WorldWideScience

Sample records for heavy-ion resonance behavior

  1. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  2. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  3. On the resonant coherent excitation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Pivovarov, Y.L.; Geissel, H.; Filimonov, Yu.M.; Krivosheev, O.E.; Scheidenberger, C.

    1995-07-01

    New accelerator facilities open up an interesting new field of experiments on basic channeling as well as on atomic and nuclear resonant coherent exitation (RCE) of heavy ions penetrating through aligned crystals at relativistic energies. Results of computer simulations are presented to characterize the resonant coherent excitation of atomic levels of relativistic hydrogen-like heavy ions. Nuclear resonant coherent excitation reveals interesting different characteristics compared to the corresponding atomic excitation inside crystals. An important result of our model calculations is that poorly-channeled ions have a higher nuclear excitation probability than well-channeled ions. (orig.)

  4. Resonances and fusion in heavy ion reactions: new models and developments

    International Nuclear Information System (INIS)

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  5. Resonance interaction of heavy ions in radar scattering

    International Nuclear Information System (INIS)

    Strutinskij, V.M.

    1983-01-01

    Resonances on back angles in the process of scatterina of heavy ions are investigated. Comprehensive investigation into possible sources of irregular structure of angular distribution during elastic scattering (ES) on wide angles are compated with an experiment. The first source is a two-component interference and the second one is a resonance structure connected with the process of formation of definite nucleon states in strongly deformed intermediate nucleus. Comparison of radar cross section calculations (back scattering cross section) with angular ES distributions of hydrogen on silicon testifies a possibility to interpret an anomalous scattering on wide angles in some reactions with heavy ions as a result of modulation of partial amplitudes by resonances of the input state typein the initial state of interaction of two nuclei

  6. Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region

    International Nuclear Information System (INIS)

    Lee, D.-H.; Johnson, J.R.; Kim, K.; Kim, K.-S.

    2008-01-01

    Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+ - He+ populations in detail by performing an accurate calculation of the mode conversion efficiency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data

  7. Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region

    Energy Technology Data Exchange (ETDEWEB)

    D.-H.Lee, J.R. Johnson, K. Kim and K.-S.Kim

    2008-11-20

    Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+ - He+ populations in detail by performing an accurate calculation of the mode conversion effciency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data.

  8. Study of resonance production as a probe of heavy-ion collisions with the ALICE detector

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Hadronic resonances provide a rich set of measurements that can be used to study the properties of ultra-relativistic heavy-ion collisions. Measurements of resonances and long-lived particles provide information about the properties of the late hadronic phase due to the presence of scattering effects that can modify resonance yields. Resonances can also be used along with long-lived hadrons to study the various mechanisms that shape particle pT spectra, including in-medium energy loss, radial flow, and recombination. Measurements of resonances in pp and p-Pb collisions serve as baselines for measurements in heavy-ion collisions, provide input for tuning QCD-inspired event generators, and aid searches for collective behavior in small systems. I will present measurements of a wide variety of hadronic resonances, including some of the most recent results presented at the Quark Matter conference. By comparing measurements of resonances with different masses, lifetimes, and quark contents in pp, p-Pb, and Pb-Pb co...

  9. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  10. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  11. Design studies of heavy ion linear accelerators constructed of independently phased spiral resonators

    International Nuclear Information System (INIS)

    Stokes, R.H.; Armstrong, D.D.

    1975-01-01

    Preliminary design studies are reported for two linear accelerators for heavy ions. One accelerator is a high-intensity machine which would operate with 100 percent duty factor and would produce tin ions with 6.1 MeV/A. Alternatively, it could be operated under pulsed conditions with 25 percent duty factor and would then accelerate uranium ions to 8.1 MeV/A, tin ions to 10.5 MeV/A, and all lighter ions to higher velocities. It would be injected with a positive multicharge ion source and a 4-MV single-ended dc generator. Also, design studies are reported for small postaccelerator injected by a model FN tandem. Both accelerators use three-drift-tube spiral resonators operating at room temperature. Magnetic quadrupole singlets are placed between all resonators to provide radial focussing. Each resonator is independently phased according to the velocity of the ion to be accelerated. The ability to adjust the phase of each resonator permits variations in final energy and other beam properties with great flexibility. (U.S.)

  12. Lead/tin resonator development at the Stony Brook heavy-ion linac

    International Nuclear Information System (INIS)

    Sikora, J.; Ben-Zvi, I.; Brennan, J.M.; Cole, M.; Noe, J.W.

    1988-01-01

    The Stony Brook Nuclear Structure Laboratory (NSL) has operated a superconducting heavy-ion booster linac since April 1983. The 40 copper split-loop resonators were developed and fabricated at Cal-Tech and plated with lead at Stony Brook. These original lead surfaces have given stable performance for the last 4 years, at an average accelerating gradient of about 2.5 MV/m in the high-β section. The low-β resonators however have never run reliably on-line much better than 2.0 MV/m, due to excessive vibration of their rather soft loop arms in the working accelerator environment. For the last 2-3 years the efforts of the Stony Brook accelerator development group have been focused on (1) a retrofit of the low-beta section of the linac with new QWRs and (2) the further development of plated superconducting surfaces. In particular a Sn/Pb alloy has been shown to give resonator performance at least comparable to that obtained with pure Pb but with a greatly simplified plating technique, as discussed below. Recently a possible heavy-ion injector based on superconducting RF quadrupole (RFQ) structures has also been studied. 13 references, 3 figures, 1 table

  13. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  14. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  15. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  16. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  17. Two-body molecular model for resonances in heavy ion reactions

    International Nuclear Information System (INIS)

    Abe, Y.

    1978-01-01

    It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)

  18. Los resonance lines in promethiumlike heavy ions

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Kobayashi, Yusuke; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi

    2016-01-01

    Identifying the ns - np resonance lines in alkali-metal-like ions is an important issue in fusion plasma science in the view of spectroscopic diagnostics and radiation power loss. Whereas for n=2, 3 and 4 these resonances are prominent and well studied, so far no one could clearly identify the resonance lines for n=5 in the promethiumlike sequence. We have now experimentally clarified the reason for the 'lost resonance lines. In the present study, highly-charged bismuth ions have been studied using a compact electron beam ion trap (EBIT). Extreme ultraviolet emission from the bismuth ions produced and trapped in the EBIT is observed with a grazing-incidence flat-field spectrometer. The energy dependent spectra are compared with a collisional-radiative model calculation, and we show that the 5s - 5p resonance lines are very weak in plasma with a wide range of electron density due to the presence of a long-lived metastable state. (author)

  19. Split ring resonator for the Argonne superconducting heavy ion booster

    International Nuclear Information System (INIS)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit

  20. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  1. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    International Nuclear Information System (INIS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-01-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  2. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  3. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  4. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  5. Role of giant resonance excitation in heavy ion collisions

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.

    1987-01-01

    In this paper we discuss several aspects of heavy ion collisions involving collective vibrational modes. In our approach the relative motion is treated in a semiclassical approximation, while the intrinsic degrees of freedom are described microscopically within the RPA. The differences with respect to macroscopic models are analyzed in the appendix. First we present some results on the inelastic scattering cross section and we show that the structures observed experimentally can be explained in terms of multiple excitation of the Giant Quadrupole Resonance. After we calculate an adiabatic polarization potential describing the coupling to the collective vibrational modes and show that it produces a strong enhancement of the subbarrier fusion cross section. This enhancement is found to be enough to reproduce the experimental data for symmetric systems, while for asymmetric reactions the coupling to other degrees of freedom, like transfer, is needed. Finally we report some preliminary results on a dynamical calculation of the real and imaginary parts of the polarization potential. We show that at high incident energies (E/A > 20MeV) the role of the Giant Quadrupole Resonance becomes dominant

  6. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  8. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  9. Inclusive reconstruction of hadron resonances in elementary and heavy-ion collisions with HADES

    Directory of Open Access Journals (Sweden)

    Kornakov Georgy

    2016-01-01

    Full Text Available The unambiguous identification of hadron modifications in hot and dense QCD matter is one of the important goals in nuclear physics. In the regime of 1 - 2 GeV kinetic energy per nucleon, HADES has measured rare and penetrating probes in elementary and heavy-ion collisions. The main creation mechanism of mesons is the excitation and decay of baryonic resonances throughout the fireball evolution. The reconstruction of shortlived (≈ 1 fm/c resonance states through their decay products is notoriously difficult. We have developed a new iterative algorithm, which builds the best hypothesis of signal and background by distortion of individual particle properties. This allows to extract signals with signal-to-background ratios of <1%.

  10. Inclusive reconstruction of hadron resonances in elementary and heavy-ion collisions with HADES

    Science.gov (United States)

    Kornakov, Georgy

    2016-11-01

    The unambiguous identification of hadron modifications in hot and dense QCD matter is one of the important goals in nuclear physics. In the regime of 1 - 2 GeV kinetic energy per nucleon, HADES has measured rare and penetrating probes in elementary and heavy-ion collisions. The main creation mechanism of mesons is the excitation and decay of baryonic resonances throughout the fireball evolution. The reconstruction of shortlived (≈ 1 fm/c) resonance states through their decay products is notoriously difficult. We have developed a new iterative algorithm, which builds the best hypothesis of signal and background by distortion of individual particle properties. This allows to extract signals with signal-to-background ratios of <1%.

  11. Design of the compact ECR ion source for heavy-ion therapy

    International Nuclear Information System (INIS)

    Muramatsu, M.; Kitagawa, A.; Sato, S.; Sato, Y.; Yamada, S.; Hattori, T.; Shibuya, S.

    1999-01-01

    Heavy ion cancer treatment is successfully being done at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Design philosophy for the ion sources for medical facilities are as follows: sufficient beam intensity, a few hundred eμA; long lifetime with good stability; easy operation and easy maintenance; and compactness. In order to develop such source for future heavy-ion facilities, we have tested compact electron cyclotron resonance (ECR) ion sources using permanent magnets both for axial and radial confinement of hot electrons. Since the yield of C 2+ ion in the firstly-developed source (2.45 GHz ECR) was 15 eμA and far below the medical requirement (-150 eμA for the HIMAC), a new source has been proposed, having the frequency of 10 GHz. The extracted intensity of C 4+ (and C 2+ ) ions is expected to be higher than 200 eμA. (author)

  12. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  13. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  14. Low frequency RFQ linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Moretti, A.; Watson, J.M.; Martin, R.L.; Lari, R.J.; Stockley, R.L.

    1982-01-01

    Low frequency, radio frequency quadrupole (RFQ) structures are under study at Argonne National Laboratory (ANL) as the low-velocity portion of an rf linac driver for heavy ion inertial confinement fusion. Besides offering a direct comparison with the present ANL front end, it would provide a second low-velocity Xe +1 linac for funneling experiments at 22.9 MeV. Heavy ion RFQ accelerators are characterized by their low rf operating frequency of about 10 MHz. The large size of a manifold-fed four-vane, 10 MHz RFQ resonator structure (about 6 m in diameter) makes it unacceptable for heavy ions; therefore, alternate structures are under study at Argonne. The structures under study are: (1) a Wideroe-type structure with external stub lines, (2) a Wideroe-type structure with the stub lines internal to the structure, (3) a split coaxial line resonator with modulated vanes, and (4) a interdigital line resonator with modulated cylindrical rods. The split coaxial line resonator seems best at this low frequency. It is compact and very efficient. About 15.5 m of linac structure excited with 560 kW of rf power is sufficient to accelerate 30 mA of Xe +1 with 97% transmission efficiency from 250 keV to 3 MeV

  15. Behavioral effects of heavy ions and protons and potential countermeasure agents

    Science.gov (United States)

    Vazquez, M.; Gatley, J.; Bruneus, M.; Koslosky, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56 Fe, which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Exposure to HZE radiation may therefore cause progressive deterioration of brain function, adding to other inescapable damage involved in normal aging. We propose a study of the hypothesis that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron and silicon particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Our principal goal is to examine the neurological effects of high-LET radiation on C57BL/6 mice using a series of behavioral tests to unveil the temporal expression of altered behaviors in the radiation response, as well as the means, which can modulate these responses. The studies planned in this project are designed to: 1) Characterize the behavioral consequences after exposure to low-fluences of heavy ions and protons on C57BL/6 mice. The main behavioral endpoints to be used in these studies are locomotor activity to evaluate the integrity of striatal dopaminergic pathways, and spatial reference memory to probe hippocampal cholinergic pathways. 2) Characterize the neurochemical and structural changes induced by heavy ions and protons. 3) To develop countermeasures to protect neural cell populations exposed to low fluences of heavy ions and protons. The project will test methods to protect injured neural cells based on their molecular and cellular mechanisms that may regulate neural cell survival in the central nervous system. Among the methods that will be studied is the direct administration of neuroprotective molecules as well as the modulation of apoptotic pathways by pharmacological

  16. Effects of heavy-ion exposure to rat's hypothalamus on the copulatory behavior

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Kawata, Tetsuya; Liu, C.; Kan'o, Momoe; Ito, Hisao; Takai, Nobuhiko; Ando, Koichi

    2005-01-01

    The effect of heavy-ion irradiation to brain on sexual behavior is not yet known. The present study was designed to determine whether irradiation (carbon particles 290 MeV/nucleon, Mono peak 15∼120 Gy, irradiation field 5-millimeter cube in hypothalamus) to rat's hypothalamus modifies the copulatory behavior of male rats. For the first year, we planned to estimate the short-term effects of carbon-irradiation on the copulatory behavior using a relatively high doses, and observation of sexual behavior was conducted for 30 min after 1, 2 or 3 months following irradiation. Results obtained in the first year are as follows. At dosages of 15 Gy, 30 Gy, 45 Gy and 60 Gy these were no changes in copulatory behavior after one month following irradiation; however, the intromission and ejaculation was found to decrease after 3-month follow-up in rats exposed to 60 Gy. At higher doses such as 90 Gy, 120 Gy, the number of mounting, intromission (120 Gy alone) and ejaculation (90 Gy, 120 Gy) were decreased. It may be possible to describe that carbon irradiation to hypothalamus does not inhibit the activity of copulatory behavior after short-term. Further experiments after long-term follow-up after irradiation are necessary to determine the chronic effects of heavy ions on the copulatory behavior. (author)

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  18. Heavy-ion radiography and heavy-ion computed tomography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.

    1982-02-01

    Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis

  19. Parametric thermal analysis of 75 MHz heavy ion RFQ

    International Nuclear Information System (INIS)

    Mishra, N.K.; Mehrotra, N.; Verma, V.; Gupta, A.K.; Bhagwat, P.V.

    2015-01-01

    An ECR based Heavy Ion Accelerator comprising of a superconducting Electron Cyclotron Resonance (ECR) Ion Source, normal conducting RFQ (Radio Frequency Quadrupole) and superconducting Niobium resonators is being developed at BARC under XII plan. A state-of-the-art 18 GHz superconducting ECR ion source (PK-ISIS) jointly configured with Pantechnik, France is operational at Van-de-Graaff, BARC. The electromagnetic design of the improved version of 75 MHz heavy ion RFQ has been reported earlier. The previous thermal study of 51 cm RFQ model showed large temperature variation axially along the vane tip. A new coolant flow scheme has been worked out to optimize the axial temperature gradient. In this paper the thermal analysis including parametric study of coolant flow rates and inlet temperature variation will be presented. (author)

  20. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  1. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.

    1983-01-01

    High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac

  2. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  3. Accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Sawyer, G.A.

    1980-01-01

    Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition

  4. Mechanisms for pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pfeiffer, M.

    1991-01-01

    In the following contribution some aspects concerning pion production in heavy ion collisions will be discussed. After a general introduction the properties of pions and the Δ-resonance will be briefly mentioned. In the following section some points refering to the pion production in a relativistic heavy ion collision will be discussed. In addition, the basic ideas of the applied models will be shown. In the last part results from existing experiments and possible interpretations will be presented. (orig.)

  5. Effects of heavy-ion exposure to rat's hypothalamus on the copulatory behavior

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Uno, Takashi; Kawata, Tetsuya; Liu, C.; Kan'o, Momoe; Okamura, Junko; Ito, Hisao; Takai, Nobuhiko; Ando, Koichi

    2006-01-01

    The present study was designed to determine whether irradiation (carbon particles 290 MeV/nucleon, Mono Peak 30-60 Gy, irradiation field 5 mm cube in hypothalamus) to hypothalamus modifies the copulatory behavior of male rats. By the second year, we studied the chronic effects for heavy ions on the copulatory behavior. In addition, the influence of heavy ions to cortex (irradiation field width and depth 5 mm, respectively) was studied. The copulatory items were recorded: frequency number of mounting, intromission and ejaculation during 30 min after 1, 3 and 6-7 months following irradiation. Results are as follows. At 60 Gy to hypothalamus, the frequency number of intromission and ejaculation was decreased from one month to 7 months following irradiation. Particularly, suppression for the copulatory behavior was recognized in 3 and 4 months after irradiation. At 3 and 4 months after 60 Gy irradiation, the frequency number of ejaculation was decreased in comparison with non-irradiated (control) male rats. At 45 Gy to hypothalamus or cortex, the frequency number of ejaculation was decreased after one month (Both sides of hypothalamus and cortex) and 3 months (Only as for hypothalamus) following irradiation. At 30 Gy to cortex, the frequency number of ejaculation was similar but irradiation to hypothalamus decreased it 3 months following irradiation. (author)

  6. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    Warner, D.; Angert, N.; Bourgarel, M.P.; Brouzet, E.; Cappi, R.; Dekkers, D.; Evans, J.; Gelato, G.; Haseroth, H.; Hill, C.E.; Hutter, G.; Knott, J.; Kugler, H.; Lombardi, A.; Lustig, H.; Malwitz, E.; Nitsch, F.; Parisi, G.; Pisent, A.; Raich, U.; Ratzinger, U.; Riccati, L.; Schempp, A.; Schindl, K.; Schoenauer, H.; Tetu, P.; Umstaetter, H.H.; Rooij, M. van; Weiss, M.

