WorldWideScience

Sample records for heavy-ion irradiation technique

  1. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  2. Effects of radical scavengers on aqueous solutions exposed to heavy-ion irradiation using the liquid microjet technique

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryousuke; Miyahara, Kento [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2015-12-15

    The effects of the radical scavenger ascorbic acid on water radiolysis are studied by fast heavy-ion irradiation of aqueous solutions of ascorbic acid, using the liquid microjet technique under vacuum. To understand the reaction mechanisms of hydroxyl radicals in aqueous solutions, we directly measure secondary ions emitted from solutions with different ascorbic acid concentrations. The yield of hydronium secondary ions is strongly influenced by the reaction between ascorbic acid and hydroxyl radicals. From analysis using a simple model considering chemical equilibria, we determine that the upper concentration limit of ascorbic acid with a radical scavenger effect is approximately 70 μM.

  3. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  4. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  5. Photoluminescence and Raman studies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    Photoluminescence and Raman studies in swift heavy ion irradiated polycrystalline aluminum oxide ... Polymers Volume 32 Issue 5 October 2009 pp 515-519 ... A broad photoluminescence (PL) emission with peak at ∼447 nm and two sharp emissions with peak at ∼ 679 and ∼ 695 nm are observed in pristine when ...

  6. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    search. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the ... films are often employed in semiconductor technology and are used as ... rements at Co/Si interface were carried out online in the.

  7. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bankar, A. [Department of Microbiology, Waghire College, Pune 412301 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalore 574166 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Arun Asaf Ali Marg, New Delhi 110067 (India); Dahiwale, S.S.; Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-10-01

    Highlights: • PC films were irradiated by 60 and 120 MeV Fe ions. • Irradiated PC films showed changes in its physical and chemical properties. • Irradiated PC also showed more anti-biofilm activity compared to pristine PC. - Abstract: Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 10{sup 11} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  8. Characterization of swift heavy ion irradiation damage in ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yablinsky, Clarissa; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, T. R.

    2015-05-14

    We have examined microstructural evolution in irradiated ceria (CeO2) using swift heavy ion irradiation, electron microscopy, and atomistic simulation. CeO2, a UO2 fuel surrogate, was irradiated with gold ions at an energy of 1 GeV to fluences up to 1x1014 ions/cm2. Transmission electron microscopy accompanied by electron energy loss spectroscopy showed that the ion tracks were of similar size at all fluences, and that there was no chemical change in the ion track core. Classical molecular dynamics simulations of thermal spikes in CeO2 with energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at the lower energy and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  9. Dislocation loop formation by swift heavy ion irradiation of metals

    Science.gov (United States)

    Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.

    2017-07-01

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  10. Characterization of swift heavy ion irradiation damage in ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yablinsky, Clarissa A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pakarinen, Janne [Inst. for Nuclear Research Center (SCK-CEN), Mol, (Belgium); Gan, Jian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Severin, Daniel [GSI-Darmstadt (Germany); Trautmann, Christina [GSI-Darmstadt (Germany); Allen, Todd R. [Univ. of Wisconsin, Madison, WI (United States). Energy Physics Dept.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  11. Effects of heavy-ion irradiation on FeSe

    Science.gov (United States)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  12. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  13. Kr implantation into heavy ion irradiated monolithic U-Mo/Al systems: SIMS and SEM investigations

    Science.gov (United States)

    Zweifel, T.; Valle, N.; Grygiel, C.; Monnet, I.; Beck, L.; Petry, W.

    2016-03-01

    Worldwide, high performance research and material test reactors are aiming to convert their fuel from high enriched uranium towards low enriched ones. High density U-Mo/Al based nuclear fuels are considered as a promising candidate for this conversion. However, during in-pile test irradiations, the formation of an interdiffusion layer (IDL) between the U-Mo and the Al matrix is observed, caused by irradiation enhanced U-Al interdiffusion processes. This IDL accumulates fission gases at the IDL/matrix interfaces. Together, these two effects strongly reduce the performance of this new fuel type. Recently, the out-of-pile technique of heavy ion irradiation (127I) on U-Mo/Al layer systems proved to be an alternative to time-consuming in-pile test irradiations for certain fuel behaviour aspects. Here we present SIMS and SEM investigations of non-conventional 82Kr implantation into previously heavy ion irradiated U-Mo/Al layer systems. It is shown that Kr accumulates inside μm large porosities at the IDL/matrix interfaces. This critical accumulation of μm-sized large gas bubbles is directly related to the presence of the irradiation induced IDL. Without IDL no critical accumulation of fission gas bubbles occurs.

  14. Enhancement of Ammonia Sensitivity in Swift Heavy Ion Irradiated Nanocrystalline SnO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Sanju Rani

    2008-01-01

    Full Text Available Swift heavy ion irradiation is an effective technique to induce changes in the microstructure and electronic energy levels of materials leading to significant modification of properties. Here we report enhancement of ammonia (NH3 sensitivity of SnO2 thin films subjected to high-energy Ni+ ion irradiation. Sol-gel-derived SnO2 thin films (100 nm thickness were exposed to 75 MeV Ni+ ion irradiation, and the gas response characteristics of irradiated films were studied as a function of ion fluence. The irradiated films showed p-type conductivity with a much higher response to NH3 compared to other gases such as ethanol. The observed enhancement of NH3 sensitivity is discussed in context of ion beam generated electronic states in the SnO2 thin films.

  15. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  16. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  17. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  18. Photoluminescence and Raman studies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    Administrator

    Swift heavy ions (SHI) cause intense electronic excita- tions along the ion trajectory when they pass through material that may result in defect production or amorphiza- tion or phase transformation on nanometer scale (Bolse et al 2004; Wang et al 2004). Thus, it is interesting to know the effect of strong electronic excitation ...

  19. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. The present work deals with the mixing of iron and silicon by swift heavy ions in high-energy range. The thin film was deposited on a n-Si (111) substrate at 10. –6 torr and at room temperature. Irradia- tions were undertaken at room temperature using 120 MeV Au. +9 ions at the Fe/Si interface to investigate ion.

  20. The effects of swift heavy ion irradiation on the structural properties of poly(lactide-co-glycolide)/clay nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreet.kaur@abesit.in [ABES Institute of Technology,Ghaziabad, Uttar Pradesh (India); Singh, Surinder [Department of Physics, Guru Nanak Dev University, Amritsar (India); Mehta, Rajeev [Department of Chemical Engineering, Thapar University, Patiala (India)

    2016-05-23

    Radiation has been used as a processing technique to modify structural, chemical, physical and morphological properties of polymers and its nanocomposite and can thus be used as a method to control the rate of degradation. The swift heavy ions (SHI) irradiation effects on the structural properties of poly(lactide-co-glycolide) nanocomposites containing 5 wt% organo-montmorillonite (OMMT) clay by irradiating with 50 MeV Li{sup 3+} and 180 MeV Ag{sup 8+} ions has been studied at different fluences. The structural responses of PLGA nanocomposite under the influence of SHI were studied using Fourier transform infrared (FTIR) spectroscopy. The presence of clay and irradiation by swift heavy ions (SHI) brings out interesting changes in structural properties of nanocomposite.

  1. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    Directory of Open Access Journals (Sweden)

    Yaxiong Cheng

    2017-05-01

    Full Text Available Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  2. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao; Yang, Zhimei; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2016-09-15

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  3. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2 ... Ion beam mixing; XRD; Schottky barrier height; series resistance. ... – measurements for both pristine and irradiated samples have been carried out at room temperature, series resistance and barrier heights for both as deposited and irradiated samples ...

  4. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  5. Microstructural and microchemical evolution in vanadium alloys by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Kakiuchi, Hironori; Shirao, Yasuyuki; Iwai, Takeo [Tokyo Univ. (Japan)

    1996-10-01

    Microstructural and microchemical evolution in vanadium alloys were investigated using heavy ion irradiation. No cavities were observed in V-5Cr-5Ti alloys irradiated to 30 dpa at 520 and 600degC. Energy dispersive X-ray spectroscopy analyses showed that Ti peaks around grain boundaries. Segregation of Cr atoms was not clearly detected. Co-implanted helium was also found to enhance dislocation evolution in V-5Cr-5Ti. High density of matrix cavities were observed in V-5Fe alloys irradiated with dual ions, whereas cavities were formed only around grain boundaries in single ion irradiated V-5Fe. (author)

  6. Swift heavy ion irradiation induced modification of structure and ...

    Indian Academy of Sciences (India)

    Modification of structure and surface morphology of the films under irradiation was studied using glancing incidence X-ray diffraction (GIXRD) and atomic force microscope (AFM). Fluence dependence of GIXRD peak intensity indicated formation of 10 nm diameter cylindrical amorphous columns in crystalline BFO due to ...

  7. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  8. Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation.

    Science.gov (United States)

    Ota, Shuhei; Matsuda, Takahiro; Takeshita, Tsuyoshi; Yamazaki, Tomokazu; Kazama, Yusuke; Abe, Tomoko; Kawano, Shigeyuki

    2013-12-01

    Heavy-ion mutagenesis is a technology used for effective production of genetic mutants. This study demonstrates that algal breeding using a unicellular alga, Parachlorella kessleri, by heavy-ion mutagenesis can improve lipid yield in laboratory experiments. The primary screening yielded 23 mutants among which a secondary screening yielded 7 strains, which were subjected to phenotypic assays. P. kessleri strains produced by heavy-ion radiation spanned a broad spectrum of phenotypes that differed in lipid content and fatty acid profiles. Starch grain morphology was distinctively altered in one of the mutants. The growth of strain PK4 was comparable to that of the wild type under stress-free culture conditions, and the mutant also produced large quantities of lipids, a combination of traits that may be of commercial interest. Thus, heavy-ion irradiation is an effective mutagenic agent for microalgae and may have potential in the production of strains with gain-of-function phenotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  10. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  11. Effect of swift heavy ion irradiation on surface resistance of DyBa 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7- thin films at microwave frequencies. Ujwala Ail Tamalika Banerjee A R Bhangale D Kanjilal R Pinto. Physics of Vortex State Volume 58 Issue 5-6 May-June 2002 pp 959-963 ...

  12. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The present work deals with the mixing of metal and silicon by swift heavy ions in high-energy range. Threshold value for the defect creation in metal Fe calculated was found to be ~ 40 keV/nm. A thin film of Fe (10 nm) was deposited on Si (100) at a pressure of 4 × 10–8 Torr and was irradiated with 95 MeV Au ions ...

  13. Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC

    CERN Document Server

    Futami, Y; Fujita, M; Tomura, H; Higashi, A; Matsufuji, N; Miyahara, N; Endo, M; Kawachi, K

    1999-01-01

    A three-dimensional irradiation system using a broad beam has been installed for heavy-ion cancer therapy at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility. Only the target region is irradiated at the 100% dose level; the dose level at other parts of irradiated tissues is less, using a range shifter, a multileaf collimator and a compensator. The devices are the same as those used in two-dimensional irradiation, except that the setting values of the devices can be dynamically changed during the treatment. The thickness of the absorber and the aperture of the multileaf collimator are dynamically controlled during irradiation, so that the Bragg peak is swept in the depth direction and the Bragg peak outside of the target volume is blocked by the multileaf collimator. The performance of this system was checked by irradiation of a phantom using a 290 MeV/nucleon carbon beam. The dose distribution realized by this three-dimensional irradiation agreed satisfactorily with the planned one.

  14. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  15. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Science.gov (United States)

    Yu, Hongbing; Liang, Jianlie; Yao, Zhongwen; Kirk, Mark A.; Daymond, Mark R.

    2017-05-01

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb)2 enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr2+ heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  16. Irradiation effect of different heavy ions and track section on the silkworm Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhenli E-mail: tu514@yahoo.co.jp; Kobayashi, Yasuhiko; Kiguchi, Kenji; Watanabe, Hiroshi

    2003-05-01

    In order to compare the irradiation effects of different ions, wandering larvae were whole-body exposed or locally irradiated with 50-MeV {sup 4}He{sup 2+}, 220-MeV {sup 12}C{sup 5+}, and 350-MeV {sup 20}Ne{sup 8+} ions, respectively. For the whole-body-exposed individuals, the survival rates at the cocooning, pupation, and emergence stages all decreased as dose increased, and a range-dependent difference was clearly observed. For local irradiation of ovaries, irradiation effects depend very strongly on the projectile range. In the case of local irradiation of dermal cells by different track sections of heavy ions, the closer the target was to the high-LET section of the track, the more pronounced were the radiation effects. These results indicated that by selectively using ion species and adjusting the irradiation depth to the target, heavy-ion radiosurgery on particular tissues or organs of small experimental animals can be performed more accurately.

  17. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes

    Science.gov (United States)

    Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2015-02-01

    A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.

  18. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  19. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  20. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: An anti-radiation vaccine could be an important part of a countermeasures reg-imen for effective radioprotection, immunoprophylaxis and immunotherapy of the acute radi-ation syndromes (ARS) after gamma-irradiation, neutron irradiation or heavy ion irradiation. Reliable protection of non-neoplastic regions of patients with different forms of cancer which undergo to heavy ion therapy ( e.g. Hadron-therapy) can significantly extend the efficiency of the therapeutic course. The protection of cosmonauts astronauts from the heavy ion ra-diation component of space radiation with specific immunoprophylaxis by the anti-radiation vaccine may be an important part of medical management for long term space missions. Meth-ods and experiments: 1. The Antiradiation Vaccine preparation -standard (mixture of toxoid form of Radiation Toxins -SRD-group) which include Cerebrovascular RT Neurotoxin, Car-diovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins Specific Radiation Determinant Group were isolated from a central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastrointestiinal, Hematopoi-etic forms of ARS. Devices for γ-radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Scientific Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator -UTI. Heavy Ion linear transfer energy -2000-2600 KeV mkm, 600 MeV U. Absorbed Dose -3820 Rad. 3. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A -control -10 rabbits; Group B -placebo -5 rabbits; Group C -radioprotectant Cystamine (50 mg kg)-5 rabbits, 15 minutes before irradiation -5 rabbits; Group D -radioprotectant Gammafos (Amifostine -400mg kg ), -5 rabbits; Group E -Antiradiation Vaccine: subcuta-neus administration or IM -2 ml of active substance, 14 days before irradiation -5 rabbits. 4

  1. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  2. Tuning the conductivity of vanadium dioxide films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, Paul; Hofsaess, Hans; Gehrke, Hans-Gregor [II. Physikalisches Institut, Fakultaet fuer Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Krauser, Johann [Hochschule Harz, University of Applied Sciences, Friedrichstrasse 57-59, 38855 Wernigerode (Germany); Trautmann, Christina [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); Ramanathan, Shriram [Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States)

    2012-07-01

    We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films by irradiation with swift heavy ions at room temperature. VO{sub 2} undergoes a temperature driven metal-insulator-transition (MIT) at 67 C. After the ion irradiation the conductivity of the films we observe a strong increase in conductivity below the transition temperature proportional to the ion fluence. This change in conductivity is persistent and remains after several cycles of heating. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM) measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. AFM measurements with conducting tip give no evidence for conducting ion tracks but indicate the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation.

  3. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system

    Science.gov (United States)

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D.; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48 h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1 Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level.

  4. Heavy ion irradiation induced dislocation loops in AREVA's M5® alloy

    Science.gov (United States)

    Hengstler-Eger, R. M.; Baldo, P.; Beck, L.; Dorner, J.; Ertl, K.; Hoffmann, P. B.; Hugenschmidt, C.; Kirk, M. A.; Petry, W.; Pikart, P.; Rempel, A.

    2012-04-01

    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5® alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  5. Carbonization of polyimide by swift heavy ion irradiations: Effects of stopping power and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, J.-M. [DMN/SRMA, CEA/SACLAY, F-91191 Gif-sur-Yvette Cedex (France)]. E-mail: jean-marc.costantini@cea.fr; Salvetat, J.-P. [CRMD, CNRS, 1B rue de la Ferollerie, F-45071, Orleans Cedex 2 (France); Couvreur, F. [DMN/SEMI, CEA/SACLAY, F-91191 Gif-sur-Yvette Cedex (France); Bouffard, S. [CIRIL, CEA-CNRS-ISMRA, rue Claude Bloch, BP 5133, F-14070 Caen Cedex 5 (France)

    2005-07-01

    We have studied the carbonization of polyimide Kapton-H (pyromellitic dianhydride-oxydialinine, PMDA-ODA) thin films under heavy ion irradiations in the electronic slowing down regime. Irradiations were performed with 650-MeV Ni, 843-MeV Xe, 2.6-GeV Xe, 1.1-GeV Ta, and 707-MeV Pb ions that were transmitted through the polymer films with the electronic stopping power ranging between 3.5 and 17 keV nm{sup -1}. Room-temperature ac/dc electrical conductivity measurements, together with ESR, UV-visible optical absorption, and micro-Raman spectroscopy were used to characterize the irradiated films. These new data are compared to our previous results obtained with heavy ion irradiations in the 1-MeV uma{sup -1} energy range. At the largest fluences near 10{sup 13} cm{sup -2} the resulting carbonaceous material is found to be 8-9 orders of magnitude less conducting than with the slower ions. Such large dc-conductivity deviations are confirmed by the spin-lattice relaxation times deduced from the ESR line saturation measurements that are two orders of magnitude longer with the swift ions than with the slower ions. The evolution of the Raman spectra also shows that the appearance of a conjugated sp{sup 2}-bonded structure is delayed with respect to the slow ion case, and is probably incomplete in the observed fluence range. The yield of paramagnetic centers is found to decrease when the ion energy increases. This is interpreted by an ion-velocity effect on damage due to a dilution of the deposited energy in the ion tracks. We think that this also induces a smaller sp{sup 2} cluster density impeding charge transport in the carbonaceous material.

  6. Effect of swift heavy ion irradiation on single- and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Olejniczak, Andrzej, E-mail: aolejnic@chem.uni.torun.pl [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń (Poland); Skuratov, Vladimir A. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2014-05-01

    The effect of irradiation with swift heavy ions on the structure and properties of carbon nanotubes was investigated by Raman spectroscopy. It was found that disordering of the system occurred mainly at the surface. No ordering phenomena have been observed over a whole range of both fluences and electronic stopping powers studied. The disorder parameter (i.e., the ratio of the D and G band intensities (I{sub D}/I{sub G})) increases non-linearly with the irradiation dose, showing a tendency to saturate at high fluences. The increase in the disorder parameter upon irradiation was proportional to the square root of the ion fluence. The radiation stability of the few-walled nanotubes was ca. 1.6 higher than that of the single-walled ones. The irradiation with both the Xe and Kr ions leads to essentially the same increase in the I{sub D}/I{sub G} ratio with respect to the deposited electronic energy density. In the case of the Ar ion irradiation, the observed increase in the I{sub D}/I{sub G} ratio is much lower, suggesting that the electronic stopping power threshold for defects creation in carbon nanotubes is lower than that for graphite.

  7. Development of function-graded proton exchange membrane for PEFC using heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiraki, Fumiya; Yoshikawa, Taeko [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Oshima, Akihiro, E-mail: akoshima@sanken.osaka-u.ac.jp [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Oshima, Yuji; Takasawa, Yuya; Fukutake, Naoyuki; Gowa Oyama, Tomoko; Urakawa, Tatsuya; Fujita, Hajime; Takahashi, Tomohiro [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Oka, Toshitaka [Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakara-Shirane, Tokai, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Ibaraki 319-1188 (Japan); Murakami, Takeshi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Hama, Yoshimasa; Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2011-08-01

    The graded energy deposition of heavy ion beam irradiation to polymeric materials was utilized to synthesize a novel proton exchange membrane (PEM) with the graded density of sulfonic acid groups toward the thickness direction. Stacked Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were irradiated by Xe{sup 54+} ion beam with the energy of 6 MeV/u under a vacuum condition. The induced trapped radicals by the irradiation were measured by electron spin resonance (ESR) spectroscopy. Irradiated films were grafted with styrene monomer and then sulfonated. X-ray photo-electron spectroscopy (XPS) spectra showed that the densities of sulfonic acid groups were controlled for injection 'Surface' and transmit 'Back' sides of the fabricated PEM. The membrane electrode assembly (MEA) fabricated by the function-graded PEM showed improved fuel cell performance in terms of voltage stability. It was expected that the function-graded PEM could control the graded concentration of sulfonic acid groups in PEM.

  8. Microwave/RESIS technique for measurement of heavy ion properties

    Science.gov (United States)

    Lundeen, Stephen; Keele, Julie; Woods, Shannon; Smith, Chris; Fehrenbach, Charles

    2012-06-01

    The subtle but distinctive patterns of binding energies of high-L Rydberg electrons bound to heavy positive ions reveal the ion properties, such as polarizabilities and permanent moments, that control the long-range interactions between ion and the Rydberg electron. A specialized experimental technique, Resonant Excitation Stark Ionization Spectroscopy (RESIS), facilitates study of these fine structure patterns in a wide variety of Rydberg systems. The simplest RESIS measurements use a Doppler-tuned CO2 laser to selectively detect individual high-L Rydberg states in a fast Rydberg beam by resonant excitation to a much higher level, followed by Stark ionization and collection of the resulting ion. Much more precise studies use the selective RESIS excitation to detect direct microwave transitions between Rydberg levels of the same n. Recent microwave/RESIS studies of this type have determined many properties of the ions Th^4+[1], Th^3+[2], and Ni^+[3]. Details of this method will be described, with particular attention to studies of multiply-charged Rydberg ions.[4pt] [1] Chris S. Smith et. al., DAMOP 2012[0pt] [2] Julie A. Keele, et. al., DAMOP 2012[0pt] [3] Shannon L. Woods, et. al. DAMOP 2012

  9. Modeling of single event gate rupture in power MOSFETs under heavy ion irradiation

    Science.gov (United States)

    Useinov, R. G.; Zebrev, G. I.; Emelyanov, V. V.; Vatuev, A. S.

    2014-12-01

    Destructive single event gate rupture (SEGR) occurring in the gate oxides of power MOSFETs under impact of heavy ions is studied and modeled. SEGR cross section of power MOSFET with 70 nm oxide thickness as function of gate voltage was measured for four types of heavy ions. A predictive formula for the SEGR cross section is derived and validated. This formula can be used as a predictive instrument for computation of survival probability in a given spectrum of heavy ions in space environments.

  10. A new cooling technique for heavy ions in a Penning trap

    Science.gov (United States)

    Savard, G.; Becker, St.; Bollen, G.; Kluge, H.-J.; Moore, R. B.; Otto, Th.; Schweikhard, L.; Stolzenberg, H.; Wiess, U.

    1991-09-01

    A new cooling technique for heavy ions stored in a Penning trap has been developed. The axial and cyclotron motions are cooled by buffer gas collisions. The outward radial diffusion caused by the buffer gas is counteracted by an azimuthal quadrupole rf field at the sum frequency of the magnetron and cyclotron motions. A mass selectivity of 500 in the cooling is achieved while the axial energy distribution is observed to be in equilibrium with the buffer gas temperature ( T = 300 K).

  11. Machine and deep learning techniques in heavy-ion collisions with ALICE arXiv

    CERN Document Server

    INSPIRE-00382877

    Over the last years, machine learning tools have been successfully applied to a wealth of problems in high-energy physics. A typical example is the classification of physics objects. Supervised machine learning methods allow for significant improvements in classification problems by taking into account observable correlations and by learning the optimal selection from examples, e.g. from Monte Carlo simulations. Even more promising is the usage of deep learning techniques. Methods like deep convolutional networks might be able to catch features from low-level parameters that are not exploited by default cut-based methods. These ideas could be particularly beneficial for measurements in heavy-ion collisions, because of the very large multiplicities. Indeed, machine learning methods potentially perform much better in systems with a large number of degrees of freedom compared to cut-based methods. Moreover, many key heavy-ion observables are most interesting at low transverse momentum where the underlying event ...

  12. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaoming; Li, Xingji, E-mail: lxj0218@hit.edu.cn; Yang, Jianqun; Rui, Erming

    2014-01-21

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (I{sub B}) decreases with the increasing annealing temperature, while the collector current (I{sub C}) remains invariable. The current gain varies slightly, when the annealing temperature (T{sub A}) is lower than 400 K, while varies rapidly at T{sub A}<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V{sub 2}(−/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V{sub 2}(−/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  13. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    Science.gov (United States)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Rui, Erming

    2014-01-01

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) remains invariable. The current gain varies slightly, when the annealing temperature (TA) is lower than 400 K, while varies rapidly at TABJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(-/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(-/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  14. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    This work represents the investigations in imagine properties of inorganic scintillation screens as diagnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y{sub 3}Al{sub 5}O{sub 12}) and polycrystalline aluminum oxides (pure and chromium-doped Al{sub 2}O{sub 3}). Out of these groups, a selection of seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium), that were extracted from SIS18 in fast (1 μs) and slow (300-400 ms) extraction mode at a specific energy of E{sub spec}=300 MeV/u. The number of irradiating particles per pulse was varied between 10{sup 7} and 2.10{sup 10} ppp and the scintillation response was recorded by a complex optical system. The records served on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations in variations of the material structure. A data analysis was performed based on a dedicated Python script. Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman fluorescence spectroscopy) were performed after the beam times for investigations in the material structure. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation, were proven within the accuracy range of the used instrumentation and the given ion fluences. Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow extracted Nickel pulses at 2.10{sup 9} ppp and a specific energy around E{sub spec}∼300 MeV/u were performed and the

  15. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Lisha [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Inter University Accelerator Center, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Vijaykumar, B. Varma; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India)

    2017-04-01

    Highlights: • Zinc ferrite films exhibited room temperature ferrimagnetic property. • On ion irradiation amorphisation of films were observed. • The surface morphology undergoes changes with ion irradiation. • The saturation magnetisation decreases on ion irradiation. - Abstract: Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  16. Effect of heavy ion irradiation and α+β phase heat treatment on oxide of Zr-2.5Nb pressure tube material

    Science.gov (United States)

    Choudhuri, Gargi; Mukherjee, P.; Gayathri, N.; Kain, V.; Kiran Kumar, M.; Srivastava, D.; Basu, S.; Mukherjee, D.; Dey, G. K.

    2017-06-01

    Effect of heavy-ion irradiation on the crystalline phase transformation of oxide of Zr-2.5Nb alloys has been studied. The steam-autoclaved oxide of pressure tube is irradiated with 306 KeV Ar+9 ions at a dose of 3 × 1019 Ar+9/m2. The damage profile has been estimated using ;Stopping and Range of Ions in Matter; computer program. The variation of the crystal structure along the depth of the irradiated oxide have been characterized non-destructively by Grazing Incidence X-ray Diffraction technique and compared with unirradiated-oxide. The effect of different base metal microstructures on the characteristic of oxide has also been studied. Base metal microstructure as well as the cross-sectional oxide have been characterized using transmission electron microscope. Heavy ion irradiation can significantly alter the distribution of phases in the oxide of the alloy. The difference in chemical state of alloying element has also been found between unirradiated-oxide with that of irradiated-oxide using X-ray photo electron spectroscopy. Chemical state of Nb in steam autoclaved oxide is also altered when the base metal is α + β heat treated.

  17. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  18. [The heavy ion irradiation influence on the thermodynamic parameters of liquids in human body].

    Science.gov (United States)

    Vlasenko, T S; Bulavin, L A; Sysoev, V M

    2014-01-01

    In this manuscript a theoretical model describing the influence of the heavy ion radiotherapy on the liquid matter in the human body is suggested. Based on the fundamental equations of Bogoliubov chain the effective temperatures in the case of constant particles fluent are found in the context of single component model. An existence of such temperatures allows the use of equilibrium thermodynamics formalism to nonequilibrium stationary state. The obtained results provide the possibility of predicting the liquid matter structural changes in the biological systems in the area influenced by the heavy ion beams.

  19. In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag

    Science.gov (United States)

    Li, Jin; Chen, Y.; Wang, H.; Zhang, X.

    2017-03-01

    Recent studies have shown that twin boundaries are effective defect sinks in heavy ion irradiated nanotwinned (nt) metals. Prior in situ radiation studies on nt Ag at room temperature indicate that the accumulative defect concentration is higher in center areas in the 60-nm-thick twins, and twin boundaries are distorted and self-heal during the absorption of different types of defect clusters. In this follow-up study, we show that the spatial distribution of accumulative defect concentrations in nt metals has a clear dependence on twin thickness, and in certain cases, the trend of spatial distribution is reversed. Potential mechanisms for the counterintuitive findings are discussed.

  20. Detector system for the study of low energy heavy ion reactions using kinematic coincidence technique

    Science.gov (United States)

    Jhingan, Akhil; Kalkal, S.; Sugathan, P.; Golda, K. S.; Ahuja, R.; Gehlot, J.; Madhavan, N.; Behera, B. R.; Mandal, S. K.

    2014-05-01

    The characteristics and performance of a new detector system developed for the study of low energy heavy ion binary reactions using the kinematic coincidence technique are presented. The detector system has been developed to carry out experiments such as multi-nucleon transfer reactions using the General Purpose Scattering Chamber (GPSC) facility at IUAC [1,2]. The detector system consists of a pair of two-dimensional position sensitive multi wire proportional counter (MWPC) and a ΔE - E gas ionization chamber. Both MWPC have an active area of 5×5 cm2, and provide position signals in horizontal (X) and vertical (Y) plane, and timing signal for time of flight measurements. The main design feature of MWPC is the reduced wire pitch of 0.025 in. (0.635 mm) in all electrodes, giving uniform field and faster charge collection, and usage of 10 μm diameter in anode frame which gives higher gains. The position resolution of the detectors was determined to be 0.45 mm FWHM and time resolution was estimated to be 400 ps FWHM. The detector could handle heavy ion count rates exceeding 100 kHz without any break down. The timing and position signals of the detectors are used for kinematic coincidence measurements and subsequent extraction of their mass and angular distributions. The ionization chamber has a conventional transverse field geometry with segmented anode providing multiple ΔE signals for nuclear charge (Z) identification. This article describes systematic study of these detectors in terms of efficiency, count rate handling capability, time, position and energy resolution.

  1. Detector system for the study of low energy heavy ion reactions using kinematic coincidence technique

    Energy Technology Data Exchange (ETDEWEB)

    Jhingan, Akhil, E-mail: akhil@iuac.res.in [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Kalkal, S. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Sugathan, P.; Golda, K.S.; Ahuja, R.; Gehlot, J.; Madhavan, N. [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Behera, B.R. [Deptartment of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S.K. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India)

    2014-05-01

    The characteristics and performance of a new detector system developed for the study of low energy heavy ion binary reactions using the kinematic coincidence technique are presented. The detector system has been developed to carry out experiments such as multi-nucleon transfer reactions using the General Purpose Scattering Chamber (GPSC) facility at IUAC [1,2]. The detector system consists of a pair of two-dimensional position sensitive multi wire proportional counter (MWPC) and a ΔE−E gas ionization chamber. Both MWPC have an active area of 5×5 cm{sup 2}, and provide position signals in horizontal (X) and vertical (Y) plane, and timing signal for time of flight measurements. The main design feature of MWPC is the reduced wire pitch of 0.025 in. (0.635 mm) in all electrodes, giving uniform field and faster charge collection, and usage of 10μm diameter in anode frame which gives higher gains. The position resolution of the detectors was determined to be 0.45 mm FWHM and time resolution was estimated to be 400 ps FWHM. The detector could handle heavy ion count rates exceeding 100 kHz without any break down. The timing and position signals of the detectors are used for kinematic coincidence measurements and subsequent extraction of their mass and angular distributions. The ionization chamber has a conventional transverse field geometry with segmented anode providing multiple ΔE signals for nuclear charge (Z) identification. This article describes systematic study of these detectors in terms of efficiency, count rate handling capability, time, position and energy resolution.

