tantalum and tantalum/tungsten alloys

    International Nuclear Information System (INIS)

    Furnish, M.D.; Lassila, D.H.; Chhabildas, L.C.; Steinberg, D.J.

    1996-01-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta 96.5 W 3.5 and Ta 86.5 W 13.5 (wt%) with oxygen contents of 30 endash 70 ppm. Information available from these experiments includes Hugoniot, elastic limits, loading rates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Guinan-Lund rate-dependent material model provides for an excellent match of the shape of the plastic loading wave. The release wave is not well modeled due to the absence of the dynamic Bauschinger effect. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects. copyright 1996 American Institute of Physics

  8. Titrimetric determination of tungsten in its alloys with tantalum

    International Nuclear Information System (INIS)

    Elinson, S.V.; Nezhnova, T.I.

    1982-01-01

    Titrimetric method of tungsten determination in tantalum base alloys has been developed. The method permits to determine 5-10% tungsten in the alloys with relative standard deviation of 0.013. The conditions are created by application of precipitation from homogeieous solutions or by the method of appearing reagents at pH values, which condition gradual hydrolytic precipitation of tantalum, and sodium tungstate remains in the solution and is not sorbed on tantalum hydroxide. After separation of tantalum oxide tungsten is precipitated in the form of lead tungstate by the excess of ti trated solution of lead salt during boiling and then at the background of lead tungstate precipitate without its separation lead excess is titrated by EDTA in the presence of mixed indicator-4-(2-pyridylazo)resocinol and xylenole orange in acetate buffer solution

  9. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  10. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  11. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  12. Review of alkali metal and refractory alloy compatibility for Rankine cycle applications

    International Nuclear Information System (INIS)

    DiStefano, J.R.

    1989-01-01

    The principal corrosion mechanisms in refractory metal-alkali systems are dissolution, mass transfer, and impurity reactions. In general, niobium, tantalum, molybdenum, and tungsten have low solubilities in the alkali metals, even to very high temperatures, and static corrosion studies have verified that the systems are basically compatible. Loop studies with niobium and tantalum based alloys do not indicate any serious problems due to temperature gradient mass transfer. Above 1000 K, dissimilar metal mass transfer is noted between the refractory metals and iron or nickel based alloys. The most serious corrosion problems encountered are related to impurity reactions associated with oxygen

  13. Comparison of four tungsten alloys for use as ultrasonic thermometer sensors

    International Nuclear Information System (INIS)

    Arave, A.E.

    1975-06-01

    Four tungsten alloy materials were evaluated for use as ultrasonic sensors: (a) tungsten, (b) tungsten-1 percent thoria, (c) tungsten-2 percent thoria, and (d) tungsten-26 percent rhenium. Four parameters were checked: (1) temperature sensitivity, (2) signal attenuation as a function of temperature, (3) temperature sensitivity as a function of frequency, and (4) relative signal attenuation as a function of frequency. The temperature sensors were designed for the Loss-of-Fluid Test (LOFT) and Power Burst Facility (PBF) reactors. (U.S.)

  14. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  15. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  16. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  17. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  18. The effect of tungsten on mechanical properties of the Ti-9% Al-3% Zr alloy

    International Nuclear Information System (INIS)

    Nartova, T.T.; Grigor'ev, I.P.; Stepanov, Yu.N.; Tarasova, O.B.

    1979-01-01

    The effect of tungsten (from 0 to 10 %) on mechanical properties of the ternary Ti-9 %, Al-3 % Zr alloy, has been studied. The microstructure, tensile properties at 20 and 600 deg C and Vickers hardness in as-forged and as-annealed states have been studied. The experiments have shown that the ultimate strength increases with tungsten content. Titanium alloys with 9 % Al and 3 % Zr in the case of varying tungsten content at 20 deg C fracture by brittle mechanism. The dUctility of the annealed alloy does not rise at 20 deg C, but at the test temperature of 600 deg C the alloy becomes ductile

  19. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Pulse current electrodeposition of tungsten coatings on V–4Cr–4Ti alloy

    International Nuclear Information System (INIS)

    Jiang, Fan; Zhang, Yingchun; Li, Xuliang

    2015-01-01

    Highlights: • Tungsten coatings were successfully electroplated on vanadium alloy substrate. • Tungsten coatings consisted of two sub-layers. • Tungsten coatings plated at lower duty cycle has a better surface quality. • High heat flux property of tungsten coatings was investigated. • Helium ion irradiation property of tungsten coatings was investigated. - Abstract: Tungsten coatings with high (2 2 0)-orientation were formed on V alloy substrate by pulse current electrodeposition in air atmosphere. The coatings’ microstructure, crystal structure and adhesive strength between coatings and substrates were investigated. It could be observed the tungsten coatings consisted of two sub-layers with the inner tooth-like layer, and the outer columnar layer. The tungsten coatings deposited at lower duty cycle have a better surface quality with a little change in the adhesive strength. The tungsten coating was exposed to electron beam with power density of 200 MW/m 2 in the thermal shock test, the tungsten crystal grain surface melt, the microcracks are found among the crystal grains. Exfoliation, flaking and dense needle-like holes were observed on the tungsten coating after irradiation with helium ions at an energy of 65 keV and an implanted dose of 22.67 × 10 18 cm −2

  1. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  2. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    International Nuclear Information System (INIS)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW)

  3. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    Science.gov (United States)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  4. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    International Nuclear Information System (INIS)

    López-Ruiz, P; Ordás, N; Iturriza, I; García-Rosales, C; Lindig, S; Koch, F

    2011-01-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  5. Refractory metal joining for first wall applications

    International Nuclear Information System (INIS)

    Cadden, C.H.; Odegard, B.C.

    2000-01-01

    The potential use of high temperature coolant (e.g. 900 deg. C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000 deg. C to 1275 deg. C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking

  6. Refractory metal joining for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadden, C.H. E-mail: chcadde@sandia.gov; Odegard, B.C

    2000-12-01

    The potential use of high temperature coolant (e.g. 900 deg. C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000 deg. C to 1275 deg. C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  7. Refractory metal joining for first wall applications

    Science.gov (United States)

    Cadden, C. H.; Odegard, B. C.

    2000-12-01

    The potential use of high temperature coolant (e.g. 900°C He) in first wall structures would preclude the applicability of copper alloy heat sink materials and refractory metals would be potential replacements. Brazing trials were conducted in order to examine techniques to join tungsten armor to high tungsten (90-95 wt%) or molybdenum TZM heat sink materials. Palladium-, nickel- and zirconium-based filler metals were investigated using brazing temperatures ranging from 1000°C to 1275°C. Palladium-nickel and palladium-cobalt braze alloys were successful in producing generally sound metallurgical joints in tungsten alloy/tungsten couples, although there was an observed tendency for the pure tungsten armor material to exhibit grain boundary cracking after bonding. The zirconium- and nickel-based filler metals produced defect-containing joints, specifically cracking and porosity, respectively. The palladium-nickel braze alloy produced sound joints in the Mo TZM/tungsten couple. Substitution of a lanthanum oxide-containing, fine-grained tungsten material (for the pure tungsten) eliminated the observed tungsten grain boundary cracking.

  8. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  9. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  10. The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy

    Directory of Open Access Journals (Sweden)

    Christy A. Emond

    2015-12-01

    Full Text Available Tungsten-based composites have been recommended as a suitable replacement for depleted uranium. Unfortunately, one of these mixtures composed of tungsten (W, nickel (Ni and cobalt (Co induced rhabdomyosarcomas when implanted into the leg muscle of laboratory rats and mice to simulate a shrapnel wound. The question arose as to whether the neoplastic effect of the mixture could be solely attributed to one or more of the metal components. To investigate this possibility, pellets with one or two of the component metals replaced with an identical amount of the biologically-inert metal tantalum (Ta were manufactured and implanted into the quadriceps of B6C3F1 mice. The mice were followed for two years to assess potential adverse health effects. Implantation with WTa, CoTa or WNiTa resulted in decreased survival, but not to the level reported for WNiCo. Sarcomas in the implanted muscle were found in 20% of the CoTa-implanted mice and 5% of the WTa- and WCoTa-implanted rats and mice, far below the 80% reported for WNiCo-implanted mice. The data obtained from this study suggested that no single metal is solely responsible for the neoplastic effects of WNiCo and that a synergistic effect of the three metals in tumor development was likely.

  11. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  12. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  13. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2017-01-01

    Full Text Available Tungsten fibers have high tensile strength but a poor oxidation resistance at elevated temperatures. Using this first characteristic and to prevent oxidation of tungsten coated composite materials in which the primary requirement: reinforcement against destruction or deformation, was studied on tungsten fibers and tungsten wires which were coated by applying the metal and ceramic powders via plasma spraying device in plasma generator WSP®. Deposition took place in an atmosphere of Ar + 7 % H2, sufficient to reduce the oxidized trace amounts of tungsten.

  14. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  15. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  16. Plating on some difficult-to-plate metals and alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  17. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  18. Anomalous effect of small doses of ionizing radiation on metals and alloys

    International Nuclear Information System (INIS)

    Chernov, I.P.; Mamontov, A.P.; Botaki, A.A.; Cherdantsev, P.A.; Chakhlov, B.V.; Sharov, S.R.; Timoshnikov, Yu.A.; Filipenko, L.A.

    1986-01-01

    The effect of small doses of 60 Co gamma rays on copper, tungsten, and WCo alloys has been investigated. A decrease in the concentration of material defects under the influence of small doses of ionizing radiation was found. Also the structural rearrangement of the crystal was found to be still in progress after irradiation ceased. The mechanism of the anomalous effect of small doses of ionizing radiation on metals and alloys is discussed in terms of the electron energy scheme. (U.K.)

  19. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    Science.gov (United States)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  20. Investigation of LMFBR prototype 7A heaters and the metallurgy of the platinum-8 weight percent tungsten alloy

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1976-09-01

    A Liquid Metal Fast Breeder Reactor 7A prototype heater failure was analyzed. The failure was due to melting of the platinum-8 weight percent tungsten alloy (Pt-8 W) alloy winding caused by a loss of contact with the inside boron nitride insulation. An attempt to simulate a failure revealed that elemental boron forms a low-melting mixture with Pt-8 W, but a means by which boron might be present in an actual heater was not determined. A time/temperature/grain size study of various Pt-8 W alloy samples resulted in behavior which would be expected from a single-phase, solid-solution alloy. The results of the study were useful in estimating the temperatures reached at various locations along the length of two failed 7A prototype heaters

  1. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  2. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  3. Incorporation of tungsten metal fibers in a metal and ceramic matrix

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Vokáč, M.; Kolísko, J.; Pokorný, P.; Kubatík, Tomáš František

    2017-01-01

    Roč. 56, 1-2 (2017), s. 79-82 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : tungsten wires * tungsten fibers * plasma spraying * metallic coatings * ceramic coatings Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics http://hrcak.srce.hr/168890

  4. Study of neutron induced outgassing from tungsten alloy for ATLAS FCAL

    CERN Document Server

    Leroy, C; Cheplakov, A P; Golikov, V; Golubyh, S M; Kulagin, E; Kukhtin, V; Luschikov, V

    1999-01-01

    The use of sintered tungsten alloy slugs as absorber in the ATLAS Forward Calorimeter (FCAL) raised concern that it could possibly poison the liquid argon during the detector operation in the hard radiation environment expected at LHC. A vacuum container filled with tungsten slugs was exposed to the fast neutron fluence of 1.5$\\cdot$10$^{16}$~n~cm$^{-2}$ at the IBR-30 reactor of JINR, Dubna. The residual gas pressure was analysed. The study was completed by mass spectrometer measurements. An upper limit value of 0.1~ppm was determined for the pollution of liquid argon in FCAL due to outgassing from tungsten slugs under irradiation.

  5. Spalling fracture of metals and alloys under intense x-radiation

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2001-01-01

    Creation of different power and irradiating installations assisted in studying mechanical properties of structural materials under the effect of high-power radiation fluxes: laser, electron, X-ray, ion beam etc. There are being widely investigated such phenomena as surface and deep hardening of metals and alloys under irradiation, generation of elastic and shock waves, materials failure under thermal shock etc.In the paper there are discussed the results of long researches of spalling fracture of materials and alloys under intense X-radiation. Model assemblies with consequently arranged samples (foils) of metals and alloys under investigation underwent pulse X-radiation. The energy flux of X-radiation was weakened to the needed value by dose filters intensively absorbing soft spectrum of X-radiation. At carrying out the researches the foils of copper, nickel, titanium, brass, bronze, molybdenum, tungsten, tantalum, cadmium, lead, zinc, silver and steels 0.005-1 mm thick were used as objects under investigation. The samples diameter (10-16 mm) was chosen to be quite large as compared to their thickness so that the side load does not affect the central part of the samples and the front (looking the source of X-radiation) and back (shadow) surfaces of the samples are free what makes it possible to consider the processes of spalling fracture in one-dimensional approximation. Within the frames of kinetic approach to the problem of solid states spalling fracture under pulse loading that considers fracture as progressing in time process there were found spalling fracture time dependencies of lead, cadmium, zinc, silver, copper, brass, bronze, nickel, titanium, molybdenum, tungsten, tantalum and steels under thermal shock initiated by X-radiation. It was demonstrated that longevity of metals and alloys under thermal shock exponentially decreases with the growth of rupture stresses amplitude and can be described in terms of kinetic concept of strength.Within the frames of

  6. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  7. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  8. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  9. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  10. Tungsten - rhenium alloys wire: overview of thermomechanical processing and properties data

    International Nuclear Information System (INIS)

    Bryskin, B.