    1993-01-01

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208 Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208 Pb 53+ , the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208 Pb 82+ ions to 177 GeV/u, delivering a beam of 4.10 8 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  7. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  8. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  9. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  10. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  11. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  12. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    Science.gov (United States)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  13. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    Science.gov (United States)

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  14. Thermal, chemical and spectral equilibration in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Wolf, György, E-mail: wolf.gyorgy@wigner.mta.hu [Wigner RCP, Budapest (Hungary)

    2015-11-15

    We have considered the equilibration in relativistic heavy ion collisions at energies 1–7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20–40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff–Baym equations employed via the (local) gradient expansion.

  15. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  16. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  17. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  18. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  19. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  20. Slowing down of relativistic heavy ions and new applications

    International Nuclear Information System (INIS)

    Geissel, H.; Scheidenberger, C.

    1997-10-01

    New precision experiments using powerful accelerator facilities and high-resolution spectrometers have contributed to a better understanding of the atomic and nuclear interactions of relativistic heavy ions with matter. Experimental results on stopping power and energy-loss straggling of bare heavy projectiles demonstrate large systematic deviations from theories based on first order perturbation. The energy-loss straggling is more than a factor of two enhanced for the heaviest projectiles compared to the relativistic Bohr formula. The interaction of cooled relativistic heavy ions with crystals opens up new fields for basic research and applications, i. e., for the first time resonant coherent excitations of both atomic and nuclear levels can be measured at the first harmonic. The spatial monoisotopic separation of exotic nuclei with in-flight separators and the tumor therapy with heavy ions are new applications based on a precise knowledge of slowing down. (orig.)

  1. Implementation of TTIK method and time of flight for resonance reaction studies at heavy ion accelerator DC-60

    Energy Technology Data Exchange (ETDEWEB)

    Nurmukhanbetova, A.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Goldberg, V.Z. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Nauruzbayev, D.K. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Saint Petersburg State University, Saint Petersburg (Russian Federation); Rogachev, G.V. [Cyclotron Institute, Texas A& M University, College Station, TX (United States); Golovkov, M.S. [Joint Institute of Nuclear Research, Dubna (Russian Federation); Dubna State University, Dubna (Russian Federation); Mynbayev, N.A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Artemov, S.; Karakhodjaev, A. [Institute of Nuclear Physics, Tashkent (Uzbekistan); Kuterbekov, K. [L.N. Gumilov Eurasian National University, Astana (Kazakhstan); Rakhymzhanov, A. [National Laboratory Astana, Nazarbayev University, Astana 010000 (Kazakhstan); Berdibek, Zh. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, Astana (Kazakhstan); Tikhonov, A. [School of Science and Technology, Nazarbayev University, Astana (Kazakhstan); Zherebchevsky, V.I.; Torilov, S. Yu. [Saint Petersburg State University, Saint Petersburg (Russian Federation); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX (United States)

    2017-03-01

    To study resonance reactions of heavy ions at low energy we have combined the Thick Target Inverse Kinematics Method (TTIK) with Time of Flight method (TF). We used extended target and TF to resolve the identification problems of various possible nuclear processes inherent to the simplest popular version of TTIK. Investigations of the {sup 15}N interaction with hydrogen and helium gas targets by using this new approach are presented.

  2. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  3. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  4. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  5. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  6. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  7. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  8. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  9. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  10. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  11. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  12. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  13. Heavy stable isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.; Compant La Fontaine, A.; Larousse, B.; Patris, M.

    1994-01-01

    The scientific feasibility of the ion cyclotron resonance process (ICR), as well as the technical one, has been investigated carefully for light metallic elements, whose masses lies between 40 and 100/1,2/. The present work deals mainly with the same demonstration for heavier elements such as ytterbium, gadolinium and barium. Recent results, as well as future prospects, are considered here. (authors)

  14. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  15. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  16. Total and differential cross sections for pion production via coherent isobar and giant resonance formation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1985-01-01

    A quantal many-body formalism is presented that investigates pion production through the coherent formation of a nucleonic isobar in the projectile and its subsequent decay to various pion charge states along with concomitant excitation of the target to a coherent spin-isospin giant resonance via a peripheral collision of relativistic heavy ions. Total cross sections as a function of the incident energy per nucleon and Lorentz-invariant differential cross sections as a function of pion energy and angle are calculated. It is shown that the pion angular distributions, in coincidence with the target giant resonance excitations, might provide a well-defined signature for these coherent processes

  17. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  18. Beam modulation for heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Kanai, T.; Minohara, S.; Sudou, M.

    1993-01-01

    The first clinical trial of heavy ion radiation therapy is scheduled in 1994 by using the heavy ion medical accelerator in Chiba (HIMAC). In order to start the clinical trial, first, it is necessary to know the physical characteristics of high energy heavy ions in human bodies, for example, dose and linear energy transfer (LET) distribution. Also the knowledge on the biological effectiveness of heavy ions is required. Based on these biophysical properties of heavy ions, monoenergetic heavy ion beam should be modulated so as to make the spread Bragg peak suitable to heavy ion radiation therapy. In order to establish a methodology to obtain the most effective spread Bragg peak for heavy ion radiation therapy, a heavy ion irradiation port at the RIKEN ring cyclotron facility was constructed. By using a 135 MeV/u carbon beam, the biophysical properties of the heavy ions were investigated, and a range modulator was designed to have uniform biological response in the spread Bragg peak. The physical and biological rationality of the spread Bragg peak were investigated. The dose, LET and biological effect of a monoenergetic heavy ion beam, the design of the range modulator, and the distributions of LET and biological dose for the spread Bragg peak are reported. (K.I.)

  19. Effect of heavy ion irradiation on sucrose radical production

    International Nuclear Information System (INIS)

    Nakagawa, Kouichi; Sato, Yukio

    2004-01-01

    We investigated sucrose radicals produced by heavy-ion irradiation with various LETs (linear energy transfer) and the possibility for a sucrose ESR (electron spin resonance) dosimeter. The obtained spectral pattern was the same as that for helium (He) ions, carbon (C) ions, neon (Ne) ions, argon (Ar) ions, and iron (Fe) ions. Identical spectra were measured after one year, but the initial intensities decreased by a few percent when the samples were kept in ESR tubes with the caps at ambient temperature. The total spin concentration obtained by heavy-ion irradiation had a linear relation with the absorbed dose, and correlated logarithmically with the LET. Qualitative ESR analyses showed that the production of sucrose radicals depended on both the particle identity and the LET at the same dose. The production of spin concentration by He ions was the most sensitive to LET. Empirical relations between the LET and the spin yield for various particles imply that the LET at a certain dose can be estimated by the spin concentration. (authors)

  20. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  1. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  2. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  3. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  4. Applications of heavy-ion reactions on hydrogen isotopes

    International Nuclear Information System (INIS)

    Evers, E.J.

    1987-01-01

    This thesis describes various aspects of 'inverse' reactions between the lightest nuclides, hydrogen and deuterium, and heavy ions in the range from carbon to phosphorus. The reactions studied in this thesis always result in one light ejectile and one excited heavy nucleus. Coincidence experiments have been performed in which both the emitted light particle and the gamma radiation emitted by the excited heavy nucleus produced, are detected. Ch. 1 describes the system built for the acquisition of data obtained in such coincidence experiments. Ch. 2 describes precision measurements of nuclear lifetimes and stopping powers. Coincident Doppler shift attenuation (DSA) experiments were performed with the reaction 2 H( 31 P,pγ) 32 P at E( 31 P 7+ )=50 MeV and thin Ti 2 H targets on Au, Ag and Cu backings. Mean lifetimes of the E x =513, 1150, 1323 and 1755 levels were determined with experimental stopping powers of Forster et al. These lifetimes were used as input in further analysis of the experimental data and of an additional experiment with a target on Mg backing to determine a consistent set of stopping power data for P ions with a velocity in the range 0-8(c/137) in the four materials mentioned. Ch.'s 3 and 4 deal with narrow resonances in reactions of nitrogen and fluorine beams with hydrogen targets. In Ch. 3 a method is described for the calibration of analyzing-magnet systems of heavy-ions accelerators. Ch. 4 describes an experiment to investigate the hydrogen concentration in silicon nitride films using a resonant inverse nuclear reaction. This method turns out to be a very suitable one for determining hydrogen concentration profiles with a good depth resolution over a large depth. 69 refs.; 23 figs.; 7 tabs

  5. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  6. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  7. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  8. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  9. Proposal for a heavy ion ECR-source at the PSI-Philips cyclotron

    International Nuclear Information System (INIS)

    Kern, J.

    1989-10-01

    It is proposed by a large community of PSI- and external scientists to install an electron cyclotron resonance (ECR) source for highly charged heavy ions at the PHILIPS (injector I) cyclotron. Such a facility would then allow to produce high intensity ion beams with energies up to 30 MeV/u. A workshop hold in June 1989 clearly showed that with such a machine a large variety of interesting heavy ion experiments could be performed. While at foreign heavy ion centres the main focus is given to basic research in the field of nuclear physics we propose to concentrate the scientific effort at a PSI heavy ion facility mainly onto applications in the fields of atomic physics, chemistry, accelerator mass spectrometry, radiation biology and solid state physics. This is adequate, in view of the broad infrastructure available at PSI together with the existing know-how in many different fields. The proposed machine will thus be of great potential use for a large community. (author) 19 figs., 3 tabs., 82 refs

  10. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  11. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  12. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  13. Response of the GLAST LAT calorimeter to relativistic heavy ions

    International Nuclear Information System (INIS)

    Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; D'Avezac, P.; Dumora, D.; Giovinazzo, J.; Grove, J.E.; Hellstroem, M.; Jacholkowska, A.; Johnson, W.N.; Nuss, E.; Reposeur, Th.; Smith, D.A.; Suemmerer, K.

    2006-01-01

    The CsI calorimeter of the Gamma-Ray Large-Area Space Telescope (GLAST) will be calibrated in flight with cosmic-ray heavy ions. In order to determine the response of the calorimeter to relativistic heavy ions lighter than Fe, an experiment was carried out at the GSI heavy ion facility using the Fragment Separator (FRS). The measured response exhibits an unexpected feature for light ions, opposite to that observed at low incident energy: for a given deposited energy, the observed signal is greater for these ions than for protons (or more generally Z=1 minimum ionizing particles). Pulse shapes are found to be almost identical for carbon ions and Z=1 particles, with a significant slow scintillation component, which constitutes another departure from the low-energy behavior. Data on the energy resolution for the individual CsI crystals and on the loss of ions due to nuclear reactions in the calorimeter are also presented

  14. Heavy ion medical accelerator, HIMAC

    International Nuclear Information System (INIS)

    Yamada, Satoru

    1993-01-01

    The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)

  15. Charmed baryonic resonances in medium

    Directory of Open Access Journals (Sweden)

    Tolos Laura

    2015-01-01

    Full Text Available We discuss the behavior of dynamically-generated charmed baryonic resonances in matter within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyze the implications for the formation of D-meson bound states in nuclei and the propagation of D mesons in heavy-ion collisions from RHIC to FAIR energies.

  16. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  17. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    Science.gov (United States)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  18. Inelastic heavy ion scattering on 90Zr and 208Pb at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Beaumel, D.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C.; Roynette, J.C.; Scarpaci, J.A.; Suomijarvi, T.

    1988-01-01

    Heavy ion inelastic scattering has been investigated using the SPEG spectrometer at GANIL. It is shown that the use of such a high resolution spectrometer allows a quantitative study of the giant resonances excited in heavy ion collisions. The contribution of the pick-up break-up mechanism to the high excitation energy region (E > 30 MeV) is then discussed. Recent results obtained with 40 Ar beams at two different incident energies show that target excitations are also present in this energy region

  19. The threshold anomaly for heavy-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Satchler, G.R.

    1987-01-01

    The real parts of optical potentials deduced from heavy-ion scattering measurements become rapidly more attractive as the bombarding energy is reduced close to the top of the Coulomb barrier. This behavior is explained as a coupled-channels effect, and is related to the corresponding reduction in the absorptive potential through a dispersion relation which expresses the consequences of causality. Another manifestation of this ''anomaly'' is the striking enhancement observed for the near- and sub-barrier fusion of two heavy ions. The barrier penetration model of fusion is examined critically in this context. It is also stressed that similar anomalies could appear in the energy dependence of nonelastic scattering. 21 refs., 4 figs.

  20. Nuclear physics with heavy ions. 1

    International Nuclear Information System (INIS)

    Reif, R.; Schmidt, R.

    1981-01-01

    Some results obtained in nuclear physics with heavy ions in the energy range up to 10 MeV/nucleon are summarized. A short review of the tendencies in the development of heavy ion accelerators is followed by a classification of the mechanisms observed in heavy ion interactions. The characteristics of the various types of reactions are presented. Applications of heavy ion beams in other branches of sciences are discussed. (author)

  1. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  2. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  3. Observation of the ion resonance instability

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Notte, J.; Fajans, J.

    1993-01-01

    Observation of the ion resonance instability in a pure electron plasma trap contaminated with a small population of ions is reported. The ion population is maintained by ionization of the background gas. The instability causes the plasma to move steadily off-center while undergoing l=1 diocotron oscillations. The observed scaling of the maximum growth point is presented, and the growth rate and its dependence on ion density are discussed. Several aspects of the observed behavior are not in agreement with previous theory but derive from the transitory nature of the ion population

  4. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Investigated the optical properties of BiFeO_3 (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO_3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au"9"+ ions at a fluence of 1 × 10"1"2 ions cm"−"2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  5. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  6. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  7. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    Science.gov (United States)

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  8. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  9. Heavy-ion radiography

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.

    1981-01-01

    Heavy-particle radiography has clinical potential as a newly developed noninvasive low-dose imaging procedure that provides increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high-energy ions, primarily carbon and neon, at the Bevalac accelerator at the Lawrence Berkeley Laboratory. The research program for medicine utilizes heavy-ion radiography for low-dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures, brain and spinal neoplasms, and the heart. The potential of heavy-ion imaging, and particularly reconstruction tomography, is now proving to be an adjunct to existing diagnostic imaging procedures in medicine, both for applications to the diagnosis, management and treatment of clinical cancer in man, and for the early detection of small soft-tissue tumors at low radiation dose

  10. A linear postaccelerator with superconducting helix resonators for medium mass ions

    International Nuclear Information System (INIS)

    Ingwersen, H.; Jaeschke, E.; Repnow, R.; Walcher, T.; Hochschild, G.; Lehmann, W.; Piosczyk, B.; Spath, F.; Vetter, J.E.

    1978-05-01

    The concept is presented of a linear accelerator equiped with short superconducting resonators as accelerating elements. Saving high-frequency power remarkably reduces the operating costs as compared with normal conducting resonators. Booster systems of this type can be used to further accelerate medium heavy ions having passed on MP tandem after their charge state has been increased. (orig.) 891 WL [de

  11. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  12. Heavy ions at steamboat: summary of parallel sessions

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1984-01-01

    The interest in heavy ions at the intersection between particle and nuclear physics is motivated by the opportunity for an entirely new approach to the understanding of fundamental interactions by studying extreme states of nuclear matter. At this conference we have seen important new results on some of the central issues including: (1) how well can we predict the landscape of the extremes - that is, the phase structure of QCD and nuclear matter; (2) can we explore it with heavy ion collisions; and (3) can we recognize the appearance of new terrain. Our present understanding of the behavior of nuclear matter under extreme conditions is briefly discussed. 16 references

  13. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  14. Electron-cloud simulation and theory for high-current heavy-ion beams

    Directory of Open Access Journals (Sweden)

    R. H. Cohen

    2004-12-01

    Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  15. Review of high energy heavy ion experiments

    International Nuclear Information System (INIS)

    Miake, Yasuo

    2000-01-01

    It has been proposed that in high energy heavy ion collisions a physical conditions similar to the early stage of the Universe can be established in the laboratory. New phase of matter expected to be created is called the quark gluon plasma (QGP). Based on the motivation to create the QGP in the laboratory, heavy ion beams have been accelerated at AGS of Brookhaven National Laboratory and also at CERN-SPS. Several interesting features of the data have been reported, among which are: the suppression of J/ψ production in Pb+Pb collisions, the enhancement of low mass lepton pairs, and the collective behavior of hadron production. These features are reviewed under the key words of Deconfinement, Chiral Restoration and Collectivity in the lecture. (author)

  16. Manifestation of exchange effects in heavy-ion interactions

    International Nuclear Information System (INIS)

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2011-01-01

    Three different approaches to taking into account exchange effects in heavy-ion collisions are studied. Within the first of them, the lowest eigenstates of the Hamiltonian are treated as forbidden states. In the second approach, the eigenstates of the normalization kernel of the resonating-group model that correspond to zero eigenvalues are treated as forbidden states. The third approach takes additionally into account semiforbidden states. The 16 O + 16 O system is considered. A hybrid approach that combines the methods of discrete and continuous mathematics is developed for calculating the widths of narrow resonance states. The resonance width calculated within the approach that takes into account semiforbidden states proves to be sharply different from the widths obtained within traditional approaches.

  17. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  18. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  19. Superconducting heavy-ion linac at Argonne

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users

  20. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  1. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  2. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  3. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  4. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  5. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  6. Results of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists

  7. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  8. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  9. Funny hills in pion spectra from heavy-ion collisions

    International Nuclear Information System (INIS)

    Rasmussen, J.O.