  2. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, C.; Lebius, H.; Bouffard, S.; Quentin, A.; Ramillon, J. M.; Madi, T.; Guillous, S.; Been, T.; Guinement, P.; Lelievre, D.; Monnet, I. [CIMAP, CEA-CNRS-ENSICAEN-UCBN, BP 5133, 14070 Caen Cedex 5 (France)

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.

  3. In-situ spectroscopy of radiation damage of PTFE irradiated with high-energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, A.O.; Rizzutto, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Severin, D.; Seidl, T.; Neumann, R.; Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)

    2010-07-01

    group). In addition, double bond formation and cross linked structures are also observed. The internal double bond formation in irradiated PTFE is an indication of C-F bond scission. Besides being a easy-use system, the combination of in-situ FTIR and RGA technique at the M3-beam line got to a better understanding of some damage processes and degradation routes of PTFE irradiated with high-energy ions. (author)

  4. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Eiji; Furusawa, Toshiharu [Kyoto Inst. of Tech. (Japan). Faculty of Textile Science; Nagaoka, Shunji [Fujita Health Univ., Toyoake, Aichi (Japan). School of Health Sciences] [and others

    2002-12-01

    In order to investigate whether eggs of the black-striped strain (P{sup S}) of the silkworm, Bombyx mori, represent an appropriate model for estimating the biological effect of cosmic radiation, radiosensitivity of the eggs against X-rays and heavy ion particles was examined as ground-based experiments. The exposure of diapause eggs to X-rays or heavy ion particles resulted in somatic mutations appearing as a white spot on the black integument during larval stage. Irradiation of non-diapause eggs with X-rays demonstrated a significant difference in frequency of the mutation between fractionated and single administration doses, but no difference was observed in diapause eggs. Incidence of the mutation as induced by carbon ion beams for 15-day old eggs was higher for eggs that had been kept at 15 deg C than those kept at 25 deg C. Neon beam irradiation of diapause eggs displayed dose- and linear energy transfer (LET)-dependent effects, causing a maximal rate of the mutation at 150 keV/{mu}m. These results confirm that B. mori eggs represent valid models for estimating the biological effects of cosmic radiation. (author)

  5. Transmission electron microscopy study of the heavy-ion-irradiation-induced changes in the nanostructure of oxide dispersion strengthened steels

    Science.gov (United States)

    Rogozhkin, S. V.; Bogachev, A. A.; Orlov, N. N.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffman, Ya.; Möslang, A.; Vladimirov, P.; Klimenkov, M.

    2017-07-01

    Transmission electron microscopy was used to study the effect of heavy-ion irradiation on the structure and the phase state of three oxide dispersion strengthened (ODS) steels: ODS Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti (wt %). Samples were irradiated with iron and titanium ions to fluences of 1015 and 3 × 1015 cm-2 at 300, 573, and 773 K. The study of the region of maximum radiation damage shows that irradiation increases the number density of oxide particles in all samples. The fraction of fine inclusions increases in the particle size distribution. This effect is most pronounced in the ODS 13.5Cr steel irradiated with titanium ions at 300 K to a fluence of 3 × 1015 cm-2. It is demonstrated that oxide inclusions in ODS 13.5Cr-0.3Ti and ODS 13.5Cr steels are more stable upon irradiation at 573 and 773 K than upon irradiation at 300 K.

  6. Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Daxi; He, Chaohui, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn; Zang, Hang; Zhang, Peng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Martin-Bragado, Ignacio, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn [IMDEA Materiales, C/ Eric Kandel, 2, Tecnogetafe, 28906 Getafe, Madrid (Spain)

    2014-11-28

    Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

  7. Swift heavy ion-irradiation effects on microstructure, surface morphology and optical properties of PbS thin films

    Science.gov (United States)

    Rajbongshi, Ananta; Kalita, M. P. C.; Singh, F.; Sarma, K. C.; Sarma, B. K.

    2016-05-01

    Chemically deposited PbS nanocrystalline thin films are irradiated by 100 MeV Si8+ swift heavy ions of fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. Detailed investigation on the effects of irradiation on microstructure is carried out by X-ray diffraction line profile analysis applying Williamson-Hall and modified Williamson-Hall methods, and transmission electron microscope observation, while atomic force microscope is used for studying the modifications in surface morphology. The band gaps are obtained from electronic absorption spectroscopy measurements, and photoluminescence spectra are recorded by spectrofluorometer. The pristine and irradiated films are polycrystalline in nature with spherical crystallites having face-centered cubic phase. The crystallite size of the pristine film is 20 nm, while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 21, 20 and 20 nm, respectively. The lattice strain (dislocation density) of the pristine film is 8.9 × 10-3 (6.6 × 1016 m-2), while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 8.6 × 10-3 (6.1 × 1016 m-2), 8.7 × 10-3 (6.4 × 1016 m-2) and 9.1 × 10-3 (7.0 × 1016 m-2), respectively. The dislocations present in both the pristine and irradiated films are edge in nature. The surface morphology changes significantly with elongation of the particles, increase in particle size and interparticle separation and slight decrease in rms roughness after irradiation. The band gap of the pristine film is 2.51 eV which remains unaltered after irradiation. Photoluminescence intensity increases significantly after irradiation which can be useful in enhancing the performance of different photonic devices such as light-emitting diodes, lasers and luminescence-based sensors.

  8. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen; Korinek, Andreas; Kirk, Marquis A.; Sattari, Mohammad; Preuss, Michael; Daymond, M. R.

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmission electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  9. Durability of targets and foils irradiated by intense heavy ion beams in experiments on synthesis of superheavy nuclei

    Science.gov (United States)

    Sagaidak, R. N.

    2017-09-01

    Durability of targets and window foils irradiated by intense heavy ion (HI) beams in the experiments on synthesis of superheavy nuclei, which are carried out in Dubna with Gas-Filled Recoil Separator (DGFRS), has been viewed in various ways. High fluxes of HI and heat generations, which are realized within relatively small areas and thicknesses of these elements of DGFRS, are inherent in such experiments. The lifetimes of the targets and window foils are estimated as the result of HI beam actions such as radiation damages, sputtering and evaporation of atoms. The most critical processes determining the durability of the targets and window foils are discussed. The processes of heat transfer due to thermal conductivity, convection and radiation are also considered from the point of view of possible ways of cooling of the elements irradiated by an intense HI beam. Temperatures of the targets and window foils as functions of time are calculated in the conditions of their pulse heating by the beam followed by radiative cooling of their surfaces. Such pulsing mode is realized in the DGFRS operation with the rotation of target and window foils irradiated by a continuous HI beam. Estimates show that radiative cooling in such conditions can be the most effective way of heat removal at the temperature of several hundred degrees. Such temperature can be reached on the surfaces of the target and window foils irradiated by HI beams at the intensity 1013 s-1.

  10. Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers

    Science.gov (United States)

    Steinbach, T.; Schnohr, C. S.; Kluth, P.; Giulian, R.; Araujo, L. L.; Sprouster, D. J.; Ridgway, M. C.; Wesch, W.

    2011-02-01

    Swift heavy-ion (SHI) irradiation of amorphous germanium (a-Ge) layers leads to a strong volume expansion accompanied by a nonsaturating irreversible plastic deformation (ion hammering), which are consequences of the high local electronic energy deposition within the region of the a-Ge layer. We present a detailed study of the influence of SHI irradiation parameters on the effect of plastic deformation and structural modification. Specially prepared a-Ge layers were irradiated using two SHI energies and different angles of incidence, thus resulting in a variation of the electronic energy deposition per depth ɛe between 14.0 and 38.6 keV nm-1. For all irradiation parameters used a strong swelling of the irradiated material was observed, which is caused by the formation and growth of randomly distributed voids, leading to a gradual transformation of the amorphous layer into a sponge-like porous structure as established by cross-section scanning electron microscopy investigations. The swelling depends linearly on the ion fluence and on the value of ɛe, thus clearly demonstrating that the structural changes are determined solely by the electronic energy deposited within the amorphous layer. Plastic deformation shows a superlinear dependence on the ion fluence due to the simultaneous volume expansion. This influence of structural modification on plastic deformation is described by a simple approach, thus allowing estimation of the deformation yield. With these results the threshold values of the electronic energy deposition for the onset of both structural modification and plastic deformation due to SHI irradiation are determined. Furthermore, based on these results, the longstanding question concerning the reason for the structural modification observed in SHI-irradiated crystalline Ge is answered.

  11. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals ...

    Indian Academy of Sciences (India)

    Administrator

    of bonds due to bond cleavage and reconstruction. The effect of SHI irradiation on the surface roughness has also been investigated and it is observed that the surface roughness increases after irradiation. Acknowledgements. The authors are thankful to IUAC, New Delhi, for provid- ing ion irradiation facility to carry out this ...

  12. Dissociation of biomolecules in liquid environments during fast heavy-ion irradiation

    Science.gov (United States)

    Nomura, Shinji; Tsuchida, Hidetsugu; Kajiwara, Akihiro; Yoshida, Shintaro; Majima, Takuya; Saito, Manabu

    2017-12-01

    The effect of aqueous environment on fast heavy-ion radiation damage of biomolecules was studied by comparative experiments using liquid- and gas-phase amino acid targets. Three types of amino acids with different chemical structures were used: glycine, proline, and hydroxyproline. Ion-induced reaction products were analyzed by time-of-flight secondary-ion mass spectrometry. The results showed that fragments from the amino acids resulting from the C—Cα bond cleavage were the major products for both types of targets. For liquid-phase targets, specific products originating from chemical reactions in solutions were observed. Interestingly, multiple dissociated atomic fragments were negligible for the liquid-phase targets. We found that the ratio of multifragment to total fragment ion yields was approximately half of that for gas-phase targets. This finding agreed with the results of other studies on biomolecular cluster targets. It is concluded that the suppression of molecular multifragmentation is caused by the energy dispersion to numerous water molecules surrounding the biomolecular solutes.

  13. Role of carrier concentration in swift heavy ion irradiation induced surface modifications

    Science.gov (United States)

    Gupta, Sushant; Ganesan, V.; Sulania, Indra; Das, B.

    2017-10-01

    Highly conducting SnO2 thin films were prepared by chemical spray pyrolysis technique. One set of as-deposited films were annealed in air for 2 h at 850 °C. These as-deposited and annealed SnO2 thin films were irradiated using gold ions with energy of 120 MeV at different fluences ranging from 1 × 1011 to 3 × 1013 ions/cm2. Electrical measurement shows that as-deposited SnO2 films are in conducting state with n = 3.164 ×1020cm-3 and annealed SnO2 films are in insulating state. The amorphized latent tracks are created only above a certain threshold value of Se, which directly depends on the free electron concentration (n). The electronic energy loss (Se) of 120 MeV Au9+ ions in SnO2 is greater than the threshold energy loss (Seth) required for the latent track/molten zone formation in annealed SnO2 thin film, but is less than Seth required for as-deposited SnO2 film. Therefore, the latent tracks/molten zones are formed in the annealed SnO2 film and not in the as-deposited SnO2 film. Thermal spike model is used for the calculation of threshold energy loss and radius of melted zone. The possible mechanism of the structural changes and surface microstructure evolutions is briefly discussed in the light of ion's energy relaxation processes and target's conductivity. The atomic force microscopy (AFM) study of films shows that the morphologies of irradiated films are linked with carrier concentration of target materials.

  14. Magnetic force microscopy of nano-size magnetic domain ordering in heavy ion irradiated fullerene films.

    Science.gov (United States)

    Kumar, Amit; Avasthi, D K; Pivin, J C; Papaléo, R M; Tripathi, A; Singh, F; Sulania, I

    2007-06-01

    In the present work, magnetic force microscopy is employed to investigate the magnetic ordering in ion irradiated fullerene films. It is observed that magnetic domain size is approximately 100-200 nm and magnetic signal is stronger at the domain boundaries. Magnetic signal arise in irradiated films is confirmed by magnetic measurements using a superconducting quantum interference device which increases with the ion fluence. The induced magnetism is possibly due to structural defects in the amorphous carbon phase formed by ion irradiation.

  15. Modification of photosensing property of CdS–Bi{sub 2}S{sub 3} bi-layer by thermal annealing and swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Shaheed U.; Siddiqui, Farha Y. [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India); Singh, Fouran; Kulriya, Pawan K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Phase, D.M. [UGC DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-02-01

    The CdS–Bi{sub 2}S{sub 3} bi-layer thin films have been deposited on Indium Tin Oxide (ITO) glass substrates at room temperature by Chemical Bath Deposition Technique (CBD) and bi-layer thin films were annealed in air atmosphere for 1 h at 250 {sup °}C. The air annealed sample was irradiated using Au{sup 9+} ions at the fluence 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. Effects of Swift Heavy Ion (SHI) irradiation on CdS–Bi{sub 2}S{sub 3} bi-layer thin films were studied. The results are explained on the basis annealing and high electronic excitation, using X-ray diffraction (XRD), Selective Electron Area Diffraction (SEAD), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV spectroscopy and I–V characteristics. The photosensing property after illumination of visible light over the samples is studied. These as-deposited, annealed and irradiated bi-layer thin films are used to sense visible light at room temperature. - Graphical abstract: Schematic illustration of CdS–Bi{sub 2}S{sub 3} bi-layer thin film (a) As-deposited (b) Annealed (c) irradiated sample respectively (d) Model of bi-layer photosensor device (e) Graph of illumination intensity verses photosensitivity. - Highlights: • CdS–Bi{sub 2}S{sub 3} bi-layer thin film prepared at room temperature. • Irradiated using Au{sup 9+} ions at the fluence of 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. • Study of modification induced by irradiations. • Study of Photosensitivity after annealing and irradiation.

  16. Swift heavy ion irradiation effects on structural and magnetic characteristics of RFeO{sub 3} (R = Er, Ho and Y) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Monita [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu 180006 (India); Kaur, Balwinder [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu 180006 (India); Kumar, Ravi [Nuclear Science Centre, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Kulkarni, S.D. [National Chemical Laboratory, Pune (India); Bamzai, K.K. [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu 180006 (India); Kotru, P.N. [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu 180006 (India)]. E-mail: pn_kotru@yahoo.com; Wanklyn, B.M. [Department of Physics, Clarendon Laboratory, Oxford University, Oxford OX1 3PU (United Kingdom)

    2006-01-15

    Magnetic studies have been carried out on single crystals of RFeO{sub 3} (R Er, Ho and Y) using vibrating sample magnetometer before and after swift heavy ion irradiation. Highly anisotropic character of the crystals is maintained even after irradiation. Irradiation causes decrease in magnetization and increase in Neel temperature of the crystals studied. The decrease in magnetization is attributed to amorphization caused by irradiation. High-resolution X-ray diffraction studies confirm amorphization on irradiation of the RFeO{sub 3} (R = Er, Ho and Y) crystals.

  17. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    Energy Technology Data Exchange (ETDEWEB)

    Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)

    2017-03-01

    Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  18. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    Science.gov (United States)

    Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.

    2017-03-01

    An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  19. Induction of the Tn10 Precise Excision in E. coli Cells after Accelerated Heavy Ions Irradiation

    CERN Document Server

    Zhuravel, D V

    2003-01-01

    The influence of the irradiation of different kinds on the indication of the structural mutations in the bacteria Escherichia coli is considered. The regularities of the Tn10 precise excision after accelerated ^{4}He and ^{12}C ions irradiations with different linear energy transfer (LET) were investigated. Dose dependences of the survival and relative frequency of the Tn10 precise excision were obtained. It was shown, that the relative frequency of the Tn10 precise excision is the exponential function from the irradiation dose. Relative biological efficiency (RBE), and relative genetic efficiency (RGE) were calculated, and were treated as the function of the LET.

  20. Effects of O{sup 7+} swift heavy ion irradiation on indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gokulakrishnan, V. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Parthiban, S. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Elangovan, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Ramamurthi, K., E-mail: krmurthin@yahoo.co.in [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Kanjilal, D.; Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Martins, R.; Fortunato, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal)

    2011-08-15

    Highlights: {yields} The structural, morphology and electrical properties of indium oxide thin films. {yields} From the XRD, the ion irradiation has changed the preferred orientation from (2 2 2) to (4 0 0). {yields} RMS roughness is significantly reduced to 10 nm for an ion fluency of 1 x 10{sup 13} ions/cm{sup 2}. {yields} The mobility of ion irradiated films (1 x 10{sup 13} ions/cm{sup 2}) is decreased from 76.6 to 43 cm{sup 2}/V s. {yields} The average transmittance (400-2500 nm) of the as-deposited IO film is decreased from 81% to 72% after SHI irradiation. - Abstract: Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O{sup 7+} ions with different fluences of 5 x 10{sup 11}, 1 x 10{sup 12} and 1 x 10{sup 13} ions/cm{sup 2}. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from {approx}78.9 to 43.0 cm{sup 2}/V s, following irradiation. Films irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2} showed a better combination of electrical properties, with a resistivity of 4.57 x 10{sup -3} {Omega} cm, carrier concentration of 2.2 x 10{sup 19} cm{sup -3} and mobility of 61.0 cm{sup 2}/V s. The average transmittance obtained from the as-deposited films decreased from {approx}81% to 72%, when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as 'radish-like' morphology when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}.

  1. A comparative study of silicon detector degradation under irradiation by heavy ions and relativistic protons

    Science.gov (United States)

    Eremin, V.; Mitina, D.; Fomichev, A.; Kiselev, O.; Egorov, N.; Eremin, I.; Shepelev, A.; Verbitskaya, E.

    2018-01-01

    Silicon detectors irradiated by 40Ar ions with the energy of 1.62 GeV were studied with the goal to find the parameters of radiation damage induced by ions. The measurements of the I–V characteristics, temperature dependences of the detector bulk current, deep level spectra and current pulse response were carried out for detectors irradiated within the fluence range 5×1010–2.3×1013 ion/cm2 and the obtained results were compared with the corresponding data for detectors irradiated by 23 GeV protons. It is shown that the processes of defect introduction by ions and overall radiation damage are similar to those induced by 23 GeV protons, while the introduction rates of radiation defects and current generation centers are about ten times higher for irradiation by 40Ar ions. The fact that these processes have much in common gives grounds to use the physical models and characteristic parametrization such as those developed earlier for detectors irradiated by protons and neutrons to build the long-term scenario of Si detector operation in the Time-Of-Flight diagnostic system of Super FRagment Separator designed at GSI for the future Facility for Antiproton and Ion Research, FAIR.

  2. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  3. Nano-porosity in GaSb induced by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, P., E-mail: patrick.kluth@anu.edu.au; Schnohr, C. S.; Giulian, R.; Araujo, L. L.; Lei, W.; Rodriguez, M. D.; Afra, B.; Bierschenk, T.; Ridgway, M. C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Sullivan, J.; Weed, R. [ARC Centre for Antimatter-Matter Studies, AMPL, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Li, W.; Ewing, R. C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2014-01-13

    Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.

  4. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    Structural, chemical and optical properties were investigated using X-ray diffraction, FTIR spectroscopy and UV–visible spectroscopy methods. It is observed that the direct and indirect band gaps of Makrofol-KG decrease after the irradiation. The XRD study shows that the crystalline size in the films decreases at higher ...

  5. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  6. Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6

    Science.gov (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf

    2017-09-01

    During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.

  7. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    Science.gov (United States)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  8. Transformation of multi walled carbon nanotubes irradiated by swift heavy ions

    Science.gov (United States)

    Vishalli; Avasthi, D. K.; Srivastava, Alok; Dharamvir, Keya

    2017-09-01

    The radiation stability of multiwalled carbon nanotube (MWCNT) buckypaper (BP) has been studied under extreme conditions. Samples of thick mat of MWCNT, called buckypaper, have been prepared by vacuum filtration method and were irradiated by 120 MeV Au ions with fluences ranging from 3 × 1011 ions/cm2 to 5 × 1013 ions/cm2. The samples were characterized by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The surface imaging studies indicate the decrease in the average diameter of nanotubes under ion irradiation due to the sputtering of atoms from the CNT surface. Raman studies demonstrate initial healing at lower fluence, defect production at higher fluences and amorphization at highest fluence.

  9. Optical behaviour of swift heavy ions irradiated poly(vinyl alcohol) films

    Science.gov (United States)

    Sharma, Kalpana; Pal Chahal, Rishi; Mahendia, Suman; Tomar, Anil Kumar; Kumar, Shyam

    2013-05-01

    Polyvinyl alcohol films were irradiated to 90 MeV O 6+ and 150 MeV Si 14+ ions at fluence ranging from 1010 to 1012 ions/cm2. The observed changes in optical energy gap of this polymer have been investigated and results are tried to be explained in terms of energy transferred by the incident ions. It has been noticed that the value of optical energy gap decreases with increasing energy loss during the ion-polymer interaction process.

  10. Conductometric Determination of Single Pores in Polyethyleneterephthalate Irradiated by Heavy Ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Vetter, J E; Danziger, M; Hermsdorf, D

    2002-01-01

    Most of previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7\\cdot 10^{3} ions/cm^2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the de...

  11. Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Hermsdorf, D; Trofimov, V V; Vetter, J

    2002-01-01

    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7 centre dot 10 sup 3 ions/cm sup 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 mu m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed...

  12. Evolution of the surface structures of solids under irradiation with high energy heavy ions

    CERN Document Server

    Didyk, A Y; Cheblukov, Y N; Dmitriev, S N; Hofmann, A; Semina, V K; Suvorov, A L

    2002-01-01

    The results on the study of surface structure of solids, like metals, metal alloys, amorphous metal alloys and highly oriented pyrolytic graphite (HOPG) under irradiation with heavy sup 8 sup 6 Kr ions (ion energy is 245 MeV, irradiation fluences are 10 sup 1 sup 3 , 10 sup 1 sup 4 , 10 sup 1 sup 5 cm sup - sup 2) and sup 2 sup 0 sup 9 Bi (ion energy is 705 MeV, irradiation fluences are 10 sup 1 sup 2 , 10 sup 1 sup 3 cm sup - sup 2) are presented. The sputtering coefficients for metals (Ni, W, Au), stainless steel Cr18Ni10, amorphous alloy Ni sub 5 sub 8 Nb sub 4 sub 2 and HOPG are measured. It is shown that the sputtering coefficients of annealed polycrystals (Ni, Au) and single crystals (W, HOPG) are not large at low defect concentration in materials. At this stage, the sputtering of grain boundaries predominantly takes place. The sputtering yields become to increase significantly with the growth of damage concentration at ion fluences of the order of 10 sup 1 sup 5 cm sup - sup 2. Analogous results were o...

  13. Relation between the swelling and the disordering in ionic crystals irradiated by fast heavy ions; Relation entre le gonflement et la creation de defauts dans les cristaux ioniques irradies par des ions lourds rapides

    Energy Technology Data Exchange (ETDEWEB)

    Boccanfuso, M

    2001-12-01

    When fast heavy ions penetrate in matter, they slow down essentially by depositing their energy on the electrons. This can lead to strong electronic excitation densities in the solid and then to structural modifications. In this work, calcium fluoride (CaF{sub 2}) was used to look further into the damage induced by irradiation with fast heavy ions in ionic crystals. Four techniques were mainly employed to characterise this damage. These techniques of analysis are wide angle X-ray diffraction, surface profilometry, Rutherford backscattering spectrometry and UV-visible optical absorption spectroscopy. The results of this work show that CaF{sub 2} answers in a multiple way to the electronic excitations. For stopping powers higher than approximately 5 keV/nm, a polygonization seems to occur. This causes a structural disorder, a swelling of 0.27 % and the formation of fractures in the material. A second damage mechanism is caused above approximately 13 keV/nm and results in a loss of the initial crystalline structure. However, optical centres appear whatever the ion stopping power, which indicates that these defects cannot be the cause of the two above mentioned damage mechanisms. According to a thermal spike model, the two thresholds can be linked to melting and sublimation energy of the material, respectively. (author)

  14. Characterization of ion track morphology formed by swift heavy ion irradiation in silicon oxynitride films

    Directory of Open Access Journals (Sweden)

    Mota–Santiago P.

    2015-01-01

    Full Text Available Amorphous silicon oxynitride (SiOxNy possess interesting optical and mechanical properties. Here, we present direct evidence for the formation of ion tracks in 1 µm thick silicon oxynitride of different stoichiometries. The tracks were created by irradiation with 185 MeV Au13+ ions. The samples were studied using spectral reflectometry and Rutherford backscattering spectrometry (RBS, with the track morphology characterised by means of small angle X–ray scattering (SAXS. The radial density of the ion tracks resembles a core–shell structure with a typical radius of ~ 1.8 + 2.4 nm in the case of Si3N4 and 2.3 + 3.2 nm for SiO2.

  15. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  16. A kinematic coincidence technique for the study of low-energy heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Montagnoli, G.; Napoli, D.R.; Spolaore, P.; Stefanini, A.M.; Xu Jincheng (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro); Beghini, S.; Scarlassara, F.; Segato, G.F.; Soramel, F. (Padua Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Signorini, C. (Salerno Univ. (Italy). Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-12-10

    A setup for kinematic coincidences has been developed for the study of low-energy binary heavy-ion reactions. It consists of a position-sensitive silicon detector, and a counter telescope with microchannel plates detectors and a conventional {Delta}E-E ionization chamber. The solid angle is around 0.6 msr. By measuring the time of flight of one of the ions, and both correlated scattering angles, we achieve mass and Q-value resolutions of {Delta}A/A{approx equal}1/120 FWHM and {Delta}Q{approx equal}900 keV, respectively, for the elastic scattering of {sup 58}Ni+{sup 64}Ni near the barrier. (orig.).

  17. Amorphization of Ta2O5 under swift heavy ion irradiation

    Science.gov (United States)

    Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.

    2017-09-01

    Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.

  18. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  19. Swift heavy ion irradiation of MgB{sub 2} thin films: a comparison between gold and silver ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Himanshu [Superconductivity Division, National Physical Laboratory, Dr K S Krishnan Marg, New Delhi 110012 (India); Bhatt, Ravindra K [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Agrawal, H M [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Kushwaha, R P S [Department of Physics, G B Pant University of Agriculture and Technology, Pantnagar 263145 (India); Kishan, H [Superconductivity Division, National Physical Laboratory, Dr K S Krishnan Marg, New Delhi 110012 (India)

    2007-04-04

    The effect of 200 MeV Au ion irradiation on the temperature and field dependence of the critical current density, J{sub c}, of MgB{sub 2} thin films on sapphire substrates is reported. The results have been presented in comparison with those obtained after 200 MeV Ag ion irradiation of a similar film. After irradiation, the critical temperature T{sub c} decreased for all samples except for the one with a higher dose of gold ions, where it increased marginally. This observation was also confirmed from measurements of magnetization as a function of temperature with a constant applied field of 10{sup -2} T. The critical current density, J{sub c}, was estimated from the widths of magnetization loops using Bean's critical state model. It has been found that J{sub c} increases after irradiation, the enhancement being more pronounced for the Au ion irradiation. The higher enhancement of J{sub c} by Au ion irradiation may be attributed to higher flux-pinning efficiency of the irradiated samples. It has been concluded that, although the flux-line shear (FLS) model satisfactorily explains the silver ion irradiation induced enhancement of J{sub c}, some other mechanisms also seem to play a role in the J{sub c} enhancement by gold ion irradiation.

  20. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  1. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    Science.gov (United States)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  2. Swift heavy ion irradiation damage in Ti-6Al-4V and Ti-6Al-4V-1B: Study of the microstructure and mechanical properties

    Science.gov (United States)

    Amroussia, Aida; Avilov, Mikhail; Boehlert, Carl J.; Durantel, Florent; Grygiel, Clara; Mittig, Wolfgang; Monnet, Isabelle; Pellemoine, Frederique

    2015-12-01

    The α + β alloy Ti-6Al-4V (wt.%) and the boron-modified Ti-6Al-4V-1B (wt.%), due to their low activation, corrosion resistance, good mechanical properties, and their commercial availability, were chosen as candidate materials for the beam dump for the Facility for Rare Isotope Beams (FRIBs) at Michigan State University: a new generation accelerator with high power heavy ion beams. Through this study our goal is to establish the first irradiation data of the recently developed Ti-6Al-4V-1B (wt.%) alloy and investigate the changes in microstructure and mechanical properties of Ti-6Al-4V due to swift heavy ion (SHI) irradiation damage. The results of hardness measurements showed that the studied Ti-6Al-4V (wt.%) and Ti-6Al-4V-1B (wt.%) alloy, under the specified irradiation conditions, exhibited a high irradiation resistance. In fact, only a slight hardening was observed (∼13%) in the tested samples and no changes in the microstructure were observed. Temperature, dose and electronic excitation effects were also discussed.

  3. A novel on chip test method to characterize the creep behavior of metallic layers under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lapouge, P., E-mail: pierre.lapouge@cea.fr [Service de recherches Métallurgiques Appliquées, CEA Saclay 91191 Gif-sur-Yvette (France); Onimus, F. [Service de recherches Métallurgiques Appliquées, CEA Saclay 91191 Gif-sur-Yvette (France); Vayrette, R. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Raskin, J.-P. [Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Bréchet, Y. [CNRS SIMAP/Univ. Grenoble Alpes, F-3800, Grenoble (France)

    2016-08-01

    An on chip test method has been developed to characterize the irradiation creep behavior of thin freestanding films under uniaxial tension. The method is based on the use of a long beam involving large internal stress protected from the irradiation flux that imposes a spring like deformation to a specimen beam. These elementary freestanding structures fabricated using a combination of deposition, lithography and release steps are multiplied with different dimensions in order to test different levels of stress and of initial plastic deformation. The method has been validated on 200 and 500 nm thick copper films under heavy copper ions irradiation. The irradiation creep rate is shown to be at least one order of magnitude larger than in the absence of irradiation. - Highlights: • On chip method developed to test freestanding films under ion irradiation. • Several tens of in situ irradiation creep tests performed simultaneously. • Technique successfully validated on 200 and 500 nm thick Cu films. • Fast creep rates measured in Cu films due to irradiation.