    2001-01-01

    The scope of this study encompasses the compositional modifications of the tungsten-rhenium dual system (W-3/5 Re up to W-27 Re) as well as some of the tungsten-molybdenum-rhenium ternary system. The alloys of interest are considered with a specific representation of powder metallurgy route based on doped or undoped tungsten vs. vacuum melted materials. This paper constitutes an in-depth review of structural and mechanical properties and systematic compilation of challenges necessary to provide the quality consistency of severely drawn filaments. The issue of thermomechanical processing trends is addressed as an important part of W-Re fabrication technology to achieve further improvement in design properties of rod and wire. (author)

  11. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  12. Recent progress in R and D on tungsten alloys for divertor structural and plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, S., E-mail: stefan.wurster@oeaw.ac.at [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Baluc, N.; Battabyal, M. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Villigen PSI (Switzerland); Crosby, T. [University of California, Mechanical and Aerospace Engineering Department, Los Angeles, CA (United States); Du, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); García-Rosales, C. [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT), San Sebastián (Spain); Hasegawa, A. [Department of Quantum Science and Energy Engineering, Faculty of Engineering, Tohoku University (Japan); Hoffmann, A. [Plansee Metall GmbH, Reutte (Austria); Kimura, A. [Institute of Advanced Energy, Kyoto University (Japan); Kurishita, H. [International Research Center for Nuclear Material Science, Institute for Materials Research, Tohoku University (Japan); Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Li, H. [Erich Schmid Institute of Materials Science, Austria and Association EURATOM-ÖAW, Jahnstrasse 12, A-8700 Leoben (Austria); Chair of Atomistic Modelling and Design of Materials, University of Leoben, Leoben (Austria); Noh, S.; Reiser, J. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Setyawan, W. [Pacific Northwest National Laboratory, Richland, WA (United States); Walter, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); and others

    2013-11-15

    Tungsten materials are candidates for plasma-facing components for the International Thermonuclear Experimental Reactor and the DEMOnstration power plant because of their superior thermophysical properties. Because these materials are not common structural materials like steels, knowledge and strategies to improve the properties are still under development. These strategies discussed here, include new alloying approaches and microstructural stabilization by oxide dispersion strengthened as well as TiC stabilized tungsten based materials. The fracture behavior is improved by using tungsten laminated and tungsten wire reinforced materials. Material development is accompanied by neutron irradiation campaigns. Self-passivation, which is essential in case of loss-of-coolant accidents for plasma facing materials, can be achieved by certain amounts of chromium and titanium. Furthermore, modeling and computer simulation on the influence of alloying elements and heat loading and helium bombardment will be presented.

  13. Advantages of heavy metal collars in directional drilling and deviation control

    International Nuclear Information System (INIS)

    Bradley, W.B.; Murphey, C.E.; McLamore, R.T.; Dickson, L.L.

    1976-01-01

    A heavy, stiff-bottom drill collar can substantially improve deviation performance, theoretically increasing penetration rates by 50 to 100 percent in deviation-prone areas. This paper presents the underlying theory, practical charts on performance characteristics, and Shell Development Co.'s experience in fabricating and field testing two depleted-uranium alloy, heavy metal collars

  14. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Property change of advanced tungsten alloys due to neutron irradiation

    International Nuclear Information System (INIS)

    Fukuda, Makoto; Hasegawa, Akira; Tanno, Takashi; Nogami, Shuhei; Kurishita, Hiroaki

    2013-01-01

    This study investigates the effect of neutron irradiation on the functional properties of pure tungsten (W) and advanced tungsten alloys (e.g., lanthanum (La)-doped W, potassium (K)-doped W, and ultra-fine-grained (UFG) W–TiC alloys) tested in the Japan Materials Testing Reactor (JMTR) or experimental fast reactor Joyo. The irradiation temperature and damage were in the range 804–1073 K and 0.15–0.47 dpa, respectively. TEM images of all samples after 0.42 dpa irradiation at 1023 K showed voids, black dots, and dislocation loops, indicating that similar damage structures were formed in pure W, La-doped W, K-doped W, and UFG W–0.5 wt% TiC. The electrical resistivity of all specimens increased following neutron irradiation. Nearly identical electrical resistivity and irradiation hardening were observed in pure W, La-doped W, and K-doped W. The electrical resistivity of UFG W–TiC was higher than that of other specimens before and after irradiation, which may be attributed to its ultra-fine-grain structure, as well as the presence of impurities introduced during the alloying process. Compared to the other specimens, the UFG W–TiC was more resistant to irradiation hardening

  16. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  17. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  18. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  19. Effect of temperature on the crack resistance of a molybdenum alloy with 30% tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; D'yachkov, A.P.; Platonov, V.A.

    1986-01-01

    Results are presented for a study of the effect of temperature on the crack resistance of molybdenum alloy with 30% tungsten (Mo - 30% W), and data are presented for the crack resistance of commercial-purity molybdenum and tungsten obtained by power metallurgy in the temperature range 20-1800 C. It was found that the nature of failure for Mo-30% W alloy depends on test temperature; in the temperature range 20 C-T /SUP d/ /SUB br/ (upper boundary for the temperature range of the ductile to brittle transition), failure is unstable in nature, and at temperatures exceeding this transition, it occurs by steady main crack development

  20. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Lian, Youyun; Chen, Lei; Chen, Zhenkui; Chen, Jiming; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Fan, Jinlian [Central South University, Changsha 410083 (China); Song, Jiupeng [Xiamen Honglu Tungsten & Molybdenum Industry Co., Ltd, Xiamen (China)

    2015-08-15

    Transient heat loads, such as plasma disruptions and ELMs, could induce plastic deformations, cracking, melting, even fatigue cracks and creep of tungsten (W) surface. A high purity W, CVD-W coating, TiC dispersion strengthened and K doped tungsten alloys were tested in a 60 kW electron-beam facility by simulating the transient load events under different base temperatures. It was found that CVD-W, W-TiC and W-K alloys have higher crack thresholds than high purity W, meanwhile CVD-W is more sensitive to the crack disappearing at elevated base temperatures. On the other hand, repetitive pulse loading like ELMs can induce serious network cracks even the power density was quite lower than the crack threshold determined by a single shot. The ABAQUS code was used to simulate the crack behaviors of ITER grade pure W by a single shot and a FE-SAFE code was adopted to estimate the fatigue life under ELMs-like loads. A good agreement with experiment results was found.

  1. Influence of grain boundaries on the fracture toughness of tungsten alloys

    International Nuclear Information System (INIS)

    Gludovatz, B.; Faleschini, M.; Pippan, R.; Hoffmann, A.

    2007-01-01

    Full text of publication follows: Tungsten and tungsten alloys are possible candidates for future fusion reactors because of their high melting points, high thermal conductivity and their high erosion resistance. Since these materials have a body-centered cubic (bcc) structure, they show a typical change in fracture behaviour from brittle at low temperatures to ductile at high temperatures. For that reason the fracture behaviour of pure tungsten (W), potassium doped tungsten (AKS) and tungsten with 1 wt% La 2 O 3 (WL10) was studied, taking into account the influence of temperature and fabrication condition. Especially AKS has been studied to investigate the longitudinal splitting of the AKS-wires, the crack propagation direction with the lowest fracture toughness. This alloy subjected to intense deformation leads to a material with an elongated grain structure after recrystallization because of the potassium bubbles. Fracture toughness has been investigated by means of 3-point bending (3PB) specimens, double cantilever beam (DCB) specimens and compact tension (CT) specimens. Tests were performed in the range -196 deg. C to more than 1000 deg. C. Though all these materials show an expected increase in fracture toughness with increasing temperature, influences like texture, chemical composition, grain boundary segregation and dislocation density seem to have an extreme influence on the obtained results. These influences can especially be seen in the fracture behaviour and morphology, where two kinds of fracture can occur: on one hand the trans-crystalline and on the other hand the intercrystalline fracture. Therefore techniques like electron backscatter diffraction, auger electron spectroscopy and X-ray line profile analysis were used to determine the parameter influencing fracture toughness. Also new testing techniques have been devised and successfully applied. Additional tests like an 'in-situ EBSD' technique for investigating the formation of dislocations during

  2. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  3. Proceedings of the 1985 annual powder metallurgy conference

    International Nuclear Information System (INIS)

    Sanderow, H.I.; Giebelhausen, W.L.; Kulkarni, K.M.

    1985-01-01

    This book presents the papers given at a conference on powder metallurgy. Topics considered at the conference included yttrium oxide dispersion strengthened nickel alloy made by mechanical alloying, the optimal design of regression of the additive chromium oxide in aluminium oxide-molybdenum cermets, particle size distribution effects on the sintering of spherical tungsten, and heavy metal alloys containing 30% to 90% tungsten

  4. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  5. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  6. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    International Nuclear Information System (INIS)

    López-Ruiz, P.; Ordás, N.; Iturriza, I.; Walter, M.; Gaganidze, E.; Lindig, S.; Koch, F.; García-Rosales, C.

    2013-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO 3 . Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr) 5 Si 3 ; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material

  7. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  8. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  9. The role of tungsten in the change of interatomic bond in Nb-W alloy

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Samojlenko, Z.A.; Darovskikh, E.G.

    1982-01-01

    To study the chemical inhomogeneity and the peculiarities in electronic structure of solid solutions in fracture region, the X-ray spectral studies of niobium-tungsten alloys with 0.5; 1.0; 12.0; 13.6; 23.g mass % W have been carried out. The W concentration changes on the fracture and the difference in the electron energy distribution in the 4d-band in comparison between the fracture and mocrosection are determined. The niobium doping with tungsten is shown to be accompanied by the increase in the fraction of locally bound electrons as compared to the collectivized one. Alloys with 12-13% W are the most homogeneous in composition and electrons energy state. This state is characterized by features the increased number of electrons with noncompensated spins in intercrystalline boundaries as compared to a crystallite thickness. These alloys have homogeneous properties in sample microvolumes and large interatomic binding force

  10. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr

  11. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  12. Prevalence of exposure of heavy metals and their impact on health consequences.

    Science.gov (United States)

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  13. SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit; Sparks, Cory; Butt, Darryl P.; Frary, Megan; Carroll, Mark

    2011-01-01

    Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

  14. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  15. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  16. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  17. Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, P.; Ordás, N.; Iturriza, I. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Walter, M.; Gaganidze, E. [Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Lindig, S.; Koch, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain)

    2013-11-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten, presently the main candidate material for first wall armour of future fusion reactors. In case of a loss of coolant accident with simultaneous air ingress, a protective oxide scale will be formed on the surface of W avoiding the formation of volatile and radioactive WO{sub 3}. Bulk WCr12Ti2.5 alloys were manufactured by mechanical alloying (MA) and hot isostatic pressing (HIP), and their properties compared to bulk WCr10Si10 alloys from previous work. The MA parameters were adjusted to obtain the best balance between lowest possible amount of contaminants and effective alloying of the elemental powders. After HIP, a density >99% is achieved for the WCr12Ti2.5 alloy and a very fine and homogeneous microstructure with grains in the submicron range is obtained. Unlike the WCr10Si10 material, no intergranular ODS phase inhibiting grain growth was detected. The thermal and mechanical properties of the WCr10Si10 material are dominated by the silicide (W,Cr){sub 5}Si{sub 3}; it shows a sharp ductile-to brittle transition in the range 1273–1323 K. The thermal conductivity of the WCr12Ti2.5 alloy is close to 50 W/mK in the temperature range of operation; it exhibits significantly higher strength and lower DBTT – around 1170 K – than the WCr10Si10 material.

  18. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  19. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  20. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.

    2015-01-01

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM

  1. Discontinuous precipitation in cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Zieba, P.; Cliff, G.; Lorimer, G.W.

    1997-01-01

    Discontinuous precipitation in a Co32 wt% W alloy aged in the temperature range from 875 K to 1025 K has been investigated. Philips EM 430 STEM has been used to characterize the microstructure and to measure the composition profiles across individual lamellae of ε Co and Co 3 W phases in partially transformed specimens. Two kinds of cellular precipitates have been found in the alloy. The initial transformation product, identified as primary lamellae with spacing of a few nanometers is replaced during prolonged ageing by secondary lamellae with a much larger interlamellar spacing, typically a few tens of nm. Line scans across cell boundaries of the primary lamellae revealed that, just behind the advancing cell boundary, the solute content is far from the equilibrium state. This solute excess within the cells is quickly removed at the ageing temperature. Calculations show that the diffusion process was too rapid to be identified as ordinary volume diffusion. Investigation of the kinetics showed that discontinuous precipitation is controlled by diffusion processes at the advancing cell boundary. This proposal has been confirmed by STEM analysis of tungsten profiles in the depleted ε Co lamellae

  2. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es; Sánchez, M.; Ureña, A.

    2017-07-15

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface. - Highlights: •W-Eurofer brazed joints, manufactured using Cu-based mechanically alloyed powders as filler is proposed. •The benefits derivate from the alloyed composition could improve the operational brazeability of the studied system. •Tested pre-alloyed fillers have a more homogeneous melting stage which enhances its spreading and flowing capabilities. •This behaviour could lead to work with higher heating rates and lower brazing temperatures.

  3. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    high hardness comparable to recrystalized material as well as a tensile strength of 290 N/mm 2 and an elongation of break at 35 %. Nevertheless, by conventional sintering extensive grain growth up to 68 μm was observed for samples with a sintered density of 99% theoretical density. To avoid extensive grain growth a HIP-process was developed for injection moulded tungsten samples, achieving a grain size of 5,5 μm. In addition to tungsten, a wide range of tungsten alloys are of industrial interest for e.g. electrodes, thermal shielding, microelectronics and automotive applications. Accordingly the process developments for micro injection moulding has successfully been extended to oxide disperse strengthened tungsten and tungsten heavy alloys. (orig.)