    1982-03-01

    A discussion of some of the systematic features of the pion spectra in heavy-ions reactions is given. A discussion of the hills and valleys in heavy ion pion spectra that show up at the lower pion energies is given. The following topics are discussed: (1) three kinds of funny hills; (2) π - / + ratios near center of mass; (3) new Monte Carlo studies of charged pion spectra; and (4) pion orbiting about fireballs and Bose-Einstein behavior as explanation for the mid-rapidity P/sub perpendicular to/ approx. = 0.4 to 0.5 m/sub π/c hill

  10. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2017-09-01

    Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  11. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  12. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  13. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    Science.gov (United States)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  14. Spiral loaded cavities for heavy ion acceleration

    International Nuclear Information System (INIS)

    Schempp, A.; Klein, H.

    1976-01-01

    A transmission line theory of the spiral resonator has been performed and the calculated and measured properties will be compared. Shunt impedances up to 50 MΩ/m have been measured. In a number of high power tests the structure has been tested and its electrical and mechanical stability has been investigated. The static frequency shift due to ponderomotoric forces was between 0.2 and 50 kHz/kW dependent on the geometrical parameters of the spirals. The maximum field strength obtained on the axis was 16 MV/m in pulsed operation and 9.2 MV/m in cw, corresponding to a voltage gain per cavity of up to 0.96 MV. The results show that spiral resonators are well suited as heavy ion accelerator cavities. (author)

  15. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  16. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  17. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao; Yang, Zhimei; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2016-09-15

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  18. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  19. ECR heavy-ion source for the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.

    1983-03-01

    An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years

  20. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  1. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  2. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  3. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  4. Theory of nuclear excitation by electron capture for heavy ions

    International Nuclear Information System (INIS)

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-01

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems

  5. Simulation of transient effects in the heavy ion fusion injectors

    International Nuclear Information System (INIS)

    Chen, Y.J.; Hewett, D.

    1993-01-01

    The authors have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced

  6. Simulation of transient effects in the heavy ion fusion injectors

    Science.gov (United States)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  7. International cooperation in heavy-ion research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1980-01-01

    The rapidly growing research applications of heavy ions in basic biology and medicine have stimulated interest in this field in many countries. LBL, with its unique facilities and its scientific programs, is the focal point of interest. Plans are underway in several countries, including France, Japan, West Germany, and Canada, to build heavy-ion facilities, and to collaborate with our staff at LBL in heavy-ion research in physics, biology, and medicine

  8. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  9. Science and art in heavy-ion collisions

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1982-01-01

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF

  10. Heavy ion coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Olive, D.H.; Varner, R.L.; Sherrill, B.; Thoennessen, M.; Lautridou, P.; Lefevre, F.; Marques, M.; Matulewicz, T.; Mittig, W.; Ostendorf, R.; Roussel-Chomaz, P.; Schutz, Y.; Pol, J. van; Wilschut, H.W.; Diaz, J.; Ferrero, J.L.; Marin, A.

    1994-01-01

    Projectile - phonon coincidences were measured for the scattering of an 80 MeV/nucleon 64 Zn beam from 208 Pb and 209 Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5 and 4.5 relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF 2 scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei. (orig.)

  11. Conserved charge fluctuations using the D measure in heavy-ion collisions

    Science.gov (United States)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  12. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  13. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  14. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  15. Pion production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Norbury, J.W.

    1983-01-01

    A Lorentz-invariant differential cross section for pion production in peripheral, relativistic, heavy ion collisions is calculated for the collisions of an 16 O projectile onto a 12 C target. The pions are produced via excitations of a Δ(3,3) resonant state in the projectile with simultaneous excitation of an M1 giant resonance in the target. A second order amplitude describing resonance formation and decay is derived within the context of second order, time-dependent perturbation theory and a corresponding transition rate is evaluated. This is then applied to the problem of pion production and a differential cross section is calculated using a simple product-of-states model. The whole theory is then re-formulated within a second quantized particle-hole model which describes the basic process of M1 giant resonance formation as well as the formation and decay of the intermediate Δ(3,3) resonance. Subsequently, a new Lorentz-invariant differential cross section is calculated from the particle-hole amplitude. The theoretical cross section is compared with some experimental data and the agreement is found to be satisfactory given the nature of the data and the assumptions of the theory

  16. Studies on the electrochemical behavior of heavy lanthanide ions and the synthesis, characterization of heavy metal chelate complexes

    International Nuclear Information System (INIS)

    Kang, Sam Woo; Chang, Choo Hwan; Son, Byung Chan; Suh, Moo Yul; Kim, Chae Kyun

    1991-01-01

    Electrochemical behavior of some heavy lanthanide ions(Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ and Lu 3+ ) in various supporting electrolytes has been investigated by dc polarography, differential pulse polarography and cyclic voltammetry. The peak potentials and the peak currents, their dependency on the concentration and pH effects, the reversibility of the electrode reactions are described. The reduction of Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Lu 3+ ions in 0.1M lithium chloride solution proceeds by a three-electron change directly to the metallic state, whereas the reduction of Yb 3+ proceeds by a one-electron change followed by a two-electron change. It was found that, in differential pulse polarography and cyclic voltammetry, the peak potential, peak current and current function showed constant value in the pH range of 4.0-6.0 by varying pH and scan rates. And also the current function is found to decrease as the sweep rate is increased when the pH reaches 4.0. This fact may indicate a chemical reaction coupled with the electrochemical reaction at lower pH values(pH 3+ ion is possible to determine voltammetrically within the error of ±3.5% in the presence of other competitive lanthanide ions. (Author)

  17. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  18. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  19. Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM

    Science.gov (United States)

    Can, Nursel; Aǧar, Meltem; Altındal, Ahmet

    2016-03-01

    Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.

  20. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  1. Scaling laws for simple heavy ion targets

    International Nuclear Information System (INIS)

    Gula, W.P.; Magelssen, G.R.

    1981-01-01

    We have examined the behavior of single shell DT gas filled spherical targets irradiated by a constant power heavy ion beam pulse. For targets in which the ion range is less than the shell thickness, our computational results suggest that the target can be divided into three regions: (1) the absorber (100 to 400 eV for the energies we have considered), (2) the cold pusher (a few eV), and (3) the DT gas fuel. We have examined the pusher collapse time, velocity, and maximum kinetic energy variations as functions of the various target parameters and ion beam energy. The results are expressed in analytic terms and verified by computer simulation

  2. Therapy tumor with the heavy ions beam

    International Nuclear Information System (INIS)

    Dang Bingrong; Wei Zengquan; Li Wenjian

    2002-01-01

    As physical characteristic of heavy ions Bragg peak, therapy tumor with heavy ions is becoming advanced technology. So, many countries have developed the technology and used to treat tumor, the societal and economic effects are beneficial to people. The authors show the development, present situation and information of research in world of advanced radiotherapy with heavy ions

  3. Towards the heavy-ion program at J-PARC

    International Nuclear Information System (INIS)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P.K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-01-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10 10 –10 11  Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed

  4. Towards the heavy-ion program at J-PARC

    Science.gov (United States)

    Sako, H.; Chujo, T.; Gunji, T.; Harada, H.; Imai, K.; Kaneta, M.; Kinsho, M.; Liu, Y.; Nagamiya, S.; Nishio, K.; Ozawa, K.; Saha, P. K.; Sakaguchi, T.; Sato, S.; Tamura, J.

    2014-11-01

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 1010-1011 Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  5. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  6. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  7. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W. [Accelerator Engineering Corporation, Chiba (Japan); Biri, S.; Rácz, R. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Kato, Y. [Graduate School of Engineering, Osaka University, Osaka (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe (Japan)

    2016-02-15

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  8. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  9. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  10. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  11. Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions

    CERN Document Server

    Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav

    2018-01-01

    This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

  12. Excitation of the Δ resonance in heavy ion charge exchange reactions

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1987-06-01

    Results on the Δ excitation by heavy ion charge exchange are presented. 900 MeV per nucleon 12 C, 16 0, 20 Ne and 1100 MeV per nucleon 12 C have been used. The Δ excitation strength depends on the projectile - ejectile nature and on the incident energy. The role of the target mass is also discussed. The peak for the Δ in nuclei is energy shifted from the free Δ peak

  13. Heavy-ion mammography and breast cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Holley, W.R.; Woodruff, K.H.; Sickles, E.A.

    1980-01-01

    Heavy-ion radiography is a new diagnostic imaging technique developed in our laboratory that produces superior density resolution at low radiation doses. Heavy-ion mammography has now emerged as a low-dose, safe, reliable, noninvasive diagnostic radiological procedure that can quantitate and image very small differences in soft tissue densities in the breast tissues of patients with clinical breast disease. The improved density resolution of heavy-ion mammography over conventional X-ray mammography and breast xerography provides the potential of detecting small breast cancers of less than 1 cm diameter. The radiation dose to the breast from carbon-ion mammorgraphy is about 50 mrad or less, and can potentially be only a fraction of this level. The results of the present clinical trial in progress of heavy-ion mammography in 37 patients, thus far studied, are extremely encouraging, and warrant continued study for application to the early diagnosis of breast cancer in women

  14. Heavy ion acceleration at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (∼10 -8 Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (∼10 -11 Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs

  15. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  16. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  17. Heavy-ion acceleration with a superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a 19 F beam from the tandem, and by September 1978 a 5-resonator linac provided an 16 O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs

  18. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.

  19. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Fabrikant, J.I.; Holley, W.R.; Tobias, C.A.; Castro, J.R.

    1980-01-01

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  20. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    Science.gov (United States)

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  1. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  2. Swift Heavy Ions in Matter

    Science.gov (United States)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  3. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  4. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  5. Long term performance of the superconducting cavities of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Cauvin, B.; Desmons, M.; Girard, J.; Letonturier, P.

    1993-12-01

    The Saclay heavy ion superconducting linac has been in operation at full energy since mid 1989. The 50 independent superconducting helix resonators have now accelerated beams for more than 20000 hours. The long term performances of the linac, and more specifically of the superconducting R.F. technology, are discussed: vibrations of the resonators, cryostat design and operation, beam time, vacuum accidents, multipactor during operation due to small leaks, stability of the electric fields, cryogenics operation. 4 figs., 6 refs

  6. Heavy-ion radiation chemistry

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1975-01-01

    New aspect of heavy ion radiation chemistry is reviewed. Experiment has been carried out with carbon ions and nitrogen ions accelerated by a 160 cm cyclotron of the Institute of Physical and Chemical Research. The results of experiments are discussed, taking into consideration the effects of core radius depending on heavy ion energy and of the branch tracks of secondary electrons outside the core on chemical reaction and the yield of products. The effect of core size on chemical reaction was not able to be observed, because the incident energy of heavy ions was only several tens of MeV. Regarding high radical density, attention must be given to the production of oxygen in the core. It is possible to produce O 2 in the core in case of high linear energy transfer (LET), while no production of O 2 in case of low LET radiation. This may be one of study problems in future. LET effects on the yield of decomposed products were examined on acetone, methyl-ethyl-ketone and diethyl ketone, using heavy ions (C and N) as well as gamma radiation and helium ions. These three ketones showed that the LET change of two gaseous products, H 2 and CO, was THF type. There are peaks at 50-70 eV/A in the yield of both products. The peaks suggest the occurrence of ''saturation'' in decomposition. Attention was drawn to acetone containing a small amount (2 wt.%) of H 2 O. H 2 O and CO produced from this system differ from those in the pure system. The hydrogen connection formed by such a small amount of H 2 O may mediate the energy transfer. Sodium acetate tri-hydrate produces CH 3 radical selectively by gamma-ray irradiation at 77 K. In this case, the production of CH 2 COO - increases with the increase of LET of radiation. This phenomenon may be an important study problem. (Iwakiri, K.)

  7. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  8. Relativistic heavy ion research at Berkeley

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The project of a superconducting synchrotron for heavy ions with 1 TeV/amu is described. In this connection the physics is discussed which can be studied by this accelerator. Furthermore, the HISS-heavy ion spectrometer system and the Plastic Ball detector are described. (HSI).

  9. Theory of nuclear excitation by electron capture for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gagyi-Palffy, A.

    2006-07-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)

  10. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  11. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  12. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.; Mainz Univ.

    2005-07-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ( 4 He.. 238 U). Excellent results with respect to energy resolution, ΔE/E ranging from 1 to 5 x 10 -3 even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of 236 U by one order of magnitude and to determine the up to date smallest isotope ratio of 236 U/ 238 U = 6.1 x 10 -12 in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also provides considerable advantage for X

  13. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  14. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Newton, J.O.

    1988-09-01

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  15. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  16. Improvement of highly charged ion production in the ECR source of heavy ions

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    Some physical limitations of the highly charged ion production in the ECR source are analyzed in this report. A few possible ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the numerical simulation of heavy ion production in the ECR ion source is used to examine these ways to improve the ECR source operation according to the CERN program of heavy ion acceleration. copyright 1996 American Institute of Physics

  17. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  18. Structure of heavy-ion tracks in zircon

    International Nuclear Information System (INIS)

    Braunshausen, G.; Bursill, L.A.; Vetter, J.; Spohr, R.

    1990-01-01

    Gem quality zirconas (ZrSiO 4 ) were irradiated with 14MeV/u Pb ions. Observations of heavy-ion tracks confirmed that fission or heavy-ion irradiation damage is confined to a 50-100 Aangstroem core region, which has undergone a crystalline-glass phase transition. 3 refs., 3 figs

  19. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  20. Research highlights from the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Plasil, F.

    1982-01-01

    The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of this conference, emphasis will be placed on nuclear reactions. A brief description of HHIRF is given, together with its current status. Microscopic aspects of reactions between nuclei are discussed with reference to the prospects for the study of giant resonances by means of heavy ions, and to studies of elastic and inelastic scattering of 60 Ni nuclei. Macroscopic aspects of nuclear reactions are illustrated by means of the study of collisions between 58 Ni nuclei at 15.1 MeV/u and by means of Spin Spectrometer (crystal ball) studies of the 19 F + 159 Tb reaction. Results are presented for lifetime measurements of high-spin states in ytterbium nuclei

  1. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5 degree LAB < 55 degree, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report

  2. Heavy Ion Physics at LHC

    CERN Document Server

    Valenti, G.

    2002-01-01

    The study of heavy ion interactions constitutes an important part of the experimental program outlined for the Large Hadron Collider under construction at CERN and expected to be operational by 2006. ALICE 1 is the single detector having the capabilities to explore at the same time most of the characteristics of high energy heavy ion interactions. Specific studies of jet quenching and quarkonia production, essentially related to µ detection are also planned by CMS 2 .

  3. Stopping power for heavy ions in low energy region

    International Nuclear Information System (INIS)

    Kitagawa, Mitsuo

    1983-01-01

    Review is made for the study on the power for stopping heavy ions. The studies on the power for stopping heavy ions passing through materials have been developed in the last twenty years due to the accuracy improvement in the data analysis of the power for stopping light ions, the requirement of data establishment on the power for stopping heavy ions from fusion research and the development of the experimental studies by heavy-ion accelerators. The relation between the analysis of the power for stopping heavy ions and the power for stopping light ions is described from the standpoint that the results on the power for stopping light ions serve as the guide for the study on the power for stopping heavy ions. Both at present and in future. The analysis of stopping power data with the accuracy from +-10 to 20 % is possible from the theoretical analysis of effective electric charge and its systematic table of the numerical data. The outline of the scaling rule on effective electric charge is discussed. The deviation of the experimental data from the scaling rule is discussed by comparing with the measured values of effective electric charge ratio. Various analyses of the power for stopping heavy ions are summarized. (Asami, T.)

  4. The Alice experiment for the study of ultra relativistic heavy ion collisions; Experience ALICE pour l'etude des collisions d'ions lourds ultra-relativistes au CERN-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, B

    2003-12-01

    Alice is the detector dedicated to the study of heavy ions at the LHC (large hadron collider). It will allow scientists to investigate all the signatures of quark-gluon plasma (QGP). The spectrometer of the dimuon arm of Alice has been designed to study the production of high mass resonances through their dimuon decay. The first chapter is dedicated to some aspects of the physics of ultra-relativistic heavy ion: confinement and de-confinement of quarks, the absence of heavy resonances as a signature for the presence of QGP. The second chapter presents Alice and its ancillary detectors. The third chapter deals with the trigger system of the dimuon spectrometer, a detailed algorithm of this system is given. A method for the optimization of the trigger response is presented in the fourth chapter. The fifth chapter describes the testing of a prototype of the trigger system, this testing with muons has shown that the efficiency of the track reconstruction of the trigger system and the efficiency of the resistive plate chamber reach 98%.In the sixth chapter the author comments the simulations of the production of heavy resonances from Pb-Pb collisions as a function of centrality. (A.C.)

  5. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  6. Heavy nucleus resonant absorption calculation benchmarks

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, H.; Raepsaet, C.; Van der Gucht, C.

    1993-01-01

    The calculation of the space and energy dependence of the heavy nucleus resonant absorption in a heterogeneous lattice is one of the hardest tasks in reactor physics. Because of the computer time and memory needed, it is impossible to represent finely the cross-section behavior in the resonance energy range for everyday computations. Consequently, reactor physicists use a simplified formalism, the self-shielding formalism. As no clean and detailed experimental results are available to validate the self-shielding calculations, Monte Carlo computations are used as a reference. These results, which were obtained with the TRIPOLI continuous-energy Monte Carlo code, constitute a set of numerical benchmarks than can be used to evaluate the accuracy of the techniques or formalisms that are included in any reactor physics codes. Examples of such evaluations, for the new assembly code APOLLO2 and the slowing-down code SECOL, are given for cases of 238 U and 232 Th fuel elements

  7. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  8. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  9. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  10. Heavy ion reactions at high energies

    International Nuclear Information System (INIS)

    Jakobsson, Bo.