  4. SiO{sub 2} on silicon: behavior under heavy ion irradiation; SiO{sub 2} sur silicium: comportement sous irradiation avec des ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, C

    2004-03-15

    Heavy ion irradiation was performed on a-SiO{sub 2} layers deposited on Si. Damage of the surface was studied by means of Atomic Force Microscopy. Hillocks appear for an electronic stopping power higher than 16 keV/nm. The height of the hillocks decreases with the thickness of the oxide layer. Infrared Spectroscopy studies show that the damage threshold for a-SiO{sub 2} is at an electronic stopping power of 2 keV/nm. Therefore it is probable that the origin of the hillocks comes from the silicon layer. This could be explain within the frame of thermal spike model. The theoretical thresholds are 8 keV/nm and 1.8 keV/nm for silicon and a-SiO{sub 2} respectively. Chemical etching after irradiation gives a technical possibility to create nano-pits, whose size and shape can be controlled. Additionally, these structures allowed to determine the AFM tip radius. (author)

  5. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  6. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  7. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  8. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  9. In-situ TEM/heavy ion irradiation on ultrafine-and nanocrystalline-grained tungsten: Effect of 3 MeV Si, Cu and W ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, O., E-mail: oelatwan@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States); Birck Nanotechnology Center, West Lafayette, IN 47907 (United States); Center of Materials Under Extreme Environments, Purdue University, West Lafayette, IN 47907 (United States); Suslova, A.; Novakowski, T.J. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Center of Materials Under Extreme Environments, Purdue University, West Lafayette, IN 47907 (United States); Hattar, K. [Department of Radiation Solid Interactions, Sandia National Laboratories, Albuquerque, NM 87185 (United States); Efe, M. [School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States); Harilal, S.S.; Hassanein, A. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Center of Materials Under Extreme Environments, Purdue University, West Lafayette, IN 47907 (United States)

    2015-01-15

    Plasma facing components for future fusion applications will experience helium- and neutron-induced structural damage. Direct observation of the in-situ dynamic response of such components during particle beam exposure assists in fundamental understanding of the physical phenomena that give rise to their irradiation resistance. We investigated the response of ultrafine and nanocrystalline-grained tungsten to 3 MeV heavy ion irradiations (Si{sup 2} {sup +}, Cu{sup 3} {sup +} and W{sup 4} {sup +}) for the simulation of neutron-induced damage through transmutation reactions via in-situ ion irradiation–transmission electron microscopy experiments. Defect densities as a function of irradiation dose (displacement per atom) and fluence were studied. Four stages of defect densities evolution were observed, as a function of irradiation dose: 1) increase in defect density at lower doses, 2) higher defect production rate at the intermediate doses (before saturation), 3) reaching the maximum value, and 4) drop of the defect density in the case of W{sup 4} {sup +}, possibly due to defect coalescence and grain boundary absorption of small defect clusters. The effect of grain size on defect densities was investigated and found that defect densities were independent of grain size in the ultrafine and nanocrystalline region (60–400 nm). These results were compared to other heavy ion irradiation studies of structural materials. - Graphical abstract: Bright-field TEM micrographs and defect densities of UF and NC tungsten grains irradiated with a) Si{sup +} {sup 2} at 1.03 dpa: 1) 140 nm — 7.2 × 10{sup −} {sup 3} defects/nm{sup 2}, 2) 122 nm — 6.9 × 10{sup −} {sup 3} defects/nm{sup 2}, 3) 63 nm — 4.7 × 10{sup −} {sup 3} defects/nm{sup 2}, and 4) 367 nm — 6.4 × 10{sup −} {sup 3} defects/nm{sup 2}; b) Cu{sup +} {sup 3} to 3.79 dpa: 1) 228 nm — 4.3 × 10{sup −} {sup 3} defects/nm{sup 2}; 2) 202 nm — 5.9 × 10{sup −} {sup 3} defects/nm{sup 2}; and 3) 137 nm

  10. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  11. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    Directory of Open Access Journals (Sweden)

    Sini Kuriakose

    2015-04-01

    Full Text Available ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB and methyl orange (MO dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites.

  12. Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.i [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2010-09-15

    Polyaniline (PAni) nanofibers doped with camphor sulfonic acid have been irradiated with 90 MeV O{sup 7+} ions at different fluences (3 x 10{sup 10}-1 x 10{sup 12} ions/cm{sup 2}) using a 15UD Pelletron accelerator under ultra-high vacuum. XRD studies reveal a decrease in the domain length and an increase in the strain upon SHI irradiation. The increase in d-spacing corresponding to the (1 0 0) reflection of PAni nanofibers with increasing irradiation fluence has been attributed to the increase in the tilt angle of the chains with respect to the (a, b) basal plane of PAni. Decrease in the integral intensity upon SHI irradiation indicates amorphization of the material. Micro-Raman ({mu}R) studies confirm amorphization of the PAni nanofibers and also show that the PAni nanofibers get de-doped upon SHI irradiation. {mu}R spectroscopy also reveals a benzenoid to quinoid transition in the PAni chain upon SHI irradiation. TEM results show that the size of PAni nanofibers decreases with the increase in irradiation fluence, which has been attributed to the fragmentation of PAni nanofibers in the core of amorphized tracks caused by SHI irradiation.

  13. Stability of Y-Ti-O nanoparticles in ODS alloys during heat treatment and high temperature swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A. [FLNR, JINR, Dubna (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Dubna State University, Dubna (Russian Federation); Sohatsky, A.S.; Kornieieva, K. [FLNR, JINR, Dubna (Russian Federation); O' Connell, J.H.; Neethling, J.H. [CHRTEM, NMMU, Port Elizabeth (South Africa); Nikitina, A.A.; Ageev, V.S. [JSC VNIINM, Moscow (Russian Federation); Zdorovets, M. [Institute of Nuclear Physics, Astana (Kazakhstan); Ural Federal University, Yekaterinburg (Russian Federation); Volkov, A.D. [Nazarbayev University, Astana (Kazakhstan)

    2016-12-15

    Aim of this report is to compare the morphology of swift (167 and 220 MeV) Xe ion induced latent tracks in Y{sub 2}Ti{sub 2}O{sub 7} nanoparticles during post-irradiation heat treatment and after irradiation at different temperatures in pre-thinned TEM foils and TEM targets prepared from hundreds microns thick irradiated oxide dispersion strengthened (ODS) steel. No difference in track parameters was found in room temperature irradiated nanoparticles in pre-thinned and conventional samples. Microstructural data gathered from pre-thinned foils irradiated in the temperature range 350-650 C or annealed at similar temperatures demonstrate that amorphous latent tracks interact with the surrounding matrix, changing the track and nanoparticle morphology, while such effect is not observed in conventional ODS material treated at the same conditions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Mechanical properties of UO2 thin films under heavy ion irradiation using nanoindentation and finite element modeling

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Miao, Yinbin; Stubbins, James F.; Heuser, Brent J.

    2016-10-01

    The mechanical response of UO2 to irradiation is becoming increasingly important due to the shift to higher burn-up rates in the next generation of nuclear reactors. In the current study, thin films of UO2 were deposited on YSZ substrates using reactive-gas magnetron sputtering. Nanoindentation was used to measure the mechanical properties of the as-grown and irradiated films. Finite element modeling was used to account for the substrate effect on the measurements. In order to study the effect of displacement cascades accompanying gas bubbles, 5000 Å UO2 films were irradiated with 600 keV Kr+ ions at 25 °C and 600 °C. These irradiation conditions were used to confine radiation damage effects and implanted gas within the film. Results showed an increase in the film hardness and yield strength with dose, while elastic modulus initially decreased with irradiation and then kept increasing with dose. The change in hardness and elastic modulus is attributed to the introduction of gas bubbles and displacement cascade damage. Irradiation at 600 °C resulted in a decrease in the hardness and elastic modulus after irradiation using 600 keV Kr+ at a dose of 1E14 ions/cm2. Both hardness and elastic modulus then increased with irradiation dose. This behavior is attributed to recrystallization during irradiation at 600 °C and the formation of nanocrystallite regions with diameter and density that increase with dose. The calculation of the critical resolved shear stress (CRSS) demonstrated that nanocrystals are the primary cause for film hardening based on the Orowan hardening mechanism.

  15. Mechanical properties of UO{sub 2} thin films under heavy ion irradiation using nanoindentation and finite element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Elbakhshwan, Mohamed S., E-mail: elbakhs1@illinois.edu; Miao, Yinbin; Stubbins, James F.; Heuser, Brent J.

    2016-10-15

    The mechanical response of UO{sub 2} to irradiation is becoming increasingly important due to the shift to higher burn-up rates in the next generation of nuclear reactors. In the current study, thin films of UO{sub 2} were deposited on YSZ substrates using reactive-gas magnetron sputtering. Nanoindentation was used to measure the mechanical properties of the as-grown and irradiated films. Finite element modeling was used to account for the substrate effect on the measurements. In order to study the effect of displacement cascades accompanying gas bubbles, 5000 Å UO{sub 2} films were irradiated with 600 keV Kr{sup +} ions at 25 °C and 600 °C. These irradiation conditions were used to confine radiation damage effects and implanted gas within the film. Results showed an increase in the film hardness and yield strength with dose, while elastic modulus initially decreased with irradiation and then kept increasing with dose. The change in hardness and elastic modulus is attributed to the introduction of gas bubbles and displacement cascade damage. Irradiation at 600 °C resulted in a decrease in the hardness and elastic modulus after irradiation using 600 keV Kr{sup +} at a dose of 1E14 ions/cm{sup 2}. Both hardness and elastic modulus then increased with irradiation dose. This behavior is attributed to recrystallization during irradiation at 600 °C and the formation of nanocrystallite regions with diameter and density that increase with dose. The calculation of the critical resolved shear stress (CRSS) demonstrated that nanocrystals are the primary cause for film hardening based on the Orowan hardening mechanism.

  16. Radiation induced muscositis as space flight risk. Model studies on X-ray and heavy ion irradiated typical oral mucosa models; Strahlungsinduzierte Mukositis als Risiko der Raumfahrt. Modelluntersuchungen an Roentgen- und Schwerionen-bestrahlten organotypischen Mundschleimhaut-Modellen

    Energy Technology Data Exchange (ETDEWEB)

    Tschachojan, Viktoria

    2014-07-29

    Humans in exomagnetospheric space are exposed to highly energetic heavy ion radiation which can be hardly shielded. Since radiation-induced mucositis constitutes a severe complication of heavy ion radiotherapy, it would also implicate a serious medical safety risk for the crew members during prolonged space flights such as missions to Moon or Mars. For assessment of risk developing radiation-induced mucositis, three-dimensional organotypic cultures of immortalized human keratinocytes and fibroblasts were irradiated with a {sup 12}C particle beam at high energies or X-Rays. Immunofluorescence stainings were done from cryosections and radiation induced release of cytokines and chemokines was quantified by ELISA from culture supernatants. The major focuses of this study were on 4, 8, 24 and 48 hours after irradiation. The conducted analyses of our mucosa model showed many structural similarities with the native oral mucosa and authentic immunological responses to radiation exposure. Quantification of the DNA damage in irradiated mucosa models revealed about twice as many DSB after heavy-ion irradiation compared to X-rays at definite doses and time points, suggesting a higher gene toxicity of heavy ions. Nuclear factor κB activation was observed after treatment with X-rays or {sup 12}C particles. An activation of NF κB p65 in irradiated samples could not be detected. ELISA analyses showed significantly higher interleukin 6 and interleukin 8 levels after irradiation with X-rays and {sup 12}C particles compared to non-irradiated controls. However, only X-rays induced significantly higher levels of interleukin 1β. Analyses of TNF-α and IFN-γ showed no radiation-induced effects. Further analyses revealed a radiation-induced reduction in proliferation and loss of compactness in irradiated oral mucosa model, which would lead to local lesions in vivo. In this study we revealed that several pro-inflammatory markers and structural changes are induced by X-rays and heavy-ion

  17. Damage and polymerization of C sub 6 sub 0 films irradiated by fast light and heavy ions

    CERN Document Server

    Yogo, A; Itoh, A

    2002-01-01

    C sub 6 sub 0 films have been irradiated with various fast ions (H, Li, C, O and Si) in the energy range from 0.75 to 6.0 MeV. Structural changes of C sub 6 sub 0 molecules were studied by a time-of-flight (TOF) mass spectrometry and Raman spectroscopy. The TOF yields of secondary fullerene ions can be described fairly well by S sub m sub o sub d sup 3 with a modified energy deposition S sub m sub o sub d developed in this work. In the Raman study for 1 MeV H sup + irradiation, it is found that about 40% polymerization is attained at 6x10 sup 1 sup 5 cm sup - sup 2 doses and a damage cross-section of 2.5x10 sup - sup 1 sup 7 cm sup 2 is obtained.

  18. Effect of Heavy Ion Irradiation Dosage on the Hardness of SA508-IV Reactor Pressure Vessel Steel

    Directory of Open Access Journals (Sweden)

    Xue Bai

    2017-01-01

    Full Text Available Specimens of the SA508-IV reactor pressure vessel (RPV steel, containing 3.26 wt. % Ni and just 0.041 wt. % Cu, were irradiated at 290 °C to different displacement per atom (dpa with 3.5 MeV Fe ions (Fe2+. Microstructure observation and nano-indentation hardness measurements were carried out. The Continuous Stiffness Measurement (CSM of nano-indentation was used to obtain the indentation depth profile of nano-hardness. The curves showed a maximum nano-hardness and a plateau damage near the surface of the irradiated samples, attributed to different hardening mechanisms. The Nix-Gao model was employed to analyze the nano-indentation test results. It was found that the curves of nano-hardness versus the reciprocal of indentation depth are bilinear. The nano-hardness value corresponding to the inflection point of the bilinear curve may be used as a parameter to describe the ion irradiation effect. The obvious entanglement of the dislocations was observed in the 30 dpa sample. The maximum nano-hardness values show a good linear relationship with the square root of the dpa.

  19. Modification of the Structure and Nano-Mechanical Properties of LiF Crystals Under Irradiation with Swift Heavy Ions

    Directory of Open Access Journals (Sweden)

    Jānis MANIKS

    2011-09-01

    Full Text Available The modifications of the structure and hardness of LiF crystals under high-fluence irradiation with MeV- and GeV-energy Au ions have been studied using nanoindentation and atomic force microscopy. The formation of ion-induced dislocations and bulk nanostructures consisting of grains with nanoscale dimensions (50 nm - 100 nm has been observed. The structural modifications are accompanied by a strong ion-induced hardening which is related to dislocation impeding by assemblies of defect aggregates, dislocation loops of vacancy and interstitial types and grain boundaries. For MeV ions, the modifications are localized in a thin surface layer (few mm where much higher density of deposited energy is reached and deeper stage of aggregation of radiation defects is achieved than for GeV ions with the same absorbed energy.http://dx.doi.org/10.5755/j01.ms.17.3.583

  20. Atomic mixing of metallic bilayers Ni/Ti irradiated with high energy heavy ions; Etude du melange ionique de bicouches metalliques Ni/Ti irradiees avec des ions lourds de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Leguay, R.

    1994-09-26

    We have studied the ionic mixing of Nl(105 angstrom) bilayers irradiated, at 80 and 300 K. with GeV heavy ions. In this energy range, the energy transfer from the incident ions to the target occurs mainly through electronic excitations. We have shown that this energy transfer induces a strong ionic mixing at the Nl/Ti interface. The thickness of the mixed interlayer increases with the fluence. At low fluences (10{sup 12} ions/cm{sup 2}), the Nl/Ti interface is rough ; at higher fluences (10{sup 13} ions/cm{sup 2}) a homogeneous mixed interlayer appears ; and at even higher fluences (some 10{sup 13} ions/cm{sup 2}) a preferential diffusion of Ni into Ti is clearly seen. The characterization techniques used are: (1) electrical resistivity measurements which allow to follow in situ the damage kinetic. (II) neutron and X-ray reflectometry. (III) elaboration of transverse cuts on which was performed energy loss spectroscopy. (II) and (III) allow the determination of the concentration profiles of the different species present in the sample. (IV) transmission electron microscopy on the transverse cuts which gives a direct image of the different layers. (author). 11 refs., 103 figs., 23 tabs., 2 appends.

  1. Recent progress and future plans of heavy-ion cancer radiotherapy with HIMAC

    Science.gov (United States)

    Noda, K.; Furukawa, T.; Fujimoto, T.; Hara, Y.; Inaniwa, T.; Iwata, Y.; Katagiri, K.; Kanematsu, N.; Mizushima, K.; Mori, S.; Saotome, N.; Saraya, Y.; Sato, S.; Shirai, T.; Takada, M.; Takei, Y.; Tansyo, R.; Yonai, S.

    2017-09-01

    The HIMAC clinical study has been conducted with a carbon-ion beam since June 1994. Since 2006, as a new treatment research project, NIRS has developed both the accelerator and beam-delivery technologies for the sophisticated heavy-ion radiotherapy, which brings a pencil-beam 3D rescanning technology for both the static and moving-tumor treatments. In this technology, the depth-scanning technique was improved to the full-energy depth scanning by realizing a variable-energy operation of the HIMAC synchrotron itself. At present, a heavy-ion rotating gantry has been developed with the superconducting technology and is in a beam-commissioning stage. As a future plan, we just start a study of a multi-ions irradiation for more sophisticated LET-painting and a design study of a superconducting synchrotron for more compact heavy-ion radiotherapy facility.

  2. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Science.gov (United States)

    Wang, Shu-Yang; Jiang, Bo-Ling; Zhou, Xiang; Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  3. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  4. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  5. Green's function methods in heavy ion shielding

    Science.gov (United States)

    Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.

    1993-01-01

    An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  6. LEXUS heavy ion collisions

    CERN Document Server

    Sang Yong Jeon

    1997-01-01

    We use a Glauber-like approach to describe very energetic nucleus- nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: all the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to heavy ion collisions. (11 refs).

  7. Characterization of damaging in apatitic materials irradiated with heavy ions and thermally annealed; Caracterisation de l'endommagement de materiaux apatitiques irradies aux ions lourds et recuits thermiquement

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, R

    2004-12-15

    Some minerals belonging to the family of apatite are seen to be potential candidates for use as conditioning matrices or transmutation targets for high level nuclear waste management. Indeed, studies of natural nuclear reactors (Oklo) highlighted the strong ability of these minerals to anneal irradiation damage. In order to determine the global behaviour of these materials, we performed a fundamental study on the evolution of irradiation damage induced by various heavy ions in two apatites: a natural phospho-calcic fluor-apatite from Durango and a synthetic sintered mono-silicated fluor-apatite, called britholite. The damage in these materials was measured by using channelling R.B.S. and X-ray diffraction respectively and by determining an amorphization effective radius Re. The results revealed a similar behaviour for both apatites according to the electronic energy deposit at the entrance of the material. In addition, the effect of an isothermal annealing at 300 C was quantified on a mono-silicated britholite previously irradiated with Kr ions. We highlighted in this case the return of the lattice parameters to their initial values, followed by a partial and slow rebuilding of the crystalline lattice versus the annealing time. Finally, we followed the changes in the morphology of etch pits in the Durango fluor-apatite after acid dissolution as a function of the energy deposit by the ions. We showed that the influence of crystallography leads quickly to opening angles close to 30 degrees. The calculation of etching velocities within the irradiated material highlighted that there is a range of deposit energy where the velocity ratio increases strongly before becoming constant. (author)

  8. Radiation Physics and Chemistry in Heavy-ion Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Kimura, M.

    2007-12-01

    Full Text Available Heavy ions, such as carbon and oxygen ions, are classified as high-LET radiations, and produce a characteristic dose-depth distribution different from that of low-LET radiations such as γ-rays, xrays and electrons. Heavy ions lose less energy at the entrance to an irradiated biological system up to some depth than the low-LET radiations, while they deposit a large amount of dose within a very narrow range at a certain depth, producing the characteristic sharp peak called the Bragg peak. Therefore, by controlling the Bragg peak, it becomes possible to irradiate only the tumor region in a pin-point manner, while avoiding irradiation of the normal tissue, thus making heavyion therapy ideal for deep-seated tumor treatment. Clinical results on more than 2400 patients are very encouraging. However, very little is known about what is going on in terms of physics and chemistry inside the Bragg peak. In this paper the current status of our understanding of heavy-ion interactions and remaining problems of physics and chemistry for the heavy-ion treatment are explored, particularly in the Bragg peak region. Specially, the survey of the basic physical quantity, the mean energy required to form an ion pair (Wvalue for heavy ions of interest for radiotherapy is presented. Finally, the current clinical status of heavy-ion therapy is presented.

  9. Ultrarelativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study.

  10. Craniospinal irradiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scarlatescu, Ioana, E-mail: scarlatescuioana@gmail.com; Avram, Calin N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timisoara (Romania); Virag, Vasile [County Hospital “Gavril Curteanu” - Oradea (Romania)

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  11. Analysis of Single-Event Effects in a Radiation-Hardened Low-Jitter PLL Under Heavy Ion and Pulsed Laser Irradiation

    Science.gov (United States)

    Chen, Zhuojun; Lin, Min; Ding, Ding; Zheng, Yunlong; Sang, Zehua; Zou, Shichang

    2017-01-01

    A radiation-hardened low-jitter phase-locked loop (PLL) with a low-mismatch charge pump and a robust voltage-controlled oscillator is designed in a 130 nm PD-SOI process. In order to evaluate the overall response to single-event effects, the accumulated phase jitter has been put forward, which can exclude the inherent noise floor and accumulate all the radiation-induced noise. Then the single-event sensitivity of the proposed PLL is comprehensively analyzed by heavy ion and pulsed laser tests.

  12. Defect induced enhancement of exchange bias by swift heavy ion irradiation in zinc ferrite–FeNiMoB alloy based bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Lisha, R. [Cochin University of Science and Technology, Cochin 682022, Kerala (India); Hysen, T. [Christian College, Chengannur 689122, Kerala (India); Geetha, P.; Aravind, P.B. [Cochin University of Science and Technology, Cochin 682022, Kerala (India); Shareef, M.; Shamlath, A. [Central University of Kerala, Kasargod 671316, Kerala (India); Ojha, Sunil [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Anantharaman, M.R., E-mail: mraiyer@yahoo.com [Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2015-10-01

    Highlights: • Bilayer films of FeNiMoB–zinc ferrite exhibiting exchange bias was prepared by RF sputtering. • The films were irradiated using 100 MeV Ag ions. • At a particular fluence of 1 × 10{sup 12} ions/cm{sup 2} high exchange field of 210 Oe obtained. • At higher fluences the exchange bias is decreased. - Abstract: Exchange biased systems consisting of ferromagnetic (FM)–antiferromagnetic (AFM) interfaces are increasingly being investigated because of their application potential in spin valves and tunnel junctions. In bilayer systems, ion irradiation is capable of modifying the interface and thereby offers unique opportunities to tailor exchange field. In the present study, irradiation with 100 MeV Ag{sup 8+} ions is utilized to alter the exchange bias field in zinc ferrite–FeNiMoB bilayer system. The thin films which were deposited by RF sputtering technique and annealed at 600 °C were irradiated at various fluences. Structural and magnetic studies were carried out by using Glancing X Ray Diffractometer (GXRD) and Superconducting Quantum Interference Device Vibrating Sample Magnetometer (SQUID VSM) respectively. It was observed that the as deposited films exhibited exchange bias and on ion irradiation, bias field could be enhanced at certain fluences. The enhancement in bias field is attributed to defects created in the antiferromagnet as a result of ion irradiation. The experimental result is fitted in accordance with the diluted antiferromagnet model. Coercivity was also found to vary with ion fluence. Ion fluence was thus effectively used to enhance bias field as well as coercivity in the bilayer consisting of zinc ferrite–FeNiMoB.

  13. In situ and postradiation analysis of mechanical stress in Al{sub 2}O{sub 3}:Cr induced by swift heavy-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.r [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bujnarowski, G. [Institute of Physics, Opole University, 45-052 Opole (Poland); Kovalev, Yu.S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); O' Connell, J. [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Havanscak, K. [Eoetvoes University, Pazmany P. setany 1/A, H-1117 Budapest (Hungary)

    2010-10-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  14. Jet Physics in Heavy Ion Collisions

    Science.gov (United States)

    Salur, Sevil

    2017-09-01

    Jet studies in heavy ion collisions have been rapidly evolving since the first observations of medium interactions at RHIC through back to back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms, complementary and robust jet observables are investigated. In this talk, with an emphasis on experimental results from LHC, we will discuss the latest developments of jet finding techniques and their applications on new jet structure observables in heavy ion environments. These new measurements could be used to differentiate whether the medium affects the jet formation process from the hard process through hadronization, or whether the parton loses energy to the medium with the showers only affected at much later stages.

  15. Heavy ion fusion--Using heavy ions to make electricity

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.

    2004-03-15

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring {approx}100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris.

  16. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  17. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions; Etude de la creation de defauts ponctuels et de la luminescence excitonique d`halogenures d`alcalins irradies par les ions lourds de grande vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Protin, L.

    1994-10-05

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs.

  18. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the Υ suppression in central nucleus-nucleus collisions which has been discovered ...

  19. Future relativistic heavy ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  20. The effects of heavy ion particles on the developing murine cerebellum, with special reference to cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Chikako; Yaoi, Takeshi; Fushiki, Shinji [Kyoto Prefectural Univ. of Medicine (Japan). Research Inst. for Neurological Diseases and Geriatrics; Nojima, Kumie [National Inst. of Radiological Sciences, Chiba (Japan). Internatinal Space Radiation Lab.

    2003-07-01

    We report here the effects of heavy ion beams on postnatal mouse cerebellar development, with reference to cell death. Eight-day-old B6C3F1 mice were irradiated with single doses of 0.1, 0.25, 0.5, 1.0, and 2.0 Gy, using a carbon beam of 290 MeV delivered from a heavy ion medical accelerator in Chiba (HIMAC). To compare the effects of X-rays with those of accelerated carbon ions, 8-day-old mice were exposed to X-rays single doses of 0.1, 0.25, 0.5, 1.0, and 2.0 Gy, respectively. Pups were fixed at 1, 6, 12 and 24 hr after exposure to HIMAC beams or X-rays. Four-{mu}m-thick parasagittal sections of the cerebella were processed for hematoxylin-eosin staining as well as for staining with the TUNEL (terminal dUTP nick-end labeling) technique. The density of fragmented nuclei in the external granular layer increased with time, peaking at 6 hr after exposure, in both the HIMAC and X-irradiated groups. In the HIMAC groups, the density was significantly higher in those animals exposed to 0.25 Gy or more compared to 0 Gy, whereas in the X-irradiated groups it was significantly higher in those mice exposed to 0.5 Gy or more. Electron microscopic examinations revealed chromatin condensation in the cell nuclei in the HIMAC groups. This is the first in vivo evidence that apoptotic cell death is induced in developing mouse cerebellum after exposure to heavy ion particles. The difference in the frequency of dying cells between exposure to heavy ion particles and to X-rays may reflect the high linear energy transfer (LET) associated with a heavy ion beam. (author)

  1. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  2. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  3. Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1986-02-15

    The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

  4. Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1985-01-01

    The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

  5. Heavy-ion Physics (ATLAS)

    CERN Document Server

    Przybycien, Mariusz; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the Large Hadron Collider has undertaken a broad physics program to probe and characterize the hot nuclear matter created in relativistic heavy-ion collisions. This talk presents recent results on production of electroweak bosons and quarkonium, charged particles and jets, bulk particle collectivity and electromagnetic processes in ultra-peripheral collisions, from Pb+Pb and p+Pb collisions.

  6. Role of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ion irradiation: A study from the perspective of nuclear reactor applications

    Science.gov (United States)

    Kalita, Parswajit; Ghosh, Santanu; Sattonnay, Gaël; Singh, Udai B.; Grover, Vinita; Shukla, Rakesh; Amirthapandian, S.; Meena, Ramcharan; Tyagi, A. K.; Avasthi, Devesh K.

    2017-07-01

    The search for materials that can withstand the harsh radiation environments of the nuclear industry has become an urgent challenge in the face of ever-increasing demands for nuclear energy. To this end, polycrystalline yttria stabilized zirconia (YSZ) pellets were irradiated with 80 MeV Ag6+ ions to investigate their radiation tolerance against fission fragments. To better simulate a nuclear reactor environment, the irradiations were carried out at the typical nuclear reactor temperature (850 °C). For comparison, irradiations were also performed at room temperature. Grazing incidence X-ray diffraction and Raman spectroscopy measurements reveal degradation in crystallinity for the room temperature irradiated samples. No bulk structural amorphization was however observed, whereas defect clusters were formed as indicated by transmission electron microscopy and supported by thermal spike simulation results. A significant reduction of the irradiation induced defects/damage, i.e., improvement in the radiation tolerance, was seen under irradiation at 850 °C. This is attributed to the fact that the rapid thermal quenching of the localized hot molten zones (arising from spike in the lattice temperature upon irradiation) is confined to 850 °C (i.e., attributed to the resistance inflicted on the rapid thermal quenching of the localized hot molten zones by the high temperature of the environment) thereby resulting in the reduction of the defects/damage produced. Our results present strong evidence for the applicability of YSZ as an inert matrix fuel in nuclear reactors, where competitive effects of radiation damage and dynamic thermal healing mechanisms may lead to a strong reduction in the damage production and thus sustain its physical integrity.

  7. Structural, surface potential and optical studies of AlGaN based double heterostructures irradiated by 120 MeV Si{sup 9+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, P., E-mail: arivazhaganau2008@gmail.com [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Ramesh, R.; Balaji, M. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Asokan, K. [Inter-University Accelerator Centre (IUAC), New Delhi (India); Baskar, K. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India)

    2016-09-15

    The Al{sub 0.33}Ga{sub 0.77}N/Al{sub 0.14}Ga{sub 0.86}N based double heterostructure was irradiated using Si{sup 9+} ion at room temperature (RT) and liquid nitrogen temperature (LNT) with four dissimilar ion fluence. The effect of Si{sup 9+} ion irradiation in dislocation densities and in-plane strain of GaN layer were discussed. The in-plane strain values of Al{sub x}Ga{sub 1-x}N layers were calculated from asymmetric reciprocal space mapping (RSM). The surface modification and the variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces due to the irradiation were measured by Electrostatic Force Microscopy (EFM). The capacitance of the tip-sample system was determined from EFM. The band edge emissions of heterostructures were measured by the room temperature phototluminescence (PL) and the shift in the Al{sub 0.14}Ga{sub 0.86}N active layer emission peaks towards the low energy side at low fluence ion irradiation has been noted. - Highlights: • Effects of Si{sup 9+} ion irradiation on AlGaN double heterostructures were investigated. • Dislocation densities of GaN reduced at liquid nitrogen temperature irradiation. • Variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces was measured by EFM. • Capacitance per unit area values of AFM tip-sample surface system were calculated. • Si{sup 9+} irradiations play an important role to tune the energy gap in Al{sub 0.14}Ga{sub 0.86}N.

  8. Bose-glass phase in crossed heavy ion irradiated YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Divakar, Ujjual; Bhalla, G.L. E-mail: glbhalla@physics.du.ac.in; Kumar, Ravi

    2000-11-01

    High-temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} melt-textured samples have been irradiated with 250 MeV Ag{sup +17} ion irradiation to create columnar defects at an angle {+-}45 deg. from c-axis. Subsequently, angle-dependent magnetoresistance measurements have been carried out at different angles, viz. {theta}=0,{+-}15 deg., 30 deg. and {+-}45 deg., respectively. The Bose-glass theory is examined by the application of critical scaling laws.