  4. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  5. Morphological Transition in the Cellular Structure of Single Crystals of Nickel-Tungsten Alloys near the Congruent Melting Point

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Ladygin, A.N.; Sverdlov, V.Ja.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2005-01-01

    The structure and microhardness of single crystals of nickel-tungsten alloys containing 25-36 wt % W are investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. It is found that, when the velocity of the crystallization front is 4 mm/min, the morphology of the cellular structure of the single crystals grown from nickel-tungsten alloys changes from square cells to hexagonal cells at a tungsten content of greater than or equal to 31 wt %. As the velocity of the crystallization front increases to 10 mm/min, no morphological transition occurs. It is shown that impurities play an important role in the formation of a cellular structure with cells of different types

  6. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  7. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  8. Room and ultrahigh temperature structure-mechanical property relationships of tungsten alloys formed by field assisted sintering technique (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Browning, Paul N.; Alagic, Sven [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States); Kulkarni, Anil [Pennsylvania State University, Department of Nuclear and Mechanical Engineering, State College, PA-16801 (United States); Matson, Lawrence [Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, OH (United States); Singh, Jogender, E-mail: jxs46@arl.psu.edu [Pennsylvania State University, Department of Materials Science and Engineering, State College, PA-16801 (United States); Pennsylvania State University, Applied Research Laboratory, State College, PA-16801 (United States)

    2016-09-30

    Tungsten based alloys have become of critical importance in a number of applications including plasma-facing materials in nuclear fusion reactors, rocket nozzles for aerospace applications, and in kinetic energy penetrators in the defense industry. Formation of components for these uses by powder metallurgical techniques has proven challenging, due to tungsten's relatively poor sinterability. Here we report the use of field assisted sintering technique (FAST) to produce high density, fine grain alloys with mechanical properties comparable or superior to that of components produced by conventional techniques. Alloys of pure tungsten, W-3 vol%TiC, W-5 vol%TiC, and W-10 vol%Ta were synthesized at 2100 °C, 35 MPa for 25 min using FAST. Microstructural characterization revealed effective reduction of grain size with TiC addition and preferential diffusion of oxygen into the center of tantalum particles in tantalum containing alloys. Tensile testing of alloys revealed TiC addition to W resulted in substantially improved ultimate tensile strength at the cost of ductility in comparison at temperatures up to 1926 °C (3500 °F) however this strengthening effect was lost at 2204 °C (4000 °F). Addition of 10 vol%Ta to W resulted in reduced hardness at room temperature, but substantially increased yield strength at the cost of slightly reduced ductility at 1926 °C and 2204 °C.

  9. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  10. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  11. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    Science.gov (United States)

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines. © 2013.

  12. Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yangyang; Makhlouf, Makhlouf M., E-mail: mmm@wpi.edu

    2017-04-13

    The Al-Mn-W system has considerable potential as a basis for lightweight aluminum alloys that are intended for use at temperatures approaching 350 °C (623 K). In this ternary system, aluminum, manganese, and tungsten co-precipitate to form the meta-stable Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase, which is thermally stable and will not coarsen when held at elevated temperatures for extended periods of time. This enhanced thermal stability of the Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase in comparison to the Al{sub 12}Mn phase which forms in binary Al-Mn alloys is explained in terms of the Gibbs free energy of the two phases. It is shown that co-precipitating tungsten with aluminum and manganese lowers the Gibbs free energy of the precipitated phase and by so doing, it slows down its coarsening rate and enhances its thermal stability.

  13. Mechanical properties of tungsten alloys with Y2O3 and titanium additions

    International Nuclear Information System (INIS)

    Aguirre, M.V.; Martin, A.; Pastor, J.Y.; LLorca, J.; Monge, M.A.; Pareja, R.

    2011-01-01

    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti-0.47 wt.% Y 2 O 3 and 4 wt.% Ti-0.5 wt.% Y 2 O 3 ) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 deg. C to 1000 deg. C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y 2 O 3 , is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y 2 O 3 and Ti permits to obtain materials with low pores presence.

  14. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels

    International Nuclear Information System (INIS)

    Perry, N.

    2000-06-01

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  15. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness

  16. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  17. Powder metallurgy of refractory metals

    International Nuclear Information System (INIS)

    Eck, R.

    1979-01-01

    This paper reports on the powder metallurgical methods for the production of high-melting materials, such as pure metals and their alloys, compound materials with a tungsten base and hard metals from liquid phase sintered carbides. (author)

  18. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  19. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Science.gov (United States)

    Kruszka, L.; Magier, M.

    2012-08-01

    The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).

  20. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Directory of Open Access Journals (Sweden)

    Magier M.

    2012-08-01

    Full Text Available The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it’s particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot and tungsten alloy (penetrator are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ⋅ 104s−1 (for aluminium alloy and 6 ⋅ 103s−1 (for tungsten alloy.

  1. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  2. Creep laws for refractory tungsten alloys between 900 and 1100 oC under low stress

    International Nuclear Information System (INIS)

    Gallet, D.; Dhers, J.; Levoy, R.; Polcik, P.

    2001-01-01

    Refractory metals and alloys with melting point above 2500 o C, are commonly used at temperature well above 1000 o C. Very few creep data exist at low temperature and low stress. In the present work, we studied the micro-creep deformation and the structure stability of different W and W alloys, W-B, W-La 2 O 3 , W-K, W-Re, in the temperature range 900-1100 o C and stress range 10-50 MPa, up to 500 hours. A Norton type law has been established for those materials. Stress exponents around 1.0 have been obtained. Activation energies have been determined, and are much lower than self diffusion energies for all materials tested. The main mechanism involved has been identified as Harper-Dorn creep, implying some dislocation rearrangement. The dopants are classified according to their efficiency in creep reduction and boron at 100 ppm has been found to be the most efficient, whereas at 10 ppm, it degrades the behavior of stress relieved tungsten. Furthermore, we have found that the addition of some elements may have an efficient effect as recrystallization inhibitor. (author)

  3. High-temperature brazing for reliable tungsten-CFC joints

    International Nuclear Information System (INIS)

    Koppitz, Th; Pintsuk, G; Reisgen, U; Remmel, J; Hirai, T; Sievering, R; Rojas, Y; Casalegno, V

    2007-01-01

    The joining of tungsten and carbon-based materials is demanding due to the incompatibility of their chemical and thermophysical properties. Direct joining is unfeasible by the reason of brittle tungsten carbide formation. High-temperature brazing has been investigated in order to find a suitable brazing filler metal (BFM) which successfully acts as an intermediary between the incompatible properties of the base materials. So far only low Cr-alloyed Cu-based BFMs provide the preferential combination of good wetting action on both materials, tolerable interface reactions, and a precipitation free braze joint. Attempts to implement a higher melting metal (e.g. Pd, Ti, Zr) as a BFM have failed up to now, because the formation of brittle precipitations and pores in the seam were inevitable. But the wide metallurgical complexity of this issue is regarded to offer further joining potential

  4. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  5. Effects of alloying and transmutation impurities on stability and mobility of helium in tungsten under a fusion environment

    International Nuclear Information System (INIS)

    Wu Xuebang; Kong Xiangshan; You Yuwei; Liu, C.S.; Fang, Q.F.; Chen Junling; Luo, G.-N.; Wang Zhiguang

    2013-01-01

    The behaviour of helium in metals is particularly significant in fusion research due to the He-induced degradation of materials. A small amount of impurities introduced either by intentional alloying or by transmutation reactions, will interact with He and lead the microstructure and mechanical properties of materials to change. In this paper, we present the results of first-principles calculations on the interactions of He with impurities and He diffusion around them in tungsten (W), including the interstitials Be, C, N, O, and substitutional solutes Re, Ta, Tc, Nb, V, Os, Ti, Si, Zr, Y and Sc. We find that the trapping radii of interstitial atoms on He are much larger than those of substitutional solutes. The binding energies between the substitutional impurities and He increase linearly with the relative charge densities at the He occupation site, indicating that He atoms easily aggregate at the low charge density site. The sequence of diffusion energy barriers of He around the possible alloying elements is Ti > V > Os > Ta > Re. The present results suggest that Ta might be chosen as a relatively suitable alloying element compared with other possible ones. (paper)

  6. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    Science.gov (United States)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  8. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W2B, the rod-like (Fe, W3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W3B phase. The resultant Fe-3.5B-11W (wt % alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  9. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  10. Metal-ceramic alloys in dentistry: a review.

    Science.gov (United States)

    Roberts, Howard W; Berzins, David W; Moore, B Keith; Charlton, David G

    2009-02-01

    The purpose of this article is to review basic information about the alloys used for fabricating metal-ceramic restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. In addition to reviewing traditional noble-metal and base-metal metal-ceramic alloys, titanium and gold composite alloys are also discussed. A broad search of the published literature was performed using Medline to identify pertinent current articles on metal-ceramic alloys as well as articles providing a historical background about the development of these alloys. Textbooks, the internet, and manufacturers' literature were also used to supplement this information. The review discusses traditional as well as more recently-developed alloys and technologies used in dentistry for fabricating metal-ceramic restorations. Clear advantages and disadvantages for these alloy types are provided and discussed as well as the role that compositional variations have on the alloys' performance. This information should enable clinicians and technicians to easily identify the important physical properties of each type and their primary clinical indications. A number of alloys and metals are available for metal-ceramic use in dentistry. Each has its advantages and disadvantages, primarily based on its specific composition. Continuing research and development are resulting in the production of new technologies and products, giving clinicians even more choices in designing and fabricating metal-ceramic restorations.

  11. Demonstration of production of tungsten metal powder and its consolidation into shapes

    International Nuclear Information System (INIS)

    Majumdar, S.; Kishor, J.; Paul, B.; Kain, V.; Dey, G.K.

    2016-01-01

    Tungsten is a strategically important metal used as plasma facing component in fusion reactors, radiation shields in cancer therapy machines, ammunition in defence applications, high speed cutting tools etc. The primary resources or minerals occurring in India contain a very low value (0.25-0.5 wt. %) of tungsten. Mineral beneficiation processes involving crushing, grinding, primary and secondary gravity separation, floatation are essential to produce the ore-concentrate suitable for further processing up to the preparation of the intermediate ammonium para-tungstate (APT). APT was further converted to tungsten tri-oxide (WO_3). Hydrogen reduction of WO_3 producing high purity W metal powder was demonstrated in large scale batches. Densification of W powder was further studied using vacuum hot pressing at 1950°C, and high density W metal plates of 5 mm thickness and 60 mm diameter were produced. The products obtained at every stage were systematically characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD) techniques. (author)

  12. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Science.gov (United States)

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  13. Interfaces between Model Co-W-C Alloys with Various Carbon Contents and Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Igor Konyashin

    2018-03-01

    Full Text Available Interfaces between alloys simulating binders in WC-Co cemented carbides and tungsten carbide were examined on the micro-, nano-, and atomic-scale. The precipitation of fine WC grains and η-phase occurs at the interface of the alloy with the low carbon content. The precipitation of such grains almost does not occur in the alloy with the medium-low carbon content and does not take place in the alloy with the high carbon content. The formation of Co nanoparticles in the binder alloy with the medium-low carbon content was established. Interfaces in the alloy with the medium-low carbon content characterized by complete wetting with respect to WC and with the high carbon content characterized by incomplete wetting were examined at an atomic scale. The absence of any additional phases or carbon segregations at both of the interfaces was established. Thus, the phenomenon of incomplete wetting of WC by liquid binders with high carbon contents is presumably related to special features of the Co-based binder alloys oversaturated with carbon at sintering temperatures.

  14. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  15. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  16. Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications

    International Nuclear Information System (INIS)

    Wilson, Bob; Pyatt, F. Brian

    2006-01-01

    This research addresses the occurrence, detection and possible fate of tungsten in the vicinity of an abandoned mine in the English Lake District. Aqua regia extraction and subsequent analysis of spoil and vegetation confirmed the presence of tungsten and other heavy metals. Spoil samples examined were last worked almost 100 years ago and the concentrations of copper, zinc, tungsten and arsenic detected demonstrate the environmental persistence of these metals in an area of relatively high rainfall. The bioaccumulation of tungsten by two species of plants is indicated and partitioning within different tissues of Calluna vulgaris is demonstrated. Mechanisms relating to mobility and speciation of the metals present were explored using sequential and single stage extraction systems. Tungsten appears to be relatively immobile when subjected to sequential extraction but increased bioavailability is indicated when single stage extraction using EDTA is employed

  17. Mechanical characterization and modelling of the heavy tungsten allow IT180

    CERN Document Server

    Scapin, M

    2015-01-01

    In this work, the mechanical characterization and the consequent material modeling of the tungsten alloy INERMET® IT180 were performed. The material is actually used in the collimation system of the Large Hadron Collider at CERN and several studies are currently under development in order to be able to numerically predict the material damage in case of energy beamimpact, but to do this, a confident strength model has to be obtained. This is the basis of this work, in which a test campaign in compression and tension at different strain-rates and tempe...

  18. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  19. Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China.

    Science.gov (United States)

    Guo, Bixi; Liu, Yongqin; Zhang, Fan; Hou, Juzhi; Zhang, Hongbo; Li, Chaoliu

    2018-02-01

    Heavy metal contamination has affected many regions in the world, particularly the developing countries of Asia. We investigated 8 heavy metals (Cu, Zn, Cd, Pb, Cr, Co, Ni, and As) in the surface sediments of 18 lakes on the Tibetan Plateau. It was found that the distributions of the heavy metals showed no clear spatial pattern on the plateau. The results indicated that the mean concentrations of these metals in the sediment samples diminished as follows: Cr > As > Zn > Ni > Pb > Cu > Co > Cd. The results of geoaccumulation index (I geo ) and potential ecological risk factor (E i r ) assessments showed that the sediments were moderately polluted by Cd and As, which posed much higher risks than the other metals. The values of the potential ecological risk index (RI) showed that lake Bieruoze Co has been severely polluted by heavy metals. Principal component analysis, hierarchical cluster analysis, and Pearson correlation analysis results indicated that the 8 heavy metals in the lake surface sediments of the Tibetan Plateau could be classified into four groups. Group 1 included Cu, Zn, Pb, Co, and Ni which were mainly derived from both natural and traffic sources. Group 2 included Cd which mainly originated from anthropogenic sources like alloying, electroplating, and dyeing industries and was transported to the Tibetan Plateau by atmospheric circulation. Group 3 included Cr and it might mainly generate from parent rocks of watersheds. The last Group (As) was mainly from manufacturing, living, and the striking deterioration of atmospheric environment of the West, Central Asia, and South Asia.