    1977-01-01

    A review on heavy ion experiments at energies >0.1GeV/nucleon is presented. Reaction cross-sections, isotope production cross-sections and pion production in nucleus-nucleus collisions are discussed. Some recent models for heavy ion reactions like the abrasion-ablation model, the fireball model and the different shock-wave models are also presented

  11. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  12. Development status of electron cyclotron resonance ion sources (ECRIS). Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zakhary, S G [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The present review provides a very brief introduction of the historical development of this recent trend type of ion sources. There are two main types of this source which use the microwave power (2.45 up to 20 GHz). ECR ion sources that can generate substantial currents of very high charge state ions ( for example ions of U with charge state +39, with intensities of a few hundred nano amperes for injection directly into cyclotrons or synchrotrons), and the microwave sources that can generate currents (100-500 mA) for ion implanters and accelerator injectors. In this work, the theory of the microwave discharge and influence of resonance on increasing the power density consumed by the discharge are studied. The power density consumed by the discharge is found to increase with increase of number of electrons in the discharge, and decreases with increase of discharge pressure. The description of the main components and factors affecting the design of the source are declared. Also the factors enhancing source performance such as: plasma cooling by the addition of light ions which absorb energy from the heavy ions thereby increasing the lifetime of the heavy ions, and increasing the extent of highly charged ions. Injection of electrons into the discharge increases the extracted ion current, and the decrease of the magnetic field in the extraction region decreases the beam emittance. 12 figs.

  13. Cellular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.

    1981-01-01

    Progress is reported in the following areas of this research program: relative biological effectiveness and oxygen enhancement ratio of silicon ion beams; heavy ion effects on the cell cycle; the potentiation effect (2 doses of high LET heavy-ion radiations separated by 2 to 3 hours); potentially lethal damage in actively growing cells and plateau growth cells; radiation induced macromolecular lesions and cellular radiation chemistry; lethal effects of dual radiation; and the development of a biophysical repair/misrepair model

  14. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  15. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  16. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  17. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  18. A microscopic calculation of potentials and inertia parameters for heavy-ion collisions

    International Nuclear Information System (INIS)

    Flocard, H.; Vautherin, D.; Heenen, P.H.

    1979-09-01

    Within the adiabatic time dependent Hartree-Fock formalism, the potential V(R) and the inertia parameter M(R) corresponding to the symmetric heavy-ion collisions 12 C+ 12 C and 16 O+ 16 O are computed. It is found that the mass M(R) exhibits very sharp peaks. These peaks are shown to provide a plausible mechanism to explain the occurrence of quasi-molecular resonances

  19. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  20. ESR investigation of L-α-alanine and sucrose radicals produced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Nakagawa, K.; Sato, Y.

    2005-01-01

    We investigated sucrose and L-α-alanine radicals produced by heavy (particle) ion irradiation with various LETs (linear energy transfer). The impact of the heavy ions on the samples produced stable free radicals, which were analyzed by ESR (electron spin resonance). Identical spectra were measured after one year. The obtained spectral patterns were the same as those for helium (He), carbon (C), and neon (Ne) ions irradiation. The absorbed dose dependences for the irradiated sucrose and alanine samples were examined. The ESR response has a linear relation with the absorbed dose. The ESR response at 60 Gy was slightly lower than a linear line for sucrose; however, the response showed good linearity for the alanine. In addition, the total spin concentration obtained by heavy-ion irradiation correlated logarithmically with the LET. Qualitative ESR analyse showed that the production of sucrose and alanine radicals depended on both different particle irradiation and the LET under the same dose. Thus, the present ESR results imply that sucrose together with L-α-alanine can be used to monitor LET as well as the number of ionizing particle for the production of stable free radicals. (author)

  1. Single-Event Effects in Power MOSFETs During Heavy Ion Irradiations Performed After Gamma-Ray Degradation

    Science.gov (United States)

    Busatto, G.; De Luca, V.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2013-10-01

    The robustness of commercial power metal-oxide semiconductor field-effect transistors to combined gamma-heavy ion irradiation has been investigated, evidence that the degradation of the gate oxide caused by the γ irradiation can severely corrupt the robustness to single-event effects and drastically modify the physical behavior of the device under test after the impact of a heavy ion. A decrease of the critical voltages at which destructive burnouts and gate ruptures for heavy ion impact appear, has been detected in the devices under test, which were previously irradiated with γ rays. In addition, the amount of critical voltage reduction is strictly related to the amount of the absorbed γ-ray dose. Furthermore, at the failure voltage, the behavior of the device is affected by the conduction of a current through the gate oxide. Moreover, the single-event gate rupture” of the device appears at lower voltages because of the reduction of the Fowler-Nordheim limit in the γ-irradiated devices.

  2. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    Science.gov (United States)

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  3. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  4. Ion sources for heavy ion fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described

  5. AMS of heavy elements with an ECR ion source and the ATLAS linear accelerator

    CERN Document Server

    Paul, M; Ahmad, I; Borasi, F; Caggiano, J; Davids, C N; Greene, J P; Harss, B; Heinz, A; Henderson, D J; Henning, W F; Jiang, C L; Pardo, R C; Rehm, K E; Rejoub, R; Seweryniak, D; Sonzogni, A; Uusitalo, J; Vondrasek, R C

    2000-01-01

    Detection of heavy elements by accelerator mass spectrometry with the electron cyclotron resonance ion source, Argonne linear accelerator and fragment mass analyzer (ECRIS-ATLAS-FMA) system has been developed. The use of the ECR-ATLAS system for AMS of heavy elements has two interesting features: (i) the efficient production of high-charge state ions in the ECR source ensures the elimination of molecular ions at the source stage, a highly attractive feature for any mass-spectrometric use not exploited so far; (ii) the linear acceleration based on velocity matching and the beam transport system act as a powerful mass filter for background suppression. We have shown that our system reaches an abundance sensitivity of 1x10 sup - sup 1 sup 4 for Pb isotopes. The sup 2 sup 3 sup 6 U detection sensitivity is sup 2 sup 3 sup 6 U/U > or approx. 1x10 sup - sup 1 sup 2 , limited mainly by the ion source output.

  6. Heavy ion driven LMF design concept

    International Nuclear Information System (INIS)

    Lee, E.P.

    1991-08-01

    The USA Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report

  7. Synchrotrons for heavy ions: Bevalac experience

    International Nuclear Information System (INIS)

    Grunder, H.A.; Gough, R.A.; Alonso, J.R.

    1980-10-01

    The Bevalac should be viewed not as a model of accelerator hardware - a modern heavy ion complex will look quite different, but as a model for an operating versatile multifaceted, multiuser heavy ion facility. Of value to the planning of a new accelerator such as MARIA is the knowledge of operating modes peculiar to heavy ions and specific hardware requirements to carry out its mission with the mandated flexibility and reliability. This paper starts with a discussion of parameters and machine characteristics most suitable for medical and nuclear science applications. It then covers experience in interleaving these two research programs, and finally, concentrates on accelerator configuratin questions; injectors, repetition rate, vacuum systems and cost criteria which will be relevant to the design of MARIA

  8. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  9. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-01-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  10. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  11. First results with the yin-yang type electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Suominen, P.; Ropponen, T.; Koivisto, H.

    2007-01-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented

  12. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  13. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  14. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  15. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  16. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e μA of 129 Xe 43+ , 22 e μA of 209 Bi 41+ , and 1.5 e μA of 209 Bi 50+ . To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e μA of 129 Xe 27+ and 152 e μA of 129 Xe 30+ , although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and 129 Xe 27+ , 78 Kr 19+ , 209 Bi 31+ , and 58 Ni 19+ beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development

  17. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling

    Science.gov (United States)

    Babaev, A. A.; Pivovarov, Yu L.

    2010-04-01

    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  18. Report of the heavy-ion fusion task group

    International Nuclear Information System (INIS)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years

  19. Accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  20. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  1. International school-seminar on heavy ion physics

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1990-01-01

    The reports of the International school-seminar on heavy ion physics are presented. Scientific program of the school-seminar covers a wide spectrum of the today trends of investigations conducted using heavy ion beams within the energy range from several MeV/nucleon up to several GeV/nucleon

  2. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  3. Resonant ion-pair formation in the recombination of NO+ with electrons: Cross-section determination

    International Nuclear Information System (INIS)

    Le Padellec, A.; Djuric, N.; Al-Khalili, A.; Danared, H.; Derkatch, A. M.; Neau, A.; Popovic, D. B.; Rosen, S.; Semaniak, J.; Thomas, R.

    2001-01-01

    Resonant ion-pair formation from the collisions of NO + ions with electrons was studied using the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory of Stockholm University. The total cross section is measured for the formation of N + +O - for electron energies 8--18 eV, and the results are compared with ion-pair formation in photoionization work. A peak in the cross section is observed at 12.5 eV, with a magnitude of 8.5 x 10 -19 cm 2 . An attempt to extract the cross section for the reverse process of associative ionization is made

  4. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  5. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    Science.gov (United States)

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  6. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  7. Dilepton and vector meson production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Wolf, Gy.

    1997-01-01

    A nonperturbative dynamical study of dilepton an vector meson production in heavy-ion collisions from 1 to 2 GeV/A bombarding energies is presented incorporating all known sources relevant in this energy range. The dynamical evolution of the nucleus-nucleus collision is described by a transport equation of the Boltzmann-Uehling-Uhlenbeck type evolving phase-space distribution functions for nucleons, baryon resonances, pions, η's, ρ's and σ's with their isospin degrees of freedom. In particular, the sensitivity of the calculated yields to predicted changes of the ρ and ω mesons in dense matter is investigated. (author)

  8. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  9. Quantum signature in heavy-ion pion production

    International Nuclear Information System (INIS)

    Buvel, R.L.

    1985-01-01

    A revised model for pion production in heavy-ion peripheral collisions is presented. The pion-production mechanism investigated here is a two step process involving the formation and subsequent decay of an isobar resonance in the projectile nucleus. The independent-particle shell model with harmonic oscillator states is used to approximate the internal structure of the nucleus. The inclusion of the internal structure of the projectile nucleus led to the discovery of a quantum signature in the pion-production differential cross section. The quantum signature involves a matching condition where the pion-production differential cross section goes to zero for a particular value of the pion kinetic energy. The theory is compared to a recent experiment, but the results of this comparison are inconclusive

  10. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  11. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  12. Heavy-ion dominance near Cluster perigees

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  13. Dynamical limitations to heavy-ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions

  14. Proceedings of the international conference on dynamical properties of heavy-ion reactions held at the University of the Witwatersrand, v. 1

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Lemmer, R.H.; Sellschop, J.P.F.; Toeppfer, C.

    1978-01-01

    The report contains abstracts of the papers delivered at the conference. The abstracts have been grouped into the following chapters: Very heavy nuclei; Deep inelastic reactions and fusion; Resonances; Elastic and quasi-elastic scattering; Atomic physics with heavy ions; Miscellaneous; Post-deadline contributions. Each abstract has been submitted to INIS separately

  15. Onium Production in Heavy-Ion Collisions at the LHC - Signals and Backgrounds in the Two-Muon Channel

    CERN Document Server

    Morsch, Andreas; CERN. Geneva

    1995-01-01

    Suppression of Onium-resonances (J/y, y',  ,  ',  ") in heavy ion collisions at the LHC may give hints to the formation of a quark gluon plasma. We studied the production of these resonances decaying into µ+µ- pairs in PbPb, CaCa and for comparison in pp collisions. Background sources are ¹, Kµ decays (1m decay length was assumed) and open heavy flavour (charm and beauty) semimuonic decays which may also serve as a normalisation. We discuss in detail the signals and the different backgrounds for a forward detector (Q<15¡) which is sensitive down to small transverse momenta.

  16. Transport of heavy ions in inertial confinement fusion

    International Nuclear Information System (INIS)

    Parvazian, A.; Shahbandari Gouchani, A.

    2007-01-01

    In this article we have investigated the interaction of heavy ions (U) with a target (Au). In inertial confinement fusion method Interaction between heavy ion beam and target was simulated, Numerical analysis of the Boltzmann Fokker Planck equation used in order to optimize the material of the target and Energy deposition of ion beam to electrons and ions of target and The thickness of the target were calculated.

  17. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  18. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  19. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  20. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  1. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    International Nuclear Information System (INIS)

    Sanjari, Mohammad Shahab

    2013-01-01

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  2. Observations of Heavy Ions in the Magnetosphere

    Science.gov (United States)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  3. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  4. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  5. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  6. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  7. Shielding experiments with high-energy heavy ions for spaceflight applications

    International Nuclear Information System (INIS)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J; Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L; Christl, M; Kuznetsov, E

    2008-01-01

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon -1 56 Fe beam, and also reported results using a single polyethylene (CH 2 ) target in a variety of beam ions and energies up to 1 GeV nucleon -1 . An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon -1 . Following up on that work, we report new results using beams of 12 C, 28 Si and 56 Fe, each at three energies, 3, 5 and 10 GeV nucleon -1 , on carbon, polyethylene, aluminium and iron targets

  8. Shielding experiments with high-energy heavy ions for spaceflight applications

    Energy Technology Data Exchange (ETDEWEB)

    Zeitlin, C; Guetersloh, S; Heilbronn, L; Miller, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elkhayari, N; Empl, A; LeBourgeois, M; Mayes, B W; Pinsky, L [Physics Department, University of Houston, Houston, TX (United States); Christl, M [NASA Marshall Spaceflight Center, Huntsville, AL (United States); Kuznetsov, E [Physics Department, University of Alabama, Huntsville, AL (United States)], E-mail: cjzeitlin@lbl.gov

    2008-07-15

    Mitigation of radiation exposures received by astronauts on deep-space missions must be considered in the design of future spacecraft. The galactic cosmic rays (GCR) include high-energy heavy ions, many of which have ranges that exceed the depth of shielding that can be launched in realistic scenarios. Some of these ions are highly ionizing (producing a high dose per particle) and for some biological endpoints are more damaging per unit dose than sparsely ionizing radiation. The principal physical mechanism by which the dose and dose equivalent delivered by these particles can be reduced is nuclear fragmentation, the result of inelastic collisions between nuclei in the hull of the spacecraft and/or other materials. These interactions break the incident ions into lighter, less ionizing and less biologically effective particles. We have previously reported the tests of shielding effectiveness using many materials in a 1 GeV nucleon{sup -1} {sup 56}Fe beam, and also reported results using a single polyethylene (CH{sub 2}) target in a variety of beam ions and energies up to 1 GeV nucleon{sup -1}. An important, but tentative, conclusion of those studies was that the average behavior of heavy ions in the GCR would be better simulated by heavy beams at energies above 1 GeV nucleon{sup -1}. Following up on that work, we report new results using beams of {sup 12}C, {sup 28}Si and {sup 56}Fe, each at three energies, 3, 5 and 10 GeV nucleon{sup -1}, on carbon, polyethylene, aluminium and iron targets.

  9. Heavy-ion driver design and scaling

    International Nuclear Information System (INIS)

    Bieri, R.; Monsler, M.; Meier, W.; Stewart, L.

    1992-01-01

    Parametric models for scaling heavy-ion driver designs are described. Scaling of target performance and driver cost is done for driver parameters including driver energy, number of beams, type of superconductor used in focusing magnets, maximum magnetic field allowed at the superconducting windings, linear quadrupole array packing fraction mass, and ion charge state. The cumulative accelerator voltage and beam currents are determined from the Maschke limits on beam current for each choice of driver energy and post-acceleration pulse duration. The heavy-ion driver is optimized over the large available driver parameter space. Parametric studies and the choice of a base driver model are described in a companion paper

  10. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  11. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  12. Data acquisition for the HILI [Heavy Ion Light Ion] detector

    International Nuclear Information System (INIS)

    Teh, K.M.; Shapira, D.; McConnell, J.W.; Kim, H.; Novotny, R.

    1987-01-01

    A large acceptance, multi-segmented detector system capable of the simultaneous detection of heavy and light ions has been constructed. The heavy ions are detected with a segmented gas ionization chamber and a multiwire proportional counter while the light ions are detected with a 192 element plastic phoswich hodoscope. Processing the large number of signals is accomplished through a combination of CAMAC and FASTBUS modules and preprocessors, and a Host minicomputer. Details of the data acquisition system and the reasons for adopting a dual standards system are discussed. In addition, a technique for processing signals from an individual hodoscope detector is presented. 4 refs., 3 figs

  13. Experiments with stored heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Habs, D.; Jaeschke, E.

    1985-02-01

    The success of newly-developed methods of phase space cooling in proton and antiproton storage rings was sufficient for an examination of whether these methods could also be applied in storage rings for heavy ions. An expansion of these methods to heavy ion beams seems attractive for all sorts of reasons. Recently, this area was extensively discussed in a series of working meetings with the result that heavy ion storage rings are to be built for use in atomic and nuclear physics, with integrated radiation cooling and stochastic cooling, but primarily electron cooling. The current state of research and planning for the storage experiment is described. It is not intended to be a structural specification worked out in detail. The general design of the ring, however, has been established, and experimental details have deliberately been kept flexible, to thereby allow very different sorts of experiments to be conducted. The ring described with a maximum magnetic rigidity of Bp = 1.5 Tm, is designed in quadripartite symmetry. The total circumference is approximately 35 m, and there are four straight sections each 3.5 m long for the electron cooling sections, the experimental equipment, as well as HF system and injection. One of the most desirable properties of the reservoir is the multi-charge mode, which will significantly improve the operation which heavy ion beams, which reverse charge in electron cooling sections, target and residual vacuum. Initial considerations are presented with regard to stochastic and electron cooling. A review of possible classes of experiments is given and the schedule and financing of the project is outlined. 46 refs

  14. Progress and tendency in heavy ion irradiation mutation breeding

    International Nuclear Information System (INIS)

    Zhou Libin; Li Wenjian; Qu Ying; Li Ping

    2008-01-01

    In recent years, the intermediate energy heavy ion biology has been concerned rarely comparing to that of the low-energy ions. In this paper, we summarized the advantage of a new mutation breeding method mediated by intermediate energy heavy ion irradiations. Meanwhile, the present state of this mutation technique in applications of the breeding in grain crops, cash crops and model plants were introduced. And the preview of the heavy ion irradiations in gene-transfer, molecular marker assisted selection and spaceflight mutation breeding operations were also presented. (authors)

  15. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  16. Review of BNL heavy ion physics

    International Nuclear Information System (INIS)

    Miake, Yasuo.