  9. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  10. Chromosome Aberrations by Heavy Ions

    Science.gov (United States)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  11. Elastic recoil detection (ERD) with extremely heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J.S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Currie, P.J. [Royal Tyrrell Museum, Drumheller, Alberta T0J 0Y0 (Canada); Davies, J.A. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Siegele, R. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Wallace, S.G. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Zelenitsky, D. [Department of Geology and Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    1996-06-01

    Extremely heavy-ion beams such as {sup 209}Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass {<=}100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.).

  12. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.

  13. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  14. Magneto-transport study of vortex dynamics in heavy ion irradiated YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} polycrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, G.L. [Department of Physics and Astrophysics, University of Delhi, Delhi (India)]. E-mail: glbhalla@physics.du.ac.in; Divakar, Ujjual [School of Physics and Astronomy, North Haugh, University of St. Andrews, St. Andrews, Fife, Scotland (United Kingdom); Malik, Amita [SRI, Univ. Road, Delhi (India)

    2002-06-21

    Magneto-transport measurements have been carried out to investigate the effect of 250 MeV Ag{sup +17} ion irradiation on the flux pinning properties in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} polycrystalline films. The ohmic resistivity measurements of the films above the Bose-glass temperature, T{sub BG}, have been carried out as a function of temperature, magnitude and orientation of the magnetic field with respect to the columnar defects. The experimental results have been analysed on the basis of Bose-glass theory. The angular dependence of resistance shows a dip and the Bose-glass temperature is found to be a maximum when the magnetic field is aligned with the columnar pins. Angular critical scaling laws have been used to determine the static {nu}'and dynamic z' exponents. In addition, the prediction of universal behaviour of Bose-glass theory below the critical angle has been observed. (author)

  15. Activation of accelerator construction materials by heavy ions

    Science.gov (United States)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  16. Activation of accelerator construction materials by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Katrík, P., E-mail: p.katrik@gsi.de [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Mustafin, E. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Hoffmann, D.H.H. [TU Darmstadt, Schlossgartenstraße 9, D-64289 (Germany); Pavlovič, M. [FEI STU Bratislava, Ilkovičova 3, SK-81219 (Slovakia); Strašík, I. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany)

    2015-12-15

    Activation data for an aluminum target irradiated by 200 MeV/u {sup 238}U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  17. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    Science.gov (United States)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  18. Heavy-ions irradiation dependence of superconducting properties of the Cu-based (Cu,C)Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hijiri; Iyo, Akira; Hirai, Manabu; Crisan, A.; Tokumoto, Madoka; Okayasu, Satoru; Sasase, Masahito; Sataka, Masao; Ihara, Hideo; Tanaka, Yasumoto

    2003-10-15

    To further enhance the critical current density (J{sub c}) and irreversibility field (H{sub irr}) of (Cu{sub 1-x}C{sub x})Ba{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+4-{delta}} (n=4; hereafter described as (Cu,C)-1234), pinning centers were introduced by heavy-ion irradiation. The polycrystalline samples were irradiated with Au{sup 15+} ions (240 MeV energy) at various fluence of 3.5 x 10{sup 10}, 6.5 x 10{sup 10}, 1 x 10{sup 11}, 2.5 x 10{sup 11} and 5 x 10{sup 11} ions/cm{sup 2}. The intragrain J{sub c} was determined from M-H curves using Bean's critical state model. With increase of the fluence, J{sub c} shows a rapid increase and reaches a maximum value, 4.1 x 10{sup 6} A/cm{sup 2} (77 K and 1 T) for the fluence of 1 x 10{sup 11} ions/cm{sup 2} and above which it decreases slowly. The maximum value of H{sub irr}(77 K), determined by extrapolating J{sub c} curves to a 10{sup 3} A/cm{sup 2} criterion, is about 14.5 T for the 2.5 x 10{sup 11} ions/cm{sup 2}. The {alpha} value in equation H{sub irr}(T)=H{sub irr}(0)(1-T/T{sub c}){sup {alpha}} decreases from 2.97 for un-irradiated sample to 1.87 for the fluence of 1 x 10{sup 11} ions/cm{sup 2}. These results indicate the possibility of J{sub c}(77 K and 1 T) enhancement and reaching a high H{sub irr}(77 K) at the fluence of the 1.5 x 10{sup 11} ions/cm{sup 2}.

  19. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-04-10

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  20. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Abstract. The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  1. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yupei Wang

    2017-03-01

    Full Text Available Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5 showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death.

  2. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  3. Evaluation of Spatial Resolution for Heavy Ion CT System Based on the Measurement of Residual Range Distribution With HIMAC

    Science.gov (United States)

    Muraishi, H.; Nishimura, K.; Abe, S.; Satoh, H.; Hara, S.; Hara, H.; Takahashi, Y.; Mogaki, T.; Kawai, R.; Yokoyama, K.; Yasuda, N.; Tomida, T.; Ohno, Y.; Kanai, T.

    2009-10-01

    We report experimental results from a heavy ion CT system based on the measurement of residual range distribution using an X-ray intensifying screen and a charged coupled device (CCD) camera system. This technique was first investigated by Zygmanski (2000) for proton beams, and they reported that the spatial resolution was significantly degraded by multiple Coulomb scattering (MCS) effects in the irradiated medium. Experiments were done on the spatial resolution phantom by using helium and carbon beams accelerated up to 120 MeV/u and 230 MeV/u by the Heavy Ion Medical Accelerator in Chiba (HIMAC), installed in the National Institute of Radiological Sciences (NIRS) in Japan, using a high performance intensified CCD (ICCD) camera. We show that the MCS blurring effect can be significantly reduced in the reconstructed image by using a carbon beam with this technique. Our results suggest that heavier particles such as carbon would be more useful if this technique is envisioned as a clinical tool to obtain data that would aid proton and/or heavy ion treatment planning.

  4. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  5. Influence of heavy ion implantation on the microhardness of lif

    CERN Document Server

    Abu-Alazm, S M

    2003-01-01

    The paper presented microhardness measurements for pure lithium fluoride (LiF) implanted with Ar, Kr and Xe at doses ranged from 10 sup 9 up to 10 sup 1 2 ion/cm sup 2. Measurements were also performed for the microhardness after irradiation by electron and gamma rays. The data exhibited a large increase of microhardness of LiF using heavy ions in comparison with the unimplanted and irradiated samples with electrons and gamma rays. The influence of annealing the samples on the microhardness is also studied. The obtained results were interpreted according to the formation of F-centers in LiF.

  6. Changes of gene expression in developing mouse brain after exposures to x-rays, in comparison with exposures to accelerated heavy ion particles

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, Takeshi; Fushiki, Shinji [Kyoto Prefectural Univ. of Medicine, Dept. of Pathology and Applied Neurobiology, Kyoto (Japan); Nojima, Kumie [National Institute of Radiological Sciences, International Space Radiation Lab., Anagawa, Chiba (Japan)

    2003-07-01

    Prenatal exposure to ionizing radiation of low doses in rodents impedes neuronal migration during the period of cortical histogenesis, and results in disorganized cortical architecture in mature brain. On the contrary, exposure to heavy ion beams during fetal period mainly affects cell survival, viz., induction of apoptosis. However, the molecular mechanisms underlying to produce such difference in the effects between exposure to heavy particles and exposure to X-rays remain unknown. We have attempted to elucidate whether the changes of gene expression after exposure to heavy ions differ from those after X-irradiation in fetal brains. We thus applied two molecular biological techniques, i.e., the Restriction Landmark cDNA Scanning (RLCS) method and the suppression subtractive PCR method. Approximately 13,000 cDNA species were scanned and it turned out that more than twenty genes among the genes scanned were differentially expressed between X-irradiated embryos and non-irradiated ones. One of the genes showing up-regulation is Rab6A that is known to be associated with vesicle transport from trans-Golgi network. In addition, expression of some genes encoding RAB6A-interacting proteins was up-regulated. When expression of these genes was compared between animals after heavy-ion irradiation and those after X-irradiation, the changing pattern was different. Taking our previous observation that prenatal exposure to carbon particles induces apoptotic cell death in developing cerebral cortex into consideration, the difference in gene expression herein reported may contribute to better understand the difference in effects between exposures to heavy-ion particles and to X-rays. In conclusion, we identified Rab6A and its interacting proteins as candidates for the migration-associated genes, whose expression in fetal brain is up-regulated by carbon beam irradiation. (author)

  7. heavy ion acceleration at shocks

    Science.gov (United States)

    Shevchenko, V. I.; Galinsky, V.

    2009-12-01

    The theoretical study of alpha particle acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. In previous studies heavy ions were treated as perfect test particles, they only experienced the Alfven turbulence excited by protons and didn’t contribute to turbulence generation. In contrast to this approach, we consider the ion scattering on hydromagnetic turbulence generated by both protons and ions themselves. It is important for alpha particles with their relatively large mass-loading parameter that defines efficiency of the wave excitation by alpha particles. The energy spectra of alpha particles is found and compared with those obtained in test particle approximation. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007.

  8. Heavy Ion Fusion Accelerator Research (HIFAR)

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  9. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    -ray scattering (SAXS) were used. The changes of physical properties, in particular the electrical resistivity, thermal conductivity and stiffness of the foils were studied by in-situ 4-point probe, laser flash analysis and atomic force microscopy, respectively. A technique for measuring temperature of very thin, semitransparent and free-standing stripper foils during irradiation by means of an infrared (IR) camera was developed and applied. The experimental investigations were complemented by molecular dynamics simulations of amorphous carbon exposed to different swift heavy ions. The simulations provide information on the structural changes in the tracks at atomic scale. Virtual amorphous carbon cells were created by simulating liquid quenching and plasma deposition, yielding cells with different degrees of clustering of sp{sup 2} and sp{sup 3} bonding. The impacts of swift heavy ions were modeled by an instantaneous energy deposition deduced from inelastic thermal spike model calculations. Results of experiments and simulations provide evidence for the beam-induced transformation of amorphous carbon to a defected graphitic structure and for clustering of sp{sup 2} and sp{sup 3} bonds. These structural changes result in severe property changes. The electrical and thermal properties of amorphous carbon seem to improve during beam exposure, but the mechanical properties degrade severely. The beam conditions have a strong influence on the evolution of induced structure and property changes. A better understanding of the response of (amorphous) carbon stripper foils to swift heavy ion beams as revealed by dedicated irradiation and characterization experiments performed within this thesis, provides criteria for material requirements for future stripper foils used in high-power heavy ion accelerators such as FAIR.

  10. The effect of X-ray and heavy ions radiations on chemotherapy refractory tumor cells

    Directory of Open Access Journals (Sweden)

    Zhan eYu

    2016-03-01

    Full Text Available Purpose: To link both numeric and structural chromosomal aberrations to the effectiveness of radiotherapy in chemotherapy refractory tumor cells.Materials and methods: Neuroblastoma (LAN-1 and 79HF6 glioblastoma cells derived from patients and their chemoresistant sublines were artificially cultured as neurospheres and irradiated by x-rays and heavy ions sources. All the cell lines were irradiated by Carbon-SIS with LET of 100 keV/µm. 79HF6 cells were also irradiated by Carbon-UNILAC with LET of 168 keV/µm, while LAN-1 cells were irradiated by Nickel ions with LET of 174 keV/µm. The effect of radiation on the survival and proliferation of cells was addressed by standards clonogenic assays. In order to analyze cell karyotype standard giemsa-staining, multicolor fluorescence in situ hybridization technique and multicolor banding technique were applied.Results: Relative biological effectiveness (RBE values of heavy ions beam relative to X-rays at the D10-values were found between 2.3-2.6 with Carbon-SIS and Nickel for LAN-1, while that were 2.5-3.4 with Carbon-SIS and Carbon-UNILAC for 79HF6 cells. Chemorefractory LAN-1RETO cells were found more radioresistant than untreated LAN-1WT cells. 79HF6RETO glioblastoma cells were found more radiosensitive than cytostatic sensitive cells 79HF6WT. Sphere formation assay showed LAN-1RETO cells were able to form spheres in serum-free culture whereas 79HF6 cells could not. Most of 79HF6WT cells revealed to content 71-90 chromosomes while 79HF6RETO revealed a numeric of 52-83 chromosomes. The majority of LAN-1WT cells revealed a number of 40-44 chromosomes. mFISH analysis showed some stable aberrations especially on chromosome 10 with as judged by the impossibility to label this region with specific probes. This was corroborated using mBAND analysis.Conclusions: Heavy ion irradiation were more effective than X-ray in both cytostatic naive cancer and chemoresistant cell lines. LAN-1RETO chemoresistant

  11. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  12. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  13. A comparison of heavy ion induced single event upset susceptibility in unhardened 6T/SRAM and hardened ADE/SRAM

    Science.gov (United States)

    Wang, Bin; Zeng, Chuanbin; Geng, Chao; Liu, Tianqi; Khan, Maaz; Yan, Weiwei; Hou, Mingdong; Ye, Bing; Sun, Youmei; Yin, Yanan; Luo, Jie; Ji, Qinggang; Zhao, Fazhan; Liu, Jie

    2017-09-01

    Single event upset (SEU) susceptibility of unhardened 6T/SRAM and hardened active delay element (ADE)/SRAM, fabricated with 0.35 μm silicon-on-insulator (SOI) CMOS technology, was investigated at heavy ion accelerator. The mechanisms were revealed by the laser irradiation and resistor-capacitor hardened techniques. Compared with conventional 6T/SRAM, the hardened ADE/SRAM exhibited higher tolerance to heavy ion irradiation, with an increase of about 80% in the LET threshold and a decrease of ∼64% in the limiting upset cross-section. Moreover, different probabilities between 0 → 1 and 1 → 0 transitions were observed, which were attributed to the specific architecture of ADE/SRAM memory cell. Consequently, the radiation-hardened technology can be an attractive alternative to the SEU tolerance of the device-level.

  14. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  15. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  16. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  17. Femto-clock for the electron kinetics in swift heavy ion tracks

    Science.gov (United States)

    Medvedev, N.; Volkov, A. E.

    2017-11-01

    We propose a conceptual idea for developing a technique for the monitoring of transient states of the electronic system of materials irradiated with swift heavy ions (SHIs). The method is based on spectroscopic measurements of photon emission due to radiative decay of holes from different inner shells of ionized target atoms. Since a hole in each shell of each element decays with its own characteristic time, it potentially allows the extraction of femtosecond time-resolved information about the excited electronic system in the valence and conduction band of a target. We suggest that prior ion implantation could be used for constructing a selected time grid for this technique. We also discuss the shift of the ionization potentials in atoms multiple-ionized by a direct SHI impact that should allow us to distinguish the track core within a few angstroms around the ion trajectory from the periphery of a track.

  18. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  19. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  20. Heavy-Ion Microbeam System at JAEA-Takasaki for Microbeam Biology

    OpenAIRE

    Tomoo, FUNAYAMA; Seiichi, WADA; Yuichiro, YOKOTA; Kana, FUKAMOTO; Tetsuya, SAKASHITA; Mitsumasa, TAGUCHI; Takehiko, KAKIZAKI; Nobuyuki, HAMADA; Michiyo, SUZUKI; YOSHIYA, FURUSAWA; Hiroshi, Watanabe; Kenji, Kiguchi; Yasuhiko, KOBAYASHI; Organic Pollutant Removal Technology Group, Japan Atomic Energy Agency; Microbeam Radiation Biology Group, Japan Atomic Energy Agency

    2008-01-01

    Research concerning cellular responses to low dose irradiation, radiation-induced bystander effects, and the biological track structure of charged particles has recently received particular attention in the field of radiation biology. Target irradiation employing a microbeam represents a useful means of advancing this research by obviating some of the disadvantages associated with the conventional irradiation strategies. The heavy-ion microbeam system at JAEA-Takasaki, which was planned in 19...

  1. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  2. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  3. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    Working group report: Heavy ion physics. Coordinator: JAN-E ALAM1. Contributors: K Assamagan2, S Chattopadhyay1, R Gavai3, Sourendu Gupta3,. B Layek4, S Mukherjee3, R Ray3, Pradip K Roy5 and A Srivastava4. 1Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064, India. 2Brookhaven National ...

  4. Superconducting heavy-ion accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1996-08-01

    This paper briefly reviews the technical history of superconducting ion-accelerating structures. Various superconducting cavities currently used and being developed for use in ion linacs are discussed. Principal parameters and operational characteristics of superconducting structures in active use at various heavy-ion facilities are described.

  5. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5–16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III ...

  6. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  7. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super ... The energy dependence of the charged particle density dNch/dη, normalized to the num- ..... meson both in the dropping mass and the collision broadening scenarios, is almost as high at RHIC as at ...

  8. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    A midrapidity zone formed in heavy-ion collisions has been investigated through special selections of light .... lished from analysing charged particles emitted at velocities between those characteristic of projectilelike .... only, one low and one high, are displayed (more complete results are given in [15]). For the QP source ...

  9. Quarkonium production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2014-03-01

    Full Text Available The production of quarkonium states plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented.

  10. Heavy-Ion Physics in a Nutshell

    Directory of Open Access Journals (Sweden)

    Hirano Tetsufumi

    2013-05-01

    Full Text Available The physics of quark gluon plasma (QGP and heavy ion collisions at the collider energies is briefly reviewed. We first discuss about the discovery of a nearly perfect fluidity of the QGP. We also highlights recent topics on responses of the QGP to initial deformation and propagation of a jet.

  11. Numerical investigation of performance of some designs of heavy ion thermonuclear fusion target

    Energy Technology Data Exchange (ETDEWEB)

    Vatulin, V.V. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.; Voronin, B.L. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.; Zagrafov, V.G. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.; Remizov, G.N. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.; Skidan, G.I. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.; Skrypnik, S.I. [Russian Federal Nucl. Centre, Arzamas (Russian Federation). Inst. of Exp. Phys.

    1996-11-01

    At present one of the main problems to be solved in heavy ion inertial fusion is the development of an operative design for a target compatible with the beam geometries by a driver. This report presents the research results obtained so far on the target parameters with a cylindrical chamber and converters mounted on the lateral surface of the chamber walls. The cited results were obtained by numerical simulation of X-ray generation in heavy ion flux irradiation, X-ray radiation propagation in the hohlraum volume and gas dynamic processes with 2D and 3D mathematical codes developed at VNIIEF. (orig.)

  12. TWAC facility and the use of the laser ion source for production of intense heavy ion beams

    CERN Document Server

    Sharkov, B Yu; Shumshurov, A V; Meshcheryakov, N D; Rudskoy, I; Homenko, S; Makarov, K; Rörich, V; Stepanov, A; Satov, Yu A; Haseroth, H; Kugler, H; Lisi, N; Scrivens, R

    1999-01-01

    Current activities on upgrading of the ITEP heavy ion accelerator complex in the framework of the ITEP-TWAC project are reported. The project being in progress since 1997 is aiming at production of intense (100 kJ/100 ns) heavy ion beams. The basic idea of the project is the application of the non-Liouvillian technique in an existing accelerator facility based on a heavy ion synchrotron for its adaptation to heavy ion fusion related experiments. Special attention is paid to the results on generation of highly charged medium mass and heavy ions in the laser produced plasma. Development of key elements of the laser ion source based on the use of a 100 J repetition rate CO/sub 2/-laser for filling of ITEP and CERN accelerator facilities in the single turn injection mode is presented. (4 refs).

  13. Exotic hadrons from heavy ion collisions

    Science.gov (United States)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  14. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  15. Medical applications of nuclear physics and heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  16. Data acquisition for the HILI (Heavy Ion Light Ion) detector

    Energy Technology Data Exchange (ETDEWEB)

    Teh, K.M.; Shapira, D.; McConnell, J.W.; Kim, H.; Novotny, R.

    1987-01-01

    A large acceptance, multi-segmented detector system capable of the simultaneous detection of heavy and light ions has been constructed. The heavy ions are detected with a segmented gas ionization chamber and a multiwire proportional counter while the light ions are detected with a 192 element plastic phoswich hodoscope. Processing the large number of signals is accomplished through a combination of CAMAC and FASTBUS modules and preprocessors, and a Host minicomputer. Details of the data acquisition system and the reasons for adopting a dual standards system are discussed. In addition, a technique for processing signals from an individual hodoscope detector is presented. 4 refs., 3 figs.

  17. The future of heavy ion radiotherapy.

    Science.gov (United States)

    Jäkel, Oliver; Karger, Christian P; Debus, Jürgen

    2008-12-01

    Currently, there is an increasing interest in heavy ion radiotherapy (RT) and a number of new facilities are being installed in Europe and Japan. This development is accompanied by intensive technical, physical, and clinical research. The authors identify six research fields where progress is likely and propose a thesis on the expected achievements for each of the fields: (1) Synchrotrons with active energy variation and three-dimensional beam scanning will be the standard in ion beam RT. (2) Common standards for precise measurement, prescription, and reporting of dose will be available. (3) Intensity-modulated particle therapy will be state-of-the-art. (4) Time-adaptive treatments of moving targets will be feasible. (5) Therapeutic effectiveness of heavy ions will be known for the most important indications while cost effectiveness will remain to be shown. (6) The potential of high-linear energy transfer radiation will be known. The rationale for each of these theses is described.

  18. Heavy ion irradiations on synthetic hollandite-type materials: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al)

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ming, E-mail: mtang@lanl.gov [Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Amoroso, Jake; Marra, James [Materials Science & Technology Directorate, Savannah River National Laboratory, Aiken, SC 29808 (United States); Sun, Cheng [Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lu, Ping [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Wang, Yongqiang [Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jiang, Ying-Bing [TEM Laboratory, University of New Mexico, Albuquerque, NM 87131 (United States)

    2016-07-15

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. - Graphical abstract: 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. This is also the first time that the critical amorphization fluence of single phase hollandite compounds were determined at a fluence of around 3.25×10{sup 14} Kr/cm{sup 2} by in situ 1 MeV Kr ion irradiation. Display Omitted.

  19. The holifield heavy ion research facility

    Science.gov (United States)

    Jones, C. M.; Alton, G. D.; Ball, J. B.; Biggerstaff, J. A.; Dowling, D. T.; Erb, K. A.; Haynes, D. L.; Hoglund, D. E.; Hudson, E. D.; Juras, R. C.; Lane, S. N.; Ludemann, C. A.; Martin, J. A.; Mosko, S. W.; Olsen, D. K.; Richardson, E. G.; Stelson, P. H.; Ziegler, N. F.

    1986-02-01

    The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

  20. The heavy-ion magnetic spectrometer PRISMA

    Energy Technology Data Exchange (ETDEWEB)

    Stefanini, A.M. E-mail: alberto.stefanini@lnl.infn.it; Corradi, L.; Maron, G.; Pisent, A.; Trotta, M.; Vinodkumar, A.M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; De Rosa, A.; Inglima, G.; Pierroutsakou, D.; Romoli, M.; Sandoli, M.; Pollarolo, G.; Latina, A

    2002-04-22

    PRISMA is a magnetic spectrometer for heavy ions under construction at Legnaro, with very large solid angle (80 msr), wide momentum acceptance ({+-} 10%) and good mass resolution via TOF measurement; it will be dedicated to the study of nuclear dynamics and nuclear structure with stable and exotic ion beams. This is a review of its main features and of the present status of the project.

  1. The Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1987-01-01

    Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC pelletron tandem accelerator designed to operate at terminal potentials up to 25 MV and the Oak Ridge Isochronous Cyclotron (ORIC) which has been modified to serve as an energy booster for beams from the tandem accelerator. The principal experimental devices of the facility include a broad range spectrograph (ME/q/sup 2/ = 225) equipped with a vertical drift chamber detector system, a 4..pi.. spin spectrometer equipped with 72 NaI detectors (Ge detectors and BGO compton-suppression units can be used in place of the NaI detectors), a time-of-flight spectrometer, a 1.6-m scattering chamber, a heavy-ion/light-ion detector (HILI) which will be used for studying inverse reactions, a split-pole spectrograph, and a velocity filter. In this report, we will discuss our recent development activities, operational experience, and future development plans.

  2. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  3. Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kost, M.; Pross, H.D.; Russmann, C.; Schneider, E.; Kiefer, J.; Kraft, G.; Lenz, G.; Becher, W. [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany)

    1994-12-31

    Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models.

  4. Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions

    Science.gov (United States)

    Kost, M.; Pross, H.-D.; Russmann, C.; Schneider, E.; Kiefer, J.; Kraft, G.; Lenz, G.; Becher, W.

    1994-01-01

    Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models.

  5. Investigations of heavy ion tracks in polyethylene naphthalate films

    CERN Document Server

    Starosta, W; Sartowska, B; Buczkowski, M

    1999-01-01

    The heavy ion beam (with fluence 3x10 sup 8 ion/cm sup 2) from a cyclotron has been used for irradiation of thin polyethylene naphthalate (PEN) films. Latent tracks in these polymeric films have been sensitized by UV radiation and then chemically etched in NaOH solution. The etching process parameters have been controlled by the electroconductivity method. After etching, parameters of samples have been examined by SEM and bubble point methods (Coulter[reg] Porometer II instrument). Results have shown good quality of PEN track membranes with pore sizes in the range: 0.1 - 0.5 mu m. The described procedure is known for thin polyethylene terephthalate (PET) films. Taking into consideration that PEN films have got better mechanical, thermal, gas barrier as well as better chemical resistance properties in comparison with PET films, the possibility of application of such membranes is much wider.

  6. Heavy-ion-induced x-ray satellite emission as a chemical probe

    Energy Technology Data Exchange (ETDEWEB)

    Rosseel, T.M.; Dale, J.M.; Hulett, L.D.; Krause, H.F.; Raman, S.; Vane, C.R.; Young, J.P.

    1983-01-01

    Advances in energy technology often require correspondidng advances in materials fabrication and characterization. Among the new techniques being developed for the improved characterization of materials is an x-ray fluorescence method which uses heavy ions for excitation. High resolution measurements of heavy-ion excited x-ray spectra have revealed a series of prominent satellite lines in addition to the normal emission lines. It has been shown that these satellites display intensity variations indicative of the chemical state or environment of the emitting target atom and the projectile velocity. In order to evaluate heavy-ion induced x-ray satellite emission (HIXSE) as a chemical probe, we have examined a series of sulfur compounds and titanium, vanadium and molybdenum alloys and compounds. Results will be presented which demonstrate the chemical sensitivity of this technique, the range of elements which can be analyzed and the potential for applications to real chemical and materials problems.

  7. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  8. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  9. Hyperons polarization in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Baznat Mircea

    2017-01-01

    Full Text Available We study the structure of vorticity and hydrodynamic helicity fields in peripheral heavy-ion collisions using the kinetic Quark-Gluon Strings Model. The angular momentum which is a source of P-odd observables is preserved within this model with a good accuracy. We observe the formation of specific toroidal structures of vorticity field. Their existence is mirrored in the polarization of hyperons of the percent order. The observed qualitative energy dependence of polarization was predicted earlier and is quantified now.

  10. Heavy Ions in 2011 and beyond

    CERN Document Server

    Jowett, J; Bruce, R; Carli, C; Manglunki, D; Mertens, T; Wollmann, D

    2011-01-01

    The LHC's first heavy ion run set - and tested - the operational pattern for 2011 and later years: a rapid commissioning strategy intended to ensure delivery of integrated luminosity despite the risks associated with the short time-frame. It also gave us hard data to test our understanding of the beam physics that will limit performance. The 2010 experience is fed into the commissioning plan, parameter choices and projected performance for 2011. The prospects for future stages of the LHC ion program, Pb-Pb collisions at higher energy and luminosity, hybrid collisions and other species, depend critically on the scheduling of certain hardware upgrades.

  11. Progress in understanding heavy-ion stopping

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, P., E-mail: sigmund@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Schinner, A. [Institut für Experimentalphysik, Johannes Kepler Universität, A-4040 Linz (Austria)

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul’s data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  12. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    Science.gov (United States)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  13. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  14. Femtoscopic analysis of baryon correlations in ultra-relativistic heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361630

    Heavy-ion collisions at ultra-relativistic energies give a unique possibility to create and to analyse the Quark-Gluon Plasma predicted by the theory of Quantum Chromodynamics. The research on the properties of such state of matter is crucial for understanding the features of the strongly interacting system. Experimental results reveal the collective behaviour of matter created in the heavy-ion collisions at ultra-relativistic energies. The existence of this effect can be verified by the measurement of the transverse mass dependence of the source size extracted using different particle species. Such characteristics can be determined using the analysis technique called femtoscopy. This method is based on the correlations of particles with small relative momenta which originate from the effects of Quantum Statistics as well as the strong and Coulomb Final State Interactions. A recent analysis of the particle production at the highest available collision energies of heavy-ion collisions reveals the puzzling res...

  15. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  16. Measurement Of The Heavy-Ion Collision Event Characteristics With The Atlas Experiment At The Lhc

    Directory of Open Access Journals (Sweden)

    Iwona Grabowska-Bołd

    2015-01-01

    Full Text Available Heavy-ion collisions at extreme energies can reproduce conditionspresent in the early Universe. The new state of very dense and hotmatter of deconfined quarks and gluons, called the Quark GluonPlasma~(QGP, is observed. This state is characterised by very lowviscosity resembling the properties of a perfect fluid. In suchmedium, the density fluctuations can be easily spread. In experimentalpractice, the size of these fluctuations is estimated by measuring theangular correlation of produced particles. The aim of this paper isto present measurements of the azimuthal anisotropy of chargedparticles produced in heavy-ion collisions using the ATLAS detector atthe LHC. Two measurement techniques are presented and compared.

  17. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  18. Heavy-ion beam illumination on a direct-driven pellet in heavy-ion inertial fusion

    Directory of Open Access Journals (Sweden)

    Tetsuo Someya

    2004-04-01

    Full Text Available Key issues in heavy-ion beam (HIB inertial confinement fusion (ICF include an accelerator design for an intense HIB, an efficient HIB transport, a HIB-target interaction, a reactor design, and so on. In this paper, three-dimensional computer simulations are performed for a HIB irradiation onto a direct-driven spherical fuel pellet in HIB-ICF in order to clarify dependence of multi-HIB illumination nonuniformity on parameter values of HIB illumination. For various beam parameters and reactor chamber radii we investigate the energy deposition nonuniformity using 12, 20, 32, 60, 92, and 120-beam irradiation systems. In this study, the effects of HIB temperature, HIB illumination systems, HIB emittance, and pellet temperature on the HIB illumination nonuniformity are also evaluated. In addition, the nonuniformity growth due to a little pellet displacement from a reactor chamber center is investigated. The calculation results demonstrate that we can realize a rather low nonuniform energy deposition, for example, less than 2.0 % even for a 32-beam irradiation system.

  19. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1

    Science.gov (United States)

    Zimmermann, H.; Schäfer, M.; Schmitz, C.; Bücker, H.

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  20. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  1. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn-Bi

    Science.gov (United States)

    Srivastava, S. K.; Khan, S. A.; Sudheer Babu, P.; Avasthi, D. K.