  20. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  1. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  2. Defects in metal crystals. Progress report, May 1, 1975--April 30, 1976

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1976-02-01

    Emphasis was on use of different irradiating species (300-700 eV Xe + ions, 20-30 keV W + ions, 20-30 keV Mo + ions, and fast neutrons) to introduce both vacancies and interstitials in Mo, W, Au, Pt--(Au), W--(Re), Mo(Ti), Ni 4 Mo, and low-swelling and commercial 316 stainless steels. The following are reported: (A) an in-situ field-ion microscope study of ion-irradiated tungsten and tungsten alloys (W-Re) (recovery in Stages I and II); (B) a review of Stages I to IV of irradiated or quenched tungsten and tungsten alloys by field-ion microscopy; (C) a review of field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals; (D) an in-situ field-ion microscope study of the recovery behavior of ion-irradiated molybdenum in Stages I and II; (E) a field-ion microscope study of the recovery behavior of Stage II in ion-irradiated platinum-0.10, 0.62 and 4.0 at. percent gold alloys; (F) a new technique for focused-collision sequence range measurements; (G) atom-probe field-ion microscopy (improvements, results on W alloys, Mo alloys [Mo, TZM, Mo--Ti], low-swelling stainless steel alloy); (H) range of a focused collision replacement sequence in ordered alloys; and (I) interaction of self-interstitial atoms with impurity gas solute atoms in refractory metals. 11 fig, 5 tables, 37 references

  3. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  4. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  5. Brazing of molybdenum- and tungsten based refractory materials with copper and graphite

    International Nuclear Information System (INIS)

    Boutes, J.; Falbriard, P.; Rochette, P.; Nicolas, G.

    1989-01-01

    Molybdenum and Tungsten base refractory metals and alloys have been brazed 1. to copper between 800 0 C and 900 0 C with silver base metal; 2. to graphite, with CVD coatings between 800 0 C and 900 0 C with silver base metal and between 1100 0 C and 1200 0 C with copper base metal; 3. to graphite between 800 0 C and 1100 0 C with silver or nickel base metal. The brazed joints have been characterized by micrographic observations before and after bending tests from room temperature to 800 0 C. 2 tabs., 9 figs. (Author)

  6. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn. The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment > Zn, Ni, Cr, Fe, and Mn (moderate enrichment > Cd and Ni (minimal enrichment. Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  7. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  8. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  9. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  11. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  12. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    Science.gov (United States)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  13. Traditional Technology of Chromium-Tungsten Steels Facing, its Disadvantages and Suggestions for their Eliminations

    OpenAIRE

    Valuev, Denis Viktorovich; Malushin, N. N.; Valueva, Anna Vladimirovna; Dariev, R. S.; Mamadaliev, R. A.

    2016-01-01

    To reveal the disadvantages of the traditional technology of facing with chromium-tungsten steels analysis of the given technology was completed. The analysis showed that the main disadvantages of the technology are high-temperature heating and underutilization of high-alloyed metal properties. To eliminate the disadvantages we developed the methods of facing allowing obtaining faced metal which state is close to that of the hardened one without cracks.

  14. Mechanical properties of tungsten alloys with Y{sub 2}O{sub 3} and titanium additions

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, M.V., E-mail: mariavega.aguirre@upm.es [Departamento de Tecnologias Especiales Aplicadas a la Aeronautica, Universidad Politecnica de Madrid, E.U.I.T. Aeronautica, 28040 Madrid (Spain); Martin, A.; Pastor, J.Y. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politecnica de Madrid.E.T.S. Ingenieros de Caminos, 28040 Madrid (Spain); LLorca, J. [Departamento de Ciencia de Materiales-CISDEM, Universidad Politecnica de Madrid.E.T.S. Ingenieros de Caminos, 28040 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Materiales (Instituto IMDEA-Materiales), Ingenieros de Caminos, 28040 Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2011-10-01

    In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti-0.47 wt.% Y{sub 2}O{sub 3} and 4 wt.% Ti-0.5 wt.% Y{sub 2}O{sub 3}) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 deg. C to 1000 deg. C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y{sub 2}O{sub 3}, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y{sub 2}O{sub 3} and Ti permits to obtain materials with low pores presence.

  15. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  16. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Chen, Song-Ling

    2014-01-01

    Highlights: • WC–Ni–Fe alloy sintered at 1400 °C had the highest hardness (HRA 85.3 ± 0.5). • The optimal WC–Ni–Fe sintered alloy possessed the highest TRS value (2524.5 ± 1.0 MPa). • The fracture toughness of the sintered WC–Ni–Fe alloys is mainly provided by the Ni–Fe binders. • WC–Ni–Fe sintered alloy possessed the highest fracture toughness of K IC (15.1 MPa m 1/2 ). • The WC–Ni–Fe sintered alloy had the much better corrosion resistance in 0.15 M HCl solution. -- Abstract: The aim of this study is to explore two different tungsten carbide binders (Co and Ni–Fe) and then impose various sintering temperature treatments. Experimental results show that the optimal sintering temperatures for WC–Co and WC–Ni–Fe hard metal alloys are 1350 °C and 1400 °C for 1 h, respectively. Meanwhile, the WC–Co and WC–Ni–Fe alloys undergo a well liquid-phase sintering and, thus, exhibit excellent mechanical properties. In addition, the sintered WC–Co and WC–Ni–Fe alloys show that when the relative density reached 99.76% and 99.68%, the hardness was enhanced to HRA 84.4 ± 0.5 and 85.3 ± 0.5, and the TRS increased to 2471.2 ± 1.0 and 2524.5 ± 1.0 MPa, respectively. Moreover, the corrosion test results show that the WC–Ni–Fe alloy sintered at 1400 °C had the lowest corrosion current (I corr ) of 1.11 × 10 −5 A cm −2 and the highest polarization resistance (R p ) of 2464.61 Ω cm 2 in 0.15 M HCl solution. Simultaneously, the fracture toughness of K IC increased to 15.1 MPa m 1/2 . Compared with sintered WC–Co alloys, the sintered WC–Ni–Fe hard metal alloys possessed much better corrosion resistance and mechanical properties

  18. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  19. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  20. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  1. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  2. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  3. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  4. The role of iridium in the work-function behavior of dilute-solution tungsten, iridium alloys

    International Nuclear Information System (INIS)

    D'Cruz, L.A.

    1991-01-01

    Requirements of thermionic electrode materials have emphasized the need for substantial improvements in microstructural stability, strength and creep resistance at service temperatures in excess of 2,500K. This study utilized both chemical alloying and mechanical alloying procedures for the addition of iridium to submicron W powder followed by cold compaction and sintering. The shrinkage characteristics and microstructural development were studied in iridium-added tungsten compacts with a range of additive levels. An electron-emission study was subsequently carried out in order to evaluate the work-function behavior of the consolidated alloys. The work function was obtained from current-emission measurements from the electrode surface under UHV conditions in the temperature range of 1,800 to 2,500K using a Vacuum Emission Vehicle (VEV). The data show that the magnitude of the work function in these alloys varied with temperature and was sensitive to sub-surface iridium content

  5. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  6. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  7. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  8. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  9. Monte Carlo criticality analysis of simple geometries containing tungsten-rhenium alloys engrained with uranium dioxide and uranium mononitride

    International Nuclear Information System (INIS)

    Webb, Jonathan A.; Charit, Indrajit

    2011-01-01

    Highlights: → The addition of rhenium to the tungsten matrix within W-UO 2 and W-UN CERMET materials can help reduce the risk of submersion criticality accidents while increasing the strength and ductility of tungsten based nuclear fuel elements. → The addition of rhenium up to 30 at.% to simple geometries containing W-UO 2 mixtures can increase the critical mass by 65 kg. → The addition of rhenium up to 30 at.% to simple geometries containing W-UN mixtures can increase the critical mass by 22 kg. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UO 2 mixtures can reduce the change in reactivity change due to water submersion by $5.07. → The addition of rhenium by up to 30 at.% to simple geometries containing W-UN mixtures can reduce the change in reactivity due to water submersion by $3.24. - Abstract: The critical mass and dimensions of simple geometries containing highly enriched uranium dioxide (UO 2 ) and uranium mononitride (UN) encapsulated in tungsten-rhenium alloys are determined using MCNP5 criticality calculations. Spheres as well as cylinders with length to radius ratios of 1.82 are computationally built to consist of 60 vol.% fuel and 40 vol.% metal matrix. Within the geometries, the uranium is enriched to 93 wt.% uranium-235 and the rhenium content within the metal alloy was modeled over the range of 0-30 at.%. The spheres containing UO 2 were determined to have a critical radius of 18.29-19.11 cm and a critical mass ranging from 366 kg to 424 kg. The cylinders containing UO 2 were found to have a critical radius ranging from 17.07 cm to 17.84 cm with a corresponding critical mass of 406-471 kg. Spheres engrained with UN were determined to have a critical radius ranging from 14.82 cm to 15.19 cm and a critical mass between 222 kg and 242 kg. Cylinders which were engrained with UN were determined to have a critical radius ranging from 13.81 cm to 14.15 cm and a corresponding critical mass of 245-267 kg. The critical

  10. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  11. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  12. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  15. High-density metals and metallic composites for improved fragmentation submunitions

    International Nuclear Information System (INIS)

    Craig, B.G.; Honnell, R.E.; Lederman, G.F. Jr.; Sandstrom, D.J.

    1975-08-01

    The fragmentation of cases (50.8-mm-id) made of tungsten, a tungsten alloy, and depleted uranium (D-38) can be controlled, and velocities greater than 1 mm/μs can be achieved for lethal size fragment weights. Fragmentation was controlled by internal grooves, by internal screens, and by a spheroid-in-weak-matrix scheme. A thin polymer liner was used inside of a grooved tungsten case in one experiment; this system performed exceptionally well. The ease of fabricating cases with D-38 or with the tungsten-alloy spheroid-in-matrix scheme offers an attractive advantage over tungsten and tungsten alloy

  16. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  17. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  18. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  19. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  20. Investigation of composition of the products of thermal processing of tungsten concentrate

    International Nuclear Information System (INIS)

    Sokol, I.V.; Krasnova, T.V.

    1994-01-01

    The composition of the products of carbidization of tungsten concentrate has been investigated. A method ha sbeen developed for chemcial phase analysis of multicomponent powders based on tungsten carbides. The prepared powders have been used for the manufacture of electrode tools based on a tungsten-copper preudoalloy, which can be for dimensional electroerosion treatment of hard alloys and electrodes for electric-spark alloying

  1. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  2. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  3. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  4. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  5. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  6. Surface coatings of mixed hard alloy powder metals sintered-on in vacuo

    International Nuclear Information System (INIS)

    Knotek, O.; Reimann, H.

    1980-01-01

    No technological difficulties are to be encountered in the processing of pseudo hard alloys in the form of powder compounds of conventional nickel base hard alloys with carbides. There is a great alloy influence on the resulting structures of the surface layers. Under some processing conditions the tungsten carbide is completely dissolved from molten matrix alloy. Hard phases on chromium carbide basis resulted upon cooling. Induced chromium carbide Cr 3 C 2 retains its structure while absorbing large amounts of iron into its grid. It can be concluded that not only alloying properties, but also eminently structural criterions are decisive for the stability of the applied supplementary hard phases. (orig.) [de

  7. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  8. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  9. Compatibility of refractory alloys with space reactor system coolants and working fluids

    International Nuclear Information System (INIS)

    DeVan, J.H.; DiStefano, J.R.; Hoffman, E.E.

    1984-01-01

    The bulk of this report deals with compatibility studies in liquid lithium and boiling potassium. Substantial information is also presented concerning the reactivity of niobium and tantalum alloys with residual gases in high and ultrahigh vacuum atmospheres. The remaining information, which is much less extensive, covers the compatibility behavior of molybdenum and tungsten alloys in alkali metals and a qualitative assessment of the use of refractory metals for containing helium in a closed Brayton cycle. 22 references, 29 figures, 14 tables

  10. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  11. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  12. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  13. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  14. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  16. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  17. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  19. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  20. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  1. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  2. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  3. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  4. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  5. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  6. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  7. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  8. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  9. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  10. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  11. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  12. Heavy metal contamination in the vicinity of an industrial area near Bucharest.

    Science.gov (United States)

    Velea, Teodor; Gherghe, Liliana; Predica, Vasile; Krebs, Rolf

    2009-08-01

    Heavy metals such as lead are well known to cause harmful health effects. Especially children are particularly susceptible to increased levels of lead in their blood. It is also a fact that lead concentration is increasing in the environment due to increased anthropogenic activity. The risk of heavy metal contamination is pronounced in the environment adjacent to large industrial complexes. In a combined case study, the environmental pollution by heavy metals was related to children's health in the vicinity of an industrial area located 4 km south-east from Bucharest about 2 km east from the nearest town-Pantelimon. This site includes companies processing different, nonferrous solid wastes for recovery of heavy metals and producing different nonferrous alloys and lead batteries. In this paper, mainly the results of environmental sampling and analyses are summarized. Water, soil, and atmospheric deposition samples were collected from different locations within 3 km from the industrial area. For comparison, samples were also taken from Bucharest. Water samples were filtered (open collecting pots were used on nine different sites between August and November 2006. At most sampling locations, the heavy metal concentrations in soil decrease with increasing distance to the presumably major source of pollution. Highest heavy metal concentrations were found in 10-20 cm soil depths. There were also decreasing heavy metal concentrations for atmospheric deposition with increasing distance to the industrial site. In surface and groundwater samples, traces of zinc, copper and lead were detected. The heavy metal concentrations in soil were increased in the study area, mostly under legal action limits in low-concern areas (e.g., 1,000 mg Pb/kg dry soil), but often above action limits for high-concern areas (100 mg Pb/kg dry soil) such as populated areas. The soluble lead concentrations in water samples indicate a need for monitoring and assessing water quality in more detail. The

  13. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    International Nuclear Information System (INIS)

    Liu, Y.H.; Zhang, Y.C.; Jiang, F.; Fu, B.J.; Sun, N.B.