    1990-01-01

    With an intent to search for a new state of matter, a relativistic heavy ion program was started in 1986 at BNL. Several interesting features have been reported from BNL-AGS heavy ion experiments, among which are: the enhanced K + /π + ratio and the larger left-angle m t right-angle for K + and proton. Comparisons between ∼pp, pA and SiA collisions are discussed for m t and dn/dy distributions. 33 refs., 9 figs., 1 tab

  17. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  18. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  19. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  20. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  1. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  2. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  3. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  4. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques

  5. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  6. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  7. Angular distribution of hypersatellite and satellite radiation emitted after resonant and excitation into $U^{91+}$ ions

    CERN Document Server

    Zakowicz, S; Harman, Z; Scheid, W

    2003-01-01

    In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of de-excitation X rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A (joint to this issue)] for collisions of U91+ ions with a hydrogen gas target.

  8. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  9. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  10. A synchronous beam sweeper for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs

  11. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  12. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  13. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  14. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  15. Energy straggling of heavy ions in solids

    International Nuclear Information System (INIS)

    Cowern, N.E.B.

    1979-08-01

    The energy-loss straggling of heavy ions has been studied, principally in the Born Approximation region v > zv 0 . Measurements were made with 5.486 MeV α particles, 5 - 48 MeV 16 0 ions, and 3 - 36 MeV 12 C ions, incident on thin uniform Al foils. The thickness uniformity of the foils was studied with a proton microbeam and a surface profiler, and their homogeneity, purity and isotropy were investigated by electron microscope, proton backscattering, and X-ray diffraction studies. Using the Bethe theory of energy loss the charge-exchange model of energy straggling for heavy ions is confirmed. (author)

  16. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Yang, L.; Wu, D. J.

    2011-01-01

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  17. Modified multipole structure for electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Suominen, P.

    2006-01-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar 16+ . (orig.)

  18. Modified multipole structure for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, P.

    2006-07-01

    Highly-charged heavy-ion beams are usually produced with Electron Cyclotron Resonance Ion Sources (ECRIS) where the microwave heated plasma is confined in a strong magnetic field. The magnetic field is divided into an axial part (produced by solenoid magnets) and to a radial part (produced by multipole magnet). Experiments have shown that the radial magnetic field component plays a crucial role in the production of highly-charged ions. However, in several modern ECRIS the radial magnetic field strength is below the optimum value, mainly due to the limits in permanent magnet technology. Unfortunately, methods to increase the radial magnetic field strength while still using permanent magnets are often limited. In this thesis work new techniques to improve the radial magnetic field have been studied by simulations and experiments. Due to the computer simulations performed a remarkable radial magnetic field improvement was reached with a relatively simple and cost-effective idea called the Modified MultiPole Structure (MMPS). The MMPS differs strongly from former studies as here the magnetic field is increased only locally without affecting the plasma size. It was not known how this would affect the properties of the plasma and production of highly-charged heavy ions. Consequently, the idea had to be studied experimentally and a new MMPS plasma chamber prototype was designed and constructed for the JYFL 6.4 GHz ECRIS. The new construction is versatile and made it possible to perform several new types of measurements. These showed that the MMPS works well and is especially applicable to increase very high charge-state ion production. Typically the ion current increases by a factor of 2 - 3 in the case of highly charged ions such as Ar16+. (orig.)

  19. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  20. Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens

    International Nuclear Information System (INIS)

    Donovan, Robert J.; Lawley, Kenneth P.; Ridley, Trevor

    2015-01-01

    We report the identification of heavy Rydberg resonances in the ion-pair spectra of I 2 , Cl 2 , ICl, and IBr. Extensive vibrational progressions are analysed in terms of the energy dependence of the quantum defect δ(E b ) rather than as Dunham expansions. This is shown to define the heavy Rydberg region, providing a more revealing fit to the data with fewer coefficients and leads just as easily to numbering data sets separated by gaps in the observed vibrational progressions. Interaction of heavy Rydberg states with electronic Rydberg states at avoided crossings on the inner wall of the ion-pair potential is shown to produce distinctive changes in the energy dependence of δ(E b ), with weak and strong interactions readily distinguished. Heavy Rydberg behaviour is found to extend well below near-dissociation states, down to vibrational levels ∼18 000-20 000 cm −1 below dissociation. The rapid semi-classical calculation of δ(E b ) for heavy Rydberg states is emphasised and shows their absolute magnitude to be essentially the volume of phase space excluded from the vibrational motion by avoiding core-core penetration of the ions

  1. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  2. Compact time-zero detector for heavy ions

    International Nuclear Information System (INIS)

    Weissenberger, E.; Kast, W.; Goennenwein, F.

    1979-01-01

    A time-zero detector for flight-time measurements with heavy ions is described. The ions traverse a thin foil and the secondary electrons splashed from the foil are detected in a channel plate multiplier. A timing signal is derived from the multiplier pulse. The novel features of the detector are its simplicity and compactness of design. The time resolution achieved for the full energy and mass span of fission fragments from the spontaneous fission of 252 Cf used as a heavy ion source is 115 ps (fwhm). (Auth.)

  3. Expectations and realities in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-06-01

    Interpretations of some recent results from experiments done at the CERN-SPS on relativistic heavy-ion collisions are discussed. A cautionary note is given for the observed J//Psi/ suppression due to the hadronic interaction of J//Psi/ in the final state. The multiplicity dependence of average transverse momentum has many complications, and is unsuitable as an indicator of phase transition. Multiplicity fluctuation may be a better diagnostic tool. No indication of any collective behavior has been seen in the recent experiments. 30 refs., 3 figs

  4. Ultra-relativistic heavy ions and the CBA

    International Nuclear Information System (INIS)

    McLerran, L.D.

    1982-01-01

    The study of ultra-relativistic heavy ions at an accelerator such as the CBA provides a unique glimpse of matter as it may have appeared in the early universe. This hot dense matter very probably appears as a quark-gluon plasma which expands and cools into hadronic matter. The CBA would provide data at the very highest energies, and produce matter at the highest energy densities. The possibility of using a cyclotron to inject very heavy ions into the AGS and then into the CBA would also allow the production of quark-gluon matter at higher energy densities than would light ions, and would make the matter in a larger volume where surface effects are minimized. At the highest energies with very heavy ions, there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. Some of the possibilities are discussed

  5. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  6. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Santini, Elvira

    2008-01-01

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  7. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  8. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  9. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  10. Present status and perspectives of heavy ion studies on cells and organisms

    International Nuclear Information System (INIS)

    Yang, T.C.; Craise, L.M.; Mei Mantong.

    1992-01-01

    Biomedical research of heavy ion radiation has been an unique and highly active field in past two decades. Through these intensive research efforts, significant amount of quantitative and qualitative data, which provide insights into biological effects, have been obtained. RBE and LET relationship has been well established for cell inactivation, somatic mutation, and cancer induction. In addition, the effects of oxygen and cell cycle on radiosensitivity of mammalian cells, exposed to heavy ions, have been examined. In spite of such large quantitative information, there is only very limited understanding of the mechanisms of these effects of heavy ions. It remains to be discovered how heavy ions cause various biological effects and why heavy ions can be so effective in producing these effects. As the understanding of molecular effects of heavy ion increases, the potential use of heavy ions in probing molecular mechanism(s) of mutation and neoplastic cell transformation becomes more evident. The exciting progress of heavy ion research in past decades only leads to more challenging questions. Answers for these interesting questions can be obtained by developing new heavy ion facilities for single particle irradiation, by further studies with modern molecular biology techniques, and by innovative approaches. Knowledge from biomedical heavy ion research will not only enhance our basic understanding of fundamental biological processes, such as repair, cell growth control, differentiation, etc., but also help in assessing health risk of space radiation and in improving animal and plant breeding. Research in heavy ion radiobiology is gradually growing from infant to mature stage. (author)

  11. Heavy Ion Current Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  12. Transport of heavy ions through matter within ion optical systems

    International Nuclear Information System (INIS)

    Schwab, T.

    1991-04-01

    In this thesis for the first time higher-order ion-optical calculations were connected with the whole phase-space changes of the heavy ions in passing through matter. With the developed programs and the newly proposed analytical methods atomic and nuclear interactions of the heavy ions within ion optical systems can be described realistically. The results of this thesis were applied to the conception of the fragment separator (FRS) and to the planning and preparation of experiments at the new GSI accelerator facility. Especially for the description of the ion-optical combination of FRS and the storage ring ESR the developed programs and methods proved to be necessary. A part of the applied theories on the atomic stopping could be confirmed in the framework of this thesis in an experiment with the high-resolving spectrometer SPEC at GANIL. The method of the isotopically pure separation of projectile fragments by means of magnetic analysis and the electronic energy loss could be also experimentally successfully tested at several energies (60-400 MeV/u). Furthermore in this thesis also application-related problems regarding a tumor therapy with heavy ions were solved. A concept for a medical separator (BMS) was developed, which separates light diagnosis beams isotopically purely and beyond improves the energy sharpness by means of an especially shaped (monoenergetic) stopper so that an in-situ range determination is possible with an accuracy of about one millimeter. (orig./HSI) [de

  13. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  14. Induction linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-11-01

    Experimental progress to date has strengthened our belief in the soundness and attractiveness of the heavy ion method for fusion. What surprises that have shown up in the laboratory (e.g., in SBTE) have all been of the pleasant kind so far. The systems assessment has supported the view that the heavy ion approach can lead to economically attractive electric power and that a wide variety of options exists in all parameters. The systems work has also been of great help in pointing the way for the research and development activities

  15. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  16. New developments in heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1984-01-01

    Beginning in 1984, the US Department of Energy plans a program aimed at determining the feasibility of using heavy ion accelerators as pellet drivers for Inertial Confinement Fusion (ICF). This paper will describe the events in the field of Heavy Ion Fusion (HIF) that have occurred in the three years since the Lausanne Conference in this series. The emphasis will be on the events leading towards the energy oriented program. In addition to providing an overview of progress in HIF, such a discussion may prove useful for promoters of any ''emerging'' energy technology. (orig.) [de

  17. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  18. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    International Nuclear Information System (INIS)

    Kozyra, J.U.; Cravens, T.E.; Nagy, A.F.; Fontheim, E.G.; Ong, R.S.B.

    1984-01-01

    An expression for the linear electromagnetic ion cyclotron convective growth rate has been derived, considering multiple ions in the energetic anisotropic component of the plasma (which provides the free energy for the instability) as well as in the cold component of the plasma. This represents a modification of recent treatments investigating electromagnetic ion cyclotron growth rates which have considered only hydrogen ions in the energetic component. Four major effects on the growth and propagation characteristics result from inclusion of heavy ions in the energetic component. Some wave growth occurs at low frequencies below the corresponding marginally unstable wave mode for each heavy ion. Enhanced quasi-monochronomatic peaks in the convective growth rate appear just below the O + and He + gyrofrequency and can be quite pronounced for certain plasma conditions. Stop bands, decreased group velocity and other effects normally attributed to cold heavy ions can be produced or enhanced by heavy ions in the energetic plasma component. Partial or complete suppression of wave growth at frequencies above the marginally unstable wave mode for a particular energetic heavy ion can greatly alter the growth rates that would occur in the absence of this energetic heavy ion. The expression for the linear electromagnetic ion cyclotron convective growth rate along with appropriate plasma parameters was used to investigate the nature of linear wave growth in the plasmapause region. The frequencies of peaks in the convective growth rate given by this model compare favorably with wave measurements in this region. It is conceivable that through wave-particle interactions, electromagnetic ion cyclotron waves could supply the energy source for various plasmapause region phenomena such as the O + torus, the plasma cloak and stable auroral red arcs

  19. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  20. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  1. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-01-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  2. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  3. Elastic and inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Toepffer, C.; University of the Witwatersrand, Johannesburg; Richter, A.

    1977-02-01

    In the field of elastic and inelastic heavy ion scattering, the following issues are dealt with: semiclassical descriptive approximations, optical potentials, barriers, critical radii and angular momenta, excitation functions and the application to superheavy ions and high energies. (WL) [de

  4. Interactions of heavy ions with biomolecules: a dynamical microscopic approach

    International Nuclear Information System (INIS)

    Zhang Fengshou; Beijing Radiation Center, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    The status of studying biology system therapy with X-rays, γ-rays, neutron, proton, and heavy ions is reviewed. The depth dose profile, called Bragg profile, makes heavy ion an ideal tool for radiotherapy. The physical process of therapy with heavy ions is analyzed and a 3-step interaction processes of heavy ions with biomolecules is proposed, that is, nuclear fragmentation in nuclear interaction, electron excitation in Coulomb interaction, and the biomolecules relaxation in surroundings, finally leads to a new structure of biomolecule. Since this physical process is the base of the following chemical process and biological process, a dynamical microscopic approach is strongly demanded to be built. (authors)

  5. A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

  6. Heavy ion inertial fusion - an overview

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  7. Improvement of herbage by heavy ion beams

    International Nuclear Information System (INIS)

    Xie Hongmei; Hao Jifang; Wei Zengquan; Xie Zhongkui; Li Fengqin; Wang Yajun

    2004-01-01

    Herbage seeds of legume and grass were irradiated in penetration by 80 MeV/u 20 Ne 10+ ions. The results of field tests and observations of the root-tip cells showed that growth of the seedling was obviously weakened with increasing doses. Frequencies of chromosomal aberration and micronucleus increased significantly with increasing doses. According to the field growth tests, radiation sensitivity of grass herbage to the heavy ion beams was much higher than leguminous herbage, and suitable dose of the heavy ion irradiation for the grass and leguminous herbage is 20-30 Gy and 150 Gy, respectively

  8. Overview of recent heavy-ion results from CMS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik

    2016-12-15

    Most recent CMS data related to the high-density QCD are presented for pp and PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV. The PbPb collision is essential to understand collective behavior and the final-state effects for the detailed characteristics of hot, dense partonic matter, whereas the pPb collision provides the critical information on the initial-state effects including the modification of the parton distribution function in cold nuclei. This paper highlights some of recent heavy-ion related results from CMS.

  9. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  10. Dependence of asymmetries for charge distribution with respect to the reaction plane on initial energy in heavy-ion collisions

    International Nuclear Information System (INIS)

    Okorokov, V.A.

    2013-01-01

    In this paper, two combinations of correlators are defined in order to investigate the evolution of possible C/CP invariance violation in strong interactions with initial energy for heavy-ion collisions. These combinations correspond to absolute and relative asymmetry of distribution of electrically charge particles with respect to the reaction plane in heavy-ion collisions. Energy dependence of parameters under study was derived from data of STAR and ALICE experiments. Significant decreasing both absolute and relative asymmetry is observed at energies √s NN < 20 GeV. This feature agrees qualitatively with other results of stage-I beam energy scan program in STAR experiment. General behavior of dependence of absolute asymmetry on initial energy agrees reasonably with behavior of similar dependence of Chern–Simons diffusion rate calculated at different values of external Abelian magnetic field. The observed behavior of parameters under study versus energy can be considered as indication on possible transition to predominance of hadronic states over quark–gluon degrees of freedom in the mixed phase created in heavy-ion collisions at intermediate energies. (author)

  11. Current experimental situation in heavy-ion reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references

  12. Validating PHITS for heavy ion fragmentation reactions

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.

    2015-01-01

    The performance of the Monte Carlo code system PHITS is validated for heavy-ion transport capabilities by performing simulations and comparing results against experimental data from heavy-ion reactions of benchmark quality. These data are from measurements of isotope yields produced in the fragmentation of a 140 MeV/u "4"8Ca beam on a beryllium target and on a tantalum target. The results of this study show that PHITS performs reliably. (authors)

  13. Now day methods for heavy ion monitoring

    International Nuclear Information System (INIS)

    Luk'yanov, S.M.; Penionzhkevich, Yu.Eh.; Chubaryan, G.G.

    1984-01-01

    Up-to-date methods for identification of products yield as a result of heavy ion interaction with nuclei are described. Monitoring of total ionization has been realized by gas-filled ionization chambers semiconductor detectors, scintillators. A method for specific ionization loss monitoring and time-of-flight technique for heavy-ion mass identification are considered. Advantages of the method for identification of nuclear reaction prodUcts by means of a magnetic analyzer are displayed

  14. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    Angert, N.

    1984-01-01

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  15. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  16. Swift Heavy Ion Induced Modification of Aliphatic Polymers

    OpenAIRE

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy I...

  17. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  18. Properties of exotic matter for heavy-ion searches

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.; Greiner, C.; Stoecker, H.; Vischer, A.P.