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn0.82Bi0.18 composite has been irradiated by 100 MeV Au ions at fluence 1 × 1013 ions/cm2, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  2. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn–Bi

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sanjeev@phy.iitkgp.ernet.in [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India); Khan, S.A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Sudheer Babu, P. [Department of Physics, RGUKT, Nuzvid 521201 (India); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn{sub 0.82}Bi{sub 0.18} composite has been irradiated by 100 MeV Au ions at fluence 1 × 10{sup 13} ions/cm{sup 2}, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  3. Hard Probes in Heavy-Ion Physics

    CERN Document Server

    Renk, Thorsten

    2012-01-01

    The aim of ultrarelativistic heavy ion physics is to study collectivity and thermodynamics of Quantum Chromodynamics (QCD) by creating a transient small volume of matter with extreme density and temperature. There is experimental evidence that most of the particles created in such a collision form indeed a thermalized system characterized by collective response to pressure gradients. However, a numerically small subset of high transverse momentum ($P_T$) processes takes place independent of the bulk, with the outgoing partons subsequently propagating through the bulk medium. Understanding the modification of such 'hard probes' by the bulk medium is an important part of the efforts to determine the properties of hot and dense QCD matter. In this paper, current developments are reviewed.

  4. Relativistic heavy-ion physics: three lectures

    CERN Document Server

    McLerran, L

    2007-01-01

    These lectures provide an introduction to the physics issues which are being studied in the collisions of ultrarelativistic heavy ions. The lectures are focused on the production of new states of matter. The quark-gluon plasma is thermal matter which once existed in the Big Bang. The colour glass condensate is a universal form of high energy density gluonic matter which is part of a hadron wavefunction and which controls the high-energy limit of strong interactions. The glasma is matter produced in the collisons of high-energy hadrons which evolves into a quarkgluon plasma. The glasma has interesting topological properties and may be responsible for the early thermalization seen at RHIC. I introduce the student to these topics, discuss results from experiments, and comment upon future opportunities.

  5. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  6. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  7. Statistics of heavy-ion stopping

    CERN Document Server

    Glazov, L G; Schinner, A

    2002-01-01

    Energy-loss straggling of swift heavy ions penetrating through matter has been analysed on the basis of binary stopping theory as well as the modified Bohr model allowing for projectile screening. A program has been written which evaluates the generalized Bothe-Landau formula governing the energy-loss spectrum for penetration through a thin layer, allowing for charge exchange involving an arbitrary number of charge states. This program was generated on the basis of calculational schemes developed originally for swift light ions. Projectile screening and multiple-shell structure of target atoms are allowed for. Explicit energy-loss spectra are given for oxygen in carbon for charge states 6-8 and foil thickness 2, 10 and 50 mu g/cm sup 2. It is also demonstrated that frozen-charge straggling depends only weakly on charge state.

  8. Heavy ion Physics with the ATLAS Detector

    CERN Document Server

    White, S N

    2006-01-01

    Soon after the LHC is commissioned with proton beams the ATLAS experiment will begin studies of Pb-Pb collisions with a center of mass energy of ?sNN = 5.5 TeV. The ATLAS program is a natural extension of measurements at RHIC in a direction that exploits the higher LHC energies and the superb ATLAS calorimeter and tracking coverage. At LHC energies, collisions will be produced with even higher energy density than observed at RHIC. The properties of the resulting hot medium can be studied with higher energy probes, which are more directly interpreted through modification of jet properties emerging from these collisions, for example. Other topics which are enabled by the 30-fold increase in center of mass energy include probing the partonic structure of nuclei with hard photoproduction (in UltraPeripheral collisions) and in p-Pb collisions. Here we report on evaluation of ATLAS capabilities for Heavy Ion Physics.

  9. Electromagnetic probes in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    van Hees H.

    2015-01-01

    Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  10. Highlights from STAR heavy ion program

    Science.gov (United States)

    Okorokov, Vitalii

    2017-10-01

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in sQGP. Most results obtained during stage I of the RHIC beam energy scan (BES) program show smooth behavior vs initial energy. However certain results suggest the transition in the domain of dominance of hadronic degrees of freedom at center-of-mass energies between 10-20 GeV. The stage II of the BES at RHIC will occur in 2019-2020 and will explore with precision measurements in the domain of the QCD phase diagram with high baryon densities. Future developments and more precise studies of features of QCD phase diagram in the framework of stage II of RHIC BES will be briefly discussed.

  11. Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions

    CERN Document Server

    Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav

    2018-01-01

    This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

  12. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider. Subrata Pal. Volume 84 Issue 5 May 2015 pp ... Subrata Pal1. Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  13. Heavy ions at the LHC: Physics perspectives and experimental ...

    Indian Academy of Sciences (India)

    Abstract. Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at LHC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating ...

  14. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to L O = 2 × 10 25 cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time.

  15. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  16. High $p_{T}$ physics in the heavy ion era

    CERN Document Server

    Rak, Jan

    2013-01-01

    Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high $p_{T}$ probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high $p_{T}$ physics. The main features of high $p_{T}$ physics are placed within a historical context and the authors adopt an experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory. Advanced methods are described in detail, making this book especially useful for newcomers to the field.

  17. Crystal-blocking measurements in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez del Campo, J.; Fearick, R.W.; Biggerstaff, J.A.; Moak, C.D.; Miller, P.D.; Neskovic, N.; Shapira, D.; Sellschop, J.P.F.

    1983-01-01

    The crystal blocking technique has been employed in the study of /sup 16/O + /sup nat/Ge and /sup 16/O + /sup 12/C (diamond) reactions. Measurements of the projectile-like fragments in the /sup 16/O + Ge reaction gave reaction times as fast as the elastic scattering; however, substantial time effects are seen for the evaporation residues (ER) of the fusion of /sup 16/O + /sup 12/C. Deexcitation times of the ER of 120-MeV /sup 16/O + /sup 12/C, emerging along the (110) axis of a 12-..mu..m diamond crystal were extracted and they ranged from 4 x 10/sup -18/ sec for Mg to 4 x 10/sup -18/ sec for N. These values are consistent with statistical model predictions and demonstrate the sequential decay nature of the deexcitation process in heavy-ion fusion reactions.

  18. Time-of-flight detector for heavy ion backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, J.A.; Banks, J.C.; Doyle, B.L. [Sandia National Labs., Albuquerque, NM (United States). Ion Solid Interactions and Defect Physics Dept.

    1994-04-01

    This report describes the results of a two-year laboratory directed research and development project to explore advanced concepts in Heavy Ion Backscattering Spectrometry (HIBS), undertaken with the goal of extending the sensitivity of this relatively new technique to levels unattainable by any other existing trace element surface analysis. Improvements in sensitivity are required for the application of HIBS to contamination control in the microelectronics industry. Tools with sensitivity approaching 10{sup 8} atoms/cm{sup 2} are expected to be essential for enabling advanced IC production by the year 2000. During the project the authors developed a new analysis chamber with channeling goniometer and a prototype time-of-flight detector with a demonstrated sensitivity of {approximately} 5 {times} 10{sup 8} atoms/cm{sup 2} for Au on Si and {approximately} 5 {times} 10{sup 10} for Fe, and sufficient mass resolution to separate contributions from Fe and Cu.

  19. Deposition of molecular probes in heavy ion tracks

    CERN Document Server

    Esser, M

    1999-01-01

    By using polarized fluorescence techniques the physical properties of heavy ion tracks such as the dielectric number, molecular alignment and track radius can be traced by molecular fluorescence probes. Foils of poly(ethylene terephthalate) (PET) were used as a matrix for the ion tracks wherein fluorescence probes such as aminostyryl-derivatives can be incorporated using a suitable solvent, e.g. N,N'-dimethylformamide (DMF) as transport medium. The high sensitivity of fluorescence methods allowed the comparison of the probe properties in ion tracks with the virgin material. From the fluorescence Stokes shift the dielectric constants could be calculated, describing the dielectric surroundings of the molecular probes. The lower dielectric constant in the tracks gives clear evidence that there is no higher accommodation of the highly polar solvent DMF in the tracks compared with the virgin material. Otherwise the dielectric constant in the tracks should be higher than in the virgin material. The orientation of t...

  20. Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory

    Science.gov (United States)

    Oldham, Timothy R.; Suhail, Mohammed; Kuhn, Peter; Prinz, Erwin; Kim, Hak; LaBel, Kenneth A.

    2004-01-01

    We have irradiated engineering samples of Freescale 4M nonvolatile memories with heavy ions. They use Silicon nanocrystals as the storage element, rather than the more common floating gate. The irradiations were performed using the Texas A&M University cyclotron Single Event Effects Test Facility. The chips were tested in the static mode, and in the dynamic read mode, dynamic write (program) mode, and dynamic erase mode. All the errors observed appeared to be due to single, isolated bits, even in the program and erase modes. These errors appeared to be related to the micro-dose mechanism. All the errors corresponded to the loss of electrons from a programmed cell. The underlying physical mechanisms will be discussed in more detail later. There were no errors, which could be attributed to malfunctions of the control circuits. At the highest LET used in the test (85 MeV/mg/sq cm), however, there appeared to be a failure due to gate rupture. Failure analysis is being conducted to confirm this conclusion. There was no unambiguous evidence of latchup under any test conditions. Generally, the results on the nanocrystal technology compare favorably with results on currently available commercial floating gate technology, indicating that the technology is promising for future space applications, both civilian and military.

  1. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  2. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  3. NF-kB activation and its downstream target genes expression after heavy ions exposure

    Science.gov (United States)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  4. Design of a superconducting rotating gantry for heavy-ion therapy

    Science.gov (United States)

    Iwata, Y.; Noda, K.; Shirai, T.; Murakami, T.; Furukawa, T.; Mori, S.; Fujita, T.; Itano, A.; Shouda, K.; Mizushima, K.; Fujimoto, T.; Ogitsu, T.; Obana, T.; Amemiya, N.; Orikasa, T.; Takami, S.; Takayama, S.; Watanabe, I.

    2012-04-01

    A superconducting rotating gantry for heavy-ion therapy is being designed. This isocentric rotating gantry can transport heavy ions with the maximum energy of 430MeV/u to an isocenter with irradiation angles of over 0-360 degrees, and is further capable of performing three-dimensional raster-scanning irradiation. The combined-function superconducting magnets will be employed for the rotating gantry. The superconducting magnets with optimized beam optics allow a compact gantry design with a large scan size at the isocenter; the length and the radius of the gantry will be approximately 13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Furthermore, the maximum scan size at the isocenter is calculated to be as large as approximately 200 mm square for heavy-ion beams at the maximum energy of 430MeV/u. Based on the design of the beam optics, specifications of the superconducting magnets were determined. The superconducting magnets and magnetic-field distributions are designed using a three-dimensional field solver. With the calculated magnetic fields, beam-tracking simulations were performed to verify the design of the superconducting magnets, and concurrently to evaluate the field quality. With calculated beam profiles at the isocenter, we found that the positions of beam spots as well as their size and shape could be well reproduced as designed, proving validity of our design.

  5. Development of diagnostic method for deep levels in semiconductors using charge induced by heavy ion microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Yuya [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamoto, Naoya; Onoda, Shinobu; Makino, Takahiro; Koka, Masashi; Kamiya, Tomihiro [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Kojima, Kazutoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Hanaizumi, Osamu [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Ohshima, Takeshi, E-mail: ohshima.takeshi20@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2015-04-01

    Highlights: •Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed. •HIQTS system is connected with 3 MeV Tandem accelerator at JAEA Takasaki. •Defects in 4H Silicon Carbide (SiC) Schottky diodes were evaluated using HIQTS. •6H-SiC pn diodes with partial damaged areas were also evaluated using HIQTS. -- Abstract: In order to study defects that create deep energy levels in semiconductors which act as carrier traps, Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed at JAEA Takasaki. The HIQTS system was connected with the heavy ion microbeam line of the 3 MV Tandem accelerator. Using the HIQTS system, deep levels in 4H-SiC Schottky barrier diodes irradiated with 3 MeV-protons were studied. As a result, a HIQTS peak with an activation energy of 0.73 eV was observed. In addition, local damage in 6H-SiC pn diodes partially irradiated with 12 MeV-O ion microbeams was studied using HIQTS. With increasing 12 MeV-O ion fluence, charge collection efficiency in locally damaged areas decreased and HIQTS signals increased.

  6. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Nesprías, F. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Debray, M.E., E-mail: debray@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); Davidson, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); and others

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift {sup 35}Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO{sub 3}, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  7. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  8. Electromagnetic Radiations from Heavy Ion Collision

    Directory of Open Access Journals (Sweden)

    Payal Mohanty

    2013-01-01

    Full Text Available In this review, we have discussed the different sources of photons and dileptons produced in heavy ion collision (HIC. The transverse momentum (pT spectra of photons for different collision energies are analyzed with a view of extracting the thermal properties of the system formed in HIC. We showed the effect of viscosity on pT spectra of produced thermal photons. The dilepton productions from hot hadrons are considered including the spectral change of light vector mesons in the thermal bath. We have analyzed the pT and invariant mass (M spectra of dileptons for different collision energies too. As the individual spectra are constrained by certain unambiguous hydrodynamical inputs, so we evaluated the ratio of photon to dilepton spectra, Rem, to overcome those quantities. We argue that the variation of the radial velocity extracted from Rem with M is indicative of a phase transition from the initially produced partons to hadrons. In the calculations of interferometry involving dilepton pairs, it is argued that the nonmonotonic variation of HBT radii with invariant mass of the lepton pairs signals the formation of quark gluon plasma in HIC. Elliptic flow (v2 of dilepton is also studied at sNN=2.76 TeV for 30–40% centrality using the (2+1d hydrodynamical model.

  9. High current injector for heavy ion fusion

    Science.gov (United States)

    Yu, S.; Eylon, S.; Chupp, W. W.

    1993-05-01

    A 2 MV, 800 mA, K(+) injector for heavy ion fusion studies is under construction. This new injector is a one-beam version of the proposed 4-beam ILSE injector. A new 36-module MARX is being built to achieve a 5 micro-s flat top. The high voltage generator is stiff (less than 5k Omega) to minimize effects of beam-induced transients. A large (approximately 7 in. diameter) curved hot alumina-silicate source emits a 1 micro-s long beam pulse through a gridless extraction electrode, and the ions are accelerated to 1 MV in a diode configuration. Acceleration to 2 MV takes place in a set of electrostatic quadrupole (ESQ) units, arranged to simultaneously focus and accelerate the ion beam. Heavy shields and other protection devices have been built in to minimize risks of high voltage breakdown. Beam aberration effects through the ESQ have been studied extensively with theory, simulations, and scaled experiments. The design, simulations, experiments, and engineering of the ESQ injector will be presented.

  10. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Bangerter, R.O. (Lawrence Berkeley Lab., CA (United States)); Bock, R. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Hogan, W.J.; Lindl, J.D. (Lawrence Livermore National Lab., CA (United States))

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  11. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hogan, W.J.; Lindl, J.D. [Lawrence Livermore National Lab., CA (United States)

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  12. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  13. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  14. A radial TPC for heavy ions

    CERN Document Server

    Garabatos, C

    2000-01-01

    The CERES experiment at the CERN SPS has been recently upgraded with a TPC with radial drift field, the first one of its sort. Constructed during 1998, it has been successfully operated in commissioning and physics runs, with muon, proton, and heavy-ion beams. A high voltage electrode of about 0.5 m radius is surrounded by sixteen 2 m long readout chambers, placed at a radius of 1.3 m, with chevron-shaped readout pads. The field cage is enclosed by two low-mass voltage degraders at each end of the cylindrical structure. A Ne-CO/sub 2/ [80-20] gas mixture allows for a safe operation and good transport properties under drift fields ranging from 200 to 600 V/cm. A spatial resolution better than 700 microns and 350 microns in r and rdelta (phi), respectively, has been achieved in a highly inhomogeneous magnetic field. Details of its construction as well as results of the operation and performance in a high multiplicity environment are presented. (0 refs).

  15. CHICO, a heavy ion detector for Gammasphere

    CERN Document Server

    Simon, M W; Wu, C Y; Gray, R W; Teng, R; Long, C

    2000-01-01

    A 4 pi position-sensitive heavy-ion detector system, CHICO, has been developed primarily for use in conjunction with the 4 pi gamma-ray facility, Gammasphere. The CHICO detector comprises an array of 20 Parallel Plate Avalanche Counters (PPACs) covering 12 deg.

  16. Status of the relativistic heavy ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Karl, F. [Brookhaven National Lab., Upton, NY (United States)

    1999-07-01

    At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)

  17. The search for super-heavy ions

    CERN Document Server

    Grévy, S

    2003-01-01

    The present the search for heavy nuclei, they briefly draw a historical review of the production of heavy isotopes and then describe the means and possibilities the French GANIL (national great accelerator of heavy ions) facility offers. The different steps of the experimental process are described: production, selection, detection and identification. The production cross-sections are so weak that every parameter involved in the production process has to be optimized. It appears that the limit of our technological knowledge has been reached and unless an important technical step forward it seems impossible to go down below the pico-barn (10 sup - sup 1 sup 2 *10 sup - sup 2 sup 4 cm sup 2) for production cross-sections. The 2 remaining ways to improve the situation are: 1) to increase the intensity of the incident particle beam (today we have < 10 sup 1 sup 3 pps), this implies that an important development about accelerators and ion sources has to be achieved, 2) the other way is to use radioactive ion be...

  18. Heavy Ion physics in ATLAS and CMS

    CERN Document Server

    Kodolova, Olga

    2008-01-01

    We will present the capabilities of the ATLAS and CMS experiments to explore the heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies $\\sqrt{s_{_{NN}}}$ = 5.5 TeV, will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction (QCD) in extreme conditions of temperature, density and low parton momentum fraction. The current paper will give an overview of the potential of ATLAS and CMS to carry out a set of representative Pb-Pb measurements. These include ``bulk'' observables, like charged hadron multiplicity, low $p_{\\rm T}$ inclusive hadron identified spectra and elliptic flow -- which provide information on the collective properties of the system; as well as perturbative processes, such as quarkonia, heavy-quarks, jets, $\\gamma$-jet, and high $p_{\\rm T}$ hadrons --- which yield ``tomographic'' information of the hottest and densest phases...

  19. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  20. Experimental review of quarkonium production in heavy-ion collisions

    Science.gov (United States)

    Zha, Wangmei; Tang, Zebo

    2017-08-01

    Quarkonium provides a sensitive probe to the properties of the quark-gluon plasma (QGP). Its production yield in heavy-ion collisions is modified by the color-screening effect, heavy quark (re)combination effect and cold nuclear matter effects. These effect have different sensitivity to various properties of the medium. Using quarkonium to experimentally study the properties of the QGP requires comprehensive measurements in heavy-ion collisions. In this article, we review the recent experimental measurements of different quarkonium states in heavy-ion collisions at the RHIC and the LHC.

  1. Imaging instrument for positron emitting heavy ion beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated.

  2. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    Science.gov (United States)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  3. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  4. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  5. Background Effects on Jet Detection in Heavy Ion Collisions

    Science.gov (United States)

    Aukerman, Alexander; Hughes, Charles; Krobatch, Thomas; Matyja, Adam; Nattrass, Christine; Neuhas, James; Sorensen, Soren; Witt, Will

    2017-09-01

    Heavy ion collisions performed at the LHC and RHIC at large energy scales produce a liquid of quarks and gluons known as a Quark-Gluon Plasma (QGP). Jets, which are collimated bunches of particles emitted from highly energetic partons, are produced at the early stages of these collisions, and can provide information about the properties of the QGP. Partonic energy loss in the medium can by quantified by measurements of fragmentation functions. However, the high background energies resulting from emissions uncorrelated to the initial hard scatterings in the heavy ion collisions place limitations on jet detection methods and fragmentation measurements. For the purpose of investigating the limitations on these current jet detection methods we generated a heavy ion background based on charged hadron data. We explore the behavior of a jet finding algorithm with our generated background to examine how the presence of a heavy ion background may affect the measurements of jet properties.

  6. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  7. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  8. Residual activity induced by heavy ions and beam-loss criteria for heavy-ion accelerators

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2010-07-01

    Full Text Available The paper presents results of FLUKA simulations of the residual activity induced by heavy ions in two target configurations representing: (1 a beam pipe of an accelerator and (2 a bulky accelerator structure like a magnet yoke or a coil. The target materials were stainless steel and copper representing the most common construction materials used for basic accelerator components. For these two materials, the inventory of the induced isotopes depends mainly on the target material and much less on the projectile species. Time evolution of the induced activity can be described by means of a generic curve that is independent from the projectile mass. Dependence of the induced residual activity on selected ion beam parameters was studied. The main goal of the study was establishing a scaling law expanding the existing proton beam-loss tolerance to heavy-ion beams. This scaling law enables specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200  MeV/u up to 1  GeV/u.

  9. Heavy Ions at the LHC Physics Perspectives and Experimental Program

    CERN Document Server

    Schükraft, Jürgen

    2002-01-01

    Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at HC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  10. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  11. Heavy-ion physics at high baryon densities

    Directory of Open Access Journals (Sweden)

    Friese Volker

    2015-01-01

    Full Text Available Currently, several experimental programmes, both at existing and at future accelerator facilities, aim at investigating strongly interacting matter with nuclear collisions at energies below top SPS energy. These activities complement the heavy-ion experiments conducted at the highest available energies at the RHIC and LHC accelerators. In this report, we discuss the motivation for and prospects of the low-energy heavy-ion programmes.

  12. High fluence swift heavy ion structure modification of the SiO{sub 2}/Si interface and gate insulator in 65 nm MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gao, Bo, E-mail: gaobo@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Willis, Maureen [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); Guan, Mingyue [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO{sub 2}/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO{sub 2} and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  13. Evaluation of beam wobbling methods for heavy-ion radiotherapy.

    Science.gov (United States)

    Yonai, Shunsuke; Kanematsu, Nobuyuki; Komori, Masataka; Kanai, Tatsuaki; Takei, Yuka; Takahashi, Osamu; Isobe, Yoshiharu; Tashiro, Mutsumi; Koikegami, Hajime; Tomita, Hideki

    2008-03-01

    The National Institute of Radiological Sciences (NIRS) has extensively studied carbon-ion radiotherapy at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) with some positive outcomes, and has established its efficacy. Therefore, efforts to distribute the therapy to the general public should be made, for which it is essential to enable direct application of clinical and technological experiences obtained at NIRS. For widespread use, it is very important to reduce the cost through facility downsizing with minimal acceleration energy to deliver the HIMAC-equivalent clinical beams. For the beam delivery system, the requirement of miniaturization is translated to reduction in length while maintaining the clinically available field size and penetration range for range-modulated uniform broad beams of regular fields that are either circular or square for simplicity. In this paper, we evaluate the various wobbling methods including original improvements, especially for application to the compact facilities through the experimental and computational studies. The single-ring wobbling method used at HIMAC is the best one including a lot of experience at HIMAC but the residual range is a fatal problem in the case of a compact facility. On the other hand, uniform wobbling methods such as the spiral and zigzag wobbling methods are effective and suitable for a compact facility. Furthermore, these methods can be applied for treatment with passive range modulation including respiratory gated irradiation. In theory, the choice between the spiral and zigzag wobbling methods depends on the shape of the required irradiation field. However, we found that it is better to use the zigzag wobbling method with transformation of the wobbling pattern even when a circular uniform irradiation field is required, because it is difficult to maintain the stability of the wobbler magnet due to the rapid change of the wobbler current in the spiral wobbling method. The regulated wobbling method

  14. Partial correlation analysis method in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Olszewski, Adam; Broniowski, Wojciech

    2017-11-01

    We argue that statistical data analysis of two-particle longitudinal correlations in ultrarelativistic heavy-ion collisions may be efficiently carried out with the technique of partial covariance. In this method, the spurious event-by-event fluctuations due to imprecise centrality determination are eliminated via projecting out the component of the covariance influenced by the centrality fluctuations. We bring up the relationship of the partial covariance to the conditional covariance. Importantly, in the superposition approach, where hadrons are produced independently from a collection of sources, the framework allows us to impose centrality constraints on the number of sources rather than hadrons, that way unfolding of the trivial fluctuations from statistical hadronization and focusing better on the initial-state physics. We show, using simulated data from hydrodynamics followed with statistical hadronization, that the technique is practical and very simple to use, giving insight into the correlations generated in the initial stage. We also discuss the issues related to separation of the short- and long-range components of the correlation functions and show that in our example the short-range component from the resonance decays is largely reduced by considering pions of the same sign. We demonstrate the method explicitly on the cases where centrality is determined with a single central control bin or with two peripheral control bins.

  15. Measurement of Total Reaction Cross-sections with Heavy Ions at the SC

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the measurement of heavy ion total reaction cross-sections in the energy range 40-86 MeV/A with the anti-coincidence beam attenuation technique. A system of 19 @DE scintillation detectors together with a time-of-flight measurement is used for detection of the residual beam. The results will complete measurements at the Grenoble cyclotron and post accelerator over the energy range 10-40 MeV/A.

  16. Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC

    Directory of Open Access Journals (Sweden)

    H. H. Braun

    2014-02-01

    Full Text Available Reliable predictions of yields of nuclear fragments produced in electromagnetic dissociation and hadronic fragmentation of ion beams are of great practical importance in analyzing beam losses and interactions with the beam environment at the Large Hadron Collider (LHC at CERN as well as for estimating radiation effects of galactic cosmic rays on the spacecraft crew and electronic equipment. The model for predicting the fragmentation of relativistic heavy ions is briefly described, and then applied to problems of relevance for LHC. The results are based on the fluka code, which includes electromagnetic dissociation physics and dpmjet-iii as hadronic event generator. We consider the interaction of fully stripped lead ions with nuclei in the energy range from about one hundred MeV to ultrarelativistic energies. The yields of fragments close in the mass and charge to initial ions are calculated. The approach under discussion provides a good overall description of Pb fragmentation data at 30 and 158A  GeV as well as recent LHC data for sqrt[s_{NN}]=2.76  TeV Pb-Pb interactions. Good agreement with the calculations in the framework of different models is found. This justifies application of the developed simulation technique both at the LHC injection energy of 177A  GeV and at its collision energies of 1.38, 1.58, and 2.75A  TeV, and gives confidence in the results obtained.

  17. Recent results from the ATLAS heavy ion program

    CERN Document Server

    Havener, Laura Brittany; The ATLAS collaboration

    2018-01-01

    The heavy-ion program in the ATLAS experiment at the LHC originated as an extensive program to probe and characterize the hot, dense matter created in relativistic lead-lead collisions. In recent years, the program has also broadened to a detailed study of collective behavior in smaller systems. In particular, the techniques used to study larger systems are also applied to proton-proton and proton-lead collisions over a wide range of particle multiplicities, to try and understand the early-time dynamics which lead to similar flow-like features in all of the systems. Another recent development is a program studying ultra-peripheral collisions, which provide gamma-gamma and photonuclear processes over a wide range of CM energy, to probe the nuclear wavefunction. This talk presents a subset of the the most recent results from the ATLAS experiment based on Run 1 and Run 2 data, including measurements of collectivity over a wide range of collision systems, potential nPDF modifications — using electroweak bosons,...

  18. Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

    Directory of Open Access Journals (Sweden)

    Marcus Bleicher

    2012-07-01

    Full Text Available The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively.

  19. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  20. Effect of swift heavy ion irradiation on surface resistance of ...

    Indian Academy of Sciences (India)

    This peak, associated with the order–disorder transition of the FLL, is rationalized within the Larkin–Ovchinnikov ... its spatial order. We have shown in an earlier communication [6] the observation of PE in. 959 ... feature close to Tc. Pinning of magnetic flux lines due to either inherent material disorder or due to defect sites ...

  1. Swift heavy ion irradiation induced modification of structure and ...

    Indian Academy of Sciences (India)

    interaction in our case. Vanishing of these impurity peaks at higher fluences may be due to overlapping of the ion tracks leading to amorphization of these phases. Figure 1. Evolution of XRD pattern with 200 MeV Ag ion irra- diation fluence for BiFeO3 thin films grown on Si(100) substrate. Impurity peaks corresponding to ...

  2. Peak effect at microwave frequencies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    disorder, results in a peak in the critical current density Jc near Tc (Hc2), known as 'peak effect' (PE). The earliest understanding of the PE [4,5] is based on the collective pinning scenario that involves the softening of the elastic moduli (c66 and c44) of the flux line lattice. (FLL) near Tc (Hc2) where the superconducting order ...

  3. Treatment planning for heavy ion irradiation. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). FS Radiologische Diagnostik und Therapie; Kraemer, M. [Gesellschaft fuer Schwerionenforschung (GSI), Biophysik, Darmstadt (Germany)

    1997-09-01

    In this contribution we will outline briefly the GSI beam delivery system and the qualitative differences in the methods used for inverse planning arising from it. We will describe the planning package, consisting of VOXELPLAN and TRiP and show some results for first test cases. (orig./MG)

  4. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  5. Track Reconstruction in Heavy Ion Events using the CMS Tracker

    CERN Document Server

    Roland, Christof

    2006-01-01

    The Large Hadron Collider at CERN will collide protons at sqrt{S}=14 TeV and lead ions at sqrt{S_{NN} =5.5 TeV. The study of heavy ion collisions is an integral part of the physics program of the Compact Muon Solenoid (CMS). Central heavy ion events at LHC energies are expected to produce a multiplicity of 1500 to 4000 charged particles per unit of rapidity. The CMS detector features a large acceptance and high resolution silicon tracker consisting of pixel and strip detector layers. In this note the algorithms used for pattern recognition in the very high track density environment of heavy ion collisions will be described. Detailed studies using the full detector simulation and reconstruction are presented and achieved reconstruction efficiencies, fake rates and resolutions are discussed.

  6. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  7. Elucidating Jet Energy Loss in Heavy Ion Collisions

    CERN Document Server

    Grau, N

    2008-01-01

    Very soon the LHC will provide beams for heavy ion collisions at 5.52 TeV/nucleon. This center-of-mass energy results in a large cross-section for producing high-$E_T$ ($>$ 50 GeV) jets that are distinct from the soft, underlying event. This brings with it the possibility of performing full jet reconstruction to directly study jet energy loss in the medium produced in heavy ion collisions. In this note, we present the current state of jet reconstruction performance studies in heavy ion events using the ATLAS detector. We also discuss the possibilities of energy loss measurements available with full jet reconstruction: single jet $R_{AA}$ and di-jet and $\\gamma$-jet correlations.

  8. arXiv Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A.; Armesto, N.; d'Enterria, D.; Jowett, J.M.; Lansberg, J.P.; Milhano, J.G.; Salgado, C.A.; Schaumann, M.; van Leeuwen, M.; Albacete, J.L.; Andronic, A.; Antonioli, P.; Apolinario, L.; Bass, S.; Beraudo, A.; Bilandzic, A.; Borsanyi, S.; Braun-Munzinger, P.; Chen, Z.; Cunqueiro Mendez, L.; Denicol, G.S.; Eskola, K.J.; Floerchinger, S.; Fujii, H.; Giubellino, P.; Greiner, C.; Grosse-Oetringhaus, J.F.; Ko, C.M.; Kotko, P.; Krajczar, K.; Kutak, K.; Laine, M.; Liu, Y.; Lombardo, M.P.; Luzum, M.; Marquet, C.; Masciocchi, S.; Okorokov, V.; Paquet, J.F.; Paukkunen, H.; Petreska, E.; Pierog, T.; Ploskon, M.; Ratti, C.; Rezaeian, A.H.; Riegler, W.; Rojo, J.; Roland, C.; Rossi, A.; Salam, G.P.; Sapeta, S.; Schicker, R.; Schmidt, C.; Stachel, J.; Uphoff, J.; van Hameren, A.; Watanabe, K.; Xiao, B.W.; Yuan, F.; Zaslavsky, D.; Zhou, K.; Zhuang, P.