    2013-01-01

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na 2 WO 4 –WO 3 binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%

  14. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. H. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); State Nuclear Power Research Institute, Xicheng District, Beijing (China); Zhang, Y.C., E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China); Jiang, F.; Fu, B. J.; Sun, N. B. [School of Materials Science and Engineering, University of Science and Technology BeiJing, Beijing (China)

    2013-11-15

    Tungsten is considered a promising plasma facing armor material for future fusion devices. An electrodeposited metallic tungsten coating from Na{sub 2}WO{sub 4}–WO{sub 3} binary oxide molten salt on low activation steel (LAS) substrate was investigated in this paper. Tungsten coatings were deposited under various pulsed currents conditions at 1173 K in atmosphere. Cathodic current density and pulsed duty cycle were investigated for pulsed current electrolysis. The crystal structure and microstructure of tungsten coatings were characterized by X-ray diffractometry, scanning electron microscopy, and energy X-ray dispersive analysis techniques. The results indicated that pulsed current density and duty cycle significantly influence tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes much larger with increasing cathodic current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with the increasing thickness of coatings; the maximum micro-hardness is 482 HV. The prepared tungsten coatings have a smooth surface, a porosity of less than 1%, and an oxygen content of 0.024 wt%.

  15. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  16. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  17. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    International Nuclear Information System (INIS)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-01-01

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the α-Mg/β-Mg 17 Al 12 phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, α-Mg re-solidified with a cellular growth, resulting in a serrated interface between α-Mg and α-Mg/β-Mg 17 Al 12 in the weld sample and between α-Mg and β-Mg 17 Al 12 (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained

  18. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    Science.gov (United States)

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Heavy metal pollution in coastal areas of South China: A review

    International Nuclear Information System (INIS)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-01-01

    Highlights: • Heavy metal contamination in coastal areas of South China has been reviewed. • Heavy metal levels were closely related to economic development in past decades. • Heavy metal levels from Hong Kong continually decreased from the early 1990s. • Higher concentrations of heavy metals were found in mollusk. • Levels of heavy metals in part of seafood exceeded the safety limit. -- Abstract: Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit

  20. Elastic–plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments

    Energy Technology Data Exchange (ETDEWEB)

    Ratynskaia, S., E-mail: svetlana.ratynskaia@ee.kth.se [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Tolias, P. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Shalpegin, A. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Vignitchouk, L. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); De Angeli, M. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Bykov, I. [KTH Royal Institute of Technology, Association EUROfusion-VR, Stockholm (Sweden); Bystrov, K.; Bardin, S. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands); Brochard, F. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-lès-Nancy (France); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Harder, N. den; De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Edisonbaan 14, 3439MN Nieuwegein (Netherlands)

    2015-08-15

    Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.

  1. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  2. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Defect accumulation behaviour in hcp metals and alloys

    International Nuclear Information System (INIS)

    Woo, C.H.

    2000-01-01

    The effects of displacement damage on the physical and mechanical properties of metals and alloys, caused by the bombardment of energetic particles, have been investigated for several decades. Besides the obvious technical and industrial implications, an important motive of such investigations is to understand the factors that differentiate the response of different metals under different irradiation conditions. Recently, much interest is shown in the possible effects of the crystal lattice structure on variations in the damage accumulation behaviour of metals and alloys. In this paper we focus on the case of metals and alloys that crystallize in the hexagonal close pack (hcp) structure, and describe recent understanding of the damage production, accumulation and its consequences in these metals

  4. THE BEHAVIOR OF SOLUBLE METALS ELUTED FROM Ni/Fe-BASED ALLOY REACTORS AFTER HIGH-TEMPERATURE AND HIGH-PRESSURE WATER PROCESS

    Directory of Open Access Journals (Sweden)

    M. Faisal

    2012-05-01

    Full Text Available The behavior of heavy metals eluted from the wall of Ni/Fe-based alloy reactors after high-temperature and high-pressure water reaction were studied at temperatures ranging from 250 to 400oC. For this purpose, water and cysteic acid were heated in two reactor materials which are SUS 316 and Inconel 625. Under the tested conditions, the erratic behaviors of soluble metals eluted from the wall of Ni/Fe-based alloy in high temperature water were observed. Results showed that metals could be eluted even at a short contact time. The presence of air also promotes elution at sub-critical conditions. At sub-critical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. It was observed that eluted metals tend to increased under acidic conditions and most of those metals were over the limit of WHO guideline for drinking water. The results are significant both on the viewpoint of environmental regulation on disposal of wastes containing heavy metals, toxicity of resulting product and catalytic effect on a particular reaction.

  5. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  6. Gamma rays shielding parameters for white metal alloys

    Science.gov (United States)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  7. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  8. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  9. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Kinetic energy penetrators must posses the best possible combination of hardness, stiffness, strength, and fracture toughness characteristics to be effective against modern armor systems. Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. Du and tungsten perform abut the same against semi-infinite targets, and DU outperforms tungsten penetrators in oblique, spaced array targets, but because of environmental and subsequent cost concerns, effort has focused on improving the performance of tungsten penetrators over the last few years. However, despite recent improvements in material properties, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms at the leading edge of the penetrator during the penetration process-DU alloys tend to shear band and sharpen as they penetrate the target material, whereas tungsten penetrators tend to mushroom and blunt. As a first step to determine whether shear banding is truly the reason for superior DU performance, a review of the fabrication, high strain-rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on material properties and penetration mechanisms of these alloys are discussed

  10. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies

    International Nuclear Information System (INIS)

    Arun, Ilangovan; Duraiselvam, Muthukannan; Senthilkumar, V.; Narayanasamy, R.; Anandakrishnan, V.

    2014-01-01

    Highlights: • Electrical discharge alloying/coating made on AISI D2 tool steel. • The hardness of EDA layer is three to four time higher than the base material. • The dry sliding wear tests performed on EDA layer at different temperatures. • The alloyed layer acts as a self-lubricant at higher temperature. - Abstract: The present study examines the method of depositing nickel and tungsten on die steel surface by means of dispersing these elements in dielectric fluid in an electrical discharge alloying (EDA) process. The modified surface was mechanically and metallurgically characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), microhardness tester and Pin-on-disc tribometer. The phase transformations that occurred during EDA process were evaluated by XRD. The deposition of Ni and W on die steel surfaces yielded minimal cracks with excellent metallurgical bonding. Higher hardness (∼1059 HV 0.3 ) with little brittleness resulted in superior wear resistance properties, a property which was retained even at elevated temperature

  11. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  12. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  13. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  14. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  15. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  16. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Christopher [General Atomics, San Diego; Nygren, R. E. [Sandia National Laboratories (SNL); Chrobak, C P. [General Atomics, San Diego; Buchenauer, Dean [Sandia National Laboratories (SNL); Holtrop, Kurt [General Atomics, San Diego; Unterberg, Ezekial A. [ORNL; Zach, Mike P. [ORNL

    2017-08-01

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels of isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.

  17. Development of a Ni-based superalloy with cellular structure and interconnected micro porosity

    International Nuclear Information System (INIS)

    Bernabe, A.; Lopez, E.; Gil-Sevillano, J.

    1998-01-01

    A cellular metallic material with interconnected porosity of controlled size of an order of 10 μm has been developed by electrochemical dissolution of tungsten grains in a W-Ni-Fe heavy alloy. The nickel superalloy with sponge structure and high surface/volume ratio can also be processed recycling chips from heavy metal machining (Patent number p9700191, 1997). Applications for the new materials could be found as support for catalysts, high temperature filters for corrosive fluids, burners, etc. (Author) 10 refs

  18. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    Science.gov (United States)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  19. Corrosion behaviour of austenitic stainless steel, nickel-base alloy and its weldments in aqueous LiBr solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D. [Departamento de Ingenieria Quimica y Nuclear. E.T.S.I.Industriales, Universidad Politecnica de Valencia, P.O. Box 22012 E-46071 Valencia (Spain)

    2004-07-01

    With the advances in materials production new alloys have been developed, such as High- Alloy Austenitic Stainless Steels and Nickel-base alloys, with high corrosion resistance. These new alloys are finding applications in Lithium Bromide absorption refrigeration systems, because LiBr is a corrosive medium which can cause serious corrosion problems, in spite of its favourable properties as absorbent. The objective of the present work was to study the corrosion resistance of a highly alloyed austenitic stainless steel (UNS N08031) used as base metal, a Nickel-base alloy (UNS N06059) used as its corresponding filler metal, and the weld metal obtained by the Gas Tungsten Arc Welding (GTAW) procedure. The materials have been tested in different LiBr solutions (400 g/l, 700 g/l, 850 g/l and a commercial 850 g/l LiBr heavy brine containing Lithium Chromate as corrosion inhibitor), at 25 deg. C. Open Circuit Potential tests and potentiodynamic anodic polarization curves have been carried out to obtain information about the general electrochemical behaviour of the materials. The polarization curves of all the alloys tested were typical of passivable materials. Pitting corrosion susceptibility has been evaluated by means of cyclic potentiodynamic curves, which provide parameters to analyse re-passivation properties. The galvanic corrosion generated by the electrical contact between the welded and the base material has been estimated from the polarization diagrams according to the Mixed Potential Method. Samples have been etched to study the microstructure by Scanning Electron Microscopy (SEM). The results demonstrate that the pitting resistance of all these materials increases as the LiBr concentration decreases. In general, the presence of chromate tended to shift the pitting potential to more positive values than those obtained in the 850 g/l LiBr solution. (authors)

  20. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  1. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  2. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Lei; Li, Yu Hang; Wang, Xue Lu; Chen, Ai Ping; Yang, Hua Gui [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai (China); Nie, Ting; Gong, Xue Qing [Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai (China); Zheng, Li Rong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (China)

    2017-06-19

    Semiconductor photocatalysts are hardly employed for overall water splitting beyond 700 nm, which is due to both thermodynamic aspects and activation barriers. Metallic materials as photocatalysts are known to overcome this limitation through interband transitions for creating electron-hole pairs; however, the application of metallic photocatalysts for overall water splitting has never been fulfilled. Black tungsten nitride is now employed as a metallic photocatalyst for overall water splitting at wavelengths of up to 765 nm. Experimental and theoretical results together confirm that metallic properties play a substantial role in exhibiting photocatalytic activity under red-light irradiation for tungsten nitride. This work represents the first red-light responsive photocatalyst for overall water splitting, and may open a promising venue in searching of metallic materials as efficient photocatalysts for solar energy utilization. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, Moritz T., E-mail: mor.lessmann@gmail.com [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom); CCFE, Culham Science Centre, Abingdon (United Kingdom); Sudić, Ivan; Fazinić, Stjepko; Tadić, Tonči [Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia); Calvo, Aida [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Hardie, Christopher D.; Porton, Michael [CCFE, Culham Science Centre, Abingdon (United Kingdom); García-Rosales, Carmen [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Mummery, Paul M. [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom)

    2017-04-01

    An ultra-fine grained self-passivating tungsten alloy (W88-Cr10-Ti2 in wt.%) has been implanted with iodine ions to average doses of 0.7 and 7 dpa, as well as with helium ions to an average concentration of 650 appm. Pile-up corrected Berkovich nanoindentation reveals significant irradiation hardening, with a maximum hardening of 1.9 GPa (17.5%) observed. The brittle fracture strength of the material in all implantation conditions was measured through un-notched cantilever bending at the microscopic scale. All cantilever beams failed catastrophically in an intergranular fashion. A statistically confirmed small decrease in strength is observed after low dose implantation (−6%), whilst the high dose implantation results in a significant increase in fracture strength (+9%), further increased by additional helium implantation (+16%). The use of iodine ions as the implantation ion type is justified through a comparison of the hardening behaviour of pure tungsten under tungsten and iodine implantation.

  4. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  6. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  8. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  9. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    OpenAIRE

    Olgierd Janusz Goroch; Zbigniew Gulbinowicz

    2017-01-01

    The results of studies concerning friction welding of Weight Heavy Alloy (WHA) with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum i...

  10. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  11. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  12. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  13. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  14. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  15. Scalable shape- and size-controlled synthesis of metal nano-alloys

    KAUST Repository

    Bakr, Osman M.

    2016-01-21

    Embodiments of the present disclosure provide for a continuous-flow reactor, methods of making metal nano-alloys, and metal nano-alloys. An embodiment of the continuous-flow reactor includes a first tubular component having a tubular inlet and a tubular outlet, and a heated tube-in-tube gas reactor fluidly connected to the first tubular component, wherein the heated tube-in-tube gas reactor comprises an inner tube having a gas permeable surface and an outer tube. An embodiment of the method of producing metal nano-alloys, includes contacting a reducible metal precursor and a reducing fluid in a continuous-flow reactor to form a mixed solution; and flowing the mixed solution through the continuous-flow reactor for a residence time to form the metal nano-alloys. An embodiment of the composition includes a plurality of metal nano-alloys having a monodisperse size distribution and a uniform shape distribution.

  16. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  17. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  18. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  19. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  20. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  1. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  2. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  3. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  4. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  5. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  6. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  7. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  8. Heavy metal pollution in coastal areas of South China: a review.

    Science.gov (United States)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  10. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  11. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    Science.gov (United States)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  12. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  13. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  14. Heavy metals in the cell nucleus - role in pathogenesis.

    Science.gov (United States)

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  15. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  16. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  17. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  19. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  20. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for

  1. A Drinking Water Sensor for Lead and Other Heavy Metals.

    Science.gov (United States)

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  2. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  3. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, G.L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Wildman, R.B.; Jones, B.T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2011-02-28

    A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N{sub 2}, CO{sub 2} and He are used as solvents, and H{sub 2} and C{sub 2}H{sub 2} as solutes. A H{sub 2}/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 {mu}g L{sup -1}, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 {mu}g L{sup -1} were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.