    1997-01-01

    We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (metastable exotic multihypernuclear objects (MEMOs)) and their relevance for present and future heavy-ion searches. The strong and weak decays are discussed separately to distinguish between long- and short-lived candidates where the former ones are detectable in present heavy-ion experiments while the latter ones are present in future heavy-ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass-to-charge ratio like a anti deuteron (M/Z approx.= -2) but masses of A 10-16. We also predict many short-lived candidates, both in quark and hadronic form, which can be highly charged. Purely hyperonic nuclei such as the Ξα (2Ξ 0 2Ξ - ) are bound and have a negative charge while carrying a positive baryon number. We also demonstrate that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy-ion colliders. (author)

  19. Radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Kast, J.R.; Lee, Y.K.

    1975-01-01

    A study of x rays produced in heavy ion collisions has led to a search for molecular orbital x rays, concentrating on 35 Cl ions on Al, NaCl, and C targets. Preliminary analysis of the angular dependence of continuum x rays has tentatively identified quasi-molecular K x rays. Other work completed and in progress is discussed. (3 figures) (U.S.)

  20. Acceleration of heavy-ion beams at the SF cyclotron

    International Nuclear Information System (INIS)

    Sakurada, Yuzo; Yamazaki, Tsutomu.

    1984-10-01

    With the development of the new arc-heated cathode PIG type source, heavy-ion acceleration in the SF cyclotron has been drastically augmented, which means that a stable routine operation is being realized as well as the number of ion species is increasing. Excellent performance is also being exhibited with the arc power supply and gas feeding system required for the operation of the heavy-ion source. At present, the gaseous ions which are being accelerated are as follows: He, B, C, N, O, F, Ne, S, Ar and Xe. In the meantime, the metallic ions which are being accelerated likewise are Li, Be, Na, Mg, Al, Si, Cl, Ca, Ti, Fe and Cu. In this paper, results of mainly the research of heavy-ion acceleration conducted during the period from 1983 to July 1984 are described. (author)

  1. ECR plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  2. Experimental studies of heavy-ion slowing down in matter

    International Nuclear Information System (INIS)

    Geissel, H.; Weick, H.; Scheidenberger, C.; Bimbot, R.; Gardes, D.

    2002-08-01

    Measurements of heavy-ion slowing down in matter differ in many aspects from experiments with light particles like protons and α-particles. An overview of the special experimental requirements, methods, data analysis and interpretation is presented for heavy-ion stopping powers, energy- and angular-straggling and ranges in the energy domain from keV/u up to GeV/u. Characteristic experimental results are presented and compared with theory and semiempirical predictions. New applications are outlined, which represent a challenge to continuously improve the knowledge of heavy-ion slowing down. (orig.)

  3. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  4. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  5. Calorimetric cryodetectors for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P; Henning, W; Kienlin, A v; Meier, J; Truebenbacher, V [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany, F.R.) Mainz Univ. (Germany, F.R.). Inst. fuer Physik; Azgui, F [CDTN, Algiers (Algeria); Shepard, K [Argonne National Lab., IL (USA)

    1990-01-01

    Status and first test results are reported for a project to develop calorimetric cryodetectors for heavy ions. The special conditions for the detection of energetic heavy ions are discussed. Presently the investigations are focussed on semiconductor bolometers and aluminium-strip superconducting phase-transition thermometers that are cooled with liquid {sup 4}He and operate in the temperature range 1.3-4.2 K. For a germanium bolometer the temperature dependence of the resistance, voltage-current curves, the time response to heating by voltage pulses and the response to ionizing {alpha}-radiation are reported. First tests on phase transition thermometers using thin aluminum strips yield a transition width of {Delta}T=8.6 mK at T{sub c}=1.467 K. (orig.).

  6. A function of mutagenesis on rhodotorula RY strain irradiated by heavy ion

    International Nuclear Information System (INIS)

    Li Hongyu; Li Chenghua; Ding Xinchun; Wang Jufang; Zhou Guangming; Xie Hongmei; Li Qiang; Dang bingrong; Wen Xiaoqiong; Li Wenjian; Wei Zengquan

    2004-01-01

    In this paper, red yeast (Rhodotorula RY Strain) that produces carotene is irradiated by 50 MeV/u 12 C 6+ heavy ion from Heavy Ion Accelerator in IMP. Fermentation tests show that 50 MeV/u 12 C 6+ heavy ion has a mutagenesis effect on the red yeast. Some strains of red yeast with changed production of carotene were found by screening. Meanwhile, by RFLP and RAPD analysis, authors have a further evidence that heavy ion can cause mutagenesis in Rhodotorula RY Strain. This presents a new prospect for the mutagenesis breeding by heavy ion in industry

  7. First phase plan for experimental study of heavy-ion inertial fusion accelerator

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki; Okamura, Masahiro; Oguri, Yoshiyuki; Aida, Toshihiro; Takeuchi, Kouichi; Sasa, Kimikazu; Itoh, Takashi; Okada, Masashi; Takahashi, Yousuke; Ishii, Yasuyuki.

    1993-01-01

    We propose the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac [1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2.4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver. (author)

  8. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  9. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  10. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  11. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  12. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  13. On-line monitoring of heavy-ion therapy using PET

    International Nuclear Information System (INIS)

    Pavlovic, M.

    2004-01-01

    In this presentation authors present results of on-line monitoring of heavy-ion therapy using PET. It is concluded that in-beam positron emission tomography is a feasible and valuable method for in-situ and non-invasive monitoring of heavy-ion therapy

  14. Deformation effects in the heavy ion quarter-point angle

    International Nuclear Information System (INIS)

    Almeida, F.I.A. de; Hussein, M.S.

    1984-01-01

    The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point angle are discussed and analyzed in the sudden approximation. Simple expressions are derived within the Fresnel model and applications to several heavy-ion systems are presented. (Author) [pt

  15. Physics with heavy ions at LHC

    International Nuclear Information System (INIS)

    Safarik, K.

    2004-01-01

    We discuss the motivation to study heavy ion collisions at LHC, and the experimental conditions under which detectors will have to operate. A short description of the detectors under construction is given. Physics performance is illustrated in two examples, which will become accessible at LHC energies, jet quenching and heavy-flavor production. (author)

  16. Prospective utilization of accelerated heavy ions in basic and applied research

    International Nuclear Information System (INIS)

    Flerov, G.; Oganesyan, Yu.

    1982-01-01

    Some important and interesting trends of heavy ion physics are briefly presented, such as giant processes which are characterized by fundamental restructuring of nuclear systems containing hundreds of nucleons, the mechanism of heavy nuclei interaction, the study of nuclear matter compression, the study of the specificity of heating and thermal conductivity of nuclear matter, the study of heavy ion/nucleus interactions at energies of 200 to 300 MeV/nucleon when the meson degree of freedom becomes manifest, the possibility of the production of ions with a large excess or deficiency of neutrons, new possibilities for determining the fission barrier, the critical verification of fundamental physical concepts of quantum electrodynamics and other possibilities of using accelerated heavy ions. The significance of heavy ion physics for the development of acceleration technologies is also described. (B.S.)

  17. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  18. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  19. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  20. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Sinyukov, Yu.M.

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions

  1. Mode conversion of fast Alfvacute en waves at the ion endash ion hybrid resonance

    International Nuclear Information System (INIS)

    Ram, A.K.; Bers, A.; Schultz, S.D.; Fuchs, V.

    1996-01-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion endash ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvacute en waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvacute en waves in the immediate vicinity of the ion endash ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvacute en waves on the high magnetic-field side of the ion endash ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvacute en wave power incident on the ion endash ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvacute en waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion endash ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvacute en waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters. copyright 1996 American Institute of Physics

  2. Unified description of scattering and fusion phenomena in heavy-ion collisions

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Sahu, B. B.; Mallick, G. S.; Agarwalla, S. K.; Shastry, C. S.

    2008-01-01

    An analytical recursive formula of the partial-wave scattering matrix for the total effective complex potential of nucleus-nucleus collisions is derived to conveniently analyze the data of angular variations of elastic scattering cross sections. Further, another expression of cross sections for the absorption from arbitrarily small intervals is derived. This leads to the explanation of the fusion cross section (σ fus ) data at various incident center-of-mass energies E c.m. by collecting the absorption contributions in the interior region of the effective potential. This concept is akin to that used by Udagawa et al. in the calculation of fusion cross sections in elastic channels. The interaction potential considered in the analysis is energy independent and by virtue of its weakly absorbing character it supports resonance states in different partial-wave trajectories. Consequently, occurrence of these resonances is shown to be the physical origin of the observed oscillatory structure in the variation respect to energy of the quantity D(E c.m. )=d 2 (E c.m. σ fus )/dE c.m. 2 , the second derivative of the product E c.m. σ fus with respect to E c.m. . In this article, we investigate two well-known cases of heavy-ion collisions, namely 12 C+ 208 Pb and 16 O+ 208 Pb, and obtain simultaneous and very successful explanations of cross sections for elastic scattering and fusion and the results of D(E c.m. ). These results obtained by using a somewhat novel and convenient method demonstrate the unified description of scattering and fusion for interacting heavy-ion systems

  3. Effect of swift heavy ion irradiation on ethylene–chlorotrifluoroethylene copolymer

    International Nuclear Information System (INIS)

    Singh, Lakhwant; Devgan, Kusum; Samra, Kawaljeet Singh

    2012-01-01

    The swift heavy irradiation induced changes taking place in ethylene–chlorotrifluoroethylene (E–CTFE) copolymer films were investigated in correlation with the applied doses. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×10 11 –3×10 12 ions cm −2 . Structural and thermal properties of the irradiated as well as pristine E–CTFE films were studied using FTIR, UV–visible, TGA, DSC and XRD techniques. Swift heavy ion irradiation was found to induce changes in E–CTFE depending upon the applied doses. - Highlights: ► Effect of swift heavy ion irradiation on E–CTFE films has been studied. ► Different structural changes in the original structure of E–CTFE are observed after irradiation with different ions. ► Swift heavy ion irradiation has made E–CTFE more prone to thermal degradation.

  4. Study of Υ family resonances in ultrarelativistic heavy ions collisions within the frame of the Alice experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Dumonteil, E.

    2004-09-01

    Quantum Chromodynamics foresees, at high temperature and/or high energy density, a phase transition between hadronic matter and a phase where quarks and gluons are no more confined in the nucleons: the Quark Gluon Plasma (QGP). During the past fifteen years, a large experimental program has taken place at CERN and at BNL, to identify the QGP. ALICE is the LHC experiment dedicated to the study of the plasma via ultrarelativistic heavy ion collisions at 2.75 TeV/nucleon per beam. The measure of Upsilon's resonances suppression, a powerful signature of a deconfined medium, with the ALICE dimuon spectrometer, is the main topic of this thesis. The first part of the work aims at studying the multi-wires pad chambers of the dimuon arm, used to track the muons from resonances decays. The second part presents an in-beam alignment algorithm able to calculate the positions of the different chambers with a very good accuracy. Finally, the last part proposes a study to lead with the ALICE muon spectrometer, involving the measure of Upsilon and Upsilon's production ratio as a function of the transverse momentum. It has been showed that this study should allow to evidence the QGP and to extract some of its properties. (author)

  5. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  6. Coherent instability of the heavy ion beam in the storage ring

    International Nuclear Information System (INIS)

    Noda, A.

    1981-01-01

    The storage ring as the final part of a driver for heavy ion fusion is required to provide heavy ions (A asymptotically equals 200) with energy of 5 -- 10 GeV and such a high intensity as 1 -- 6 x 10 15 ions/pulse. So as to raise the number of ions which can be accumulated in a ring, singlly charged heavy ion is used for its relatively smaller incoherent space charge force compared with higher charge states. The intensity limit due to incoherent space charge force is 0.7 -- 1.4 x 10 15 ions for U 1 + . Much more severe limits exist due to coherent motion of heavy ion beams (0.8 -- 2 x 10 13 for longitudinal motion and 0.9 -- 1.1 x 10 12 for transverse motion), because of the relatively lower velocity of the accumulated ions. It seems unrealistic to use a lot of rings in order to operate below such intensity limits of the above instability. Therefore the number of the storage rings is constrained within a reasonable value (3 -- 7) and the possibility of compressing the bunches of heavy ion beams before the instability grows fatally large is studied. (author)

  7. Heavy ion scattering; a fixed energy inverse problem

    International Nuclear Information System (INIS)

    Amos, K.

    1993-01-01

    Heavy ion scattering has been studied quite intensively in the last decade and central in most analyses of data from such experiments be they on fusion, particle transfer or internal state excitations of the colliding pair, is the inter-ion interaction affecting their relative motion. It is customary to use the elastic scattering data to constrain solutions of the (nonrelativistic) Schroedinger equation to ascertain the character of that (central and complex) heavy ion potential. These matters for projectiles ranging from the lightest 'heavy' ion, a proton, to Oxygen nuclei are considered in brief herein. The targets range from 12 C to 208 Pb. The central entity in the analyses to be discussed will be the S-function, and so for completeness, the simple potential scattering theory details are presented that specify the S-function and relate it to measured cross-sections. 20 refs., 18 figs

  8. Semi-classical approach of heavy ion physics at intermediate energies

    International Nuclear Information System (INIS)

    Vinet, L.

    1986-01-01

    The study of heavy ion collisions at intermediate energies (10 to 100 MeV/A), can be undertaken by a semi-classical approach: the nuclear Vlasov equation. It is possible to decompose the one body distribution function over a suitable coherent state basis for dynamical studies. This method is applied for colliding slabs, and the results are compared with those of TDHF. With imposed spherical symmetry, the isoscalar monopole resonance, evaporation, formation of bubble nuclei and total evaporation, are obtained. The extension to three dimensions and to the Landau-Vlasov equation through the residual interaction included in the Uehling-Uhlenbeck collision term, permits a general study of the dynamical instability of highly excited nuclei. The application to heavy ion collisions gives a description of both the main mechanisms of reaction, and the ineffective fusion for the system 40 Ar (35 MeV/A) + 27 Al. Alpha particle multiplicities in correlation with evaporated residues in the experience 40 Ar (27 MeV/A) + 27 Al, have been extracted. From theoretical results, different scenari are proposed (entrance channel limitation and exit channel disintegration), in order to explain the disappearance of the fusion component observed for this system at energies above 32 MeV/A [fr

  9. Vacuum system control for the Heavy Ion Transport Line

    International Nuclear Information System (INIS)

    Stattel, P.; Feigenbaum, I.; Hseuh, H.C.; Robinson, T.; Skelton, R.; Wong, V.

    1987-01-01

    The Brookhaven AGS, 807 m in circumference, and the Tandem Van de Graaff are now joined together by a transport line, 600 m in length. This now allows heavy ions from the Tandem, up to fully stripped sulfur (M = 32) to be transported into the AGS and accelerated to 15 GeV/A. With the addition of a booster between the Tandem and the AGS in the near future, heavy ions such as gold (M = 200) can be accelerated to 30 Z/A GeV/A. This paper describes the HITL (Heavy Ion Transport Line) vacuum control system design and implementation

  10. Pre-equilibrium decay processes in energetic heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-01-01

    The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of 20 Ne and 12 C with 165 Ho target nuclei. Comparisons are made with subthreshold π 0 yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the π 0 spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs

  11. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  12. Respectives of heavy ion physics in JINR

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1983-01-01

    Perspectives of heavy ion physics in JINR are discussed. The main attention is paid to directions that are connected with the application of intensive beams of U-400 cyclotron. Experiments into studying stability limits of heavy atomic nuclei are considered. The possibility of using beams of heavy ions in applied fields, particularly for the production of very thin nuclear filters is noted. Prospects of synthesis of superheavy elements (SHE) and SHE search in nature are also considered. The data on the events of spontaneous fission found in meteorite and hydrotherms and the data on lengths of tracks in olivines from meteorite prove the possibility of obtaining evidences of SHE existence in nature

  13. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  14. Next generation of relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    Grunder, H.; Leemann, C.; Selph, F.

    1978-06-01

    Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance

  15. Heavy ion and hadron reactions in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.

    1979-04-01

    Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)

  16. Swift heavy ion induced modification of aliphatic polymers

    International Nuclear Information System (INIS)

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy Ion Research (GSI) in Darmstadt. In order to study ion-beam induced degradation, all polymer foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (U, Au, Sm, Xe) and experimentation sites (beam lines X0 and M3) over a large fluence regime (1 x 10 10 - 5 x 10 12 ions/cm 2 ). Five independent techniques, namely infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, residual gas analysis (RGA), thermal gravimetric analysis (TGA), and mass loss analysis (ML), were used to analyze the irradiated samples. FT-IR spectroscopy revealed that ion irradiation led to the decrease of characteristic band intensities showing the general degradation of the polymers, with scission of side groups and the main backbone. As a consequence of the structural modification, new bands appeared. UV-Vis transmission analysis showed an absorption edge shift from the ultraviolet region towards the visible region indicating double bond and conjugated double bond formation. On-line massspectrometric residual gas analysis showed the release of small gaseous fragment molecules. TGA analysis gave evidence of a changed thermal stability. With ML analysis, the considerable mass loss was quantified. The results of the five complementary analytical methods show how heavy ion irradiation changes the molecular structure of the polymers. Molecular degradation mechanisms are postulated. The amount of radiation damage is found to be sensitive to the used type of ionic species. While

  17. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  18. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  19. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  20. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  1. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  2. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, B.G.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  3. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  4. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  5. Some aspects of heavy ion macrophysics

    International Nuclear Information System (INIS)

    Ngo, C.

    1984-07-01

    In these notes we review, in a schematic way, some aspect of the physics with heavy ions. In the first lecture we review how is possible to describe the dissipative phenomena observed above the Coulomb barrier, up to 10-15 MeV/u, using transport theories. The second lecture is devoted to the question of fusion and the appearance of a new mechanism: fast fission. It is shown that one can now have a global understanding of these phenomena within single picture. The third lecture presents, in a simplified way, some results obtained recently with heavy ions in the range of 30-50 MeV/u at GANIL and SARA

  6. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    Investigations in atomic physics by high-energy heavy ions are discussed. The main attention is paid to collision mechanisms (direct Coulomb interaction, quasi-molecular collision mechanism and other models) and the structure of highly ionized and excited atoms. Some problems of fundamental issues (Lamb shift of H-like heavy ions, the superheavy quasi-atoms and the position production in supercritical fields) are conside-- red in detail

  7. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a ...