    2017-06-22

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  9. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kaźmierczak, U. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Banaś, D.; Braziewicz, J. [Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Czub, J. [Institute of Physics, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce (Poland); Jaskóła, M.; Korman, A. [National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock (Poland); Kruszewski, M. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin (Poland); Lankoff, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce (Poland); Lisowska, H. [Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce (Poland); Malinowska, A. [National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock (Poland); Stępkowski, T. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Szefliński, Z. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warsaw (Poland); and others

    2015-12-15

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a {sup 12}C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  10. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  11. Quark vs Gluon jets in Heavy Ion Collisions

    CERN Document Server

    Drauksas, Simonas

    2017-01-01

    The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.

  12. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  13. Heavy ion observation with MIDORI satellite: trapped ACR

    CERN Document Server

    Kohno, T; Yamagiwa, I; Kato, C; Goka, T; Matsumoto, H

    1999-01-01

    The Heavy Ion Telescope (HIT) on board the Japanese earth observation satellite MIDORI (ADEOS) has observed energetic heavy ions at the circular sun-synchronous orbit with an altitude of 800 km and an inclination of 98 deg. . Geomagnetically trapped oxygen and nitrogen at L=2 are clearly observed which is similar to the results of SAMPEX. Their geographical distribution at a long belt from the southern tip of South America to that of Africa is also very close to the SAMPEX observation. The adiabaticity parameter epsilon sub m sub a sub x can be deduced as <=0.1.

  14. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  15. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  16. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    Science.gov (United States)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  17. Mesh refinement for particle-in-cell plasma simulations: Applications to and benefits for heavy ion fusion

    Science.gov (United States)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; van Straalen, B.; Friedman, A.; Grote, D. P.

    2002-10-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. We discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). We present the prospects for and projected benefits of its application to heavy ion fusion, in particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to couple the adaptive mesh refinement library CHOMBO developed by the ANAG group to the particle-in-cell accelerator code WARP developed by the Heavy Ion Fusion Virtual National Laboratory. We describe our progress and present our initial findings.

  18. Fast Data Acquisition in Heavy Ion CT Using Intensifying Screen—EMCCD Camera System With Beam Intensity Monitor

    Science.gov (United States)

    Muraishi, Hiroshi; Abe, Shinji; Satoh, Hitoshi; Hara, Hidetake; Mogaki, Tatsuya; Hara, Satoshi; Miyake, Shoko; Watanabe, Yusuke; Koba, Yusuke

    2012-10-01

    We investigated the feasibility of fast data acquisition in heavy ion CT (IonCT) technique with an X-ray intensifying screen-charged coupled device (CCD) camera system. This technique is based on measuring the residual range distribution of heavy ions after passing through an object. We took a large number of images with a CCD camera for one projection by changing the range shifter (RS) thickness to obtain a characteristic curve similar to a Bragg curve and then to estimate the relative residual range. We used a high quality Electron Multiplying CCD (EMCCD) camera, which drastically reduced data acquisition time. We also used a parallel-plate ionization chamber upstream of an object to monitor the time variation in heavy ion beam intensity from a synchrotron accelerator and to perform beam intensity correction for all EMCCD images. Experiments were conducted using a broad beam of 12C, which was generated by spreading out the pencil beam accelerated up to 400 MeV/u by the Heavy Ion Medical Accelerator, in Chiba (HIMAC) at the National Institute of Radiological Sciences, with a scatterer. We demonstrated that a fast CT data acquisition, 14 min for 256 projections, is possible for an electron density phantom, consisting of six rods with a relative electron density resolution of 0.017, using the proposed technique with HIMAC.

  19. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  20. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the .... bone of the analyses seeking to extract information from the data on whether QGP did form in the heavy ion ..... A similar exercise for S+Au or Pb+Au reveals an enhancement in the low mass region ...

  1. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  2. Heavy ion accelerator and associated developments in India

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 59, No. 5. — journal of. November 2002 physics pp. 703–712. Heavy ion accelerator and associated developments in India. G K MEHTA. University of Allahabad, Allahabad 211 002, India. Abstract. Developments of ion accelerator and associated facilities in India are presented. Various.

  3. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    Abstract. We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of ...

  4. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    What do we hope and expect to learn in the future? 1. Introduction. The goal of the heavy ion program at the RHIC at Brookhaven National Laboratory is to make and study new forms of matter at energy densities in excess of ten times that of nuclear matter. I will describe the status of this program from a theorist's perspective.

  5. Recent studies in heavy ion induced fission reactions

    Indian Academy of Sciences (India)

    channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. ... Heavy ion fission; angular distributions; fragment spin; mass; energy. ... neutrons and protons (magic numbers), and also resulting in deformed ground state shapes.

  6. Systematics of elliptic flow in heavy-ion collisions

    Indian Academy of Sciences (India)

    The main goal of ultra-relativistic heavy-ion collisions is to understand the behavior of. QCD under extreme ... collective motion of particles are called as flow and are identified as radial, sideward and elliptic flow. ... expands it becomes more spherical, quenching the driving force that produces the elliptic flow. The elliptic flow ...

  7. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    In this talk, I present what I believe we have learned from the recent RHIC heavy ion experiments. The goal of these experiments is to make and study matter at very high energy densities, greater than an order of magnitude larger than that of nuclear matter. Have we made such matter? What have we learned about the ...

  8. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    Nz. 1. Introduction. The quark gluon plasma (QGP) is formed in high-energy heavy-ion collisions at Relativis- .... To obtain final hadrons, pure hydrodynamic simulations assume free hadron resonances directly emitted ... models is realized by a Monte-Carlo event generator, which transforms the hydrody- namic output into ...

  9. Response of silicon position sensitive detectors to heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Read, P.M.; Rotberg, V.H. (UKAEA Atomic Energy Research Establishment, Harwell. Nuclear Physics Div.); Tolfree, D.W.L.; Groves, J. (Science Research Council, Daresbury (UK). Daresbury Lab.)

    1983-01-15

    The pulse height response characteristics of surface barrier and ion implanted position sensitive detectors have been measured. Surface barrier detectors with junctions formed using oxidation by potassium dichromate exhibit small heavy ion pulse height defects indicating thin entrance windows. Ion implanted detectors give considerably larger defects because of penetrating tails in the distribution of implanted ions and electrically active defects.

  10. The response of silicon position sensitive detectors to heavy ions

    Science.gov (United States)

    Read, P. M.; Rotberg, V. H.; Tolfree, D. W. L.; Groves, J.

    1983-01-01

    The pulse height response characteristics of surface barrier and ion implanted position sensitive detectors have been measured. Surface barrier detectors with junctions formed using oxidation by potassium dichromate exhibit small heavy ion pulse height defects indicating thin entrance windows. Ion implanted detectors give considerably larger defects because of penetrating tails in the distribution of implanted ions and electrically active defects.

  11. Electron cloud studies for heavy-ion and proton machines

    CERN Document Server

    Petrov, F; Weiland, Th

    2013-01-01

    Electron cloud effects are a known problem in various accelerator facilities around the world. Electron clouds cause instabilities and emittance growth in positron and proton beams as well as in heavy ion beams. Most of the hadron machines experience the build-up of EC due to the multipacting. In LHC and in positron machines production of electrons due to the synchrotron radiation becomes as important as the build-up due to the secondary emission. The main source of seed electrons in heavy ion machines is the residual gas ionization. FAIR facility in Darmstadt will operate with heavy-ion and proton beams. However, the beam parameters are such that the multipacting will start to play a role only for the unconditioned wall with the secondary emission yieldmore than 1.8. In this paperwe study the electron cloud build-up and its effect on the beam stability for FAIR heavy-ion coasting beams. These beams will be used during slow extraction. Electron scattering on the beam ions and its effect on the final neutraliz...

  12. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... ... is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook.

  13. From Heavy-Ion Collisions to Quark Matter course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Overview of the experimental activity going on at CERN (SPS and LHC) and at RHIC in view of the understanding of the properties of QCD matter (quark gluon plasma) at high temperatures and densities, through the study of heavy-ion collisions at very high energies.

  14. HARD PHOTON INTENSITY INTERFEROMETRY IN HEAVY-ION REACTIONS

    NARCIS (Netherlands)

    OSTENDORF, R; SCHUTZ, Y; MERROUCH, R; LEFEVRE, F; DELAGRANGE, H; MITTIG, W; BERG, FD; KUHN, W; METAG, [No Value; NOVOTNY, R; PFEIFFER, M; BOONSTRA, AL; LOHNER, H; VENEMA, LB; WILSCHUT, HW; HENNING, W; HOLZMANN, R; MAYER, RS; SIMON, R; ARDOUIN, D; DABROWSKI, H; ERAZMUS, B; LEBRUN, C; SEZAC, L; LAUTRIDOU, P; QUEBERT, J; BALLESTER, F; CASAL, E; DIAZ, J; FERRERO, JL; MARQUES, M; MARTINEZ, G; NIFENECKER, H; FORNAL, B; FREINDL, L; SUJKOWSKI, Z; MATULEWICZ, T

    1992-01-01

    The present experimental knowledge on hard photon production in heavy ion collisions is summarized. An attempt to measure for the first time the intensity interference using photons in the MEV range is described. The effect is interpreted in terms of spatial and temporal extent of the photon's

  15. Heavy ion collisions at collider energies – Insights from PHENIX

    Indian Academy of Sciences (India)

    ken 305-0801, Japan. 15Korea University, Seoul ... early stages of high energy heavy-ion collisions where quark matter is expected to form. .... PHENIX has published spectra of charged pions, kaons, protons and their anti-particles over a broad ...

  16. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Vol. 57, No. 1. — journal of. July 2001 physics pp. 161–164. Gamma-ray spectroscopy with relativistic exotic heavy-ions. SAMIT MANDAL, J GERL, H GEISSEL, K HAUSCHILD. ¿. , M HELLSTR ¨OM, ... large [2,3] to perform a meaningful high spin decay spectroscopy of exotic nuclei. At the same time relativistic Coulomb ...

  17. Calculating Fragmentation Functions in Heavy Ion Physics Simulations

    Science.gov (United States)

    Hughes, Charles; Aukerman, Alex; Krobatsch, Thomas; Matyja, Adam; Nattrass, Christine; Neuhaus, James; Sorensen, Soren; Witt, William

    2017-09-01

    A hot dense liquid of quarks and gluons called a Quark Gluon Plasma (QGP) is formed in high energy nuclear collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. The high energy partons which scatter during these collisions can serve as probes for measuring QGP bulk properties. The details of how partons lose energy to the QGP medium as they traverse it can be used to constrain models of their energy loss. Specifically, measurements of fragmentation functions in the QGP medium can provide experimental constraints on theoretical parton energy loss mechanisms. However, the high background in heavy ion collisions limits the precision of these measurements. We investigate methods for measuring fragmentation functions in a simple model in order to assess their feasibility. We generate a data-driven heavy ion background based on measurements of charged hadron transverse momentum spectra, charged hadron azimuthal flow, and charged hadron rapidity spectra. We then calculate fragmentation functions in this heavy ion background and compare to calculations in proton-proton simulations. We present the current status of these studies.

  18. Physics Opportunities in Ultraperipheral Heavy Ion Collisions at LHC

    OpenAIRE

    Baur, G.

    2001-01-01

    Due to coherence, there are strong electromagnetic fields of short duration in very peripheral heavy ion collisions. They give rise to photon-photon and photon-nucleus collisions with high flux. Photon-photon and photon-hadron physics at various invariant mass scales are discussed.

  19. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    2012-10-02

    Oct 2, 2012 ... accelerator, designed to address some of the most fundamental questions of recent times such as, whether Higgs ... Knowledge of the space-time evolution of the system produced in high-energy heavy-ion collisions .... The information about the freeze-out volume and lifetime of the created system in p–p.

  20. Subthreshold photons in heavy-ion reactions at intermediate energies

    NARCIS (Netherlands)

    Martinez, G

    1998-01-01

    In the present talk, I discuss about the properties of the energetic photons produced in heavy-ion reactions. I show that they are sensitive to the maximum density reached in the first stage of the nuclear reaction. Then, the existence of a thermal contribution to the photon differential

  1. Recent relativistic heavy ion collider results on photon, dilepton and ...

    Indian Academy of Sciences (India)

    large baryon density, the so-called quark gluon plasma. We focus on a specific category of observables: the electromagnetic probes which cover a large spectrum of experimental studies. Keywords. Quark gluon plasma; relativistic heavy ion collider; photon; vector meson; thermal dilepton; heavy quarks. PACS No. 25.75.Cj.

  2. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    Science.gov (United States)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  3. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)

    This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion ...

  4. Heavy-ion tumor therapy: Physical and radiobiological benefits

    Science.gov (United States)

    Schardt, Dieter; Elsässer, Thilo; Schulz-Ertner, Daniela

    2010-01-01

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  5. Irradiation of Polystyrene and Polypropylene to study NIH 3T3 fibroblasts adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, C.R. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.a [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Ibanez, I. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Gerencia de Aplicaciones Tecnologicas de la Energia Nuclear, Dpto. de Radiobiologia, TANDAR-CNEA (Argentina); Garcia Bermudez, G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Escuela de Ciencia y Tecnologia, UNSAM (Argentina); Duran, H. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Gerencia de Aplicaciones Tecnologicas de la Energia Nuclear, Dpto. de Radiobiologia, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnologia, UNSAM (Argentina); Chappa, V.C. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Mazzei, R. [U.A. Tecnologicas y Agropecuarias, CNEA, Dpto. Ing. Quimica, UTN FRBA, Bs. As. (Argentina); Behar, M. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2010-10-01

    When polymers are irradiated with heavy ions new chemical groups are created in a few microns of the material. The irradiation changed the polarity and wettability on the surface so that could enhance the biocompatibility of the modified polymer. The study of chemistry and nanoscale topography of the biomaterial is important in determining its potential applications in medicine and biotechnology, because their strong influence on cell function, adhesion and proliferation. In this study, thin films of Polystyrene and Polypropylene samples were modified by irradiation with low energy ion beams (30-150 keV) and swift heavy ions both with various fluences and energies. The changes were evaluated with different methods. Adhesion of NIH 3T3 fibroblasts onto unirradiated and irradiated surfaces has been studied by in vitro techniques. The correlations between physicochemical properties as a function of different irradiations parameters were compared with cell adhesion on the modified polymer surface.

  6. Effects of heavy-ion radiosurgery on the hemopoietic function of the silkworm Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhen-Li; Kobayashi, Yasuhiko; Watanabe, Hiroshi; Yamamoto, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kiguchi, Kenji [SHINSHU Univ., Ueda, Nagano (Japan). Faculty of Textile Science and Technology

    2002-09-01

    To study the effects of heavy-ion radiosurgery on the hemopoietic function of a silkworm, hemopoietic organs of larvae were locally irradiated with carbon-ion beams, and the changes in the hemocyte density and in the hemocyte function were investigated. When the larvae were irradiated by 50 Gy to 300 Gy carbon ions on the 3rd day of the 4th instar, the hemocyte densities did not change for a while, though they gradually increased at a later stage, but were finally still significantly lower than those of unirradiated controls. The hemocyte densities of the larvae irradiated at different developmental stages showed suppressed increments, and carbon-ion irradiation given to larvae at early stages compared to the later stages had a significant suppressive effect on the hemocyte densities. On unilateral irradiated larvae a hemocyte intermediate increment between those of bilateral irradiated larvae and unirradiated controls was observed. The percentage of dead hemocytes was obviously higher for irradiated larvae than unirradiated controls during the later 5th instar. Thus, it is evident that carbon-ion radiosurgery on hemopoietic organs of silkworm induced not only a quantitative change, but also a qualitative change in the hemocytes. (author)

  7. Status report on the Lawrence Berkeley Laboratory heavy ion fusion program

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, D.; Faltens, A.; Hoyer, E.

    1978-11-01

    This status report is presented in three sections: (1) a design and cost procedure for heavy-ion induction LINACS, (2) theoretical activities, and (3) the experimental program on heavy ion fusion at LBL. (MOW)

  8. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    Science.gov (United States)

    Durante, Marco

    2008-07-01

    Interest in energetic heavy ions is rapidly increasing in the field of biomedicine. Heavy ions are normally excluded from radiation protection, because they are not normally experienced by humans on Earth. However, knowledge of heavy ion biophysics is necessary in two fields: charged particle cancer therapy (hadrontherapy), and radiation protection in space missions. The possibility to cure tumours using accelerated heavy charged particles was first tested in Berkeley in the sixties, but results were not satisfactory. However, about 15 years ago therapy with carbon ions was resumed first in Japan and then in Europe. Heavy ions are preferable to photons for both physical and biological characteristics: the Bragg peak and limited lateral diffusion ensure a conformal dose distribution, while the high relative biological effectiveness and low oxygen enhancement ration in the Bragg peak region make the beam very effective in treating radioresistant and hypoxic tumours. Recent results coming from the National Institute of Radiological Sciences in Chiba (see the paper by Dr Tsujii and co-workers in this issue) and GSI (Germany) provide strong clinical evidence that heavy ions are indeed an extremely effective weapon in the fight against cancer. However, more research is needed in the field, especially on optimization of the treatment planning and risk of late effects in normal tissue, including secondary cancers. On the other hand, high-energy heavy ions are present in galactic cosmic radiation and, although they are rare as compared to protons, they give a major contribution in terms of equivalent dose to the crews of manned space exploratory-class missions. Exploration of the Solar System is now the main goal of the space program, and the risk caused by exposure to galactic cosmic radiation is considered a serious hindrance toward this goal, because of the high uncertainty on late effects of energetic heavy nuclei, and the lack of effective countermeasures. Risks

  9. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    Science.gov (United States)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  10. Swift heavy ion induced surface and microstructural evolution in metallic glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Hysen, E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Thomas, Senoy [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, Raju V. [School of Materials Engineering, Nanyang Technological University, Nanyang Avenue 639 798 (Singapore); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Al- Omari, I.A.; Al-Harthi, Salim [Department of Physics, Sultan Qaboos University, Al Khoud, Muscat (Oman); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2012-09-15

    Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe-Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au{sup 9+} beam with fluences ranging from 3 Multiplication-Sign 10{sup 11} to 3 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe-Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion.

  11. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  12. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shusu Shi

    2016-01-01

    Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.

  13. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    Science.gov (United States)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  14. An apparatus for in situ spectroscopy of radiation damage of polymers by bombardment with high-energy heavy ions

    OpenAIRE

    BAAKE, Olaf; SEIDL, Tim; HOSSAIN, Umme Habiba; DELGADO, A. O.; BENDER, Markus; SEVERIN, Daniel; ENSINGER, Wolfgang

    2011-01-01

    A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing...

  15. Charge-state related effects in sputtering of LiF by swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Ludwig-Maximilians-Universität München, 85748 Garching (Germany); Ban-d' Etat, B. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Bender, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Grande, P.L. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Lebius, H.; Lelièvre, D. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Marmitt, G.G. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Rothard, H. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Seidl, T.; Severin, D.; Voss, K.-O. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Toulemonde, M., E-mail: toulemonde@ganil.fr [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Trautmann, C. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2017-02-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. The angular distribution of particles sputtered from the surface of LiF single crystals is composed of a jet-like peak superimposed on a broad isotropic distribution. By using incident ions of fixed energy but different charges states, the influence of the electronic energy loss on both components is probed. We find indications that isotropic sputtering originates from near-surface layers, whereas the jet component may be affected by contributions from depth up to about 150 nm.

  16. Heavy Ions at LHC: A Quest for Quark-Gluon Plasma

    CERN Document Server

    Bhalerao, R. S.

    2009-01-01

    Quantum Chromo Dynamics (QCD), the theory of strong interactions, predicts a transition of the usual matter to a new phase of matter, called Quark-Gluon Plasma (QGP), at sufficiently high temperatures. The non-perturbative technique of defining a theory on a space-time lattice has been used to obtain this and other predictions about the nature of QGP. Heavy ion collisions at the Large Hadron Collider in CERN can potentially test these predictions and thereby test our theoretical understanding of confinement. This brief review aims at providing a glimpse of both these aspects of QGP.

  17. Experimental approach to measure thick target neutron yields induced by heavy ions for shielding

    Directory of Open Access Journals (Sweden)

    Trinh N.D.

    2017-01-01

    Full Text Available Double differential (angular and energy neutron distributions were measured using an activation foil technique. Reactions were induced by impinging two low-energy heavy-ion beams accelerated with the GANIL CSS1 cyclotron: (36S (12 MeV/u and 208Pb (6.25 MeV/u onto thick natCu targets. Results have been compared to Monte-Carlo calculations from two codes (PHITS and FLUKA for the purpose of benchmarking radiation protection and shielding requirements. This comparison suggests a disagreement between calculations and experiment, particularly for high-energy neutrons.

  18. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics]|[INFN, Naples (Italy); Cella, L.; Greco, O. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics; Furusawa, Y. [NIRS, Chiba (Japan); George, K.; Yang, T.C. [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  19. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  20. Particle Correlations with Heavy Ions at LHC Energies

    CERN Document Server

    Erazmus, B; Roy, C; Werner, K; Lednicky, R; Lyuboshitz, V L; Mikhailov, K; Stavinsky, A V; Pluta, J; Sinyukov, Yu M

    1998-01-01

    The ALICE detector will offer very good conditions to study the space-time characteristics of particle production in heavy-ion collisions at LHC from measurements of the correlation function of identical and non-identical particles at small relative velocities. The correlations - induced by Coulomb and nuclear final-state interactions - of non-identical particles appear to be directly sensitive to the space-time asymmetries of particle production allowing, in particular, a measurement of the mean relative delays in particle emission at time scales as small as few fm/c. The problem of Coulomb interaction of the correlated particles is particularly important in the case of the large effective volumes formed in ultra-relativistic heavy-ion reactions.

  1. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  2. What have we learned from jets in heavy ion collisions

    Science.gov (United States)

    Nattrass, Christine

    2017-09-01

    The Quark-Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The properties of this medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.

  3. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    Science.gov (United States)

    Mäntysaari, Heikki; Schenke, Björn

    2017-09-01

    We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J / Ψ production data significantly affects the incoherent diffractive J / Ψ production cross section in ultraperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J / Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J / Ψ production in ultraperipheral heavy ion collisions at √{sNN} = 5.02 TeV at the LHC and 200 GeV at RHIC.

  4. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Heikki Mäntysaari

    2017-09-01

    Full Text Available We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J/Ψ production data significantly affects the incoherent diffractive J/Ψ production cross section in ultraperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J/Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J/Ψ production in ultraperipheral heavy ion collisions at sNN=5.02 TeV at the LHC and 200 GeV at RHIC.

  5. Probing transverse momentum broadening in heavy ion collisions

    Directory of Open Access Journals (Sweden)

    A.H. Mueller

    2016-12-01

    Full Text Available We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark–gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  6. Heavy ion physics : Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    High-energy Heavy Ion Physics studies strongly interacting matter at extreme energy densities.QCD predicts that at such densities hadronic matter turns into a plasma of deconfined quarks and gluons,the Quark Gluon Plasma (QGP).Matter in the Universe must have existed in this state up to about 10 ms after the Big Bang.Today QGP might exist in the c re of neutron stars.The study of the phase diagram of matter is a new approach to investigate QCD at its natural scale,L QCD ,and to address the fundamental questions of confinement and chiral-symmetry breaking.The combined results obtained by the SPS heavy ion experiments,in particular those obtained with the Pb beam,pr vide compelling evidence for the existence of a new state of matter featuring many of the characteristics predicted for the QGP.The ALICE experiment will carry this research into the LHC era.

  7. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  8. The threshold anomaly for heavy-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Satchler, G.R.

    1987-01-01

    The real parts of optical potentials deduced from heavy-ion scattering measurements become rapidly more attractive as the bombarding energy is reduced close to the top of the Coulomb barrier. This behavior is explained as a coupled-channels effect, and is related to the corresponding reduction in the absorptive potential through a dispersion relation which expresses the consequences of causality. Another manifestation of this ''anomaly'' is the striking enhancement observed for the near- and sub-barrier fusion of two heavy ions. The barrier penetration model of fusion is examined critically in this context. It is also stressed that similar anomalies could appear in the energy dependence of nonelastic scattering. 21 refs., 4 figs.

  9. <span class="hlt">Heavy-Ion</span> Imaging Applied To Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I.; Tobias, C. A.; Capp, M. P.; Benton, E. V.; Holley, W. R.; Gray, Joel E.; Hendee, William R.; Haus, Andrew G.; Properzio, William S.

    1980-08-18

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  10. Multiple beam induction accelerators for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: paseidl@lbl.gov [Lawrence Berkeley National Laboratory, US (United States); Barnard, John J. [Lawrence Livermore National Laboratory, US (United States); Faltens, Andris [Lawrence Berkeley National Laboratory, US (United States); Friedman, Alex [Lawrence Livermore National Laboratory, US (United States); Waldron, William L. [Lawrence Berkeley National Laboratory, US (United States)

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  11. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  12. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  13. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  14. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  15. Thermodynamic interpretation of multiparticle emission in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, A.M.; Raha, S.

    1980-02-01

    The scattering of the heavy ion Ne from NaF is analyzed at relativistic energy. The spectra of the emission fragments are studied for evidence of a thermodynamic-hydrodynamic collective motion. The spectra of pion, deuteron, and proton emission are fitted for fixed beam and target. The fit is consistent with an interpretation of an expanding hot fluid of interacting nucleons. 2 figures.

  16. New operational beam for the CERN heavy ion program

    CERN Document Server

    Chamings, J A; Hill, C E; Küchler, D; Lombardi, A M; O'Neill, M; Scrivens, R

    2004-01-01

    The use of indium beams in place of lead beams for the CERN heavy ion program was studied. It was found that the Indium beam emittance was measured downstream of the spectrometer by a quadrupole sean. The frequency of source adjustments to keep the beam current at a certain level was also studied. Results shows that the oven-resistance fluctuations were partially solved by using the oven power controller. (Edited abstract) 4 Refs.

  17. Six tesla analyzing magnet for heavy-ion beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.P.; Bollinger, L.; Erskine, J.; Genens, L.; Hoffman, J.

    1980-01-01

    A superconducting analyzer magnet for particle beam deflection has been designed and is being fabricated for use at the Argonne Tandem-Linac Accelerator System (ATLAS). This six tesla magnet will provide 45/sup 0/ of deflection for the heavy-ion beams from the ATLAS tandem electrostatic accelerator and together with its twin will replace the existing conventional 90/sup 0/ analyzer magnet which will become inadequate when ATLAS is completed.

  18. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  19. Performance of the CERN Heavy Ion production complex

    CERN Document Server

    Manglunki, D; Bartosik, H; Bellodi, G; Blas, A; Bohl, T; Carli, C; Carlier, E; Cettour Cave, S; Cornelis, K; Damerau, H; Efthymiopoulos, I; Findlay, A; Gilardoni, S; Hancock, S; Jowett, JM; Kuchler, D; Maury, S; O'Neil, M; Papaphilippou, Y; Pasinelli, S; Scrivens, R; Tranquille, G; Vandorpe, B; Wehrle, U; Wenninger, J

    2012-01-01

    The second LHC ion run took place at 1.38 A TeV/c per beam in autumn 2011; more than 100 inverse microbarns were accumulated by each of the experiments. In addition, the LHC injector chain delivered primary Pb and secondary Be ion beams to fixed target experiments in the SPS North Area. This paper presents the current performance of the heavy ion production complex, and prospects to further improve it in the near future.

  20. Heavy ion linear accelerator for radiation damage studies of materials

    Science.gov (United States)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  1. Heavy-ion Results of the CMS Experiment

    CERN Document Server

    Boimska, B

    2016-01-01

    An overview of selected heavy-ion results of the CMS experiment is presented. Jet quenching, quarkonia suppression and two-particle angular correlation results are discussed. The measurements have been performed for lead–lead, proton–lead and proton–proton data samples recorded for Run 1 of the LHC accelerator. In the correlation analysis, low pile-up proton–proton collisions at an energy of 13 TeV (from Run 2) have been used as well

  2. Thermalization in the initial stage of heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Zhu Yan

    2017-01-01

    Full Text Available The high density non-abelian matter produced in heavy ion collisions is extremely anisotropic. Prethermal dynamics for the anisotropic and weakly coupled matter is discussed. Thermalization is realized with the effective kinetic theory in the leading order accuracy of the weakly coupled expansion. With the initial condition from color glass condensate, hydrodynamization time for the LHC energies is realized to be about 1 fm/c, while the thermalization happens much later than the hydrodynamization.

  3. Heavy ion storage ring without linear dispersion

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2004-12-01

    Full Text Available A possible method to realize a dispersion-free storage ring is described. The simultaneous use of a magnetic field B and an electric field E in bending regions, where the two fields are set perpendicular to each other, enables us to control the effect of momentum dispersion. When the relation (1+1/γ_{0}^{2}E(ρ=-v_{0}×B is satisfied for a beam with the velocity v_{0}, the linear dispersion can be completely eliminated all around the ring. It is shown that the acceleration and deceleration induced by the electrostatic deflector counteracts the heating mechanism due to the shearing force from dipole magnets. The dispersion-free system is thus beneficial to producing ultracold beams. It looks probable that the technique will allow one to achieve three-dimensional crystalline beams. At ICR Kyoto University, an ion cooler storage ring S-LSR oriented for various beam physics purposes is now under construction. The application of the present idea to S-LSR is discussed and the actual design of the dispersionless bend is given.

  4. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  5. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Science.gov (United States)

    Henestroza, Enrique; Eylon, Shmuel; Roy, Prabir K.; Yu, Simon S.; Anders, André; Bieniosek, Frank M.; Greenway, Wayne G.; Logan, B. Grant; MacGill, Robert A.; Shuman, Derek B.; Vanecek, David L.; Waldron, William L.; Sharp, William M.; Houck, Timothy L.; Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik P.; Sefkow, Adam B.; Welch, Dale R.; Rose, David V.; Olson, Craig L.

    2004-08-01

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  6. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  7. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  8. Results from the first heavy ion run at the LHC

    CERN Document Server

    Schukraft, J

    2012-01-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like v...

  9. Results from the first heavy ion run at the LHC

    Science.gov (United States)

    Schukraft, J.

    2012-09-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like viscosity and opacity.

  10. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  11. Preliminary results from the heavy ions in space experiment

    Science.gov (United States)

    Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.

    1992-01-01

    The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.