  4. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  5. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  6. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  7. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    Science.gov (United States)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  9. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  10. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  11. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  12. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  13. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  14. Development and initial characterization of amorphous metals rich in W and/or RE

    International Nuclear Information System (INIS)

    Giessen, B.C.; Polk, D.E.

    1978-01-01

    Studies of refractory metal alloys concentrated on two families of such alloys: ternary tungsten alloys and binary T 5 -T 9 alloys. The former were selected because of the possibility of finding desirable glasses consisting of low-cost components; the latter were chosen because they could be quenched into metallic glasses with high thermal stability and good toughness. Alloys selected for study were prepared by arc-melting and were subsequently rapidly quenched in an arc furnace quenching unit. Considerable difficulties were encountered in preparing metal--metalloid alloys, such as W--B, as well as alloys combining high melting and low melting transition metals, such as W and Ni. Brittleness of ductility as revealed by a bend test was noted. Measurements were made up to 1000 K and resistivity measurements up to 1300 K. The probe for electrical resistivity measurements at high temperatures has been constructed and tested. To determine the elastic (Young's) moduli of new metallic glasses prepared in this program, equipment utilizing the pulse--echo method was set up

  15. Migration of heavy metals in soils in a uranium mining area

    International Nuclear Information System (INIS)

    Hu Ruixia; Gao Bai; Hu Baoqun; Feng Jiguang

    2009-01-01

    Contents of several heavy metals (Zn,Ni,Cu,Cd,Pb) in soil samples collected from different depths of the soil sections in a uranium mining area were analyzed, and vertical migration dis-ciplines of heavy metals were obtained. The results show that the concents of heavy metals in vertical direction decrease as the soil increases in thickness and there is a trend of facies-cumulation for the heavy metals. The accumulation status of each heavy metal in soils differs, which is dependent on the content and migration velocity of the heavy metal itself, the local natural environment about the soil, etc. (authors)

  16. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    Science.gov (United States)

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  17. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Science.gov (United States)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  18. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    International Nuclear Information System (INIS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-01-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component

  19. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)]. E-mail: riccardi@frascati.enea.it; Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Casadei, M. [Centro Sviluppo Materiali, 00100 Roma (Italy); Costanza, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Filacchioni, G. [ENEA CR Casaccia, I-00060 S. M. di Galeria, Roma (Italy); Moriani, A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)

    2006-06-30

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  20. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  1. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  2. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  3. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  4. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, Galen Richard; Petti, David Andrew; Sharpe, John Phillip; Schuetz, Stanley Thomas

    2000-10-01

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200°C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices

  5. Oxidation and Volatilization from Tantalum Alloy T-222 During Air Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, G.R.; Petti, D.A.; Sharpe, J.P.; Schuetz, S.T.

    2000-10-31

    Tantalum alloys are one of the refractory metals with renewed consideration for high temperatures in fusion reactor applications. Tantalum alloys perform well in protective environments but oxidized readily in gases containing higher oxygen levels. In addition, the radioactive isotope Ta-182 would be produced in tantalum and could be a significant contributor to dose if mobilized. Other isotopes of importance are produced from tungsten and hafnium. Mobilization of activated products during an accident with air ingress is therefore a safety issue. In this study, we measured the extent of oxidation and mobilization from tantalum alloy T-222 oxidized in flowing air between 500 and 1200 C. This alloy nominally contains 10 wt% tungsten, 2.5 wt% hafnium and 0.01 wt% carbon. We found that the mobilization of Ta and Hf was closely linked to the occurrence of oxide spalling. These elements showed no migration from the test chamber. Some W was mobilized by volatilization as evidenced by transport from the chamber. Tungsten volatilization could occur primarily during initial stages of oxidation before an oxide scale forms and impedes the process. The mobilization of Ta and W are presented in terms of the mass flux (g/m 2 -h) as a function of test temperature. These measurements along with specific designs, activation calculations, and accident scenarios provide information useful for dose calculations of future fusion devices.

  6. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  7. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  8. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  9. Novel polymer-based nanocomposites for application in heavy metal pollution remediation

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2012-10-10

    Full Text Available and kidney damage and also cancer ? Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants ? CSIR 2012 Slide 3 Removal of heavy metals ? Small volume applications: ion exchange ? Larger volumes eg. acid mine... pollution, treatment shortfalls at municipalities and contaminated surface water discharges ? Accumulation of heavy metals and endocrine disrupters ? CSIR 2012 Slide 2 Introduction: Heavy metals ? Cr, Ni, Cu, Pb, As etc. ? Exposure can cause liver...

  10. Some observations on the physical metallurgy of nickel alloy weld metals

    International Nuclear Information System (INIS)

    Skillern, C.G.; Lingenfelter, A.C.

    1982-01-01

    Numerous nickel alloys play critical roles in various energy-related applications. Successful use of these alloys is almost always dependent on the availability of acceptable welding methods and welding products. An understanding of the physical metallurgy of these alloys and their weld metals and the interaction of weld metal and base metal is essential to take full advantage of the useful properties of the alloys. To illustrate this point, this paper presents data for two materials: INCONEL alloy 718 and INCONEL Welding Electrode 132. 8 figures, 9 tables

  11. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  12. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  13. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  14. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  15. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  16. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011.

    Science.gov (United States)

    Shao, Wentao; Liu, Qian; He, Xiaowei; Liu, Hui; Gu, Aihua; Jiang, Zhaoyan

    2017-04-01

    Global prevalence of obesity has been increasing dramatically in all ages. Although traditional causes for obesity development have been studied widely, it is unclear whether environmental exposure of substances such as trace heavy metals affects obesity development among children and adolescents so far. Data from the National Health and Nutrition Examination Survey (1999-2011) were retrieved, and 6602 US children were analyzed in this study. Urinary level of nine trace heavy metals, including barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten, was analyzed for their association with the prevalence of obesity among children aged 6-19 years. Multiple logistic regression was performed to assess the associations adjusted for age, race/ethnicity, gender, urinary creatinine, PIR, serum cotinine, and television, video game, and computer usage. A remarkable association was found between barium exposure (OR 1.43; 95% CI 1.09-1.88; P obesity in children aged 6-19 years. Negative association was observed between cadmium (OR 0.46; 95% CI 0.33-0.64; P obesity. All the negative associations were stronger in the 6-12 years group than in the 13-19 years group. The present study demonstrated that barium might increase the occurrence of obesity, but cadmium, cobalt, and lead caused weight loss among children. The results imply that trace heavy metals may represent critical risk factors for the development of obesity, especially in the area that the state of metal contamination is serious.

  17. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  18. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  19. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  20. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Senthil Kumar, T.; Balasubramanian, V.; Sanavullah, M.Y.

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. In any structural application of this alloy consideration its weldability is of utmost importance as welding is largely used for joining of structural components. The preferred welding process of aluminium alloy is frequently tungsten inert gas (TIG) welding due to its comparatively easier applicability and better economy. In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to study the influence of pulsed current TIG welding parameters on tensile properties of AA 6061 aluminium alloy weldments

  1. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    Science.gov (United States)

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Effect of current pulsing on tensile properties of titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Jayabalan, V.; Balasubramanian, M.

    2008-01-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy

  3. Effect of current pulsing on tensile properties of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com

    2008-07-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy.

  4. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  5. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1996-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  6. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  7. Hydrofluoric–nitric–sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, M., E-mail: Mikko.Kanerva@aalto.fi [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland); Johansson, L.-S.; Campbell, J.M. [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O.B. 16300, FI-00076 Aalto (Finland); Revitzer, H. [Aalto University, School of Chemical Technology, Department of Chemistry, P.O.B. 16300, FI-00076 Aalto (Finland); Sarlin, E. [Tampere University of Technology, Department of Materials Science, P.O.B. 589, FI-33101 Tampere (Finland); Brander, T.; Saarela, O. [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland)

    2015-02-15

    Highlights: • XPS and AFM analysis of the effect of hydrofluoric–nitric–sulphuric-acid on tungsten. • Dreiling's model established 54.4% thinning of WO{sub 3} due to 67 s treatment. • Strain energy release rate increased ≈8.4 J/m{sup 2} at the interface. • Failure loci analysis expressed the oxide and carbon fibre surfaces as weak points. - Abstract: Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric–nitric–sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO{sub 3}) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten–CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔG{sub c}≈ 8.4 J/m{sup 2}.

  8. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  9. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  10. Proceedings of 15th International Conference on Heavy Metals in the Environment

    International Nuclear Information System (INIS)

    Barganska, Z.; Beyer, A; Klimaszewska, K.; Namiesnik, J.; Tobiszewski, M.; Rutkiewicz, I.

    2010-01-01

    15 th International Conference on Heavy Metals in the Environment (15 th ICHMET) is a continuation of a series of conferences that have been held since 1975. These conferences typically draw 500-1000 participants from countries in many parts of the world. The ICHMETs are the only forum that provide an integrated perspective on research and policy initiatives on all heavy metals in a trans-disciplinary context. There is a need to understand not only the unique features and behavior of individual heavy metals but also the differences, similarities and interactions of different metals at the ecosystem, systemic and cellular levels if we are to deal with the problems of global heavy metal pollution in a sustainable manner. The presented contributions concerned problems: (1) trend tracking/analysis of heavy metals data; (2) analytical tools and techniques; (3) heavy metals in the marine environment; (4) accumulation in foods and crops; (5) soil contamination; (6) heavy metals in sediments and remediation technologies; (7) effects on human health; (8) heavy metals in the atmosphere; (9) sources, emissions and control of heavy metals; (10) phytoremediation; (11) wastewater treatment; (12) heavy metals in the historical pollution record.

  11. Hydrogen transport behavior of metal coatings for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D{sub 3}{sup +} ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates of tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5x10{sup 19} D/m{sup 2} s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. (orig.).

  12. Hydrogen transport behavior of metal coatings for plasma-facing components

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  13. Hydrogen transport behavior of metal coatings for plasma facing components

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1990-01-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3-keV D 3 + ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 K to 825 K and implanting particle fluxes of approximately 5 x 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. 18 refs., 3 figs., 3 tabs

  14. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  15. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    Science.gov (United States)

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  16. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    Directory of Open Access Journals (Sweden)

    Brian E. Schuster

    2010-08-01

    Full Text Available The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM which included energy-dispersive (X-ray spectrometry (EDS. Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549, a model for lung tissue, to particulates (especially nanoparticulates collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate mix has not yet allowed any particular chemical composition to be identified.

  17. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  18. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  19. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  20. A review of penetration mechanisms and dynamic properties of tungsten and depleted uranium penetrators

    International Nuclear Information System (INIS)

    Andrew, S.P.; Caligiuri, R.D.; Eiselstein, L.E.

    1991-01-01

    Over the last decade, depleted uranium (DU) and tungsten alloys have been the materials of choice for kinetic energy penetrators. However, despite improvements in mechanical properties in recent years, the penetration performance of tungsten still lags behind that of DU. One possible reason is the difference in deformation mechanisms- DU alloys tend to shear band as they penetrate the target material, whereas tungsten penetrators tend to mushroom. As a first step to determining whether shear banding is truly the reason for superior DU performance, a review and summary of the available information was performed. This paper presents a state-of-the-art review of the formulation, high strain- rate properties, and penetration phenomena of penetrators manufactured from both tungsten and DU alloys. Specifically, the effects of composition, processing, and heat treatment on mechanical properties and penetration mechanisms of these alloys are discussed. Penetration data and models for penetration mechanisms (in particular shear banding) are also presented, as well as the applicability of these models and their salient features

  1. Method for palladium activating molybdenum metallized features on a ceramic substrate

    International Nuclear Information System (INIS)

    Kumar, A.H.; Schwartz, B.

    1985-01-01

    A molybdenum or tungsten metallurgical pattern is formed on or in a dielectric green sheet. Palladium, nickel, platinum or rhodium is coated on a layer of polyvinyl butyral which is carried on a polyester film. The metal layer of this assembly is laminated to a dielectric green sheet which carries the molybdenum or tungsten metallurgy. The polyester film is stripped off. The resulting assembly is sintered to a fired structure, whereby the polyvinyl butyral is volatilized off and the palladium, nickel, platinum or rhodium is alloyed with the molybdenum or tungsten metallurgy to provide a densified metallurgy whose surface is free of glass

  2. Lixiviation of heavy metals of hazardous industrial wastes by means of thermostatized columns and design of a pilot plant

    International Nuclear Information System (INIS)

    Vite T, J.; Leon, C.C. de; Vite T, M.; Soto T, J.L.

    2006-01-01

    The purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL -1 of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL -1 of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)

  3. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  4. Development of surface relief on polycrystalline metals due to sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Bardamid, A.F. [Taras Shevchenko National University, 01033 Kiev (Ukraine); Bondarenko, V.N. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto, ON, Canada M3H5T6 (Canada); Konovalov, V.G.; Ryzhkov, I.V.; Skoryk, O.O.; Solodovchenko, S.I. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Zhang-jian, Zhou [University of Science and Technology Beijing, Beijing 100 083 (China)

    2013-05-01

    The characteristics of surface microrelief that appear in sputtering experiments with polycrystalline metals of various grain sizes have been studied. Specimens with grain sizes varying from 30–70 nm in the case of crystallized amorphous alloys, to 1–3 μm for technical tungsten grade and 10–100 μm for recrystallized tungsten were investigated. A model is proposed for the development of roughness on polycrystalline metals which is based on the dependence of sputtering rate on crystal orientation. The results of the modeling are in good agreement with experiments showing that the length scale of roughness is much larger than the grain size.