  8. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  9. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  10. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  11. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  12. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  13. Use of spectra from foil-excited heavy-ion beams to interpret radiation from plasmas

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1978-01-01

    Spectra from foil-excited heavy ion beams can be used to investigate the relative abundance and charge state composition of heavy metal contaminants which cause severe radiative energy losses in tokamak-produced plasmas. The degree of ionization of these metals in the tokamak plasma is not well known because of uncertainties in ionization and recombination rates and particle confinement times. Only a few stages of ionization are typically prominent in foil-excited spectra, however, and both the most probable charge state and distribution width are well known. Highly ionized heavy ions (e.g., Ti, Mo, W and Au) which span the range of charge states found in present tokamaks were produced by passing beams from the Brookhaven MP tandem Van de Graaff accelerator facility through 20 μg/cm 2 carbon stripping foils. EUV radiation was recorded with a grazing incidence spectrometer. Comparisons of the beam-foil spectra with radiation from plasmas, and recent direct determinations of atomic oscillator strengths for principal resonance lines of such highly ionized species as Li-like iron (Fe 23+ ), Na-like bromine (Br 24+ ), and Cu-like iodine (I 24+ ) are discussed

  14. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  15. Relativisitic heavy ion collisions

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1987-01-01

    Some of the objectives and observables of Relativistic Heavy Ion Physics are presented. The first experimental results from oxygen interactions at CERN, 200 GeV/c per nucleon, and BNL, 14.5 GeV/c per nucleon are shown. The data indicate more energy emission than was originally predicted. 25 refs., 19 figs

  16. Topical problems of accelerator and applied heavy ion physics

    International Nuclear Information System (INIS)

    Becker, R.; Deitinghoff, H.; Junior, P.H.; Schempp, A.

    1990-12-01

    These proceedings contain the articles presented at the named seminar. They deal with high-intensity linacs for heavy ions, the free-electron laser, applications of heavy-ion beams, MEQALAC, the ESR Schottky-diagnosis system, the analysis of GaAs by ion-beam methods, a light-ion synchrotron for cancer therapy, a device for the measurement of the momentum spread of ion beams, the European Hadron facility, the breakdown fields at electrons in high vacuum, a computer program for the calculation of electric quadrupoles, a focusing electrostatic mirror, storage and cooling of Ar beams, the visualization of heavy ion tracks in photographic films, the motion of ions in magnetic fields, the CERN heavy ion program, linear colliders, the beam injection from a linac into a storage ring, negative-ion sources, wake field acceleration, RFQ's, a dense electron target, the matching of a DC beam into the RFQ, electron emission and breakdown in vacuum, and 1-1.5 GeV 300 mA linear accelerator, the production of high-current positive-ion beams, high-current beam experiments at GSI, improvement of the Frankfurt EBIS, the physics of the violin, double layers, beam formation with coupled RFQ's, atomic nitrogen beam for material modification, compact superconducting synchrotron-radiation sources, industrial property rights, a RF ion source for thin film processes, beam-cavity interactions in the RFQ linac, atomic physics with crossed uranium beams, proton linacs, the interdigital H-type structure, injection of H - beams into a RFQ accelerator, the production of MOS devices by ion implantation, the application of RFQ's, the Frankfurt highly-charged ion facility, RF acceleration techniques for beam current drive in tokamaks, space-charge neutralized transport, and storage rings for synchrotron radiation and free electron lasers. (HSI)

  17. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  18. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  19. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  20. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  1. Lawrence Livermore Laboratory heavy ion fusion program

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Lee, E.P.; Monsler, M.J.; Yu, S.S.

    1978-01-01

    Target design at LLL for heavy ion fusion power production is discussed, including target development and beam-target interaction. The energy conversion chamber design, which utilizes a liquid lithium blanket, is described. Ion beam transport theory is discussed

  2. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  3. Review of heavy ion reaction mechanisms

    International Nuclear Information System (INIS)

    Ngo, C.

    1986-04-01

    We review some of the many aspects of heavy-ion reaction mechanisms observed at bombarding energies smaller than approximately 50 MeV/u that is to say in what is called the low bombarding energy domain and the intermediate bombarding energy domain. We emphasize the results concerning the use of very heavy projectiles which has led to the observation of new mechanisms

  4. Progress Toward Heavy Ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.L.; Callahan-Miller, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  5. Progress toward heavy-ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.-L.; Callahan, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of heavy-ion fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy-ion targets indicates that high gain (60-130) may be possible with a ∼3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy-ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLIFE-II design, which uses an array of flibe jets to protect chamber structures from X-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLIFE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HIF. A target injector experiment capable of >5 Hz operation has been designed and construction will start in 2002. Methods for mass-production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  6. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  7. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  8. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  9. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  10. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  11. Simulation studies of acceleration of heavy ions and their elemental compositions

    International Nuclear Information System (INIS)

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona

  12. Science and technology on the nanoscale with swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Reinhard, E-mail: r.neumann@gsi.de

    2013-11-01

    Swift heavy ions have stimulated developments of science and technology on the nanoscale due to the specific manner of transferring their kinetic energy in a solid successively in small portions along their trajectories. They thus create absolutely straight, almost cylindrical, and very narrow damage trails of diameter 5–10 nm. In various materials, such as polymers, a suitable etchant can transform these tracks into narrow channels of cylindrical, conical, or other desired shapes. These channels represent a starting point particularly for two major fields: they can be chemically modified to control small species and act, e.g., as sensors and transmitters of specific biomolecules. Irradiation of a sample with only one heavy ion allows the fabrication of single-nanochannel devices enabling measurements of enormous sensitivity. Filling nanochannels with a material provides nanowires. These objects of restricted dimensions exhibit finite-size and quantum behavior and give rise to a broad range of fundamental and applied research. This contribution briefly recollects microtechnological achievements with swift heavy ions that began already in the 1970s, preparing the ground for gradual size decrease down to the nanoscopic objects now under study. Various examples of material modifications on the nanoscale are presented, including recent results obtained with nanochannels and nanowires. Emerging developments are addressed, encompassing in situ recording of processes in biological cells stimulated by well-aimed ion irradiation, the fabrication of three-dimensional nanowire architectures, and plasmonic effects in nanowires.

  13. Quarkonia at finite temperature in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Datta, Saumen

    2015-01-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook. (author)

  14. <span class="hlt">Heavy-Ion</span> Imaging Applied To Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I.; Tobias, C. A.; Capp, M. P.; Benton, E. V.; Holley, W. R.; Gray, Joel E.; Hendee, William R.; Haus, Andrew G.; Properzio, William S.

    1980-08-18

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  15. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  16. Direct-driven target implosion in heavy ion fusion

    International Nuclear Information System (INIS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination. (paper)

  17. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  18. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  19. Genetic effects of heavy ion irradiation in maize and soybean

    International Nuclear Information System (INIS)

    Yatou, Osamu; Amano, Etsuo; Takahashi, Tan.

    1992-01-01

    Somatic mutation on leaves of maize and soybean were observed to investigate genetic effects of heavy ion irradiation. Maize seeds were irradiated with N, Fe and U ions and soybean seeds were irradiated with N ions. This is a preliminary report of the experiment, 1) to examine the mutagenic effects of the heavy ion irradiation, and 2) to evaluate the genetic effects of cosmic ray exposure in a space ship outside the earth. (author)

  20. On the use of thin ion implanted Si detectors in heavy ion experiments

    International Nuclear Information System (INIS)

    Lavergne-Gosselin, L.; Stab, L.; Lampert, M.O.

    1988-10-01

    We present test results on the use of thin ion implanted epitaxial Si detectors for registration of low- and medium energy heavy fragments in nuclear reactions. A linear energy response for very low energy nuclei has been observed. A test of 10 μm + 300 μm telescopes under realistic experimental conditions for heavy ion experiments exhibits the possibilities to use these detectors for the measurements of multifragmentation products. (authors)

  1. Saturation of plastic deformation by swift heavy ion irradiation: Ion hammering vs. surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferhati, Redi; Dautel, Knut; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany); Fritzsche, Monika [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2012-07-01

    Swift heavy ion (SHI) induced plastic deformation is a subject of current research and scientific discussion. This *Ion Hammering* phenomenon was first observed 30 years ago in amorphous materials like metallic glasses. About 10 years ago, Feyh et al. have shown that stress generation and *Ion Hammering* result in self-organization of thin NiO-films on Si-wafers into a sub-micron lamellae-like structure under grazing angle irradiation. The growth of the lamellae was found to saturate as soon as they have reached a thickness of a few hundreds of nm. Here we show our latest results on the restructuring of pre-patterned thin oxide films by SHI under various irradiation conditions. The experiments were performed by employing (in-situ) scanning electron microscopy, and were complemented by (in-situ) energy dispersive x-ray analysis and atomic force microscopy. As we will show, the saturation behavior can be understood as a competition of *Ion Hammering* and surface energy effects, while the unexpected fact, that the initially crystalline films undergo *Ion Hammering* can possibly be attributed to oxygen loss and thus amorphization during irradiation.

  2. Measurement of stopping power of heavy ions

    International Nuclear Information System (INIS)

    Kitahara, Tetsuo

    1981-01-01

    The stopping power of heavy ions is discussed. In the low energy region, heavy ions keep some of their orbital electrons, and have equilibrium electron charge. The stopping power of penetrating particles depends on this effective charge. At present, it is hard to estimate this effective charge theoretically, accordingly, the estimation is made experimentally. Another difficulty in this estimation is that the Born approximation is not effective for heavy ions. In the low energy region, electronic stopping and nuclear stopping contribute to the stopping power. For the electronic stopping, a formula for the stopping power was given by Lindhard et al. The experimental values were obtained at GSI, and are inconsistent with the estimation by the Lindhard's formula. In the high energy region, where the Born approximation can be used, the Bethe's formula is applied, but the experimental data are scarce. Oscillations are seen in the Z dependence graph of the experimental stopping cross sections. Experimental works on the stopping power have been done. The differential and the integral methods were carried out. (Kato, T.)

  3. Heavy Ion Physics with the ATLAS Detector

    CERN Document Server

    Nevski, P

    2006-01-01

    The ATLAS experiment at the LHC plans to study the bulk matter formed in heavy ion collisions, already being studied at RHIC, as well as crucial reference data from p+p and p+A collisions. ATLAS is designed to perform optimally at the nominal machine luminosity of 10^34 cm-2s-1. It has a finely segmented electromagnetic and hadronic calorimeters covering 10 units of rapidity, allowing the study of jets and fragmentation functions in detail in tandem with the inner tracking system. Preliminary studies also indicate that it will be possible to tag b-jets in the heavy ion environment. Upsilon and J/Psi can be reconstructed through the di-muon decay channel. There is also an important "day 1" program planned, that will use the data provided by both p+p and A+A collisions to study bulk features of the collision dynamics. We discuss the current status of simulation studies and plans of the heavy ion physics program with the ATLAS detector during the A+A and p+A runs.

  4. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  5. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  6. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  7. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  8. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  9. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  10. Quarkonium production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Arnaldi, R.

    2014-01-01

    The production of quarkonium states (cc-bar or bb-bar bound states) plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP) in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented. The comparison of several quarkonium states and the different but complementary, kinematic regions now accessible by the LHC experiments, allows us to get further insight on how the hot created medium is affecting the various resonances. Results have shown that, at LHC energies, there are 2 competing processes, the suppression in the deconfined medium and the (re)combination of q and q-bar states, which have a different role depending on the quarkonium states and on the kinematic region under study. At the same time, other probes, as higher excited states (Ψ(2S), Υ(3S)...), or observables as the J/Ψ flow, are still affected by the lack of statistics which prevents us from drawing firm conclusions on their behaviour

  11. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    Science.gov (United States)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  12. Baryons and baryon resonances in nuclear matter

    Science.gov (United States)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  13. Summary of the heavy ion physics sessions at Lake Louise

    International Nuclear Information System (INIS)

    Harris, J.W.

    1986-01-01

    This talk is a summary of the reports on heavy ion reactions which were given in this conference, Intersections Between Particle and Nuclear Physics . In particular, quark degrees of freedom in nuclear matter are a focus in these discussions of heavy ion physics

  14. Is laser cooling for heavy-ion fusion feasible?

    International Nuclear Information System (INIS)

    Ho, D.D.-M.; Brandon, S.T.

    2010-01-01

    Heavy-ion beams, each with current in the kiloampere range and particle energy in the giga-electronvolt range, must be focused onto a millimetre-size spot to provide the power required for ignition of high-gain targets for inertial confinement fusion. However, the focal spot size is always enlarged by chromatic aberration generated by the thermal spread of the beam ions in the direction of beam propagation. Enlarged focal spot degrades the target performance. For high-current beams, the conventional remedy for chromatic aberration using sextupole magnets has been shown to be ineffective. If novel correction schemes can be found, then the spot size can be reduced to below that previously believed possible. Smaller spots can mean lower energy targets so that the heavy-ion fusion (HIF) scenario can look more attractive. Success in laser cooling of ion beams in storage rings has inspired us to explore the feasibility of applying laser cooling for HIF, and the recirculator configuration proposed for HIF appears to be well suited for this purpose. However, using particle-in-cell simulations and theoretical arguments, we demonstrate in this paper that although laser cooling of heavy-ion beams is feasible in principle, the rapid velocity-space diffusion of ions in the bump-in-tail distribution, set up by the cooling lasers, limits the velocity-space compressibility of the thermal spread along the beam. Consequently, laser cooling is impractical for high-current, heavy-ion beams for the proposed recirculator configuration. Nevertheless, if the recirculator architecture or the target requirement can reduce the beam current, then the cooling scheme described here would be useful. This scheme may also be applicable to the RF linac and storage ring approach to HIF.

  15. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  16. Historical aspects of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1995-01-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections

  17. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  18. Pulsed vapor source for use in ion sources for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Shiloh, J.; Chupp, W.; Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.

    1980-01-01

    A pulsed cesium vapor source for use in ion sources for high-current heavy-ion accelerators is described. The source employs a vacuum spark in Cs and its properties are measured with a hot-filament Cs detector

  19. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  20. On ion-cyclotron-resonance heating of the corona and solar wind

    Directory of Open Access Journals (Sweden)

    E. Marsch

    2003-01-01

    Full Text Available This paper concisely summarizes and critically reviews recent work by the authors on models of the heating of the solar corona by resonance of ions with high-frequency waves (up to the proton cyclotron frequency. The quasi-linear theory of pitch angle diffusion is presented in connection with relevant solar wind proton observations. Hybrid fluid-kinetic model equations, which include wave-particle interactions and collisions, are derived. Numerical solutions are discussed, representative of the inner corona and near-Sun solar wind. A semi-kinetic model for reduced velocity distributions is presented, yielding kinetic results for heavy ions in the solar corona. It is concluded that a self-consistent treatment of particle distributions and wave spectra is required, in order to adequately describe coronal physics and to obtain agreement with observations.

  1. Measurements on Pb27+ Sources for the CERN Heavy Ion Injection Chain

    CERN Document Server

    Chamings, J A

    2004-01-01

    CERN, the world's largest particle physics laboratory near Geneva, is currently in the process of building the Large Hadron Collider (LHC). Lead-208 will be used in this accelerator and to meet the injection requirements much work is required to find a suitable and reliable heavy ion source. The work in this report covers two ion sources, the Laser Ion Source (LIS), and the Electron Cyclotron Resonance Ion Source (ECRIS). An emittance measurement, using a pepper pot and CCD camera, was completed on the recently re-installed LIS, measured and analysed to be 140mm.mrad un-normalised and 0.8mm.mrad normalised 4rms for the maximum intensity charge state, Pb27+. A Visual Basic Program was modified to allow Charge State Distribution (CSD) and other scans of the ECRIS at CERN to be taken. Chapter 5 presents the results of the CSD scans taken. This program provided a new method to take 1 dimensional transverse beam profiles. From this a direct emittance measurement was formed for the first time since the source was o...

  2. Mutation spectrum of accelerated heavy ions

    International Nuclear Information System (INIS)

    Takatsuji, Toshihiro; Matsuse, Michiko; Nakazawa, Y.

    2004-01-01

    Using Drosophila melanogaster which has X-linked white-ivory eye-color mutation w i and two recessive genes of wing-hair mwh and flr transheterozygously located on the third chromosomes, we scored mosaic spots in eye and wing of male flies irradiated with accelerated heavy ions at the period of larvae. Results of two irradiation conditions were compared. One is that all dose were irradiated with one heavy ion spill (irradiation time was about 0.3 sec), and another was that the dose were divided into multi spills (50-100 spills, irradiation time is about 3-6 minutes). The dose was selected that the average hit of the ion to the cell nucleus was about 0.2. If some difference exists, some information must be transmitted from hit cells or the protoplast to the nucleus which is not hit. As a result, the difference was not observed, and any sign of the bystander effect was not detected. (author)

  3. Medical heavy ion accelerator proposals

    International Nuclear Information System (INIS)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10 7 -10 9 ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as 11 C and 19 Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs

  4. Behavior of partial cross sections and branching ratios in the neighborhood of a resonance

    International Nuclear Information System (INIS)

    Starace, A.F.