  12. Total skin electron irradiation techniques: a review.

    Science.gov (United States)

    Piotrowski, Tomasz; Milecki, Piotr; Skórska, Małgorzata; Fundowicz, Dorota

    2013-02-01

    Total skin electron irradiation (TSEI) has been employed as one of the methods of mycosis fungoides treatment since the mid-twentieth century. In order to improve the effects and limit the complications following radiotherapy, a number of varieties of the TSEI method, frequently differing in the implementation mode have been developed. The paper provides a systematic review of the different varieties of TSEI. The discussed differences concerned especially: (i) technological requirements and geometric conditions, (ii) the alignment of the patient, (iii) the number of treatment fields, and (iv) dose fractionation scheme.

  13. Measurements of ϕ φ meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC)

    NARCIS (Netherlands)

    Abelev, B.I.; Bai, Y.; Botje, M.A.J.; Braidot, E; Snellings, R.J.M.; Mischke, A.; van Leeuwen, M.; Russcher, M.J.; Peitzmann, T.; Benedosso, F.

    2009-01-01

    We present results for the measurement of ϕ meson production via its charged kaon decay channel ϕ→K+K- in Au+Au collisions at √sNN=62.4,130, and 200 GeV, and in p+p and d+Au collisions at √sNN=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y|

  14. Identifying irradiated flours by photo-stimulated luminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  15. Beam tests of full-size prototypes of silicon detectors for TOF heavy-ions diagnostics in Super-FRS

    Science.gov (United States)

    Eremin, V.; Bezbakh, A.; Eremin, I.; Egorov, N.; Fomichev, A.; Golovkov, M.; Gorshkov, A.; Galkin, A.; Kiselev, O.; Knyazev, A.; Kostyleva, D.; Krupko, S.; Mitina, D.; Slepnev, R.; Sharov, P.; Verbitskaya, E.

    2017-03-01

    The full-size prototypes of large-area silicon detectors for the Time-Of-Flight (TOF) diagnostics of heavy ions were tested with 132Xe (600 MeV/u) beam. The obtained time resolution of the prototypes was about 13 ps, which satisfied the requirements of diagnostics for the Super Fragment Separator (Super-FRS) that is under development at GSI, Darmstadt, Germany. The irradiation effect on the timing properties of silicon detectors was studied with super-fast silicon pad detectors with a rise time of 190 ps. It was shown that the changes in the rise time of the leading edge of the detector current response to 40Ar ions (40.5 MeV/u) were negligible up to the fluence of 2 × 1011 ion/cm2 expected after one year of Super-FRS operation. This result confirms the model of the leading edge current pulse formation via a flow of the polarization current in dense tracks of heavy ions and shows the perspectives for application of silicon detectors for the TOF diagnostics of intensive heavy-ion beams.

  16. Effects of heavy ion to the primary culture of mouse brain cells

    Science.gov (United States)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (brain local irradiation at carbon ion and iron ion.

  17. Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B., E-mail: b.merk@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, Hochschulstraße 6-8, D-64291 Darmstadt (Germany); Voss, K.-O.; Müller, I.; Fischer, B.E.; Jakob, B.; Taucher-Scholz, G. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Trautmann, C.; Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, Hochschulstraße 6-8, D-64291 Darmstadt (Germany)

    2013-07-01

    We report the upgrade of the epifluorescence microscope of the GSI heavy-ion microprobe with a galvo-scanned, 488 nm laser diode. The laser is focussed into the object plane by the water-immersion objective resulting in a focal spot size of about 1 μm. To increase temporal and spatial resolution a water-immersion objective with a high numerical aperture is integrated into the custom-build microscope. The upgraded system can now be used to bleach GFP-tagged proteins recruited to DNA damage induced by targeted single-ion irradiation. The system is demonstrated on NIH 3T3 cells with Ku80-GFP ion-targeted in heterochromatic and euchromatic DNA. Fluorescence recovery after photobleaching (FRAP) is shown to be significantly slower in heterochromatin.

  18. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    Science.gov (United States)

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  19. Fast heavy-ion radiation damage of glycine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shinji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Tsuchida, Hidetsugu, E-mail: tsuchida@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan); Furuya, Ryosuke [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Majima, Takuya; Itoh, Akio [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8530 (Japan); Quantum Science and Engineering Center, Kyoto University, Uji 611-0011 (Japan)

    2016-12-15

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  20. Heavy ion track-structure calculations for radial dose in arbitrary materials

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  1. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pradiation mainly occurred at three-leaf stage along with the increasing activity of antioxidase system and damages of lipid peroxidation. We also found that the relative expression of genes sdhb and aox1a which encode the key proteins in mitochondria changed differently after exposed to different doses of radiation, and the lower dose of the radiation could cause longer effect. The chlorophyll was an important organ of photosynthesis

  2. Fabrication of nano porous with heavy ions in plastics for the oil industry; Fabricacion de nano poros con iones pesados en plasticos para la industria petrolera

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Tavera, L.; Mendoza, D.; Mut, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mbg@nuclear.inin.mx

    2003-07-01

    The natural gas has undesirable concentrations of other gases like the nitrogen that reduces the heat capacity of the gas. It is required to develop separation technology to increase the caloric value of the gas. Among the technology in development for the separation of these gases there are the nano membranes; these are polymeric material that when synthesizing them form nano pores that allow the selective separation of the gas. Another form of creating these nano pores with uniform and controlled pore size, is irradiating a polymeric material with heavy ions. The energy loss of the heavy ion produces cylindrical damages around its trajectory in a diameter among 30 x 10{sup -10} m and 100 x 10{sup -10} m. This damage breaks the chains of the polymer making it susceptible to the corrosion of appropriate chemical agents that allow to create a pore of the size of some nanometers in the polymer. The basic mechanisms of the interaction of the ions with the polymer are important for the controlled creation, the observation and analysis of these nano pores. One of the more appropriate techniques for the visualization and analysis of the geometry of the produced damages, it is the scanning electron and of the atomic force microscopies. The present work has as objective to define the basic parameters of the interaction of the ion with the polymer that intervene in the fabrication of this nano pores. The conditions of the chemical corrosion process are presented for the creation of micro pores in two polymers CR39 and Makrofol produced by fission fragments and alpha particles. A characterization of the diameters and of the damages profile is make. The obtained results are related with the mechanisms of loss of energy of the ions in the matter and the particles identification in function of the damage geometry. (Author)

  3. Stopping power of heavy ions (22<= Z{sub 1} <= 28) in Au and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Linares, R.; Medina, N.H.; Oliveira, J.R.B.; Cybulska, E.W.; Seale, W.A.; Wiedemann, K.T.; Toufen, D.L.; Allegro, P.R.P.; Ribas, R.V. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica

    2009-07-01

    Full text: Accurate prediction of heavy ion stopping at low energies is necessary in nuclear structure physics, with the Doppler Shift Attenuation Method (DSAM). In this technique, knowledge of stopping power is used to determine a timescale for the decaying nuclei while slowing down in a heavy substrate, usually Au. Since ab initio calculations are unable to produce reliable estimates, most models currently in use are of semiempirical nature. Regarding to low energies this is especially true due to additional difficulties arising from a complicated dependence on atomic numbers of stopper medium and projectile ion. The main aim of this contribution is to present new experimental data for Ti, V, Cr, Co and Ni ions slowing down in Ge and Au in the energy range from 5 to 20 MeV. Experimental data for Ti, V, Cr ions were obtained using the elastic scattering technique, where a primary beam is used to scatter heavy ions from a thin target ({approx} 100 {mu}g/cm{sup 2}). The scattered primary beam produces recoiling atoms of the target at low energies at a given direction. Experimental data for Co and Ni ions were measured using a ToF-E apparatus (Time of Flight - Energy detection system) which allows measuring stopping over a continuous energy range. Our experimental data were compared to current models addressed to low energies. (author)

  4. Actinide Production in the Reaction of Heavy Ions withCurium-248

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Kenton James [Univ. of California, Berkeley, CA (United States)

    1983-07-01

    Chemical experiments were performed to examine the usefulness of heavy ion transfer reactions in producing new, neutron-rich actinide nuclides. A general quasi-elastic to deep-inelastic mechanism is proposed, and the utility of this method as opposed to other methods (e.g. complete fusion) is discussed. The relative merits of various techniques of actinide target synthesis are discussed. A description is given of a target system designed to remove the large amounts of heat generated by the passage of a heavy ion beam through matter, thereby maximizing the beam intensity which can be safely used in an experiment. Also described is a general separation scheme for the actinide elements from protactinium (Z = 91) to mendelevium (Z = 101), and fast specific procedures for plutonium, americium and berkelium. The cross sections for the production of several nuclides from the bombardment of 248Cm with 18O, 86Kr and 136Xe projectiles at several energies near and below the Coulomb barrier were determined. The results are compared with yields from 48Ca and 238U bombardments of 248Cm. Simple extrapolation of the product yields into unknown regions of charge and mass indicates that the use of heavy ion transfer reactions to produce new, neutron-rich above-target species is limited. The substantial production of neutron-rich below-target species, however, indicates that with very heavy ions like 136Xe and 238U the new species 248Am, 249Am and 247Pu should be produced with large cross sections from a 248Cm target. A preliminary, unsuccessful attempt to isolate 247Pu is outlined. The failure is probably due to the half life of the decay, which is calculated to be less than 3 minutes. The absolute gamma ray intensities from 251Bk decay, necessary for calculating the 251Bk cross section, are also determined.

  5. Radiosurgery using heavy ion microbeams for biological study: Fate mapping of the cellular blastoderm-stage egg of the silkworm, Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, Kenji E-mail: kkiguch@giptc.shinshu-u.ac.jp; Shirai, Koji; Kanekatsu, Rensuke; Kobayashi, Yasuhiko; Tu, Z.-L.; Funayama, Tomoo; Watanabe, Hiroshi

    2003-09-01

    We investigated the effects of heavy ions on embryogenesis of the silkworm, Bombyx mori using a collimated heavy ion microbeam from the vertical beam line of an AVF-cyclotron. Eggs were exposed to carbon ions at the cellular blastoderm stage. Microbeams were found to be extremely useful for radio-microsurgical inactivation of nuclei or cells in the target site. Spot irradiation caused abnormal embryos, which showed localized defects such as deletion, duplication and fusion, depending on dose, beam size and site of irradiation. The location and frequency of defects on the resultant embryos were closely correlated to the irradiation site. Based on this correlation, a fate map was established for the Bombyx egg at the cellular blastoderm stage.

  6. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    OpenAIRE

    Ni, P.A.

    2008-01-01

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on inte...

  7. The Mesozoic Era of relativistic heavy ion physics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  8. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  9. Status report on the Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Benjamin, J.A.; Biggerstaff, J.A.; Erb, K.A.; Hudson, E.D.; Juras, R.C.; Kloeppel, P.K.; Lord, R.S. (Oak Ridge National Lab., TN (USA))

    1984-02-15

    The Holifield Heavy Ion Research Facility has been in routine operation since July, 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we will discuss the status of the tandem accelerator and some aspects of our experience with coupled operation.

  10. Status report on the holifield heavy ion research facility

    Science.gov (United States)

    Jones, C. M.; Alton, G. D.; Ball, J. B.; Benjamin, J. A.; Biggerstaff, J. A.; Erb, K. A.; Hudson, E. D.; Juras, R. C.; Kloeppel, P. K.; Lord, R. S.; Ludemann, C. A.; Mann, J. E.; Martin, J. A.; Mosko, S. W.; Richardson, E. G.; Sayer, R. O.; Ziegler, N. F.

    1984-02-01

    The Holifield Heavy Ion Research Facility has been in routine operation since July, 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we will discuss the status of the tandem accelerator and some aspects of our experience with coupled operation.

  11. New beam for the CERN fixed target heavy ion programme

    CERN Document Server

    Hill, C E; O'Neill, M

    2002-01-01

    The physicists of the CERN heavy ion community (SPS fixed target physics) have requested lighter ions than the traditional lead ions, to scale their results and to check their theories. Studies have been carried out to investigate the behaviour of the ECR4 for the production of an indium beam. Stability problems and the low melting point of indium required some modifications to the oven power control system which will also benefit normal lead ion production. Present results of the source behaviour and the ion beam characteristics will be presented.

  12. Studies on stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Salvant, B; Wendt, M; Blaskiewicz, M; Verdú-Andrés, S

    2014-01-01

    Future high luminosity heavy-ion operation of the LHC will be dominated by very rapid luminosity decay due to the large collision cross-section and, to a lesser extent, emittance growth from intra-beam scattering (IBS) due to the high bunch intensities. A stochastic cooling system could reduce the emittance far below its initial value and reduce the losses from debunching during collisions, allowing more of the initial beam intensity to be converted into integrated luminosity before the beams are dumped. We review the status of this proposal, system and hardware properties and potential locations for the equipment in the tunnel.

  13. Microchannel plate based detector for a heavy ion beam spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.I.

    1979-10-01

    The design parameters and operating characteristics of the detector used in the Brutus and Fannie heavy ion beam spectrometers at the SuperHILAC facility are described. The detector utilizes a 25 mm diameter microchannel plate array to obtain gains of 10/sup 2/ to 10/sup 8/ with a linear dynamic range of 10/sup 3/. It has had over three years of almost maintenance-free service, detecting ion beams from carbon to xenon with energies between 1.2 and 8.5 MeV per nucleon.

  14. Heavy-ion reactions at the GSI Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-12-01

    In nucleus-nucleus collisions at bombarding energies on the order of 1 AGeV nuclear matter can be compressed to similar densities as encountered in stellar processes, i.e. to 2-3 times normal density. Experimental data providing information on the space-time evolution of these collisions are presented: the properties of hadrons in the hot and compressed nuclear medium in the high-density phase, collective flow phenomena during the expansion phase, and the hadrochemical composition of the collision system in the final stage of the reaction at freeze-out are discussed. Future directions in the heavy-ion reaction program are indicated. (orig.)

  15. Dilepton radiation and bulk viscosity in heavy-ion collisions

    Science.gov (United States)

    Vujanovic, Gojko; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles; Heinz, Ulrich

    2017-08-01

    Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on thermal dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though results of the thermal dilepton v2 under the influence of both bulk and shear viscosity is presented for top RHIC energy, more emphasis is put on LHC energy where such a calculation is computed for the first time. The effects of the bulk pressure on thermal dilepton v2 at the LHC are explored through bulk-induced modifications on the dilepton yield.

  16. Dynamical description of heavy-ion collisions at Fermi energies

    Directory of Open Access Journals (Sweden)

    Napolitani P.

    2016-01-01

    Full Text Available Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics and fragment production and the variety of mechanisms (from fusion to neck formation and multifragmentation of the exit channel. Starting from fundamental concepts tested on nuclear matter, we build up a microscopic description which addresses finite systems and applies to experimental observables.

  17. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  18. A search for quarks produced in heavy-ion interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about $10^{5}$. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per $2 \\times 10^{8}$ beam particles.

  19. High Current Ion Sources and Injectors for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  20. A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHCEnergies

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, S.-L.; Horner, M.J.; Awes, T.C.; Cormier, T.; Gray, H.M.; Klay, J.L.; Klein, S.R.; van Leeuwen, M.; Morsch, A.; Odyniec, G.; Pavlinov, A.

    2006-07-27

    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at {radical}s = 5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of {approx} 30%.

  1. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.

  2. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    Science.gov (United States)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  3. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  4. HEDgeHOB High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Wouchuk, G; Deutsch, C; Fortov, V E; Hoffmann, D H H; Schmidt, R

    2007-01-01

    This paper presents an overview of the theoretical work that has been carried out during the past few years to assess the capabilities of intense heavy ion beams to induce states of High-Energy Density (HED) in matter. This work has shown that two different experimental schemes can be used to study HED physics employing intense ion beams. These schemes have been named HIHEX [Heavy Ion Heating and EXpansion] and LAPLAS [LAboratory PLAnetary Sciences], respectively. The first scheme involves isochoric and uniform heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB [High Energy Density Matter Generated by Heavy Ion Beams] collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future accelerator facility, FAIR [Facility for Antipr...

  5. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  6. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  7. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  8. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  9. Modeling chamber transport for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  10. Solar wind heavy ions from energetic coronal events

    Energy Technology Data Exchange (ETDEWEB)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10/sup 6/K while the state of Fe is frozen in at approx. 1.5 x 10/sup 6/K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O/sup 8 +/, is depressed as are the Fe peaks ranging from Fe/sup 12 +/ to Fe/sup 7 +/. A prominent peak in the usual Si/sup 8 +/ position of IS spectra is self-consistently shown to be Fe/sup 16 +/. These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references.

  11. Uniformity of fuel target implosion in Heavy Ion Fusion

    CERN Document Server

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  12. The Heavy-Ion Physics Programme with the ATLAS Detector

    CERN Document Server

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at $\\sqrt{s}=5.5$ TeV per nucleon pair and will provide crucial information about the formation of a quark--gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy--ion physics. The ATLAS detector will perform especially well for high $p_T$ phenomena even in the presence of the high--multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy--ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy--quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters.

  13. The Heavy-Ion Physics Programme with the ATLAS Detector

    CERN Document Server

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at sqrt(s)=5.5 TeV per nucleon pair and will provide crucial information about the formation of a quark gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy-ion physics. The ATLAS detector will perform especially well for high pT phenomena even in the presence of the high-multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy-ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy-quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible to ATLAS. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters.

  14. Heavy ion physics at LHC with CMS detector

    CERN Document Server

    Kvatadze, R A

    1997-01-01

    The CMS ( Compact Muon Solenoid) is a general purpose detector, optimised for p-p collisions at LHC. However, a very good muon system, fine granularity and excellent energy resolution of electromagnetic and hadron calorimeters and high quality central tracker gives the possibility of using the detector for specific heavy ion studies. Various ways of searching for the phase transition from hadronic matter to the plasma of deconfined quarks and gluons ( QGP) in heavy ion collisions with CMS detector have been investigated: Production of ( bb) and ( cc) resonant states through their muon decay channel to study the colour-screening effect. The dimuon mass spectra and rates of heavy quark bound state production for two weeks of running time are presented. Expected statistics will be sufficient to perfom the Upsilon family suppression study. Detection of J/Psi is mostly concentrated in the forwa rd region. Z production and its subsequent mu+mu- decay can be detected with high statistics and very low background ( 4%...

  15. Hydrodynamics and freeze out problems in energetic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yun

    2010-09-15

    The work is describing the development from QGP to the final stage (Freeze out) in energetic heavy ion reactions, which is particularly important because this model, based on matter properties we are interested in, describes the observables and can be compared to the experimental results. My doctoral work is mainly on theoretical models, which generated a full list of experimentally observable particles, and then evaluated the produced set of particles, comparable to those in experiments. Thus we produced the same collective observables that are measured in experiments. I concentrated on calculating the flow variables and presented a solution of the continuity equations, which provided a generalized description on matching heavy ion collision stages in a theoretical and simplified way. We also connected our hydrodynamic model with the PACIAE model, aiming for examining the flow properties. This work included the generation of parton distributions for the PACIAE model. The development of hybrid models is now in rapid progress internationally as these models are the most adequate to describe the experimental data in all details. The simple analytic treatment of the hydro and molecular dynamical stages of the model presents an important advantage and increased accuracy in the model construction. (Author)

  16. Can van Hove singularities be observed in relativistic heavy-ion ...

    Indian Academy of Sciences (India)

    Keywords. Perturbative quantum chromodynamics; hard thermal loop; gluon condensate; quark–gluon plasma; dispersion relation; collective modes; van Hove singularity; relativistic heavy-ion collisions.

  17. The effect of He and swift heavy ions on nanocrystalline zirconium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Vuuren, A., E-mail: arnojvv@gmail.com [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Skuratov, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Uglov, V.V. [Belarusian State University, Minsk (Belarus); Petrovich, S. [VINCA Institute of Nuclear Sciences, Belgrade University, Belgrade (Serbia)

    2014-05-01

    Recent studies have shown that swift heavy ion irradiation may significantly modulate hydrogen and helium behaviour in some materials. This phenomenon is of considerable practical interest for ceramics in general and also for candidate materials for use as inert matrix fuel hosts. These materials will accumulate helium via (n, α) reactions and will also be subjected to irradiation by fission fragments. Cross-sectional transmission electron microscopy and scanning electron microscopy was used to study nanocrystalline ZrN irradiated with 30 keV He to fluences between 10{sup 16} and 5 × 10{sup 16} cm{sup −2}, 167 MeV Xe to fluences between 5 × 10{sup 13} and 10{sup 14} cm{sup −2} and also 695 MeV Bi to a fluence of 1.5 × 10{sup 13} cm{sup −2}. He/Bi and He/Xe irradiated samples were annealed at temperatures between 600 and 1000 °C and were analysed using SEM, XTEM and selected area diffraction. The results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. SEM and XTEM analysis of He/Xe irradiated samples revealed that electronic excitation effects, due to Xe ions, suppress helium blister formation and consequently the exfoliation processes. He/Bi samples however do not show the same effects. This suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. These effects may however be mitigated by electronic excitation effects from certain SHIs.

  18. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry

    Science.gov (United States)

    Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.

    2017-07-01

    Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.

  19. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  20. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977. [Planning for use for radiotherapy and as radiation source for diagnostic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Elam, S. (ed.)

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery.

  1. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  2. Water radiolysis with heavy ions of energies up to 28 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shinichi [Department of Quantum Engineering and Systems Science, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)], E-mail: katsu@n.t.u-tokyo.ac.jp; Lin, Mingzhang [Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Muroya, Yusa [Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Miyazaki, Toyoaki [Department of Quantum Engineering and Systems Science, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Murakami, Takeshi [Research Center of Charged Particle Therapy, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2008-04-15

    Water radiolysis has been investigated with heavy ions having energies up to 28 GeV provided from the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). Beams of {sup 4}He{sup 2+}, {sup 12}C{sup 6+}, {sup 20}Ne{sup 10+}, {sup 28}Si{sup 14+}, {sup 40}Ar{sup 18+} and {sup 56}Fe{sup 26+} with respective energies of 150, 400, 400, 490, 500 and 500 MeV/u corresponding LET values of 2.2, 13, 30, 54, 92 and 183 eV/nm, respectively, were taken for the irradiation. The LET changes in sample solutions can be neglected due to their high energies for the irradiation of 1-cm cells. Primary g values have been determined for three important products, hydrated electron (e{sup -}{sub aq}), hydroxyl radical (.OH), and hydrogen peroxide (H{sub 2}O{sub 2}) as track segment yields (differential yields) under the conditions of neutral pH. With increasing LET, the g values of e{sup -}{sub aq} and {sup .}OH decrease from 2.4 and 2.6 in {sup 4}He{sup 2+} radiolysis to 0.9 and 1.1 (100 eV){sup -1} in {sup 56}Fe{sup 26+} radiolysis, respectively. It was also found that the primary g value of e{sup -}{sub aq} is smaller than that of .OH for any type of ion beam. For the {sup 12}C{sup 6+} beam, other energies such as 290, 220, 135 MeV/u were taken for the irradiation to investigate the effects of type or atomic number of ions on the measured yields. Furthermore, effects of dissolved oxygen on enhancement of H{sub 2}O{sub 2} production have also been investigated with aerated NaNO{sub 3} solutions. The presence of dissolved oxygen caused 15-35% enhancement in H{sub 2}O{sub 2} yields for all beams. In addition, the results of the present work were compared with reported track segment yields.

  3. Optical model calculations of heavy-ion target fragmentation

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.

    1986-01-01

    The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.

  4. Velocity dependence of heavy-ion stopping below the maximum

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, P., E-mail: sigmund@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Schinner, A. [Institut für Experimentalphysik, Johannes Kepler Universität, A-4040 Linz (Austria)

    2015-01-01

    In the slowing-down of heavy ions in materials, the standard description by Lindhard and Scharff assumes the electronic stopping cross section to be proportional to the projectile speed v up to close to a stopping maximum, which is related to the Thomas–Fermi speed v{sub TF}. It is well known that strict proportionality with v is rarely observed, but little is known about the systematics of observed deviations. In this study we try to identify factors that determine positive or negative curvature of stopping cross sections on the basis of experimental data and of binary stopping theory. We estimate the influence of shell structure of the target and of the equilibrium charge of the ion and comment the role of dynamic screening.

  5. The time-of-flight spectrometer for heavy ions PISOLO

    Energy Technology Data Exchange (ETDEWEB)

    Montagnoli, G. E-mail: montagnoli@pd.infn.it; Scarlassara, F.; Beghini, S.; Dal Bello, A.; Segato, G.F.; Stefanini, A.M.; Ackermann, D.; Corradi, L.; He, J.H.; Lin, C.J

    2000-11-11

    A time-of-flight spectrometer with magnetic focusing has been installed at the Laboratori Nazionali di Legnaro. The spectrometer's length is 3.6 m and allows for high-resolution time-of-flight measurements. Magnetic focusing is accomplished by two quadrupole doublets. The spectrometer is connected to a sliding seal scattering chamber rotating over a large angular range. Micro channel-plate detectors for start/stop signals and an ionization chamber for {delta}E-E measurements at the focal plane, are used. The setup provides a maximum effective solid angle {delta}{omega}=2.8 msr, and is dedicated to the study of quasi-elastic reactions between heavy ions; in particular, it has already been used to investigate near-barrier multi-nucleon transfer processes.

  6. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  7. Glenn T. Seaborg and heavy ion nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W. (Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  8. Response of the pixel detector Timepix to heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Koester, Ulli [Institute Laue Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); Platkevic, Michal; Pospisil, Stanislav [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic)

    2011-05-15

    The response of the pixel detector Timepix to ions in the 4-110 MeV kinetic energy range and A=3-136 mass range has been studied at the fission-fragment separator Lohengrin of the Institute Laue Langevin in Grenoble. Timepix detects single ions measuring their position, kinetic energy, and time of arrival. Heavy ions with energy above several tens of 10 MeV produce a distortion of the electronic pixel signal response which arises when the energy collected is, under conventional detector settings, of around {approx}1 MeV per pixel. This effect can be suppressed, and the detector energy range extended, by suitable pixel signal baseline and threshold levels, together with optimally low sensor chip bias voltage. Reasonable results are achieved within the range of ion mass and energy studied extending the linearity level of per pixel measured energy up to {approx}2 MeV.

  9. Volume ignition targets for heavy-ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J.M.; Eliezer, S.; Piera, M. [Madrid Polytcehnical Univ. (Spain). Inst. of Nuclear Fusion

    1994-12-31

    Inertial confinement fusion (ICF) targets can be imploded by heavy-ion beams (HIBs) in order to obtain a highly compressed fuel microsphere. The hydrodynamic efficiency of the compression can be optimized by tuning the ablation process in order to produce the total evaporation of the pusher material by the end of the implosion. Such pusherless compressions produce very highly compressed targets for relatively short confinement times. However, these times are long enough for a fusion burst to take place, and burnup fractions of 30% and higher can be obtained if the volume ignition requirements are met. Numerical simulations demonstrate that targets of 1-mg DT driven by a few MJ can yield energy gains of over 70. Although direct drive is used in these simulations, the main conclusions about volume ignition are also applicable to indirect drive. (author).

  10. Heavy Ion Collisions at the dawn of the LHC era

    CERN Document Server

    Takahashi, J.

    2013-06-27

    This is a proceeding of the CERN Latin American School of High-Energy physics that took place in the beautiful city of Natal, northern Brazil, in March 2011. In this paper I present a review of the main topics associated with the study of Heavy Ion Collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the RHIC accelerator and the beginning of the LHC operations. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text.

  11. A new QMD code for heavy-ion collisions

    Science.gov (United States)

    Kim, Kyungil; Kim, Youngman; Lee, Kang Seog

    2017-11-01

    We develop a new quantum molecular dynamics (QMD) type nuclear transport code to simulate heavy-ion collisions for RAON, a new accelerator complex under construction in Korea. At RAON, the rare isotope beams with energies from a few MeV/n to a few hundreds MeV/n will be utilized. QMD is one of the widely used theoretical methods and is useful for both theoretical and experimental purposes. We describe our QMD model with the numerical realization. The validity of the code is tested by comparing our simulation results with experimental data and also results from other transport codes in 197Au+197Au collisions at Elab = 90 - 120 MeV/n. Finally, we present a brief discussion on applicability and outlook of our code.

  12. The 2015 Heavy-Ion Run of the LHC

    CERN Document Server

    Jowett, John; Bruce, Roderik; Giovannozzi, Massimo; Hermes, Pascal; Höfle, Wolfgang; Lamont, Mike; Mertens, Tom; Redaelli, Stefano; Schaumann, Michaela; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In late 2015 the LHC collided lead nuclei at a beam energy of 6.37 Z TeV, chosen to match the 5.02 TeV per colliding nucleon pair of the p-Pb collision run in 2013. In so doing, it surpassed its design luminosity by a factor of 2. Besides the higher energy, the operational configuration had a number of new features with respect to the previous Pb-Pb run at 3.5 Z TeV in 2011; unusual bunch patterns providing collisions in the LHCb experiment for the first time, luminosity levelling and sharing requirements, a vertical displacement of the interaction point in the ALICE experiment, and operation closer to magnet quench limits with mitigation measures. We present a summary of the commissioning and operation and what has been learned in view of future heavy-ion operation at higher luminosity.

  13. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  14. Heavy ion collision evolution modeling with ECHO-QGP

    Science.gov (United States)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  15. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  16. Chemical freeze-out in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Jun Xu

    2017-09-01

    Full Text Available One surprising result in relativistic heavy-ion collisions is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these collisions, we find, as an example, that the effective pion to nucleon ratio, which includes those from resonance decays, indeed changes very little during the evolution of the hadronic matter from the chemical to the kinetic freeze-out, and it is also accompanied by an almost constant specific entropy. We further use a hadron resonance gas model to illustrate the results from the transport model study.

  17. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    particles is formed beyond the Bragg-peak. This tail may deliver unwanted dose to normal tissue, however the magnitude of the tail is directly depending on the inelastic nuclear reaction cross sections. 2. Dosimetry a. Stopping power ratios: Routine dosimetry is performed with air-filled ionization chambers...... the sensitivity on the three fields mentioned above, including: turning off nuclear fragmentation entirely, changing all ineleastic cross sections +/- 20%, changing key parameters in the Fermi-Breakup (FB) model. Results show nuclear effects have their largest impact on the dose distribution. Stopping power......Particle therapy with fast ions is increasingly applied as a treatment option for localized inoperable tumour sites. One of the reasons for the increased complications of understanding heavy ion dosimetry and radiobiology stems from the mixed particle spectrum which occurs due to nuclear...

  18. Stopping of relativistic heavy ions in various media

    Science.gov (United States)

    Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.

    1986-01-01

    The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.

  19. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  20. Jets in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Santos, Helena; The ATLAS collaboration

    2018-01-01

    Jets constitute a golden probe to study the quark gluon plasma produced in heavy ion collisions at the LHC. Being produced at the early stages of the collisions, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb collisions with respect to pp collisions. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. This talk will present the currently available jet results from ATLAS in Run 2. The high statistical significance of this data sample collected by ATLAS in Run 2 allows precision measurements of these observables in a wide range of transverse momentum, centrality and rapidity intervals.