  5. Toward Tungsten Plasma-Facing Components in KSTAR: Research on Plasma-Metal Wall Interaction

    NARCIS (Netherlands)

    Hong, S. H.; Kim, K. M.; Song, J. H.; Bang, E. N.; Kim, H. T.; Lee, K. S.; Litnovsky, A.; Hellwig, M.; Seo, D. C.; van den Berg, M. A.; Lee, H. H.; Kang, C. S.; Lee, H. Y.; Hong, J. H.; Bak, J. G.; Kim, H. S.; Juhn, J. W.; Son, S. H.; Kim, H. K.; Douai, D.; Grisolia, C.; Wu, J.; Luo, G. N.; Choe, W. H.; Komm, M.; De Temmerman, G.; Pitts, R.

    2015-01-01

    One of the main missions of KSTAR is to develop long-pulse operation capability relevant to the production of fusion energy. After a full metal wall configuration was decided for ITER, a major upgrade for KSTAR was planned, to a tungsten first wall similar to the JET ITER-like wall (coatings and

  6. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    OpenAIRE

    Malushin, N. N.; Valuev, Denis Viktorovich; Valueva, Anna Vladimirovna; Serikbol, A.; Borovikov, I. F.

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66).

  7. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  8. 620 ASSESSMENT OF HEAVY METALS, pH AND EC IN EFFLUENT ...

    African Journals Online (AJOL)

    Osondu

    evaluated metals were Cu, Fe, Ni, Mn, Cr, Zn, Cd, Co, and Ag. The pH, EC, TDS, DO ... heavy metals, but the high heavy metal concentrations in the soil could seriously ... Key words: Heavy metals, AAS, contamination, floriculture and effluents.

  9. Investigation of heavy metals release from sediment with bioturbation/bioirrigation.

    Science.gov (United States)

    He, Yi; Men, Bin; Yang, Xiaofang; Li, Yaxuan; Xu, Hui; Wang, Dongsheng

    2017-10-01

    Bioturbation/bioirrigation can affect the remobilization of metals from sediments. In this study, experiments were performed to examine the effect of bioturbation/bioirrigation by different organisms on cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb) releasing from the spiked sediment. The diffusive gradient in thin films technique (DGT) revealed that at the end of exposure time, the labile heavy metals concentrations in the pore water for all metal and organisms combinations except Cu and chironomid larvae were much lower than that in the control group. However, the concentrations of heavy metals detected by the DGT were virtually indistinguishable among the treatments with tubificid, chironomid larvae and loach. The correlation analysis of heavy metals with iron (Fe) and manganese (Mn) suggested that Cd, Zn and Pb were most likely bound as Fe-Mn oxidation form in the pore water, but Cu was in other forms. After 28 d of exposure, bioturbation/bioirrigation produced a significant release of particulate heavy metals into the overlying water, especially in the treatment with loach. The bioturbation/bioirrigation impact on the Pb remobilization was less than the other three heavy metals. The effects of bioturbaiton/bioirrigation on the heavy metals remobilization in the sediment were complex that with studying the heavy metals remobilization in the sediment and water interface, the biological indicators should be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  11. Characterization of thin film deposits on tungsten filaments in catalytic chemical vapor deposition using 1,1-dimethylsilacyclobutane

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yujun, E-mail: shiy@ucalgary.ca; Tong, Ling; Mulmi, Suresh [Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2016-09-15

    Metal filament plays a key role in the technique of catalytic chemical vapor deposition (Cat-CVD) as it serves as a catalyst in dissociating the source gas to form reactive species. These reactive species initiate the gas-phase reaction chemistry and final thin film and nanostructure formation. At the same time, they also react with the metal itself, leading to the formation of metal alloys and other deposits. The deposits on the tungsten filaments when exposed to 1,1-dimethylsilacyclobutane (DMSCB), a single-source precursor for silicon carbide thin films, in the process of Cat-CVD were studied in this work. It has been demonstrated that a rich variety of deposits, including tungsten carbides (W{sub 2}C and WC), tungsten silicide (W{sub 5}Si{sub 3}), silicon carbide, amorphous carbon, and graphite, form on the W filament surfaces. The structural and morphological changes in the tungsten filaments depend strongly on the DMSCB pressure and filament temperature. At 1000 and 2000 °C, the formation of WC and W{sub 2}C dominates. In addition, a thin amorphous carbon layer has been found at 1500 °C with the 0.12 and 0.24 Torr of DMSCB and a lower temperature of 1200 °C with the 0.48 Torr of DMSCB. An increase in the DMSCB sample pressure gives rise to higher Si and C contents. As a result, the formation of SiC and W{sub 5}Si{sub 3} has been observed with the two high-pressure DMSCB samples (i.e., 0.24 and 0.48 Torr). The rich decomposition chemistry of DMSCB on the W surfaces is responsible for the extensive changes in the structure of the W filament, providing support for the close relationship between the gas-phase decomposition chemistry and the nature of alloy formation on the metal surface. The understanding of the structural changes obtained from this work will help guide the development of efficient methods to solve the filament aging problem in Cat-CVD and also to achieve a controllable deposition process.

  12. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  13. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  14. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  15. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    Abdel Sabour, M.F.; Aly, R.O.; Khalil, M.T.; Attwa, A.H.A.

    1999-01-01

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  16. Processing of Refractory Metal Alloys for JOYO Irradiations

    International Nuclear Information System (INIS)

    RF Luther; ME Petrichek

    2006-01-01

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang

  17. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  18. Influence of Cooling Rate in High-Temperature Area on Hardening of Deposited High-Cutting Chrome-Tungsten Metal

    International Nuclear Information System (INIS)

    Malushin, N N; Valuev, D V; Valueva, A V; Serikbol, A; Borovikov, I F

    2015-01-01

    The authors study the influence of cooling rate in high-temperature area for thermal cycle of high-cutting chrome-tungsten metal weld deposit on the processes of carbide phase merging and austenite grain growth for the purpose of providing high hardness of deposited metal (HRC 64-66). (paper)

  19. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  20. Heavy metals – a silent threat to health

    Directory of Open Access Journals (Sweden)

    Karolina Kosek-Hoehne

    2017-01-01

    Environmental pollution makes it impossible to produce goods and food from products completely free from heavy metals contamination. That is why we should focus on reducing the amount of heavy metals to the minimum when it comes to the world around us.

  1. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  2. Biomonitoring of heavy metals: Definitions, possibilities and limitations

    International Nuclear Information System (INIS)

    Markert, B.; Oehlmann, J.; Roth, M.

    2000-01-01

    Increasing attention given to heavy metals as components of the pollutant load in ecosystems makes it necessary to find reliable biological indicators. Fundamental investigations into the effect of heavy metals on organisms are therefore required. Different organisms (mosses, snails, etc.) were chosen as indicator organisms to optimize the indication of heavy metal loads at the physiological and biochemical level. All current programmes are designed to observe and measure pollutant inputs on a short or long-term basis. However, the changes in the environment of a phenological, physiological, sociological, genetic and physiological/biochemical nature have been investigated by biologists since the beginning of biological scientific research. So far excellent scientific results have been produced by qualification of the heavy metal status in ecosystems. Until now, the quantification of the results with regard to pollutant inputs in ecosystems (mass balances) and their action in these ecosystems have been investigated inadequately. (author)

  3. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  4. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  5. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  6. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  7. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  8. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  9. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  10. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    Science.gov (United States)

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  13. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    Science.gov (United States)

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P 1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  14. Stabilization of heavy metals in Tehran agricultural land

    International Nuclear Information System (INIS)

    Torabian, A.; Sadeghi, Sh.

    2001-01-01

    In order to prevent contamination of heavy metals accumulation in soil, plant, and ground water, several methods of prevention are studied, and tested worldwide. One of the method which has not been studied and applied in Iran is stabilization of heavy metals in soil by using clay minerals. Clay minerals due to hydration properties can adsorb organic and inorganic substances. Two clay minerals were used in this research: Bentonite with chemical structure of 2 to 1 (Two layers of silica and one layer of Aluminium) with CEC equal to 85 m eq/100 grams and Kao line with chemical structure of one to one (one layer silica and one layer Aluminum) and CEC=3 m eq/100 grams of soil. The physical and chemical properties of these two kinds of clays were different. Stabilization of heavy metals with different percentages of these two clays (7%, 15%, 22%) with different p H (4,7,8,11.5) were studied. The results indicate that with increasing of stabilizing agent at p H=7.8 and greater, stabilization of heavy metals increased significantly. The results also indicate the stabilization of heavy metals decreased rapidly at p H 4 and lower. The results of this study agree with the work of pervious researchers

  15. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  16. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  17. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  18. Monitoring of heavy metal levels in the major rivers and in residents' blood in Zhenjiang City, China, and assessment of heavy metal elimination via urine and sweat in humans.

    Science.gov (United States)

    Sheng, Jianguo; Qiu, Wenhui; Xu, Bentuo; Xu, Hui; Tang, Chong

    2016-06-01

    The coastal areas of China face great challenges, owing to heavy metal contamination caused by rapid industrialization and urbanization. To our knowledge, this study is the first report of the levels of heavy metals in the major rivers of Zhenjiang, one of the most important cities of the Yangtze River Delta in China. In addition, we measured heavy metal levels in the blood of 76 residents of Zhenjiang. The results suggest that the presence of heavy metals in the blood may threaten human health and the distribution appeared to correspond to most highly populated areas and/or areas with high traffic. We also found that the concentration of heavy metals in human blood showed an accumulation effect with increase in age. Moreover, the levels of most heavy metals were lower in participants who regularly exercised than in those who did not. We studied heavy metal levels in the urine and sweat of another 17 volunteers to monitor the elimination of bioaccumulated heavy metal. Heavy metals were found in the urine and sweat of all the 17 participants and were more concentrated in sweat. Induced micturition and sweating appear to be potential methods for the elimination of heavy metals from the human body.

  19. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  20. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    Science.gov (United States)

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  1. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  2. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  3. An integrated heavy metal emission inventory in Alsace and Baden-Wurtemberg

    International Nuclear Information System (INIS)

    Veaux, Ch.; Zundel, T.; Rentz, O.

    1997-01-01

    The emissions of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn into the air, water and by-products, caused by stationary combustion plants in Baden-Wurtemberg (Germany) and Alsace (France) aRe assessed. The main emphasis of the study is on the development of an adequate, process specific tool allowing to determine multi-media heavy metal emissions by bottom ash or slag, filter ash, by-products of the flue gas desulfurization device (FGD by-products), and flue gas from the use of fossil fuels in Baden-Wurtemberg and Alsace. The heavy metal mass streams are analysed systematically with regard to fuel composition, boiler type, operation mode and flue gas treatment devices to define representative plants with regard to the partitioning of heavy metal streams. For these representative plants, partition factors, which characterise the distribution of heavy metals streams. The emission factors are derived from the partition factors and the heavy concentrations in the fuels used. Then, the emission factors are associated with data on emission sources referring to the configuration of combustion installations and activity data (annual consumption of fuel) to assess the heavy metal emissions in the study region. Heavy metal emissions through bottom ash, filter ash, FGD by-products and flue gas as well as heavy metal deposition in plants are assessed for the sectors 'public power plants', industrial combustion' and 'domestic heating' for the base year 1992. The results are available for Baden-Wurtemberg and Alsace for each heavy metal, sector, emission pathway, and combustion technique. (authors)

  4. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  5. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  6. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology.

    Science.gov (United States)

    Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling

    2018-03-14

    Heavy metal pollution of croplands is a major environmental problem worldwide. Methods for accurately and quickly monitoring heavy metal stress have important practical significance. Many studies have explored heavy metal stress in rice in relation to physiological function or physiological factors, but few studies have considered phenology, which can be sensitive to heavy metal stress. In this study, we used an integrated Normalized Difference Vegetation Index (NDVI) time-series image set to extract remote sensing phenology. A phenological indicator relatively sensitive to heavy metal stress was chosen from the obtained phenological periods and phenological parameters. The Dry Weight of Roots (WRT), which directly affected by heavy metal stress, was simulated by the World Food Study (WOFOST) model; then, a feature space based on the phenological indicator and WRT was established for monitoring heavy metal stress. The results indicated that the feature space can distinguish the heavy metal stress levels in rice, with accuracy greater than 95% for distinguishing the severe stress level. This finding provides scientific evidence for combining rice phenology and physiological characteristics in time and space, and the method is useful to monitor heavy metal stress in rice.

  7. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  8. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  9. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid

    International Nuclear Information System (INIS)

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-01-01

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

  10. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  11. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  12. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    OpenAIRE

    Marek Slávik,Tomáš Tóth; Július Árvay; Miriama Kopernická; Luboš Harangozo; Radovan Stanovič; Pavol Trebichalský; Petra Kavalcová

    2014-01-01

    In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86...

  13. The experiment and research on the migration of the heavy metal

    International Nuclear Information System (INIS)

    He Zhijie; Le Renchang; Jia Wenyi; Fang Fang

    2007-01-01

    A device available to observe the heavy metal's migration is designed. We discovered that mixed with α-radioactive source such as U, Th etc., the heavy metal processes the obvious upward migration ability because of α-disintegration. The heavy metals and He nuclei can come into being Cluster. When the specific gravity of Clusters is smaller than that of the air, the Clusters of the heavy metal have the ability of upward migration. (authors)

  14. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  15. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  16. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  17. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  18. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  19. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  20. Comparative Studies on Mosses for Heavy Metals Pollution ...

    African Journals Online (AJOL)

    The sources of these heavy metals were discovered to include: vehicular emission and incineration of domestic wastes and the heavy metals from these sources were discovered to pose severe toxicological risks to the environment and human health. Samples of mosses were collected at eight different locations in each ...

  1. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  2. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  3. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  4. Influence of dislocations in solid-phase crystal lattices on structure and properties of an WC-9Co alloy

    International Nuclear Information System (INIS)

    Grewe, H.