    1977-01-01

    Starting from the treatment of Fano for the behavior of the total cross section in a photoionization (or electron-ion scattering) experiment in the vicinity of a resonance, we present a theoretical formula for the behavior of an individual final-state channel in the neighborhood of a resonance. This result is then used to derive another theoretical formula for the behavior of the ratio of two partial cross sections (i.e., the branching ratio) in the vicinity of a resonance. This branching-ratio formula depends on the profile parameters q, GAMMA, and rho 2 for the resonance, on the branching ratio outside the resonance, and on two new parameters which are explicitly related to scattering-matrix elements and phase shifts

  5. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  6. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1983-01-01

    Two accelerator scenarios for heavy ion fusion are considered as driver candidates for an ICF power plant: the RF linac with storage rings and the induction linac. The necessary beam intensity and beam quality requirements are already believed to be achievable in the long run; repetition rate and accelerator efficiency are not critical issues. Conceptual design studies have indicated that the technical problems of the ICF concept with a heavy ion driver can be solved and that the economical aspects are not prohibitive as compared to other ICF concepts. Nevertheless, many open problems still exist, and some new ones have exhibited themselves, and it has become evident that most of them cannot be investigated with existing facilities and at the present level of effort. The first section of this paper deals with current conceptual design studies and focuses on the interface between the accelerator and the reactor. The second section summarizes the present research programs and recommends that their scope should be expanded and intensified in the areas of accelerator physics and beam-target interaction and target physics. In the third section the author calls for a dedicated facility and reports on the plans and ideas for such a facility. Schematics of two proposed accelerator driver systems--the driver for HIBALL (5 MJ/pulse) and a single-pass four-beam induction linac (3 MJ/pulse)--are provided

  7. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  8. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  9. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  10. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  11. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  12. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  13. Van-de-Graaf accelerator operation with laser source of highly-charged heavy ions

    International Nuclear Information System (INIS)

    Barabash, L.S.; Golubev, A.A.; Koshkarev, S.G.; Krechet, K.I.; Sharkov, B.Y.; Shumshurov, A.V.

    1988-01-01

    Multicharged ions (Z = +1 divided-by +10) of practically any elements of the periodical table have been generated by the laser source based on a simple in operation and fabrication laser. One of the features of the laser source is that the energy needed for plasma heating is transported to the target from a great distance. In this case the target can be placed under high voltage or in a magnetic field. These advantages of the laser source are particularly important for its application in the Van-de-Graaf accelerator, where absence of resonance units allows to accelerate ions with any charge-to-mass ratio. The goal of this paper consists in designing a laser source of highly- charged heavy ions in the Van-de-Graaf accelerator and in measuring charge spectra of the accelerated ion beam. The peculiarities of this accelerator are taken into account in the discussion of the source scheme. Such peculiarities include potential up to 5 MV on the high-voltage conductor, where the ion source is placed, and high up to 15 atm gas environment pressure

  14. Multiparticle production in heavy-ion reactions

    International Nuclear Information System (INIS)

    Pelte, D.

    1980-01-01

    This lecture is concerned with the question how many particles and what kind of them are produced in heavy-ion collisions at energies about 10 MeV/n. We tend to assume that heavy-ion reactions at this energy are binary reactions. The experimental set consisting of two large ionization chambers serving to detection, in coincidence, the reaction fragments is described. With this set-up a number of reactions induced on 27 Al, 28 Si and 40 Ca by the 32 S beam of 135 and 190 MeV energy has been studied. Two-fragments inclusive and exclusive reactions were investigated. The assumption of a sequential statistical decay gives the best agreement with the data for all analyzed cases. (H.M.)

  15. Dynamical processes in heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.; Remington, B.A.

    1988-01-01

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy γ-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/μ. Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs

  16. Proteomics analysis of ram sperm by heavy ion radiation

    International Nuclear Information System (INIS)

    He Yuxuan; Li Hongyan; Zhang Hong

    2013-01-01

    The objective of this study was to investigate the proteome changes induced by heavy ion radiation using irradiated ram sperm by a two-dimensional electrophoresis (2-DE) analysis. The 2D gels were stained with Coomassie Brilliant Blue. Differentially expressed proteins were detected by PDQuest 8.0 software and subjected to ion trap mass spectrometer equipped with a surveyor HPLC system, and differential protein spots were identified. Results showed there are five differential protein spots in irradiated sperm gels, four up-regulated protein spots and one spot missed. The differentially expressed protein spots were identified to be two up-regulated proteins including enolase, and enolase 1. It was concluded there was proteome changes induced by heavy ion radiation in ram sperm, which may be useful to clarify the physiology state of ram sperm in heavy ion radiation and provide a theoretical basis for radiation ram breeding. (authors)

  17. Accelerator aspects of heavy ion induced inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, D

    1983-01-01

    Besides the possibilities of the magnetic fusion those of inertial fusion have increasingly found interest. Bundled photon and corpuscular beams shall be symetrically focussed from the outside on a pellet with the fusion fuel being compressed far beyond the density of the ordinary solids. Laser, light ion and heavy ion beams can be used as driver beams. The GSI took over the project leadership for a five years' research programme with formulated questions on heavy ion fusion. The project is promoted by the BMFT. During the international symposium the opportunity of intensive discussions on research work in this field in different countries was made use of.

  18. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  19. Atomic x-ray production by relativistic heavy ions

    International Nuclear Information System (INIS)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z 1 2 for the cross section of the heavy ion with atomic number Z 1 to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z 2 of the target of the form (Z 1 - αZ 2 ) 2 , instead of Z 1 2 , is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology

  20. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  1. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  2. Optical transmission of silica glass during swift-heavy-ion implantation

    International Nuclear Information System (INIS)

    Plaksin, Oleg; Okubo, Nariaki; Takeda, Yoshihiko; Amekura, Hiroshi; Kono, Kenichiro; Kishimoto, Naoki

    2004-01-01

    Metal nanoparticles fabricated by heavy-ion implantation of insulators are promising for non-linear optical applications. Spectra of optical transmission of silica glass in the visible region were measured during and after implantation of 3 MeV Cu 2+ ions. Three absorption bands contribute to the spectra: transient absorption (TA) at 2.34 eV, a surface plasmon resonance (SPR) peak at 2.21 eV and a tail of residual absorption (RA), which increases when the photon energy is increased from 2.2 to 2.6 eV. The TA and a change of the SPR peak strongly contribute to the total transient absorption obtained as the difference in absorption during and after irradiation. The effect of RA shows up as a decrease of absorption after switching on the ion beam. The TA provides a means for selective electronic excitation by a laser during implantation of silica glass. The precipitation of Cu atoms and the growth of Cu nanoparticles are well distinguishable stages of nanoparticle formation. The SPR peak appears at a fluence of 3.3 x 10 16 ions/cm 2 , corresponding to the onset of precipitation. At fluences higher than 3.4 x 10 16 ions/cm 2 , when the growth of nanoparticles predominates, the fluence dependence of the SPR peak is linear

  3. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  4. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  5. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Cao, Shanshan; Bass, Steffen A; Huang, Yajing; Qin, Guang-You

    2015-01-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark–gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed. (paper)

  6. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  7. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  8. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  9. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  10. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  11. LHC Results on Charmonium in Heavy Ions

    CERN Document Server

    Hong, Byungsik

    2012-01-01

    In heavy-ion collisions at high energies, the quantum chromodynamics (QCD) predicts the production of the deconfined quark-gluon plasma (QGP) state. Quarkonia ($c\\bar{c}$ or $b\\bar{b}$ bound states) are a useful means to probe QGP and to investigate the behavior of QCD under the high parton-density environment. Up to now, the large hadron collider (LHC) at CERN provided two runs for PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV in the years 2010 and 2011. The ALICE, ATLAS, and CMS experiments at LHC have analyzed the yields and spectra of the $J/\\psi$ and $\\Upsilon$ families. In this article, we review particularly the recent charmonium results in PbPb collisions at LHC from the 2010 run.

  12. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  13. Mutation effect of streptomyces kitasatoensis after exposure to heavy ions radiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Wang Shuyang; Li Wenjian

    2011-01-01

    To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in different doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment. (authors)

  14. Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel S. [Physics Department, Brookhaven National Lab, Building 510A, Upton, NY, 11973 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2016-12-15

    I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program.

  15. Heavy ion fusion experiments at LLNL

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    We review the status of the experimental campaign being carried out at Lawrence Livermore National Laboratory, involving scaled investigations of the acceleration and transport of space-charge dominated heavy ion beams. The ultimate goal of these experiments is to help lay the groundwork for a larger scale ion driven inertial fusion reactor, the purpose of which is to produce inexpensive and clean electric power

  16. Model-based analysis of digital radio frequency control systems for a heavy-ion synchrotron

    International Nuclear Information System (INIS)

    Spies, Christopher

    2013-12-01

    In this thesis, we investigate the behavior of different radio frequency control systems in a heavy-ion synchrotron, which act on the electrical fields used to accelerate charged particles, along with the longitudinal dynamics of the particles in the beam. Due to the large physical dimensions of the system, the required precision can only be achieved by a distributed control system. Since the plant is highly nonlinear and the overall system is very complex, a purely analytical treatment is not possible without introducing unacceptable simplifications. Instead, we use numerical simulation to investigate the system behavior. This thesis arises from a cooperation between the Institute of Microelectronic Systems at Technische Universitaet Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research. A new heavy-ion synchrotron, the SIS100, is currently being built at GSI; its completion is scheduled for 2016. The starting point for the present thesis was the question whether a control concept previously devised at GSI is feasible - not only in the ideal case, but in the presence of parameter deviations, noise, and other disturbances - and how it can be optimized. In this thesis, we present a system model of a heavy-ion synchrotron. This model comprises the beam dynamics, the relevant components of the accelerator, and the relevant controllers as well as the communication between those controllers. We discuss the simulation techniques as well as several simplifications we applied in order to be able to simulate the model in an acceptable amount of time and show that these simplifications are justified. Using the model, we conducted several case studies in order to demonstrate the practical feasibility of the control concept, analyze the system's sensitivity towards disturbances and explore opportunities for future extensions. We derive specific suggestions for improvements from our results. Finally, we demonstrate that the model represents the physical reality

  17. Physics of Ultrarelativistic Heavy Ions

    International Nuclear Information System (INIS)

    Giubellino, P.

    1996-01-01

    This paper is devoted to a general presentation of the physics of Ultrarelativistic Heavy Ions, as seen from the experimentalist close-quote s point of view. The aim of this research is the study of nuclear matter under extreme conditions of temperature and pressure, extending in this way our understanding of the strong interactions in general, and of colour confinement in particular. This young field of Physics has been growing rapidly in the past years, and any attempt to cover it in few pages will be rather sketchy and many important aspects will have to be left out. I will mainly try to cover the general motivations to undertake this study, and just mention the experimental challenges to be faced, the results from the experiments at CERN and BNL, and finally the fascinating program ahead of us, with a glimpse at the CERN LHC used as a heavy-ion collider. copyright 1996 American Institute of Physics

  18. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  19. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    HYDJET++ is a Monte Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin and Snigirev, EPJC 45 (2006) 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte Carlo simulation procedure, C++ code FAST MC (Amelin et al., PRC 74 (2006) 064901; PRC 77 (2008) 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC. Program summaryProgram title: HYDJET++, version 2 Catalogue identifier: AECR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 100 387 No. of bytes in distributed program, including test data, etc.: 797 019 Distribution format: tar.gz Programming language: C++ (however there is a Fortran-written part which is included in the generator structure as a separate directory) Computer: Hardware independent (both C++ and Fortran compilers and ROOT environment [1] ( http://root.cern.ch/) should be installed

  20. Search for heavy resonances in vector boson fusion

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00423270; The ATLAS collaboration

    2017-01-01

    If the Higgs boson discovered at the Large Hadron Collider (LHC) is not exactly the one in the Standard Model, an alternative mechanism is needed to restore unitarity in the scattering amplitude of longitudinal gauge bosons, and new resonances may appear. This paper presents a search for new heavy neutral resonances ($R$) produced through vector boson fusion process $qq \\rightarrow Rqq \\rightarrow \\ell^+ \

  1. Heavy ion fusion notes 94-1 through 94-9

    International Nuclear Information System (INIS)

    Judd, D.; Rintamaki, J.; Lund, S.

    1995-01-01

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms

  2. Heavy ion fusion notes 94-1 through 94-9

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.; Rintamaki, J.; Lund, S. [and others

    1995-03-13

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms.

  3. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Acceleration of heavy ions to relativistic energies and their use in physics and biomedicine

    International Nuclear Information System (INIS)

    White, M.G.

    1977-01-01

    The uses of accelerated heavy ions in physics and biomedicine are listed. The special properties of high energy heavy ions and their fields of applications, the desirable ions and energies, requirements for a relativistic heavy ion accelerator, and AGS and Bevalac parameters are discussed. 26 references

  5. Heavy ion facility for radiation therapy

    International Nuclear Information System (INIS)

    Leemann, C.; Alonso, J.; Clark, D.; Grunder, H.; Hoyer, E.; Lou, K.; Staples, J.; Voelker, F.

    1977-03-01

    The accelerator requirements of particle radiation therapy are reviewed and a preliminary design of a heavy ion synchrotron for hospital installation is presented. Beam delivery systems and multi-treatment room arrangements are outlined

  6. Hydrodynamic motion of a heavy-ion-beam-heated plasma

    International Nuclear Information System (INIS)

    Jacoby, J.; Hoffmann, D.H.H.; Mueller, R.W.; Mahrt-Olt, K.; Arnold, R.C.; Schneider, V.; Maruhn, J.

    1990-01-01

    The first experimental study is reported of a plasma produced by a heavy-ion beam. Relevant parameters for heating with heavy ions are described, temperature and density of the plasma are determined, and the hydrodynamic motion in the target induced by the beam is studied. The measured temperature and the free-electron density are compared with a two-dimensional hydrodynamic-model calculation. In accordance with the model, a radial rarefaction wave reaching the center of the target was observed and the penetration velocity of the ion beam into the xenon-gas target was measured

  7. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  8. Heavy ion fusion III

    International Nuclear Information System (INIS)

    Hammer, D.; Max, C.; Perkins, F.; Rosenbluth, M.

    1987-03-01

    This report updates Heavy Ion Fusion, JSR-82-302, dated January, 1983. During the last four years, program management and direction has been changed and the overall Inertial Confinement Program has been reviewed. This report therefore concentrates on accelerator physics issues, how the program has addressed those issues during the last four years, and how it will be addressing them in the future. 8 refs., 3 figs

  9. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  10. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  11. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  12. Proceedings of the Budapest workshop on relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Levai, P.

    1993-04-01

    This volume is the Proceedings of the Budapest workshop on relativistic heavy ion collisions held in Budapest, 10-13 Aug, 1992. The topics include experimental heavy ion physics, Bose-Einstein correlations, intermittency, relativistic transport theory, Quark-Gluon Plasma rehadronization, astronuclear physics and cosmology. All contributions were indexed and abstracted. (author)

  13. Heavy ion and proton-induced single event multiple upset

    International Nuclear Information System (INIS)

    Reed, R.A.; Carts, M.A.; Marshall, P.W.

    1997-01-01

    Individual ionizing heavy ion events are shown to cause two or more adjacent memory cells to change logic states in a high density CMOS SRAM. A majority of the upsets produced by normally incident heavy ions are due to single-particle events that causes a single cell to upset. However, for grazing angles a majority of the upsets produced by heavy-ion irradiation are due to single-particle events that cause two or more cells to change logic states. Experimental evidence of a single proton-induced spallation reaction that causes two adjacent memory cells to change logic states is presented. Results from a dual volume Monte-Carlo simulation code for proton-induced single-event multiple upsets are within a factor of three of experimental data for protons at normal incidence and 70 degrees

  14. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  15. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  16. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  17. Characteristics for heavy ions and micro-dosimetry in radiation detectors

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    1978-01-01

    The characteristics of radiation detectors for heavy ions generally present more complex aspects as compared with those for electron beam and γ-ray. There is the ''Katz theory'' applying the target theory in radiobiology phenomenologically to radiation detectors. Here, first, the Katz theory for radiation detectors is explained, then its applications to nuclear plates, solid state track detectors, scintillation detectors and thermoluminescence dosimeters are described, respectively. The theory is used for the calibration of the nuclear charge of heavy ions in nuclear plates and recently is used to simulate the flight tracks of heavy ions or magnetic monopoles. In solid state track detectors, the threshold value of the energy given along the tracks of heavy ions is inherent to a detector, and the Katz theory is applicable as the measure of the threshold. The theory seems to be superior to the other methods. However, it has disadvantages that the calculation is not simple and is difficult for wide objects. In scintillation detectors, the scintillation efficiency is not a single function of dE/dx, but depends on the kinds of heavy ions, which Katz succeeded to describe quantitatively with his theory. Such result has also been produced that the dependence of thermoluminescence dosimeters such as LiF on LET by Katz theory agreed fairly well with experiments. (Wakatsuki, Y.)

  18. Low mass dilepton production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pisutova, N.; Pisut, J.

    1988-01-01

    The total transverse energy dependence of low mass dilepton (and single low p T photon) production was demonstrated to be a signature of the onset of the evidence of plasma formation in heavy ion collisions. Cross-sections are presented for low mass dilepton production in proton-nucleus and heavy ion collisions which represent lower bounds for the ''collectivization'' and the thermalization of matter produced in the collision. Higher cross-section are a signature of the onset of the formation of thermalized matter. (author). 4 figs., 11 refs

  19. Working group report: heavy ion physics

    International Nuclear Information System (INIS)

    Alam, Jan-E; Chattopadhyay, S.; Assamagan, K.; Gavai, R.; Gupta, Sourendra; Mukherjee, S.; Ray, R.; Layek, B.; Srivastava, A.; Roy, Pradip K.

    2004-01-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5-16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop. The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-Abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions. (author)

  20. Mutation induction in yeast by very heavy ions

    Science.gov (United States)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.