  1. Jet quenching in heavy-ion collisions with CMS

    CERN Document Server

    Lee, Yen-Jie

    2008-01-01

    The energy loss of fast partons traversing the strongly interacting matter produced in relativistic heavy-ion collisions is one of the most interesting observables to probe the nature of the produced medium. The collisional and radiative energy loss of the partons will modify the fragmentation functions depending on the path length in the medium. In this report, we present a detailed study of complete simulated $\\gamma$-jet events by the CMS detector at LHC in view of the expected modification of jet fragmentation functions in central collisions at $\\sqrt{s_{NN}} = 5.5$ TeV compared to the p+p case. Since the produced prompt photon does not interact strongly with the medium, the initial transverse energy of the fragmentation parton can be related to the photon transverse energy in $\\gamma$-jet events. This enables us to make precision measurements of the modification of the fragmentation function.

  2. Jets in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Santos, Helena; The ATLAS collaboration

    2017-01-01

    Jets constitute a golden probe to study the quark gluon plasma produced in heavy ion collisions at the LHC. Being produced at the early stages of the collisions, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb collisions with respect to pp collisions. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. This talk will present the currently available jet results from ATLAS in Run 2. The high statistical significance of this data sample collected by ATLAS in Run 2 allows precision measurements of these observables in a wide range of transverse momentum, centrality and rapidity intervals.

  3. Jets and Vector Bosons in Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    de la Cruz Begoña

    2013-11-01

    Full Text Available This paper reviews experimental results on jets and electroweak boson (photon,Wand Z production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  4. Heavy-ion physics studies for the Future Circular Collider

    CERN Document Server

    Armesto, Nestor; d'Enterria, David; Masciocchi, Silvia; Roland, Christof; Salgado, Carlos; van Leeuwen, Marco; Wiedemann, Urs

    2014-01-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven-times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which would provide the electron-hadron option in the long term. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of Quark-Gluon Plasma, gluon saturation, photon-induced collisions, as well as connections with ultra-high-energy cosmic rays.

  5. Heavy-ion physics studies for the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Dainese, A., E-mail: andrea.dainese@pd.infn.it [INFN — Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2014-11-15

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron–hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron–positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron–hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark–gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  6. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  7. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  8. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  9. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  10. Heavy-Ion Radiation Impact on a 4Mb FRAM under Different Test Conditions

    CERN Document Server

    Gupta, V.; Tsiligiannis, G.; Zadeh, A.; Javanainen, A.; Virtanen, A.; Puchner, H.; Saigne, F.; Wrobel, F.; Dilillo, L.

    2015-01-01

    The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of different test modes (static and dynamic) on this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry. Dynamic tests results show a high sensitivity of this memory to heavy-ions.

  11. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  12. The initial stages of heavy-ion collisions in the colour glass ...

    Indian Academy of Sciences (India)

    collision at high energy in the colour glass condensate (CGC) framework. Keywords. Heavy-ion collisions; quantum chromodynamics; colour glass condensate. PACS Nos 12.38.Mh; 11.10.Wx; 12.38.Cy; 11.15.Kc; 12.38.Gc. 1. Introduction. Heavy-ion collisions at ultrarelativistic energies are used to study the properties of ...

  13. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    Light charged particle emission in heavy-ion reactions –. What have we learnt? S KAILAS. Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Light charged particles emitted in heavy-ion induced reactions, their spectra and angu- lar distributions measured over a range of energies, ...

  14. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    NARCIS (Netherlands)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four

  15. Jet Physics in Heavy Ion Collisions with Compact Muon Solenoid detector at the LHC

    CERN Document Server

    Lokhtin, I P

    2006-01-01

    The status of CMS jet simulations and physics analysis in heavy ion collisions is presented. Jet reconstruction and high transverse momentum particle tracking in the high multiplicity environment of heavy ion collisions at the LHC using the CMS calorimetry and tracking system are described. The Monte Carlo tools used to simulate jet quenching are discussed.

  16. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  17. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  18. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  19. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  20. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to ... Experimentally, high energy direct photon measurement has always been consid- ered a challenge. This is ... charged and neutral pion spectra from different heavy-ion experiments. They estimate a.

  1. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  2. Effect of entrance channel parameters on the fusion of two heavy ions

    Indian Academy of Sciences (India)

    the charge state of the energetic heavy ions is important. The selected charge state of the energetic heavy ions might get modified when they traverse through the target foils. The average charge state of the ions emerging from the target ... high-spin isomer was considered to represent the cross-section of the radionuclide.

  3. MEGHNAD – A multi element detector array for heavy ion collision ...

    Indian Academy of Sciences (India)

    gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the properties of a wide variety of ... The gamma detector array consists of four numbers of Clover detectors, a few high efficiency HPGe ... chamber (IC) for measurement of energy and charge of the heavy ions stopping within the active gas ...

  4. Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions

    CERN Document Server

    Borghini, N; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonov, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L W; Cleymans, J; Cole, B A; Conesa Del Valle, Z; Csernai, L P; Cunqueiro, L; Dainese, A; Dias de Deus, J; Ding, H T; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fái, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, François; Gonçalves, V P; Greco, V; Greiner, C; Gyulassy, M; Van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kämpfer, B; Kang, Z B; Karpenko, Iu A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B A; Lin, Z W; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M V T; Malinina, L V; Managadze, A M; Mangano, Michelangelo L; Mannarelli, M; Manuel, C; Martínez, G; Milhano, J G; Mocsy, A; Molnár, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J Y; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J W; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Räasänen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoshi, A I; Sinha, B; Sinyukov, Yu M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stöcker, H; Teplov, C Yu; Thews, R L; Torrieri, G; Topor-Pop, V; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, Urs Achim; Wolschin, G; Xiao, B W; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B; Zhang, B W; Zhang, H; Zhou, D

    2008-01-01

    This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute 'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from May 14th to June 10th 2007.

  5. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations.

  6. Fusion cross section measurements of astrophysical interest for light heavy ions systems within the STELLA project

    Science.gov (United States)

    Fruet, Guillaume; Courtin, Sandrine; Jenkins, David G.; Heine, Marcel; Montanari, Daniele; Morris, Luke G.; Adsley, Philip; Beck, Christian; Della Negra, Serge; Haas, Florent; Hammache, Fairouz; Kirsebom, Oliver S.; Meyer, Anne; Regan, Patrick H.; Rudiger, Matthias; de Séréville, Nicolas; Stodel, Christelle

    2017-11-01

    This contribution is focused on the STELLA project (STELlar LAboratory), which aims at the measurement of fusion cross sections between light heavy ions like 12C+12C, 12C+16O or 16O+16O at deep subbarrier energies. The gamma-particle coincidence technique is used in order to reduce background contributions that become dominant for measurements in the nanobarn regime. The experimental setup composed of an ultra high vacuum reaction chamber, a set of 3 silicon strip detectors, up to 36 LaBr3(Ce) scintillators from the UK FATIMA collaboration, and a fast rotating target system will be described. The 12C+12C fusion reaction has been studied from Elab = 11 to 5.6 MeV using STELLA at the Andromède facility in Orsay, France. Preliminary commissioning results are presented in this article.

  7. Data acquisition and analysis system for the Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Milner, W. T.; Biggerstaff, J. A.; Hensley, D. C.; Sayer, R. O.

    1979-01-01

    The Holifield Heavy Ion Research Facility is a national resource which will serve a large number of nuclear and atomic physicists who expect to perform experiments which vary widely in type and complexity. Although much consideration must be given to the problem of rapid acquisition and processing of many-parameter data, an equal emphasis will be placed on operational simplicity and the standardization of hardware and software. Two active experimental counting areas and two or more setup areas are served by three remotely located Perkin--Elmer 8/32 computers which are interfaced to the user equipment by means of three CAMAC branch highways. Other equipment includes a large disk system, alphanumeric/graphic terminals and printer--plotters located in each of the counting areas. The system operation as well as techniques for the rapid sorting of data into large (approx. 10 million channels) histograms on disk are discussed.

  8. X-ray spectromicroscopy of fast heavy ions and target radiation

    CERN Document Server

    Rosmej, O N; Geissel, M; Rosmej, F; Blakevic, A; Jacoby, J; Dewald, E; Roth, M; Brambrinz, E; Weyrich, K; Hoffmann, Dieter H H; Pikuz, T A; Faenov, A Y; Magunov, A I; Skobelev, I Y; Borisenko, N G; Shevelko, V P; Golubev, A A; Fertman, A; Turtikov, V; Sharkov, B Yu

    2002-01-01

    A new technique for X-ray spectromicroscopy of fast heavy ion radiation during the ion interaction with stopping media is presented using focusing spectrometers with spatial resolution. Spherically bent crystals of quartz and mica with small curvature radii, R=150 mm, and large apertures were used as dispersive elements in experiments on fast Ni ions with energies of 5.9 and 11.2 MeV/u which are being stopped in different media: Ar gas, SiO sub 2 -aerogels and solid quartz. Spectrally high (lambda/DELTA lambda=1000-3000) and spatially high (up to 10-100 mu m) resolved K alpha-satellite spectra of Ni projectiles as well as of the ionized stopping media were observed.

  9. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  10. LET dependency of heavy-ion induced apoptosis in V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mizuho; Furusawa, Yoshiya [National Inst. of Radiological Sciences, Chiba (Japan); Yamada, Takeshi

    2000-06-01

    We investigated the relationship between the LET values and cell death, defined as either apoptosis or loss of reproductive integrity (reproductive death), using Chinese hamster V79 cells. The cells were irradiated with X-rays or carbon-ion beams from the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). Apoptosis was defined based on the morphological change upon treating of cells with caffeine. The apoptotic index, the ratio of apoptotic cells to the total, after exposure to 2 Gy of X-rays was 0.043. Upon irradiation with carbon-ion beams, the index was gradually increased with increasing LET values, reaching a maximum of 0.076 at 110 keV/{mu}m, and then decreased to 0.054 at 237 keV/{mu}m. An analogous pattern of the LET dependence was observed between reproductive death and apoptotic death. The cell-survival values obtained after 2 Gy exposure (SF{sub 2}) were 0.64, 0.13, and 0.24, respectively. A similar trend was found for the RBE values calculated from the initial slope for both apoptosis and reproductive death. These results strongly suggest that the target for both types of cell death is the same. (author)

  11. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  12. Conducting ion tracks generated by charge-selected swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Srashti, E-mail: srashti.3@gmail.com [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany); Department of Physics & Astrophysics, Delhi University, New Delhi, Delhi 110007 (India); Gehrke, H.G., E-mail: h.gehrke@fz-juelich.de [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany); Forschungszentrum Jülich, 52425 Jülich (Germany); Krauser, J., E-mail: jkrauser@hs-harz.de [Harz University of Applied Sciences, 38855 Wernigerode (Germany); Trautmann, C., E-mail: C.Trautmann@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Alarich-Weiss-Straße2, 64287 Darmstadt (Germany); Severin, D., E-mail: D.Severin@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Bender, M., E-mail: M.Bender@gsi.de [Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Rothard, H., E-mail: rothard@ganil.fr [Centre de Recherche sur les Ions, les Materiaux et la Photonique, CIMAP-CIRIL-Ganil, F-14070 Caen (France); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [II. Physikalisches Institut, Universität Göttingen, 37077 Göttingen (Germany)

    2016-08-15

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u {sup 238}U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  13. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    Science.gov (United States)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  14. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  15. System for studying a sample of material using a heavy ion induced mass spectrometer source

    Science.gov (United States)

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  16. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  17. Heavy-Ion Radiation Characteristics of DDR2 Synchronous Dynamic Random Access Memory Fabricated in 56 nm Technology

    National Research Council Canada - National Science Library

    Ryu, Kwang-Sun; Park, Mi-Young; Chae, Jang-Soo; Lee, In; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi

    2012-01-01

    .... To investigate the resistance of the chip to the space radiation environment, we have performed heavy-ion-driven single event experiments using Heavy Ion Medical Accelerator in Chiba medium energy beam line...

  18. Estimating solar irradiance using genetic programming technique and meteorological records

    Directory of Open Access Journals (Sweden)

    Rami Al-Hajj

    2017-08-01

    Full Text Available Solar irradiance is one of the most important parameters that need to be estimated and modeled before engaging in any solar energy project. This article describes a non-linear regression model based on genetic programming technique for estimating solar irradiance in a specific region in the United Arab Emirates. The genetic programming is an evolutionary computing technique that enables automatic search for complex solutions. The best nonlinear modeling function that can estimate the global solar radiation on horizontal will be developed taking into account measured meteorological data. A reference approach to model the solar radiation is first presented. An enhanced approach is then presented which consists of multi nonlinear functions of regression in a parallel structure where each function is designed to estimate the global solar irradiance in a specific seasonal period of the year. Statistical analysis measures have been used to evaluate the performance of the proposed approaches. The obtained results are comparable with the outcomes of models developed by other researchers in the field.

  19. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    Energy Technology Data Exchange (ETDEWEB)

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  20. Fluctuations in Ultra-Relativistic Heavy Ion Collisions

    Science.gov (United States)

    Mazeliauskas, Aleksas

    Fluctuations are one of the main probes of the physics of the new state of hot and dense nuclear matter called the Quark Gluon Plasma (QGP) which is created in the ultra-relativistic heavy ion collisions. In this dissertation we extend and improve upon the existing descriptions of heavy ion collisions in three different directions: we study the new signatures of initial state fluctuations, the propagation of perturbations in the early stages of the collision, and the effect of thermal fluctuations on the hydrodynamic expansion of the QGP. First, in Chapter 3 we study initial state fluctuations by examining the complete statistical information contained in the two-particle correlation measurements in hydrodynamic simulations of Pb+Pb collisions at the CERN Large Hadron Collider (√sNN = 2.76 TeV). We use Principal Component Analysis (PCA) to decompose the spectrum of harmonic flow, v_n(p_T) for n = 0-5, into dominant components. The leading component is identified with the standard event plane vn(pT), while the subleading component describes additional fluctuations in the two-particle correlation function. We find good geometric predictors for the orientation and the magnitude of the leading and the subleading flows. The subleading v 0, v1, and v3 flow harmonics are shown to be a response to the radial excitation of the corresponding eccentricity epsilonn. In contrast, for v2 the subleading flow in peripheral collisions is dominated by the nonlinear mixing between the leading elliptic flow and radial flow fluctuations. Nonlinear mixing also plays a significant role in generating subleading v4 and v 5 harmonics. The PCA gives a systematic way of studying the full information of the two-particle correlation matrix and identifying the subleading flows, which we show are responsible for factorization breaking in hydrodynamics. Second, in Chapter 4 we study the thermalization and hydrodynamization of fluctuations at the early stages of heavy ion collisions. We use

  1. Structural analysis of irradiated crotoxin by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karina C. de; Fucase, Tamara M.; Silva, Ed Carlos S. e; Chagas, Bruno B.; Buchi, Alisson T.; Viala, Vincent L.; Spencer, Patrick J.; Nascimento, Nanci do, E-mail: kcorleto@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2013-07-01

    Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the serum, the only effective treatment in case of snake bites, is produced in horses which, despite of their large size, have a reduced lifespan due to the high toxicity of the antigen. Ionizing radiation has been successfully employed to attenuate the biological activity of animal toxins. Crotoxin, the main toxic compound from Crotalus durissus terrificus (Cdt), is a heterodimeric protein composed of two subunits: crotapotin and phospholipase A{sub 2}. Previous data indicated that this protein, following irradiation process, undergoes unfolding and/or aggregation, resulting in a much lower toxic antigen. The exact mechanisms and structural modifications involved in aggregation process are not clear yet. This work investigates the effects of ionizing radiation on crotoxin employing Infrared Spectroscopy, Circular Dichroism and Dynamic Light Scattering techniques. The infrared spectrum of lyophilized crotoxin showed peaks corresponding to the vibrational spectra of the secondary structure of crotoxin, including β-sheet, random coil, α-helix and β-turns. We calculated the area of these spectral regions after adjusting for baseline and normalization using the amide I band (1590-1700 cm{sup -1}), obtaining the variation of secondary structures of the toxin following irradiation. The Circular Dichroism spectra of native and irradiated crotoxin suggests a conformational change within the molecule after the irradiation process. This data indicates structural changes between the samples, apparently from ordered conformation towards a random coil. The analyses by light scattering indicated that the irradiated crotoxin formed multimers with an average molecular radius 100 folds higher than the native toxin. (author)

  2. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  3. Structure of High Energy, Heavy Ions in Venus' Upper Ionosphere

    Science.gov (United States)

    Persson, Moa; Futaana, Yoshifumi; Nilsson, Hans; Stenberg Wieser, Gabriella; Hamrin, Maria; Fedorov, Andrei; Barabash, Stas

    2017-04-01

    The solar wind interacts with the atmosphere of Venus, and can reach directly down to the ionosphere. The interaction has previously been studied using the Pioneer Venus mission (PVO) and is now known to cause variations in the density in the ionosphere [Taylor et al., 1980], a transport of ions towards the night side [Knudsen et al., 1980], and an outflow of ions from the atmosphere [Barabash et al., 2007]. Measurements made by PVO showed that the main constituents of Venus ionosphere in the altitude range 150-400 km is the O+ and O2+ ions, where the former dominates from 180 km and higher, and the latter dominates from 180 km down to 150 km [Taylor et al., 1980]. New measurements, made by the Ion Mass Analyzer (IMA) onboard the Venus Express spacecraft, reveal the high-energy (10 eV to 15 keV) plasma characteristics in the ionosphere of Venus. Using the data collected during the low altitude (down to 130 km) pericentre passages during the aerobraking time period, we are able to extract the height profile of the total heavy ion content (O+ and O2+ ions) of Venus ionosphere. The results show two scale heights separated at 200 km; 10 km for 200 km. We interpret the results as two heavy ion components, namely, the O+ ions are dominant for >200 km, while the O2+ is dominant for methods of mass separation, to extract the two ion components of the scale height profiles, (O+ and O2+). First method is to use the moderate mass separation capabilities of the IMA instrument. The individual mass spectra are fitted by two Gaussian curves, representing O+ and O2+, derived from ground calibration information. The second method uses the energy spectrum, which sometimes has two discrete peaks. By assuming the same velocity for different components in the spacecraft reference frame (resulting in different energy for different masses), we can separate the composition. We will discuss the results of the obtained mass separated height profiles.

  4. Review of heavy-ion inertial fusion physics

    Directory of Open Access Journals (Sweden)

    S. Kawata

    2016-03-01

    Full Text Available In this review paper on heavy ion inertial fusion (HIF, the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non-uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ∼30%–40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ∼50–70 to operate a HIF fusion reactor with the standard energy output of 1 GW of electricity. The HIF reactor operation frequency would be ∼10–15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ∼1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T instability, and the large density-gradient-scale length helps to reduce the R-T growth rate. On the other hand, the large scale length of the HIB ions stopping range suggests that the temperature at the energy deposition layer in a HIF target does not reach a very-high temperature: normally about 300 eV or so is realized in the energy absorption region, and that a direct-drive target would be appropriate in HIF. In

  5. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  6. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  7. Jet Quenching in Relativistic Heavy Ion Collisions at the LHC

    CERN Document Server

    Angerami, Aaron

    Jet production in relativistic heavy ion collisions is studied using Pb+Pb collisions at a center of mass energy of 2.76 TeV per nucleon. The measurements reported here utilize data collected with the ATLAS detector at the LHC from the 2010 Pb ion run corresponding to a total integrated luminosity of 7 μb−1. The results are obtained using fully reconstructed jets using the anti-kt algorithm with a per-event background subtraction procedure. A centrality-dependent modification of the dijet asymmetry distribution is observed, which indicates a higher rate of asymmetric dijet pairs in central collisions relative to peripheral and pp collisions. Simultaneously the dijet angular correlations show almost no centrality dependence. These results provide the first direct observation of jet quenching. Measurements of the single inclusive jet spectrum, measured with jet radius parameters R = 0.2,0.3,0.4 and 0.5, are also presented. The spectra are unfolded to correct for the finite energy resolution introduced by bot...

  8. Two-pion correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl..-->..2..pi../sup +-/+X and Ne+NaF..-->..2..pi../sup -/+X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions.

  9. The Crystal Collimation System Of The Relativistic Heavy Ion Collider

    CERN Document Server

    Fliller, R P

    2004-01-01

    Crystal Channeling occurs when an ion enters a crystal with a small angle with respect to the crystal planes. The electrostatic interaction between the incoming ion and the lattice causes the ion to follow the crystal planes. By mechanically bending a crystal, it is possible to use a crystal to deflect ions. One novel use of a bent crystal is to use it to channel beam halo particles into a downstream collimator. By deflecting the halo particles into a collimator with a crystal it may be possible to improve the collimation efficiency as compared to a conventional two stage collimation system. A bent crystal was installed in the counterclockwise ring of the Relativistic Heavy Ion Collider (RHIC) prior to the FY2001 run to be used as the first stage of a two stage collimation system. We present a model and simulations to the predict crystal channeling efficiency. The simulations and model predict a channeling efficiency between 59% and 74% depending on the choice of optics. Attempts to reduce backgrounds in RHIC...

  10. An angle-sensitive detection system for scattered heavy ions

    CERN Document Server

    Ganz, R E; Bär, R; Bethge, Klaus; Bokemeyer, H; Folger, H; Samek, M; Salabura, P; Schwalm, D; Stiebing, K E

    1999-01-01

    A compact detection system for heavy ions scattered in collisions at the Coulomb barrier is presented. This system, consisting of four identical, low-pressure Parallel Plate Avalanche Counter (PPAC) modules with two sensitive layers each, was built to operate in an ultra-high-vacuum environment inside the EPoS II solenoid spectrometer at GSI Darmstadt. The detector covers polar angles between 20 deg. and 70 deg. with respect to the beam axis, and about 80% of 2 pi in azimuthal angle. Segmented cathodes and a delay-line read-out allow for a determination of both angles with a precision of delta THETA approx 0.7 deg. in polar and delta PHI approx 1.5 deg. in azimuthal angle, respectively. The system has been proven to be capable of handling instantaneous rates of up to 5x10 sup 5 detected ions per second per module. It neither exhibits the degradation of detection efficiency nor loss in resolution over a 500 h period of a 6 MeV/u sup 2 sup 3 sup 8 U+ sup 1 sup 8 sup 1 Ta measurement at average luminosities of 8...

  11. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  12. Limiting fragmentation of chemical potentials in heavy ion collisions

    CERN Document Server

    Stiles, L A; Murray, Michael; Stiles, Laura A.

    2006-01-01

    Thermal models have been used to successfully describe the hadron yields from heavy ion collisions at a variety of energies. For root(S)<17 GeV this has usually been done using yields integrated over 4pi but at the higher energies available at RHIC, yields measured at central rapidity have been used. Recent BRAHMS data allows us to test whether thermal models can be generalized to describe the rapidity dependence of particle ratios. We have used the THERMUS package to fit BRAHMS data for the 5% most central Au+Au collisions for several rapidities at root(S) = 62 and 200 GeV. We have found a relationship between the strange and light quark chemical potentials, muS = 0.21 +-0.01muB. Using this relation we are able to describe the energy dependence of Lambda, Xsi and Omega ratios from other experiments. We also find that the chemical potentials are consistent with limiting fragmentation.

  13. INFN what next ultra-relativistic heavy-ion collisions

    CERN Document Server

    Dainese, A.; Usai, G.; Antonioli, P.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Bruno, G.E.; Bufalino, S.; Di Nezza, P.; Lombardo, M.P.; Nania, R.; Noferini, F.; Oppedisano, C.; Piano, S.; Prino, F.; Rossi, A.; Agnello, M.; Alberico, W.M.; Alessandro, B.; Alici, A.; Andronico, G.; Antinori, F.; Arcelli, S.; Badala, A.; Barbano, A.M.; Barbera, R.; Barile, F.; Basile, M.; Becattini, F.; Bedda, C.; Bellini, F.; Beole, S.; Bianchi, L.; Bianchin, C.; Bonati, C.; Bossu, F.; Botta, E.; Caffarri, D.; Camerini, P.; Carnesecchi, F.; Casula, E.; Cerello, P.; Cicalo, C.; Cifarelli, M.L.; Cindolo, F.; Colamaria, F.; Colella, D.; Colocci, M.; Corrales Morales, Y.; Cortese, P.; De Caro, A.; De Cataldo, G.; De Falco, A.; De Gruttola, D.; D'Elia, M.; De Marco, N.; De Pasquale, S.; Di Bari, D.; Elia, D.; Fantoni, A.; Feliciello, A.; Ferretti, A.; Festanti, A.; Fionda, F.; Fiorenza, G.; Fragiacomo, E.; Fronze, G.G.; Girard, M. Fusco; Gagliardi, M.; Gallio, M.; Garg, K.; Giubellino, P.; Greco, V.; Grossi, E.; Guerzoni, B.; Hatzifotiadou, D.; Incani, E.; Innocenti, G.M.; Jacazio, N.; Das, S. Kumar; La Rocca, P.; Lea, R.; Leardini, L.; Leoncino, M.; Lunardon, M.; Luparello, G.; Mantovani Sarti, V.; Manzari, V.; Marchisone, M.; Margagliotti, G.V.; Masera, M.; Masoni, A.; Mastroserio, A.; Mazzilli, M.; Mazzoni, M.A.; Meninno, E.; Mesiti, M.; Milano, L.; Moretto, S.; Muccifora, V.; Nappi, E.; Nardi, M.; Nicassio, M.; Pagano, P.; Pappalardo, G.S.; Pastore, C.; Paul, B.; Petta, C.; Pinazza, O.; Plumari, S.; Preghenella, R.; Puccio, M.; Puddu, G.; Ramello, L.; Ratti, C.; Ravasenga, I.; Riggi, F.; Ronchetti, F.; Rucci, A.; Ruggieri, M.; Rui, R.; Sakai, S.; Scapparone, E.; Scardina, F.; Scarlassara, F.; Scioli, G.; Siddhanta, S.; Sitta, M.; Soramel, F.; Suljic, M.; Terrevoli, C.; Trogolo, S.; Trombetta, G.; Turrisi, R.; Vercellin, E.; Vino, G.; Virgili, T.; Volpe, G.; Williams, M.C.S.; Zampolli, C.

    2016-01-01

    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target p...

  14. Quantifying the sQGP - Heavy Ion Collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Richard [Univ. of California, Riverside, CA (United States)

    2014-12-01

    This is the closeout for DE-FG02-86ER40271 entitled Quantifying the sQGP - Heavy Ion Collisions at the RHIC. Two major things were accomplished. The first, is the physics planning, design, approval, construction, and commissioning of the MPC-EX. The MPC-EX is an electromagnetic calorimeter covering a rapidity of 3<|eta|<4, which was added to the PHENIX detector. Its primary aim is to measure low-x gluons, in order to understand the suppression seen in a variety of signatures, such as the J/Psi. A candidate to explain this phenomena is the Color Glass Condensate (CGC) A second task was to look at collisions of asymmetric species, in particularly Cu+Au. The signature was the suppression of J/Psi mesons at forward and backward rapidity, where a stronger suppression was seen in the copper going direction. While the blue of the suppression is due to hot nuclear matter effects (e.g. screening) the increase in suppression on the Au side was consistent with cold nuclear matter effects seen in d+Au collisions. A major candidate for the explanation of this phenomena is the aforementioned CGC. Finally the work on sPHENIX, particularly an extension to the forward region, called fsPHENIX is described.

  15. Thermal electromagnetic radiation in heavy-ion collisions

    Science.gov (United States)

    Rapp, R.; van Hees, H.

    2016-08-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ( ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

  16. Review of Recent Results in Heavy Ion Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Csernai Laszlo P.

    2014-03-01

    Full Text Available Fluid dynamical phenomena in high energy heavy ion reactions were predicted in the 1970s and still today these are the most dominant and basic observables. With increasing energy and the reach of QGP the low viscosity of the plasma became apparent and this brought a new revolution in the fluid dynamical studies. The high energy and low viscosity made it possible to observe fluctuations up to high multipolarity flow harmonics. This is an obvious, direct proof of the low viscosity of QGP. Many aspects of these fluctuations are under intensive study today. The low viscosity opened ways to observe special fluid dynamical turbulent phenomena. These may arise from random fluctuations, as well as from the global symmetries of peripheral collisions. At LHC energies the angular momentum of the participant matter can reach 106ħ, which leads to rotation and turbulent instabilities, like the Kelvin-Helmholtz instability. Low viscosity ensures that these remain observable at the final freeze-out stages of the collision. Thus new investigations in addition to the standard flow analysis methods became possible. Femtoscopy may also detect rotation and turbulence. Due to the high local thermal vorticity, particle polarization and orbital rotation may reach thermal and mechanical equilibrium. This leads to baryon polarization which, in given directions may be detectable.

  17. Real causes of apparent abnormal results in heavy ion reactions

    Directory of Open Access Journals (Sweden)

    Mandaglio G.

    2015-01-01

    Full Text Available We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.

  18. Quarkonia results in heavy-ion collisions from CMS

    CERN Document Server

    AUTHOR|(CDS)2075370

    2015-01-01

    This writeup summarizes CMS results on quarkonia measurements in pp, pPb and PbPb collisions at LHC. CMS has excellent muon detection capabilities which has resulted in a wealth of results on quarkonia (both charmonia as well as bottomonia) measured in dimuon channel. The good mass resolution in dimuon channels allows precise measurement of all three Υ states and their relative yields in pp, pPb as well as PbPb systems, which have ability to quantify the properties of strongly interacting matter. In the charmonia sector, measurements of relative yields of J/ ψ , ψ (2S) are equally useful. In addition excellent vertex capability of CMS enables measurement of B mesons via its decay to J/ ψ which are useful tool to verify energy loss mechanisms of heavy quarks in medium. An overview of these measurements is given. How these measurements compare with other experiments at RHIC and LHC and have improved the understanding of heavy ion collisions has been discussed.

  19. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  20. Bottomonium production in heavy-ion collisions at STAR

    CERN Document Server

    Vertesi, Robert

    2015-01-01

    Bottomonium measurements provide unique insight into hot and cold nuclear matter effects present in the medium that is formed in high-energy heavy-ion collisions. Recent STAR results show that in $\\sqrt{s_{NN}}$ = 200 GeV central Au+Au collisions the $\\Upsilon$(1S) state is suppressed more than if only cold nuclear matter effects were present, and the excited state yields are consistent with a complete suppression. In 2012, STAR also collected 263.4 $\\mu$b$^{-1}$ high-energy-electron triggered data in U+U collisions at $\\sqrt{s_{NN}}$= 193 GeV. Central U+U collisions, with an estimated 20% higher energy density than in central Au+Au data, extend the $\\Upsilon$(1S+2S+3S) and Upsilon(1S) nuclear modification trends observed in Au+Au towards higher number of participant nucleons, and confirm the suppression of the $\\Upsilon$(1S) state. We see a hint with 1.8 sigma significance that the $\\Upsilon$(2S+3S) excited states are not completely suppressed in U+U collisions. These data support the sequential in-medium qu...