    1976-01-01

    After theoretical considerations about evaluation of degree of dislocation concentration in crystal lattices two tungsten-carbide-powders are characterized by chemical reaction behaviour. The hard metal grades produced from the two carbide powders are tested by material and tool life investigation. The tungsten carbide powder with lower level of dislocation-concentration leads to a hardmetall-alloy with an equal microstructure and with favourable properties, especially with a good toughness and with an interesting tool life. (orig.) [de

  5. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  6. Heavy metals in vegetables and potential risk for human health

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2012-02-01

    Full Text Available Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the São Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the São Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the São Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

  7. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  8. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  9. Immunotoxicology in wood mice along a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Tersago, Katrien; De Coen, Wim; Scheirs, Jan; Vermeulen, Katrien; Blust, Ronny; Bockstaele, Dirk van; Verhagen, Ron

    2004-01-01

    We carried out an immunotoxicological field study of wood mice in three populations along a heavy metal pollution gradient. Heavy metal concentrations in liver tissue indicated that exposure to silver, arsenic, cadmium, cobalt and lead decreased with increasing distance from a non-ferrous smelter. Host resistance to the endoparasite Heligmosomoides polygyrus decreased with increasing exposure, while the abundance of tick larvae and the nematode Syphacia stroma was unrelated to heavy metal exposure. Spleen mass was increased at the intermediate and the most polluted sites and was positively correlated with the number of H. polygyrus and tick larvae. Proportion of early apoptotic leukocytes increased towards the smelter and was positively related to cadmium exposure. Red and white blood cell counts and lysozyme activity showed no relationship with metal exposure. All together, our observations suggest negative effects of heavy metal exposure on the immune function of wood mice under field conditions. - Capsule: Complex interactions among metal burden, immune response and parasite burden suggest negative effects of heavy metal exposure on the immune system of wood mice

  10. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  11. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW

    Directory of Open Access Journals (Sweden)

    N. Kolesnyk

    2014-09-01

    Full Text Available Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of Ukrainian rivers belong to polluted and very polluted. Of special interest are the studies of the distribution of heavy metals in phytoplankton, zooplankton, and zoobenthos because these components occupy a certain position in fish food chain. The presence of heavy metals in the natural food base showed that, on one hand, it could accumulate heavy metals in large amounts in such a way cleaning the water; and on the other hand, the heavy metals could migrate in the food web and contaminate fish. Ones of objects, which should be given attention when assessing toxicologic pollution, are aquatic plants, in particular phytoplankton. Studies showed that the accumulation of heavy metals in plants occurred first of all by their adsorption on the cellular wall. It explains the maximum adsorption of heavy metals by plants immediately after introduction of heavy metals into their culture. Fish as a rule occupy in the food web of water bodies one of the last places. They actively move in the aquatic environment and accumulating heavy metals at the same time they provide the most integrated and precise estimate of environmental pollution. By analyzing the distribution of heavy metals in fish organs and tissues, depending on their ability to accumulate them, it can be noted that the accumulation is the most intensive in such organs as gills, liver, and kidneys. Usually, their lowest content is observed in muscles that is important for human life because they are the main

  12. The thermodynamics of latent fingerprint corrosion of metal elements and alloys.

    Science.gov (United States)

    Bond, John W

    2008-11-01

    Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.

  13. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  14. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  15. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  16. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  17. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  18. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  19. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  20. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  1. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  2. Development of bonding techniques between tungsten and copper alloy for plasma facing components by HIP method (2). Bonding between tungsten and DS-copper

    International Nuclear Information System (INIS)

    Saito, Shigeru; Fukaya, Kiyoshi; Eto, Motokuni; Ishiyama, Shintaro; Akiba, Masato

    2000-02-01

    Recently, W (tungsten)-alloys are considered as plasma facing material (PFM) for ITER because of these many favorable properties such as high melting point (3655 K), relatively high thermal conductivity and higher resistivity for plasma sputtering. On the other hand, Cu-alloys, especially DS (dispersion strengthened)-Cu, are proposed as heat sink materials because of its high thermal conductivity and good mechanical properties at high temperature. Plasma facing components (PFC) are designed as the duplex structure where W armor tiles are bonded with Cu-alloy heat sink. Then, we started the bonding technology development by hot isostatic press (HIP) method to bond W with Cu-alloys because of its many advantages. Until now, it was reported that we could get the best HIP bonding conditions for W and OFHC-Cu and the tensile strength was similar with HIP treated OFHC-Cu. In this experiments, bonding tests of W and DS-Cu with insert material were performed. As insert material, OFHC-Cu was used with different thickness. Bonding conditions were selected as 1273 K x 2 hours x 147 MPa. Bonding tests with 0.3 to 1.8 mm thickness OFHC-Cu were successfully bonded but with 0.1 mm thickness was not bonded. From the results of tensile tests, the tensile strength of the specimens with 0.3 and 0.5 mm thickness were decreased at elevated temperature. It was shown that over 1.0 mm thickness OFHC-Cu insert may be needed and the tensile strength were a little higher than that of HIP treated OFHC-Cu. (author)

  3. Characterization of novel W alloys produced by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Monge, M.A.; Auger, M.A.; Leguey, T.; Pareja, R. [Universidad Carlos 3, Dept. de Fisica, Madrid (Spain); Bolzoni, L.; Gordo, E. [Universidad Carlos 3, Dept. de Ciencias de Materiales, Madrid (Spain)

    2007-07-01

    Full text of publication follows: Tungsten is considered as a candidate material for plasma-facing components (PFCs) in a future fusion power reactor because of its refractory characteristics, low tritium retention and low sputtering yielding. However, its use in PFCs requires the development of a tungsten material that, in addition to these properties, maintains good mechanical properties after a prolonged exposure at high temperatures. Sintering would be the most suitable method to produce tungsten materials for these applications if their recrystallization temperature is high enough and the grain growth is restrained. Usual sintering conditions for tungsten requires very high temperatures that induces a coarse grained structure in the sintered material, and a low recrystallization temperature in the hot worked material. This causes the failure of its mechanical properties. The combined addition of a sintering activator, which lowers the sintering temperature and favors the densification, and an insoluble oxide that produces a dispersion strengthening and grain growth inhibition, may result in a tungsten material with improved mechanical characteristics. Cu, Ni and Fe are the most used activators to produce tungsten heavy alloys but they may be no recommendable for PFCs. The present work assesses the possibility of using jointly Ti as sintering activator and Y{sub 2}O{sub 3} particles as strengthening dispersoids in tungsten. Pure tungsten and tungsten alloys having 0.5 wt % Y{sub 2}O{sub 3}, x wt % Ti and 0.5 wt % Y{sub 2}O{sub 3}+ x wt % Ti have been prepared by powder metallurgy; 0{<=}x{<=}4%. Elemental powders were blended or ball milled, canned, out-gassed and finally consolidated by a two-stage HIP process under a pressure of 200 MPa. The first stage was performed at 1523 K for 2 h, and after un-canning, the second HIP at 1973 K for 30 min. It is found that Ti addition favors the densification attaining a fully dense material, while pure W and W-0.5Y{sub 2

  4. Microstructural anomalies in a W-Ni alloy liquid phase sintered under microgravity conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Iacocca, R.G.; Johnson, J.L.; German, R.M.; Kohara, Shiro

    1995-01-01

    The gravitational role in liquid phase sintering (LPS) is a problem of great interest in both materials science and engineering practice. Gravity-induced microstructural gradients in grain size, grain shape, and solid volume fraction have been well documented in liquid phase sintered tungsten heavy alloys and have been analyzed by a number of theoretical models. However, gravity may have many unknown effects on LPS, which can only be revealed by experiments conducted under microgravity conditions

  5. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  6. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  7. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  8. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  9. Application of SEM/EDS to environmental geochemistry of heavy metals

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2009-06-01

    Full Text Available Heavy metals represent a ubiquitous constituent of the near-surface environment, present in widely varyingconcentrations that typically have little impact on human behaviour and health. However, the mining of metals anduse of these metals in industrial processes has produced significant anthropogenic inputs of metals to both localand global environments. As such, a rigorous overview of the current accumulation of heavy metals and knowledgeof mineralogy of heavy metal-bearing phases is important for understanding their stability, solubility, mobility,bioavailability and toxicity. These data are of fundamental importance for environmental risk assessment and evaluationof future scenarios. Since conventional geochemical analyses provide limited information, other analyticalmethods have to be utilized for the characterisation of heavy metal-bearing phases. Significant analytical methodfor identification and characterisation of heavy metals in environmental media is a scanning electron microscopecoupled with energy dispersive X-ray spectrometer (SEM/EDS, an apparatus for qualitative and semi-quantitative chemical analysis at microne level, newly introduced to Geological Survey of Slovenia. Use of SEM/EDS was already introduced to environmental studies world-wide. In Slovenia, SEM/EDS analyses of environmental media werefirstly carried out on the Meža River stream sediments and snow deposits from Ljubljana urban area.Heavy metal-bearing phases in the Meža River stream sediments were apportioned to three source areas: Mežica mining/smelting area (geogenic-technogenic origin, Ravne ironworks area (technogenic origin and the Meža River catchment area (geogenic origin, which corresponds to data obtained by conventional geochemical and multivariate statistical methods. Airborne particles, identified in urban snow deposits, were interpreted as geogenic particles, represented by fragments of heavy metal-bearing minerals, and technogenic particles that

  10. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  11. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  12. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan

    Science.gov (United States)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying

    2018-04-01

    Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.

  13. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  15. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  16. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    Concentration and Health Implication of Heavy Metals in Drinking Water from Urban ... water is not mentioned by WHO, but all the samples analyzed were found to ... Key words: Drinking water quality, Heavy metals, Maximum admissible limit, ...

  17. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  18. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  19. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  20. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  1. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  2. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  3. Interactions between heavy metals and sewer slimes. Wechselwirkungen zwischen Schwermetallen und Sielhaut

    Energy Technology Data Exchange (ETDEWEB)

    Gutekunst, B.

    1989-09-01

    Sewer slimes in wastewater pipes are an efficient means for detecting heavy metals discharged into the sewer system. The chances and limits of this method are discussed on the basis of the interactions between the heavy metals and the sewer slime. Chemical processes which lead to an accumulation of heavy metals are precipitation, adsorption and sedimentation. The mobilization is due to dissolution, desorption and complexation. The dependency of the waste water parameters pH, redox potential, heavy metal concentration and speciation on the accumulation and mobilization of the heavy metals is investigated as well as the binding capacity and strength. The heavy metals speciations in sewer slime are estimated by the application of a sequential leaching technique. Finally the practical significance of the experiments is shown. (orig.).

  4. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  5. Mitigation of heavy metals in different vegetables through biological washing techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Sattar

    2015-12-01

    Full Text Available Availability of nutritious and healthy food is the foremost challenging issue in all over the word. Vegetables are essential part in human diet and considered as natural reserves of nutrients gifted by Almighty Allah to human beings. Heavy metals are among the most toxic food pollutants and their intake through diet leads to several disorders. The sources of heavy metal contamination include waste water irrigation, industrial emissions, transportation and application of metal-based pesticides. In Pakistan this situation is more alarming as vegetables grown in peri-urban areas have shown high incidence of heavy metals accumulation. In this study effort was made to mitigate different heavy metals (Ar, Cd, Cr and Pb in cauliflower, spinach, okra and brinjal collected from peri-urban areas through washing with different biological solutions. Heavy metals contents were determined by using Atomic Absorption Spectrophotometry (AAS. Vegetable showed high load of heavy metals in unwashed form that reduced significantly by washing with different biological solutions. Among the different biological solutions, washing of vegetables with 8% ginger solution was found to be more effective.

  6. selected heavy metals in some vegetables produced through ...

    African Journals Online (AJOL)

    toshiib

    Haramaya University; P. O. Box 138, Dire Dawa, Ethiopia. 10013 ... and trace elements that have potential health benefits [1]. ... leads to a build-up of heavy metals in soils and foods [3]. Exposure of ... Based on the effect of heavy metals on ... (Buck Scientific Model 210VGP AAS, East Norwalk, USA) with air-acetylene flame.

  7. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  8. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    Science.gov (United States)

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  9. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    International Nuclear Information System (INIS)

    Chowdhury, Shakhawat; Mazumder, M.A. Jafar; Al-Attas, Omar; Husain, Tahir

    2016-01-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water

  10. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Shakhawat, E-mail: Schowdhury@kfupm.edu.sa [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Mazumder, M.A. Jafar [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Attas, Omar [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Husain, Tahir [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL (Canada)

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water.

  11. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  12. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  13. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  14. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  15. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  18. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  19. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    Science.gov (United States)

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    In this study, five heavy metals contamination of soil and different parts of Panax notoginseng in the plantation area was investigated. Analysis of heavy metals correlation between the planting soil and P. notoginseng; and the absorption and accumulation characteristics and translocation of soil heavy metals by P. notoginseng plants was revealed. Through field investigation and laboratory analytical methods, analysis of China's 30 different soil P. notoginseng origin and content of heavy metals in five different parts of the P. notoginseng plant content of heavy metals. The results revealed that the soil heavy metals should not be neglected in the plantation area Referring to the national soil quality standards (GB15608-1995), the excessive degree of soil heavy metals pollution showed Hg > As > Cd > Cr in the plantation area, and Pb content of soil was in the scope of the standard. Refer to 'Green Industry Standards for Import and Export of Medical Plants and Preparations', the excessive degree of heavy metals content of P. notoginseng plants showed As > Pb > Cr > Cd, and Hg content of plants was in the scope of the standard. Concentrations of five heavy metals of underground parts of P. notoginseng plants are higher than aboveground, and heavy metals elements are more concentrated in the root, followed by the rhizome of P. notoginseng plants. Heavy metal accumulation characteristics of the different parts of the P. notoginseng of the overall performance is the root > the rhizome > the root tuber > leaves > stems. From the point of view BCF value analysis of various parts of the P. notoginseng plants to absorb heavy metals in soil, BCF values of all samples were less than 1, description P. notoginseng not belong Hyperaccumulator. From the view of transportation and related analysis of the soil-P. notoginseng systems, the rhizome of P. notoginseng and the content of As and Cr in soil was significantly correlated, the root of P. notoginseng and the content of Cd in

  20. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.